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Abstract In this paper, we describe the design and implementation of a computation-
ally efficient system for detecting moving objects on a moving platform which can
be deployed on small, lightweight, low-cost and power-efficient hardware. The pri-
mary application of the payload system is that of performing real-time on-board au-
tonomous object detection of moving objects from videos stream taken from a camera
mounted to an Unmanned Aerial Vehicle (UAV). The implemented object detection
algorithms utilise Recursive Density Estimation (RDE) and Evolving Local Means
(ELM) clustering to perform change and object detection of moving objects without
prior knowledge. Furthermore, experiments are presented which demonstrate that the
introduced system is able to detect, by on-board processing, any moving objects from
a UAV in real-time while at the same time sending only important data to a control
station located on the ground with minimal time to setup and become operational.

Keywords Autonomous objects detection · unmanned aerial vehicle · evolving
clustering · video analytic · linear motion model

1 Introduction

In this paper, we propose an autonomous real-time and power-efficient approach for
on-board moving object detection using a mounted camera on a moving platform. The
novelty of the proposed work is the combination of camera motion estimation with
a fast, recursive background subtraction technique to enable real-time moving object
detection on an aerial platform. The detection of moving objects has been studied
extensively due to its role in a variety of applications such as surveillance [14], mobile
navigation [28], and traffic control [11]. The study of Unmanned Aerial Vehicles
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(UAV) has been an active topic among researchers because they can be utilised in
a wide variety of applications and scenarios which are not accessible by humans.
Video footage taken from UAVs has been one of the fastest growing data sources in
the last few years, and this is increasing due to the development of small, low-cost
high definition cameras.

The most common method for dynamic image analysis is background subtraction
which uses background modelling for detecting moving objects. Background sub-
traction techniques detect objects by detecting statistically significant changes from
a background model and can successfully separate foreground objects from the back-
ground assuming the camera is stationary or its motion is fully compensated by other
means. Background subtraction is mostly used with stationary cameras because cam-
era movements require the background to be remodelled. When the camera is also in
motion, pixels with the same nominal positions in two (or more) consecutive image
frames are no longer comparable without further computationally complex process-
ing.

A background compensation method proposed in [19] can be used to calculate the
background motion from the camera pan and tilt angles. However, the compensation
of pan and tilt angles is only restricted to rotation of the camera about the lens centre.
Zhang et. al [29] used dense optical flow fields over multiple frames to estimate the
camera motion and segmentation of moving objects. However, inconsistent object
boundaries in optical flow methods cause distortion of the moving objects or split
articular motion of a moving object into more than one object. On the other hand,
in [12] a hybrid model based on colour segmentation and motion based regions is
used. The method provides good results but it is computationally expensive and is
not real-time.

Several approaches have been proposed for object detection on UAV platforms;
however, many of them are limited to only track pre-defined objects such as vehicles
[22] or humans [26]. The advantage of the proposed system is that it requires no
previous knowledge of the objects to be detected. As a result no training is required
which enables fast deployment in a wide range of environments.

Most of the alternate techniques for object detection on UAVs involve sending
a video data stream back to a ground station which is then processed on a high-end
desktop computer, e.g. [20]. The major drawback of using this technique is the re-
quirement for a fast and reliable data connection between the UAV and the ground
station. The video signal is usually transmitted with a considerable delay and the pos-
sibility of corrupted data being received at the ground station due to the requirement
to send every frame. As a result, this limits the operational range of the UAV because
it must always be capable of transmitting the video stream for further analysis.

Computer hardware has become more powerful, smaller, and lighter, which al-
lows for object detection algorithms to be implemented directly on-board the UAV.
The advantage of using on-board processing is the significant reduction in the amount
of transmitted data and minimisation of the delay between detection and analysis of
objects. There is also a reduced risk of interception, increased range of operation, and
reduction in workload for human operators located on the ground because they are
only presented with video frames that may contain items of interest.
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Fig. 1 Schematic representation of the proposed AURORA approach

The main focus of this paper is to implement a system that is able to perform
real-time moving object detection on-board the UAV by using fast and recursive al-
gorithms [1,2] without the need for prior knowledge of the objects to be detected.
Such a system should be able to consistently detect moving objects under different
scenarios before downlinking the processed and analysed image to a control station
located on the ground once, and only if, moving objects are identified (Figure 1).

