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Novel shape indices for vector landscape pattern analysis 1 

The formation of an anisotropic landscape is influenced by natural and/or human 2 

processes, which can then be inferred on the basis of geometric indices. In this 3 

study, two minimal bounding rectangles in consideration of the principles of 4 

mechanics (i.e. minimal width bounding (MWB) box and moment bounding 5 

(MB) box) were introduced. Based on these boxes, four novel shape indices, 6 

namely MBLW (the length-to-width ratio of MB box), PAMBA (area ratio 7 

between patch and MB box), PPMBP (perimeter ratio between patch and MB 8 

box) and ODI (orientation difference index between MB and MWB boxes), were 9 

introduced to capture multiple aspects of landscape features including patch 10 

elongation, patch compactness, patch roughness and patch symmetry. Landscape 11 

pattern was, thus, quantified by considering both patch directionality and patch 12 

shape simultaneously, which is especially suitable for anisotropic landscape 13 

analysis. The effectiveness of the new indices were tested with real landscape 14 

data consisting of three kinds of saline soil patches (i.e. the elongated shaped 15 

slightly saline soil class, the circular or half-moon shaped moderately saline soil, 16 

and the large and complex severely saline soil patches). The resulting 17 

classification was found to be more accurate and robust than that based on 18 

traditional shape complexity indices. 19 

Keywords: landscape metrics; anisotropy; moment box; patch elongation; patch 20 

symmetry 21 

1 Introduction 22 

Landscape patterns may be defined as sets of landscape observations with spatial 23 

structure and which are, thus, significantly different from the realization of a random 24 

process. These patterns contain information on the mechanisms or processes from 25 

which they emerge (Grimm et al. 2005, Schröder and Seppelt 2006). Quantifying 26 

landscape patterns is, thus, considered to be a prerequisite for the study of pattern-27 

process relationships (Turner 1990, Uuemaa et al. 2013), a fundamental pursuit of 28 

landscape ecology (Turner 2005, Helfenstein et al. 2014). Landscape pattern analysis 29 

based on the patch-matrix model (i.e. landscape pattern indices (LPIs)) or the gradient 30 
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model (McGarigal et al. 2009) has, therefore, received increasing attention in both 31 

ecological research and the environmental management communities (Cissel et al. 32 

1999, Fu and Chen 2000, Turner 2005).  33 

In line with human interpretation of real landscapes (Lausch et al. 2015), 34 

landscape pattern indices (LPIs) offer an effective way to capture landscape structure, 35 

with either landscape-, class-, or patch-focus (McGarigal and McComb 1995, Kupfer 36 

2012). This has increased our understanding of the relationships between spatial 37 

patterns and ecological processes on a range of scales (Wu 2013). As a popular 38 

quantitative analysis tool (Schröder and Seppelt 2006), LPIs have been applied 39 

increasingly to a variety of issues in landscape ecology (Uuemaa et al. 2013, Lausch et 40 

al. 2015), for example, assessment of landscape patterns or changes in land cover/use 41 

(Seto and Fragkias 2005; Reddy et al. 2013; Van Den Hoek et al. 2015), inference of 42 

landscape functions (Bolliger et al. 2007; Li et al. 2015), and quantification of 43 

ecosystem services (Syrbe and Walz 2012). The rapid advancement of remote sensing 44 

and geographic information systems (GIS) has also promoted the development and 45 

utilization of LPIs. During the past 30 years, numerous LPIs have been developed to 46 

quantify different spatial and compositional aspects of landscape structure (Lausch et al. 47 

2015), and they are derived variously from fractal geometry (Krummel et al. 1987, Li 48 

2000), information theory (O’Neill et al. 1988), percolation theory (Gardner and 49 

O’Neill 1991), statistical measures of dispersion (Gertsev 2004), mechanics (Zhang et 50 

al. 2006) and mathematical morphology (Vogt et al. 2007). Most of these indices can be 51 

computed readily by accessible software (e.g., ‘r.le’ and ‘FRAGSTATS’) to facilitate 52 

their implementation (Baker and Cai 1992, McGarigal and McComb 1995, Remmel and 53 

Fortin 2013). 54 
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In the face of complicated and diversified geographic landscapes, LPIs exhibit 55 

certain deficiencies and limitations. In particular, some LPIs provide ambiguous 56 

information about spatial patterns. For example, one landscape index may have the 57 

same numerical value for drastically different landscapes (Gustafson and Parker 1992, 58 

Tischendorf 2001, Corry and Nassauer 2005), while several visually distinct spatial 59 

patterns may exhibit similar LPI values (Remmel and Csillag 2003, Turner 2005). One 60 

important ambiguity is that most shape complexity indices (including many fractal 61 

methods) are derived based on a form of perimeter-area relationship (Forman and 62 

Godron 1986, Riitters et al. 1995, Gustafson 1998) and, for example, ignore the 63 

directional differences between patches. Current landscape metrics actually belong to 64 

indices of scalar quantity, that is, with loss of a patch’s vector dimension (Zhang et al. 65 

