Lattice Boltzmann method for the fractional advection-diffusion equation

Zhou, J. G. and Haygarth, Philip Matthew and Withers, P. J. A. and Macleod, C.J.A and Falloon, Peter D and Beven, Keith John and Ockenden, Mary Catherine and Forber, Kirsty Jessica and Hollaway, Michael John and Evans, R. and Collins, A. L. and Hiscock, Kevin M and Wearing, Catherine Louise and Kahana, Ron and Villamizar, Martha (2016) Lattice Boltzmann method for the fractional advection-diffusion equation. Physical Review E, 93 (4). ISSN 1539-3755

[thumbnail of PhysRevE.93.043310]
PDF (PhysRevE.93.043310)
PhysRevE.93.043310.pdf - Published Version
Available under License Creative Commons Attribution.

Download (361kB)


Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

Item Type:
Journal Article
Journal or Publication Title:
Physical Review E
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
13 May 2016 14:02
Last Modified:
02 Oct 2023 00:26