2 Methodology overview

The main challenge to address when detecting moving objects from an airborne UAV
is the need to differentiate between the changes in the frame caused by the movement
of the UAV from those caused by moving objects. This problem is not limited to
aerial platforms, however it represents an additional difficulty because of the increase
in the number of degrees of freedom in comparison to ground based vehicles.

We aimed to overcome these challenges by further developing and improving
the recently introduced ARTOD approach, proposed in [21]. The whole process is
performed in three main phases and utilizes computationally efficient algorithms to
achieve real-time performance without the need for prior knowledge of the objects to
be detected. The first phase is used to estimate the motion of the camera using salient
features from the image and to compensate for the motion using, for example, ho-
mography or an optical flow based method; we use homography derived from optical
flow in this work for a balance between execution time and accuracy. The second
phase concerns change detection in which novelties must be identified between con-
secutive images; recursive density estimation (RDE) was chosen due to the reduction



4 Plamen Angelov et al.

Fig. 2 Flow diagram of the proposed approach

in computational complexity compared with background subtraction techniques us-
ing a window of frames or a Gaussian Mixture Model (GMM) [18]. In the third phase
objects are detected based on the changes detected in the second phase; a recursive
clustering algorithm, Evolving Local Means (ELM), combined with neighbouring
adjacent pixels is used to group novelties and detect moving objects from the video
frame (Figure 2).

Autonomous video analytics can be seen as a hierarchical layered process (Figure
3). In this paper, we focus on the first layer (lower layer) for autonomous real-time on-
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Fig. 3 Autonomous video analytics schematic structure

board video analytics. It would be possible to implement the higher-level layers once
the ground station had received the video frames containing the objects of interest,
once again reducing the computational burden due to only a subset of frames needing
further processing.

2.1 Camera Motion Estimation and Compensation

In order to to apply background subtraction methods to moving camera videos sev-
eral techniques have been proposed which compensate for the camera motion e.g. [8,
13,27]. Some compensate for the camera motion offline and only perform well when
there are no significant camera orientation changes [25]. These assumptions severely
limit the operational range of these techniques and are not applicable to images cap-
tured from a UAV with more degrees of freedom.

The RDE algorithm is able to estimate the density of a pixel from the current
image frame based on the similarity of the pixel at the respective position to all pre-
vious frames [3] or as many or as little as desired (RDE can be restarted or refreshed
when required). We differentiate restarting and refreshing RDE as follows: restarting
RDE resets all the values and the algorithm starts afresh with no prior data; refreshing
RDE allows for a minimum number of prior frames to be used when the algorithm is
reset. In order to refresh RDE there are two instances of the RDE algorithm running
in parallel but only one is used for detection at any given time. The refresh value, n,
is the minimum number of prior frames to be used for detection when the algorithm
is to be reset. Every n frames the instance of RDE used for detection is changed to
the other instance and the former RDE instance restarts. This guarantees at least n
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frames worth of data are present for detection (where available). This is beneficial for
the AURORA system due to the errors introduced by the homography process.

In the previously proposed ARTOD method [21], a homography is calculated,
derived from the camera motion of each consecutive frame. This can be used to
transform the new frame to the background model?s coordinate frame. Scale In-
variant Feature Transform (SIFT) [17] was used to detect feature points in image
sequences and to estimate the transformation homography between two consecutive
frames. SIFT is invariant to image scaling, rotation illumination changes and 3D cam-
era viewpoint. Usually, hundreds of keypoint matches are extracted from each frame;
however, among extracted keypoint matches some result in mismatches. On the other
hand, some of the keypoints can be from moving object(s) which do not represent
the static background scene. In order to remove the incorrect matches and refine out-
liers, the RANSAC algorithm was used to find inliers by estimating the homography
matrix and to ignore outliers [10].