2006), which may result in uncertainties in shape identification. Considering a “curved” 66 

patch and an elongated linear patch, for example, both may have equal area and 67 

perimeter (i.e. their shape complexity or fractal indices might be exactly the same), but 68 

are nevertheless shaped distinctively. 69 

Spatial anisotropy, the variation in spatial autocorrelation with orientation or 70 

direction, is often found in ecological variables because spatial patterns are sometimes 71 

produced by directional natural phenomena such as wind, fire, floods and tectonics (e.g. 72 

Legendre and Fortin 1989; Rossi et al. 1992; Gustafson 1998; Wu et al. 2000; Zhang et 73 

al. 2006). Meanwhile, human activities may also introduce a directional influence on 74 

landscapes. For example, tillage often leads to an anisotropic distribution of properties 75 

of the land surface (Vidal Vázquez et al. 2005). Moreover, spatial anisotropy is often 76 

associated with important ecological functions. For instance, landscape anisotropy has a 77 

direct effect on wetland flooding dynamics (Kaplan et al. 2012, Yuan et al. 2015) and 78 

the combined effects of soil anisotropy and topographic slope significantly affect the 79 
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soil moisture regime by controlling the movement of water across and through the 80 

landscape (Zaslavsky and Rogowski 1969). Spatial anisotropy, therefore, plays a crucial 81 

role in real landscape analysis, which allows us to better understand the corresponding 82 

landscape pattern-process relations and landscape functions. For example, based on 83 

variogram and angular wavelet analysis, the directional process underpinning Bronze 84 

Age surface pottery in the northern Murghab Delta was identified: specifically, the 85 

impact of the complex system of watercourses in the delta on both settlement and post-86 

depositional processes (Markofsky and Bevan 2012). However, the variogram is a 87 

geostatistical tool and is, thus, not appropriate for quantifying anisotropy in terms of the 88 

geometry of objects and, thus, related patch-based models. Consequently, it is necessary 89 

to develop landscape indices by considering the shape properties of a patch and its 90 

directional distribution simultaneously, that is, vector landscape pattern analysis (Zhang 91 

et al. 2006). 92 

Zhang et al. (2006) first utilized the moment orientation (MO) index to represent 93 

patch orientation, based on planar characteristics defined by the principles of mechanics 94 

such as the moment of inertia, product of inertia and major/minor principal axes. The 95 

index was used to identify Qianan lakes (located in the central part of this paper’s study 96 

area), whose orientations were heavily affected by the prevailing wind. However, shape 97 

complexity did not include the patch’s anisotropy. Therefore, the minimum width 98 

bounding (MWB) box and the moment bounding (MB) box on the basis of the MO, 99 

were introduced here simultaneously. Based on these two boxes, novel landscape 100 

indices for vector landscape pattern analysis were proposed:  101 

(1) patch length-to-width ratio,  102 

(2) area ratio between patch and MB box,  103 

(3) perimeter ratio between patch and MB box,  104 
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(4) orientation difference index between MWB box and MB box.  105 

The effectiveness of the proposed indices was tested in this paper by identifying 106 

different types of saline soils in the western part of the Songnen plain, China. These 107 

different types of saline soil are located in different parts of a large paleolake that have 108 

specific geographic conditions. Accurate discrimination of these saline soils would be 109 

potentially useful for landscape management. However, while they vary from each other 110 

in salinity level, they have similar remote sensing spectra. For this reason, classification 111 

of the soil types based on traditional remote sensing classification approaches that 112 

depend primarily on reflectance spectra is of limited accuracy. Consequently, we 113 

investigate the additional class separability that can be attained by application of the 114 

novel shape descriptors above to the landscape patches.  While it is clear that anisotropy 115 

plays a key role in determining landscape processes, or indicating the nature of the 116 

underlying landscape processes, this paper seeks to test the specific hypothesis that 117 

anisotropy and related shape indices can increase the accuracy of classification of 118 

objects in the object-based image analysis (OBIA) sense. Since these indices can be 119 

generated automatically, if they are ignored in classification analysis, this simply means 120 

that the accuracy of classification may be less than it would be if they were included. 121 

2 Novel shape indices 122 

2.1 Minimum Width Bounding (MWB) box 123 

The minimum width bounding (MWB) box, in computational geometry, generally 124 

refers to the smallest enclosing rectangle with the least width over two-dimensional 125 

space (Chaudhuri and Samal 2007). The properties of a MWB box are translation, 126 

rotation and reflection invariance in terms of its enclosing polygon, thus, indicating the 127 

corresponding orientation of the original polygon.  128 
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The construction of the MWB box in this research is largely dependent on the 129 

spatial distribution of the vertices along the boundary of the polygon. A least square 130 

linear regression is first applied to fit a line, followed by an axis transformation to the 131 

local coordinate system. The bounding box can then be built up based on the maximum 132 

projections of each vertex on the new axis. Since the vertex density and spatial 133 

distribution often influence the size of the bounding box, which is not the desired MWB 134 

box in most cases, the MWB box is searched numerically by the so-called “rotation 135 

calliper” method given a user-defined threshold (Toussaint 1983). Detailed steps for 136 

building the MWB box are given below: 137 

Step 1: Least square approximation to fit a line (Stigler 1981) 138 

The linear function minimizing the squared errors can be calculated as: 139 

 xbbxf 10)(   (1) 140 

The two regression parameters (b0, b1) can be estimated as (Equation 2 to 3): 141 
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In Equations 1 to 7, the parameter b1 is the slope of the fitted line, and the 149 

variable n is the number of vertices of each polygon. 150 

Step 2: Coordinate transformation based on the estimated slope 151 

Coordinate transformation based on the fitted line is given by 152 

 )arctan( 1b  (8) 153 

Therefore, sin  and cos  for coordinate transformation can be calculated via 154 

Equation 8. Given a vertex ),( yx  in a global coordinate system with origin ),( 00 yx , the 155 

new coordinate ),( yx   can be extracted by coordinate translation and rotation (Equation 156 

9). 157 
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By translating and rotating the axes, the x-axis in the new coordinate system is 159 

defined along the fitted line. A point on the x-axis is selected randomly as the origin of 160 

the new coordinate system, and the y-axis is defined perpendicular to the new x-axis. 161 

Step 3:  Finding the maximum and minimum coordinates of the vertices 162 

Under the new coordinate system, the maximum and minimum y-coordinates of 163 

the vertices, Ymin and Ymax, as well as those of the x-coordinates, Xmin and Xmax, can be 164 

determined, which then can be used as the initial minimum bounding box.  165 

Step 4: Rotating calliper to search the MWB box numerically 166 

The main axis fitted by least squares approximation is influenced largely by 167 

vertex density and distribution. Therefore, it is necessary to turn the initial minimum 168 

bounding box in discrete angular steps (Lewis et al. 1997) to locate the rectangle 169 
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bounding box with minimum width, (i.e. the MWB box). The initial angle for each 170 

rotation is set as  , iteratively increasing or decreasing by a small angle (predefined 171 

as  ) to find the bounding box with minimum width or approximate to the minimum, 172 

which is the minimum width bounding (MWB) box with orientation MWB .   173 

2.2 Moment Bounding (MB) box 174 

The MB box is the minimal bounding rectangle built upon the moment orientation 175 

(MO) (the orientation of the major axis), which is derived from planar characteristics 176 

defined by mechanics (Zhang et al. 2006). The MO is reviewed briefly as follows: 177 

Suppose that (x, y) is a point within a planar polygon (S) (Figure 1), whose 178 

centroid is ),( yxC  , and the moment of inertia about the x-axis ( xxI  ) and about the y-179 

axis ( yyI ), as well as the product of inertia ( xyI ), respectively, are expressed by 180 

Equations 10, 11 and 12.  181 

  dAyI xx

2  (10) 182 

  dAxI xy

2  (11) 183 

  xydAI xy
 (12) 184 

Figure 1 is here. 185 

Note, dA (= dydx  ) refers to is the differential area of point (x, y) (Timoshenko 186 

and Gere 1972). 187 

There are two orthogonal axes (called major and minor axes) passing through 188 

the centroid, which have the maximum and minimum moment of inertia about the 189 

minor and major axes, respectively. The moment orientation (MO) 
MB (i.e. the 190 
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orientation of the major axis) is calculated by Equations 13 and 14 (Timoshenko and 191 

Gere 1972). The moment bounding (MB) box that minimally encloses the polygon is 192 

then constructed by taking 
MB as the orientation of the long side of the MB box. 193 

Equations 10-14, in discrete form suitable for patch computation, are deduced by 194 

applying Green’s theorem which relates the value of a line integral to that of a double 195 

integral (see Zhang et al. (2006) for details). 196 
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2.3 Novel shape indices 199 

Figure 2 shows the relations among a polygon (in black), its MWB box (in blue) and 200 

MB box (in red). Here, C is the centroid of the polygon. PQ is the minor axis of the MB 201 

box, about which the moment of inertia of the polygon is the maximum; MN is the 202 

major axis of the MB box, about which the moment of inertia of the polygon is the 203 

minimum. AB (EF), along the truck line of the long (short) side of the MWB box, is the 204 

major (minor) axis of the MWB box; E’F’ is the line passing through C and parallel to 205 

the MWB box’s long side. ∠MCE’ is the angle between the two boxes, that is, the 206 

orientation difference between the two major axes (MN and EF) of the boxes. In the 207 

figure, MN is deflected clockwise relative to EF, which indicates that the polygon is 208 

asymmetrically distributed between the two sides of MN, the major axis of the MB box. 209 