In AURORA we developed the ARTOD approach further into ARTOD+, in which
we use optical flow to calculate the homography matrix which is significantly quicker
than filtering matching keypoints. The proposed approach is best suited for small
camera motions due to the underlying background subtraction method which re-
lies upon previous images in order to update the background model. The pyramidal
Lucas-Kanade optical flow algorithm [6] is used to extract the optical flow displace-
ment vectors between the previous image and the current image based on features ex-
tracted using the Good Features to Track (GFT) [23] algorithm. The proposed method
is a much more computationally efficient alternative to SIFT whilst maintaining the
accuracy of keypoints between frames. The GFT algorithm was proposed to be used
in ARTOD+ as an optimal solution to extracting keypoints in an image that can be
used for the purpose of tracking. GFT uses pure translation to maintain the accuracy
and reliability of the keypoints to be tracked. Not all keypoints in an image may con-
tain complete motion information due to horizontal or vertical edges. This is known
as the aperture problem. To overcome, this, GFT selects good features to track that
take into account the texturedness and dissimilarity of the extracted keypoints to en-
sure that they correspond to real world features. GFT was selected due to the low
computational complexity whilst providing enough accuracy to accurately determine
the homography matrix.

Once the keypoints have been extracted from the previous image frame they are
passed to the pyramidal Lucas Kanade optical flow algorithm [6] in order to find the
positions of the features in the current image frame. The purpose of the algorithm is
to track a point u on a frame, Ik where k is the frame number, to another location v
on another frame Ik+1. The difference between points u and v represent the optical
flow vector for that point and describes both the angle of motion and magnitude that
translates u from frame Ik onto v from frame Ik+1. This is applied to all keypoints
extracted from the previous image frame in order to find their corresponding positions
in the current image frame.

Once the optical flow displacement vectors have been calculated, they are nor-
malised and clustered using the online ELM clustering algorithm [5]. The x and y
co-ordinates of the optical flow vectors, which encompass both the angle of motion
and displacement of the optical flow, are used as the features for clustering. The
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Evolving Local Means method is a one-pass approach which recursively calculates
the local mean and variance of clusters.

The cluster with the largest number of optical flow vectors associated with it
represents the motion of the camera with respect to the background. The features
contained in the biggest cluster, that represent the camera motion, are then used to
calculate the homography matrix using the random consensus sampling algorithm to
further improve the robustness and remove any outliers that may remain. The choice
of ELM, over alternatives such as the mean shift algorithm, was based on its computa-
tional efficiency with both approaches having comparable accuracy. The small errors
introduced by ELM are minimised using the random sampling consensus (RANSAC)
algorithm when calculating the homography. The minimum size of the object is lim-
ited by the clustering process, we remove clusters of less than 10 pixels to remove
noise. If a moving object becomes stationary for a prolonged period then the ap-
proach will stop detecting it because RDE is a motion based detector. Pure rotation
is difficult for the proposed approach to handle due to the use of optical flow for the
calculation of the homogrpahy matrix.

2.2 Computationally Efficient Background Subtraction using RDE and RTSDE

Once the motion of the camera is estimated and a new image frame is aligned to the
coordinate system of the background model, the next step is to identify novelties in
the scene. We used a recursive algorithm which is fast and computationally efficient
[1,2] and has been proven to have a fast response to environmental changes with-
out requiring any threshold or pre-setting of any parameters for static [3] or moving
cameras [21].
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Recursive density estimation technique is non-parametric and it represents the
distance from a data sample to all, or as many as needed, previous samples in the
feature (e.g. colour) space. Density defined in this way is not exactly the probability-
based density function [2]. Having the value of the density updated for the current kth
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Fig. 4 The evolution of the density for a pixel throughout the video stream. The frames for which the value
of the density drops below the value of D̄k− (σD

k )2 are highlighted by a yellow circle. This indicates the
presence of a foreground pixel.

frame for each (i, j)th pixel we can also calculate and update the mean density, D̄k [1,
2]:
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One can also recursively update the variance of the density as follows:
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Using equations (1-5) novelties (foreground) in the scene can be detected when
the density of a pixel drops below the value of D̄i, j

k − (σD
k )2 (Fig 4).