The area of the polygon in the lower left quarter is much larger than the opposite.  210 

Suppose the area and perimeter of a polygon are given by PA and PP, 211 

respectively; the area and perimeter of the MB box is MBA and MBP, respectively, the 212 
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length and width of the MB box are L and W, respectively, and the orientation of the 213 

MB box and MWB box are
MB and MWB , respectively.  214 

Figure 2 is here. 215 

If MWBMB    (or  ,||  MWBMB is a user-defined threshold), the patch is 216 

symmetrical either around the major or the minor axis of the MB box. If symmetrical 217 

around the minor axis of the MB box, the centroid of the polygon lies on the minor axis 218 

of the MWB box (Figure 3(a)); if symmetrical around the major axis of the MB box, the 219 

centroid of the polygon lies on the minor axis of the MWB box (Figure 3(b)). In either 220 

situation, the centroid passes through the major and minor axes of the MB box 221 

simultaneously. 222 

Figure 3 is here. 223 

Novel shape indices can then be derived (Table 1), including the MBLW (the 224 

length-to-width ratio of MB box), PAMBA (area ratio between patch and MB box), 225 

PPMBP (perimeter ratio between patch and MB box) and ODI (orientation difference 226 

index between MB and MWB boxes). 227 

Table 1 is here. 228 

3 Study area and data 229 

The study area is located between 122°03′41’’E – 124°38′45’’E and 43°54′58′′N – 230 

45°45′50’’N, the hinterland of western Songnen Plain, Northeast China, covering the 231 

western Jilin Province and the Inner Mongolia Autonomous Region (Figure 4). The 232 

climate of this area is characterized as temperate continental monsoon ranging from 233 

semi-humid to semi-arid with an annual average temperature of 4°C (Chi and Wang 234 

2010). Annual mean precipitation is around 370-400 mm with 80% of the rainfall in 235 

July and August, causing a moisture deficit during 7 months of the year (Wang et al. 236 
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2009). However, the annual evaporation reaches 1700-1900 mm on average, about 4-5 237 

times greater than precipitation. Such high levels of evaporation result in large areas of 238 

land degradation into saline soils throughout the study area. 239 

Figure 4 is here. 240 

The salt-affected soils are developed by several natural environmental factors, 241 

such as climate, geology, parent material, hydrological conditions, and freeze-thaw. 242 

There is evidence that a large paleolake in this area was formed after the Triassic Era by 243 

seawater incursion events due to tectonic activities (Huang et al. 2013). The paleolake 244 

gradually shrank in the Late Pleistocene due to the slow rise of the Songnen Plain and a 245 

long-term dry cold climate, and broke into hundreds of lake groups. These geological 246 

and geomorphological processes resulted in different degrees of salinity in different 247 

regions with distinctive geometric patterns. According to reference maps provided by 248 

local experts and soil scientists, the saline soils comprise of slightly saline, moderately 249 

saline, severely saline and “other” classes. The slightly saline soils along the large 250 

paleolake shore, are geographically located at the southern shore of the large paleolake 251 

with strongly oriented and elongated patterns; the moderately saline soils are distributed 252 

around current lakes with circular or half-moon shapes; the severely saline soils mostly 253 

lie in the central region of the large paleolake, which are large sized, irregularly 254 

distributed over the space with some connections between them (Qiu et al. 2012); the 255 

“other” saline soil type is uncertain in geometry, location and saline degree and, 256 

thereby, is ignored in this study. 257 

Three cloud-free scenes acquired by the Landsat 8 OLI sensor on 15 September 258 

2014 (Path 120, Row 28-29 and Path 119 Row 29) were used in this research. The 259 

images were composed of seven multispectral bands (Coastal Aerosol, Blue, Green, 260 

Red, NIR, SWIR1 and SWIR2) with a spatial resolution of 30 m. After radiometric and 261 
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geometric correction, the images were segmented by a multi-resolution segmentation 262 

algorithm followed by spectral difference segmentation using the eCognition software 263 

to obtain vector or polygon data representing the saline soil patches with an overall 264 

classification accuracy of 90%. These saline soil vector polygons form the input data for 265 

the landscape pattern analysis and for validating the method. Note, because of the high 266 

spectral similarity, different saline soil type patches are unable to be discriminated 267 

based on spectra alone. 268 

Ancillary data used in this paper, mainly as reference, include: 1) the National 269 

Land Cover Database (NLCD) of China to check the segmentation results, 2) Reference 270 

maps of different saline soil types provided by local experts for classification validation, 271 

3) Obview-3 Panchromatic images and other fine spatial resolution imagery for visual 272 

interpretation, and 4) geophysical data (ASTER GDEM and Geomorphological Map) of 273 

the study area to understand the potential driving forces of landscape pattern. All these 274 

data were pre-processed and stored in ArcGIS coverage within the same coordinate 275 

system. 276 

4 Results 277 

4.1 Saline soil feature extraction based on rules involving novel shape indices 278 

The feature extraction rules for each saline soil type were built on novel shape indices, 279 

in which the thresholds for each parameter were established using a mix of expert 280 

opinion (from saline soil scientists) coupled with a small amount of trial and error. The 281 

final rule sets for feature extraction for the three saline soil classes, namely the slightly 282 

saline soil, moderately saline soil and severely saline soil, are listed in Table 2, which 283 

will be elaborated as follows: 284 

Table 2 is inserted here. 285 
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The slightly saline soil patches are located mainly in the southern shore of the 286 

large paleolake. They are characterized by strong patch symmetry around the major axis 287 

of the MB box and patch elongation with roughly east-west orientation, resulting in a 288 

very small threshold of ODI (<= 4.6) and a large threshold of MBLW (> 3); in addition, 289 

the slightly saline soil patches have a relatively larger PAMBA (> 0.34). Figure 5(a) 290 

illustrates a region of such saline soil patches, each of which has a narrow, long and 291 

almost coincident MWB box (in blue) and MB box (in red).  292 

Surrounding current lakes, the moderately saline soil patches are usually 293 

characterized as having circular or half-moon shapes, that is, the patches are curved 294 

rather than elongated. Therefore, they have a low MWBLW (<2.8) and a low PAMBA 295 

value, within (0.18, 0.57); at the same time, they have a low PPMBP (< 2.22) in 296 

comparison with severely saline soil. Figure 5(b) demonstrates a region of such saline 297 

soil patches together with their MWB and MB boxes. From the figure, it can be seen 298 

that the PAMBA and the PPMBP of the patches are small, and the MBLW is also 299 

relatively small, with some MB boxes even close to square. Additionally, unlike the 300 

slightly saline soil patches, the MWB and MB boxes of some moderately saline soil 301 

patches are clearly not coincident (i.e. having relatively large ODI values).  302 

Patches of severely saline soil are usually distributed at the centre of the large 303 

paleolake, commonly with contagion between them, with large shape size and a high 304 

shape complexity. The feature extraction rules for the severely saline soil patches were 305 

developed using a large threshold (>4,000.00 ha) of patch area and a large value of 306 

PPMBP (> 3.4). The resulting features, thus, have large areas with geometrically 307 

irregular shapes, as illustrated by Figure 5(c).  308 

Figure 5 is inserted here. 309 
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Using the feature extraction rule sets (Table 2), the final classification of saline 310 

soil type (Figure 6) was produced, which includes four kinds of saline soils (i.e. slightly 311 

saline soil, moderately saline soil, severely saline soil and other saline soils). It should 312 

be noted that, the other saline soils were not identified with feature extraction rules; 313 

instead, they were identified as the residual patches not identified as one of the three 314 

former kinds. As the figure shows, the slightly saline soil consists of 45 patches (in 315 

green), distributed mainly in the south, coinciding with the southern shore of the large 316 

paleolake; the moderately saline soil class is composed of 127 patches (in blue), 317 

distributed mainly in the east, a place where current lakes are widespread and occupied 318 

by the interior of the large paleolake; the severely saline soil type includes five large 319 

and highly contagious patches (in reddish orange), located mainly in the north, 320 

coinciding with the centre of  the large paleolake. The patch numbers, the mean patch 321 

size, total area, mean patch perimeter and total patch perimeter of each saline soil class 322 

were computed and are listed in Table 3. The saline soil classification accuracy was 323 

further assessed using stratified random sample points collected from reference maps 324 

provided by experts in paleogeography and soil science. The overall accuracy of the 325 

saline soil classification is up to 92.23% with a Kappa index of 0.84, which is a highly 326 

accurate classification result. 327 

Figure 6 is inserted here.   328 

Table 3 is inserted here. 329 

4.2 Feature separability of novel and traditional shape indices  330 

The transformed divergence (TD) separability and Jeffries-Matusita (JM) distance 331 

(italic) statistics for the novel indices, to be used in defining the rule sets for classifying 332 

the three saline soil classes, are summarized in Table 4. Here, the values in bold font 333 

indicate the high separability of a specific saline soil type from other classes based on 334 
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the corresponding rule sets. In general, high separability (mostly greater than 1.8) was 335 

achieved by the proposed shape indices used to define the rule sets for each saline soil 336 

class. In terms of the slightly saline soil class, the three indices, namely ODI, MBLW 337 

and PAMBA, obtained a very high TD separability, larger than 1.9, even up to 2 338 

(perfectly separable) when differentiating from the severely saline soil classes. 339 

Meanwhile, low TD and JM (1.4843, 1.3408) between moderately saline soil and 340 

severely saline soil were realized for the three indices, but this has no impact on the 341 

feature extraction of the saline soil class in question (i.e. the slightly saline soil). With 342 

respect to the moderately saline soil class, the three novel indices (i.e. MBLW, PAMBA 343 

and PPMBP), also produced a very high TD separability (>1.9), and a high separability 344 