In order to deploy autonomous object detection algorithms on light-weight and
low-power hardware, a new approach called RTSDE has been recently introduced
[4]. This is aimed at further reducing the computational complexity of RDE by us-
ing integer only arithmetic with no division or floating point numbers calculations.
As opposed to RDE, which uses a Cauchy-type kernel to calculate the inverse mean
distance between a current observation and all past observation, RTSDE skips the
kernel entirely. Instead RTSDE calculates a Total Sum Distance (TSD) or accumu-
lated proximity, π for each colour dimension, which can be expressed recursively per
feature, d as [4]:
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where π is the TSD or Total Sum Distance for the pixel at position (i, j) in the current
kth frame. sk is the feature (e.g. colour) vector for the pixel, d = {1;2;3} (e.g. colour,
RGB) vector for the pixel. In the RTSDE approach [4] we multiply all elements in
Eq. 2 by k, but assume it is written in terms of the mean of π which is π̄ rather than
in terms of the mean of s (Eq. 7).
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Subtracting this from (Eq. 6) indicates the deviation of the current π from the
mean π over all previous image frames. The pixel can then be determined to be a
novelty if the following is true for any feature dimension, d (d = [R,G,B]):

kπ
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i, j
kd > k2

ξ (8)

where π̄ is the mean π value for feature d of the pixels at position (i, j) in all
previous frames, and ξ is a predefined sensitivity factor, which can be proportional to
the variance, σ . From this, we have two values that must be persistent across frames;
sl and π̄ .

Thus, we are able to recursively update the persistent values using just a single
integer addition. This is the primary improvement over the original RDE algorithm,
which requires floating point divisions to update µ and S, as in Eq. 2 and Eq. 3, in
addition to a very expensive floating point square root calculation when recursively
updating the standard deviation of the density, σD (Eq. 5).

In the state-of-the-art methods [27] the homography matrix is used to warp the
current frame into the previous one to compensate for the moving camera (Figure 5).
However, in the proposed ARTOD+ approach, the RDE data structures are warped
into the new frames perspective which allows the RDE algorithm to be continuously
updated, see Figure 6. When the data structures generated by RDE are warped some
of the pixels will not have been processed before because of the camera movement.
These pixels are initialised whilst the remaining pixels (those that have been pro-
cessed before) are updated. The ability to continuously update pixels that have been
seen by the RDE algorithm reduces the effect of the errors introduced by the warp-
ing process because the data from the previous frames are held in the data structures
derived by RDE and, therefore, small changes are not detected as novelties.

2.3 ELM clustering of novelties in the scene

Once the RDE algorithm has detected the novelty pixels possibly corresponding to
moving objects they must be clustered in order to detect individual objects as opposed
to pixels. The disadvantage of background subtraction techniques from the point of
view of object detection is that the number of novelty pixels detected can be an order
of magnitude larger than other techniques, such as keypoints matching, due to the fact
a feature is made up of a number of pixels. The increased number of pixels that must
be clustered for the purpose of object detection can introduce a significant overhead
because the clustering algorithms must assign each pixel to a cluster. In addition to
this, there is a chance that pixels belonging to the same object, or those that are
adjacent to other novelty pixels, are assigned to different clusters.