(around 1.8) is, surprisingly, produced between the two other saline soil classes (the 345 

slightly saline soil and the severely saline soil). As for the severely saline soil class, a 346 

perfect separability (around 2) was realized by patch area and PPMBP. But a very low 347 

TD and JM (1.3408, 0.8335) between the slightly saline soil and the moderately saline 348 

soil occurred in this circumstance, revealing the inability of these two indices to 349 

distinguish the two saline soil classes.  350 

Table 4 is inserted here. 351 

As benchmarks, three traditional shape indices including the perimeter-area ratio 352 

(PARA) (Baker and Cai 1992, Hulshoff 1995, Garrabou et al. 1998, Saura and Carballal 353 

2004), fractal dimension (FRAC) (Feder 1988, Leduc et al. 1994), and shape index (SI) 354 

(Saura and Carballal 2004) (see Table 5 for their detailed description) were tested for 355 

discriminating jointly between the three saline soil classes. The corresponding TD 356 

separability and JM (italic) values were computed and listed in Table 6. It can be seen 357 

from the Table 6 that, using the traditional indices, only the slightly and the severely 358 

saline soil classes are separable with high TD separability (>1.8), while the separability 359 
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(1.2962) between the slightly and the moderately saline soil classes and that (1.617) 360 

between the severely and the moderately saline soil classes are all relatively low.  361 

Table 5 is inserted here. 362 

Table 6 is inserted here. 363 

5 Discussion 364 

5.1 Minimum bounding rectangles  365 

The minimum area bounding (MAB) box (i.e. the region bounding rectangle enclosing 366 

the minimum area) and its corresponding length-to-width ratio has been used to 367 

characterize the elongatedness of image objects, mainly for the purpose of remote 368 

sensing classification (Lewis et al. 1997, Jiao et al. 2012). However, when emphasising 369 

the minimum area of a rectangle, the patch directionality deriving from the ratio 370 

between the length and width of the rectangle is commonly ignored. The MB box, 371 

however, is built upon the moment orientation (MO), in which both the position and the 372 

area distribution of the patch (i.e. the inner structure of the patch) are taken into account 373 

(Zhang et al. 2006). Thus, it is a sensitive way to represent patch orientation. As shown 374 

by Figure 7, the directional deviation of the patch between the MAB box and the MB 375 

box is the greatest. As for the MWB box, due to the consideration of the minimum 376 

width of the rectangle, its length is highlighted, thereby enhancing its capability to 377 

represent patch directionality. As exemplified by Figure 7, the MWB box lies in the 378 

middle of the MAB box and the MB box, but closer to the MB box. From the 379 

mechanical point of view, the MB box is exactly constructed by two orthogonal 380 

principal stresses along the major axis and the minor axis, respectively (Timoshenko 381 

and Gere 1972). Such a mechanical characteristic is basically captured with the MWB 382 

box, except that the MWB box is invariant as long as the change of patch area and 383 
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distribution remains within the current MWB box. Thus, while the MB box acts as a 384 

sensitive “detector” of patch geometry, the MWB box can serve as a benchmark. In fact, 385 

the formation of an anisotropic landscape can be regarded as the influence of natural 386 

and/or human forces, which can then be explained on the basis of mechanics. For 387 

anisotropic (i.e. vector) landscape analysis, therefore, the introduction and adoption of 388 

the MB and MWB boxes (both in possess of mechanical characteristics), instead of the 389 

MAB box, would be theoretically sound, despite the small (or even no) differences 390 

between them in some cases. 391 

Figure 7 inserts here. 392 

5.2 Novel shape indices  393 

Four novel shape indices, namely patch length-to-width ratio (MBLW), area ratio 394 

between patch and MB box (PAMBA), perimeter ratio between patch and MB box 395 

(PPMBP) and orientation difference between MB and MWB boxes (ODI), were derived 396 

on the basis of the two different bounding boxes (i.e. MB and MWB boxes). Multiple 397 

aspects of patch-based landscape information including patch elongation, patch 398 

compactness, patch roughness and patch symmetry can, thus, be captured, which are 399 

especially needed for anisotropy-based landscape analysis. The effectiveness of the 400 

proposed indices were tested with real landscape data consisting of the three saline soil 401 

classes, namely slightly saline soil, moderately saline soil, and severely saline soil. 402 

These self-patterned patches of different saline soil classes are located in different 403 

geological and geographical environments (along the shore of the large paleolake, 404 

surrounding current lakes, lying in the centre of the large paleolake); they were 405 

developed under distinctive geophysical processes and formed with different landscape 406 

patterns including strip-like (elongated) shapes, circular or half-moon shapes, and large 407 

and irregular shapes (Qiu et al. 2012). The proposed indices were able to capture 408 
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multiple aspects of patch-based landscape information relating to each saline soil class, 409 

with high TD separability values achieved for all pairs of saline soil classes (Table 4), 410 

even up to a very high separability between the slightly saline soil class and other 411 

classes. Traditional shape indices derived based on perimeter-area relationships (Saura 412 

and Carballal 2004), in contrast, attained low TD values for all pairs of saline soil 413 

classes except for the moderately saline soil and the severely saline soil (Table 6). These 414 

indices had difficulty in distinguishing some anisotropic and non-anisotropic patches, 415 

due to the existence of similar or even equal perimeter-area values among them.    416 

5.3 General applicability of novel shape indices 417 

The new boxes and indices proposed in this paper support quantitative modelling and 418 

analysis of anisotropic landscapes. Moreover, the formation of anisotropic landscapes is 419 

often associated with natural and/or anthropogenic driving forces. Each of the proposed 420 

indices captures a particular ecological characteristic, which can aid ecological 421 

interpretation and understanding. For example: 422 

(i) the patch length-to-width ratio (MBLW) reflects the degree of anisotropy; 423 

the much larger MBLW value of the slightly saline soil patches reveals that 424 

this type of saline soil has a much higher anisotropy than the other two types; 425 

(ii) the area ratio between a patch and its MB box (PAMBA) indicates whether 426 

an anisotropic patch is influenced by disturbance within the patch or along 427 

its boundary (like the moderately saline soil patches), which allows further 428 

analysis of the related driving forces; 429 

(iii) the perimeter ratio between a patch and its MB box (PPMBP) reflects the 430 

roughness of an anisotropic patch, which is a measure of the natural degree 431 

of the patch boundary. It can also be used to quantify the contagiousness of a 432 
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landscape patch, for instance, the high PPMBP value of the severely saline 433 

soil patches explains the obvious contagiousness of the patches.  434 

With such multi-dimensional quantitative information, the pattern-process 435 

relationship of various anisotropic landscape patterns can be better understood, 436 

primarily in landscape ecology, but also in a wide range of other potential fields (e.g. 437 

sand dune development, forest fire spread, flood modelling, etc.).  438 

5.4 Limitations of the novel indices  439 

Novel indices were proposed for anisotropic, vector-based landscape analysis. For those 440 

patches whose length-to-width ratio is close to 1, application of these indices can lead to 441 

some uncertainties. Further, the new indices might be less sensitive to shape complexity 442 

for non-anisotropic landscape patterns than traditional shape indices. This is because the 443 

new indices are derived based on the oriented bounding rectangles, in which just one of 444 

the two patch parameters (patch area or patch perimeter) might be utilized. In traditional 445 

shape indices, however, both of the two parameters are incorporated simultaneously. 446 

This is why a high TD separability value for the moderately and severely saline soil 447 

classes was obtained by traditional indices (Table 6). No single measurement or index 448 

of shape can unambiguously differentiate all shapes (Forman 1995, Saura and Carballal 449 

2004, Zhang et al. 2006). Combination of novel and traditional shape indices might be 450 

necessary for some complex landscape analysis. In fact, the identification of the 451 

severely saline soil patches combined both PPMBP and patch size. 452 

5.5 Future research 453 

The combination of minimum width bounding (MWB) box and moment bounding 454 

(MB) box, offers a flexible approach for patch structural analysis. ODI, for example, 455 

may be further divided into two categories: (1) ODI< , the patch is symmetrical; and 456 
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(2) ODI > , the patch is asymmetrical. For the case of ODI< , two situations can be 457 

further divided: patch symmetry around the major axis of the MB box, and patch 458 

symmetry around the minor axis of the MB box. In fact, some patches of the moderately 459 

saline soil developed asymmetrically around the long sides of a patch (e.g. Figure 3(a)) 460 

often belonging to the latter; whereas most of the slightly saline soil patches belong to 461 

the former (e.g. Figure 3(b)). At the same time, a positive direction index can be 462 

assigned to the patch once the ratio between the distance of a patch centroid to the 463 

MWB box’s centroid and half of the MWB box length surpasses a user defined 464 

threshold (e.g., the positive direction of the patch shown by Figure 3(b) is from left to 465 

right). For the case of ODI > , two situations, namely left-handed rotation and right-466 

handed rotation may further be deduced according to the relations between the two 467 

major axes. All these cases illustrate that patch heterogeneity can appear at the two ends 468 

of the major or minor axis, or around one of the axes. Moreover, new shape metrics for 469 

purely geometric representation might be deduced. For example, indices of “L-shape”, 470 

“T-shape” “cross-shape (+)”, etc. might be designed for building object-based remote 471 

sensing image segmentation. At the same time, as explained above, the proposed indices 472 

have great potential utility in a wide range of applications, including landscape ecology. 473 

Future research should be undertaken both to investigate the applicability and utility of 474 

the proposed techniques in these fields, as well as to develop them further.  475 