To overcome this limitation a simple technique is used for grouping novelty pix-
els utilising 8-connected pixels. This assumes that a novelty pixel adjacent to another
novelty pixel forms part of the same object which may not always be the case in prac-
tical applications due to object occlusion, however it provides a quick and efficient
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Fig. 5 State-of-the-art methods to compensate a moving camera and create a mosaic image

Fig. 6 Schematic representation of ARTOD+ used in AURORA

method to reduce the number of novelty pixels that must be clustered and signifi-
cantly speeding up the clustering process. Once all 8-connected novelty pixels have
been grouped a subset is then passed to the clustering algorithm which determines
whether groups of pixels should be clustered together. For example, if two parts of
an object are detected but are not grouped together then the clustering will identify
that they belong to the same object if provided with a sufficient threshold. However,
there may be some instances where grouped clusters belonging to the same group
are assigned to different clusters. An example of this is shown in Figure 7. In this
case, clusters are merged based on the groups to ensure that all pixels belonging to
the same group belong to the same cluster [7].
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Fig. 7 Example of conflict between pixel groups and clusters. The coloured regions represent different
novelty groups and the numbers represent different clusters. In (a) the pixels are clustered into three clusters
but there are only two groups, (b) the clusters in the blue group are merged which, in turn, changes the
identity of the cluster in the grey group, and (c) the clusters in the grey group are merged together

Fig. 8 The Hexacopter S800-EVO owned and operated by the intelligent system lab at the Lancaster
University

3 Experimental Results

3.1 Implementation and Payload

In this section, we present real-life experiments for moving object detection to test
the proposed algorithm in real-time using a light-weight and low-power ADLINK
850 single-board computer mounted on a DJI hexacopter S800 EVO (Figure 8). The
hexacopter DJI S800 Evo, owned and operated by the Data Science Group at the In-
telligent System Lab at Lancaster University has a dimension of 1000mm(Length)×
1180mm(Width)× 500mm(Height) and has 5-7kg of payload carrying capability.
The payload consists of an ADLink 850, a USB wireless adaptor, a 2MP Logitech
webcam, and two 9000mAh LiPo batteries which provide 12-15 minutes flight time.

The experiment was carried out with two objectives in mind. The first objective
was to validate that the developed system was robust enough to detect moving objects
during the flight tests and transmit the correct data to the ground station; the second
objective was to test that the proposed approach was computationally efficient and
capable of detecting moving objects in real-time.

The proposed approach was developed on Linux using C++ and runs on the
ADLINK equipped with an Intel Core 2 Duo running at 2.2 GHz with 1GB of RAM.
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Fig. 9 Results of the pre-recorded busy traffic scene and high resolution camera

For the following experiments we used the approach of refreshing RDE (page 5)
with a refresh value of 10. Three different environments and scenarios were used
in order to analyse the performance of the introduced algorithm. The first experi-
ment was tested on pre-recorded video footage from a busy traffic scene recorded
with a high resolution camera mounted on a quadcopter flying at high altitude (9).
The second and third experiments were real-life experiments carried out at Lancaster
University (10) and Copehill down village (11) whereby the processing was per-
formed on-board the UAV and results downlinked to a laptop on the ground when
a moving object was detected. The real-time video streams were produced by an
external webcam mounted to the UAV with a resolution of 640 x 480 and with-
out any mechanical stability, such as a gyroscopic gimbal or vibration damping.
The results and videos obtained during real-life experiments are available on-line:
http://www.lancaster.ac.uk/staff/angelov/AURORA.htm.

3.2 Results

3.2.1 Evaluation in terms of processing speed

Prior to the hexacopter taking off, the ADLink 850 is connected to a remote server
and starts to wirelessly send image frames by executing the steps described in Figure
2. Once a moving object is detected, the frame of interest and/or binary frame is
transmitted to the laptop on the ground and appears on the screen (Figure 10). When
there is no movement the ADLink continues to process frames as normal, however
it does not transmit any data back to the laptop server on the ground. When there
are no moving objects in the field of view, a blank screen is displayed on the laptop
server with text informing the user that no moving objects have been detected. The

http://www.lancaster.ac.uk/staff/angelov/AURORA.htm
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Fig. 10 Results of the real-life experiment (including shaking UAV, wind etc. processed on board UAV)
performed at Lancaster University rugby pitch: Screenshot (left) with binary information which appears
on the server screen on the ground only when a moving object is detected by the UAV; on the right-the
original image (also transmitted, but only those frames with a moving object). The whole video is saved
locally on-board for comparison purposes.

maximum distance from the drone to moving objects is dependent on the resolution
of the camera and the size of the object relative to the camera. We were enabled to
the detect moving objects up to 30 meters above ground from the 2MB on-board
webcam. During the experiment the mounted camera was shaking noticeably and
the illumination changed, however it did not affect the overall performance of the
developed algorithm. Since we do not use any threshold to detect moving objects,
the proposed approach quickly adapted to the changing environment and was able to
accurately detect the moving objects in the scene.

Over the last few decades, background modelling has been studied significantly
and many methods have been proposed. Comparing our proposed method with all the
existing techniques is not feasible. In this paper, we compared the computational time
of the ARTOD+ with three well-known background modelling algorithms including
codebook method (CB) [15], Gaussian Mixture Model (GMM) [24] and SOBS [16]
on 640× 480 resolution for static and moving camera. The computational time for
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Fig. 11 Results of the real-life experiment (including shaking UAV, wind etc. processed on board UAV)
performed at Copehill down village: Screenshot (left) with binary information which appears on the server
screen on the ground only when a moving object is detected by the UAV; on the right-the original image
(also transmitted, but only those frames with a moving object). The whole video is saved locally on-board
for comparison purposes.

three background subtraction algorithms was estimated based on the results published
in [9,18]. As shown in the table below, the ARTOD+ method outperformed the other
three selected methods and achieved real-time performance of over 5 frames per sec-
ond (Table 1). There is additional scope for significantly increasing the speed of the
ARTOD+ approach by using a GPU implementation and CUDA technology because
the algorithms used are highly suited for hardware parallelisation.
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Table 1 A performance comparison between ARTOD+ and three well-known background modelling al-
gorithms for a resolution of 640 x 480

Approach Motion
Average

time (ms)

Static 2
ARTOD+

Moving 191

Static 59
CB

Moving 4663

Static 12
GMM

Moving 965

Static 500
SOBS

Moving 39792

3.2.2 Evaluation in terms of power transmission efficiency

The proposed approach is also power efficient in terms of transmitting data. For ex-
ample, a 12 minute 41 second original video with resolution 640× 480 required
34.1MB memory to transmit the data with a bandwidth of 64Kbs and will keep it
engaged all the time. On the other hand, the binary data for the same resolution and
video length is only 7.17MB with a bandwidth of 16Kbs. For a comparison, the binary
frames when objects were detected required only 0.37KB of memory which contains
all the important information (Table 2). It should be noted that this comparison is, of
course, application specific and is dependent on the number of objects detected.

Table 2 Data transmission comparison between the original and binary video file

Video
length

Video
resolution

Size
(MB)

Size of
transmitted data
per frame (KB)

Original
video 12’41” 640x480 34.1 1.95

Binary
video 12’41” 640x480 7.17 0.37

Transmitted
binary video 2’54” 640x480 1.43 0.37

4 Conclusion

In this paper, we described a novel low-cost and power-efficient system, AURORA,
based on the improved original ARTOD algorithm, ARTOD+, for the use in un-
manned aerial vehicles for on-board autonomous lower level video analytics tasks.
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The described real-time autonomous object detection approach utilises a homog-
raphy matrix derived from using optical flow, recursive density estimation and evolv-
ing clustering algorithms. The approach does not require prior knowledge of the ob-
jects to be detected and can dramatically reduce the information being transmitted to
the ground in real time resulting in reduced risk of interception, reduced power and
energy for transmitting the data and reduced bandwidth. The whole video can also
be saved on board in memory and analysed in more detail by human operators post
flight. The data transmitted also allows for human operators to focus on areas of im-
portance, as opposed to having to actively search for areas of interest, which reduces
the risk of human error and fatigue.
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