6 Conclusion 476 

Two minimal bounding rectangles (i.e. minimal width bounding (MWB) box and 477 

moment bounding (MB) box), suitable for anisotropic landscape analysis, were 478 

introduced in this research. Moreover, four new shape metrics, namely MBLW (the 479 

length-to-width ratio of MB box), PAMBA (area ratio between patch and MB box), 480 

PPMBP (perimeter ratio between patch and MB box) and ODI (orientation difference 481 
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index between MB and MWB boxes), were introduced to quantify multiple aspects of 482 

landscape pattern including patch elongation, patch compactness, patch roughness and 483 

patch symmetry. These boxes and indices allow quantification of patch directionality 484 

and shape complexity simultaneously, which is especially suitable for anisotropic 485 

landscape pattern analysis. The experiment with real landscape data consisting of three 486 

saline soil classes demonstrated that the proposed indices measure multiple geometric 487 

dimensions of an anisotropic landscape, and led to a more accurate and robust 488 

classification of soil type than traditional shape indices. 489 
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Tables 640 

Table 1 Detailed description of novel shape metrics. 641 

Indices (Acronym) Formula Description 

patch length-to-

width ratio 

(MBLW)   

L/W 

Description of vector patch elongatedness 

According to the ratio between length (m) 

and width (m) of MB: The MBLW ≧  1. 

The lager the value, the more elongated the 

shape.  

Area ratio between 

patch and MB box 

(PAMBA)  

PA/MBA 

Description of vector patch compactness 

According to the ratio between patch area 

(ha) and MB area (ha): The larger the value, 

the larger the filling degree and the more 

compact the shape.  

Perimeter ratio 

between patch and 

MB box (PPMBP)  

PP/MBP 

Description of vector patch roughness 

According to the ratio between patch 

perimeter (m) and MB perimeter (m): The 

larger the value, the rougher the patch’s 

edge.  

Orientation 

difference (0-180) 

between MB and 

MWB (ODI)  

MWBMB    

 

Description of vector patch symmetry 

If ODI <  (  is user defined threshold), 

the patch is symmetric; the smaller (the 

larger respectively) the value, the more 

symmetrical (asymmetrical respectively) 

the shape.  

642 
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Table 2 Rule sets based on novel shape indices for saline soil feature extraction. 643 

Class Shape indices Rules 

slightly 

saline soil 

 ODI <= 4.6 

MBLW > 3 

PAMBA  > 0.34 

moderately 

saline soil 

MBLW < 2.8 

PAMBA (0.18 - 0.57) 

PPMBP < 2.22 

severely 

saline soil 

Patch area >= 4,000.00 (ha) 

PPMBP > 3.4 

                          Note: Intersection set operations within rule sets  644 

  645 



29 

 

Table 3 Area and number of patches of each saline soil class. 646 

Saline soil 

class 

Patch 

numbers 

Mean patch 

area (ha) 

total area 

(ha) 

Mean patch 

perimeter (m) 

Total perimeter 

(m) 

slightly 

saline soil 
 45 3,417.18 153,773.10 83,983.36 3,779,251.35 

moderately 

saline soil 
127 521.67 66,251.92 20,805.78 2,642,333.99 

severely 

saline soil 
5  26,026.68 130,133.42 664,982.95 3,324,914.95 
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Table 4 Feature separability of novel shape indices corresponding to the rule sets. 648 

Shape indices  Saline soil class 

slightly 

saline soil 

Moderately 

saline soil 

Severely 

saline soil 

ODI, MBLW 

and PAMBA 

Slightly saline soil ── 1.7593 1.9857 

Moderately saline soil 1.9361 ── 1. 3408 

Severely saline soil 2.0000 1.4843 ── 

MBLW, 

PAMBA and 

PPMBP 

Slightly saline soil ── 1.9316 1.7562 

Moderately saline soil 1.9685 ── 1. 9408 

Severely saline soil 1.8741 1.9843 ── 

Patch area 

and PPMBP 

Slightly saline soil ── 0.8335 1.9441 

Moderately saline soil 1.3408 ── 1.9343 

Severely saline soil 1.9961 2.0000 ── 

649 
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Table 5 Detailed description of traditional shape metrics. 650 

Shape index Formula Description 

Mean perimeter-

area ratio 

(MPAR) 

 
a

p
MPAR   

The ratio between patch 

perimeter (m) and area (ha)  

 

fractal dimension 

(FD) a

kp
FD

ln

)ln()ln(2 
  

Here k=1. 

Shape index (SI) a

p
SI

2
  

SI attains its minimum (SI = 

1) for circles and increases 

(with no upper limit) for more 

complex or elongated shapes  

Note: p and a are, respectively, the perimeter and area of the patch 651 
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Table 6 The TD separability and JM distance (italic) of the three traditional shape 653 

indices. 654 

Saline soil class 

Slightly 

saline soil 

Moderately 

saline soil 

Severely 

saline soil 

Slightly saline soil ── 1.1129 1.7397 

Moderately saline soil 1.2962 ── 1.4886 

Severely saline soil 1.8212 1.617 ── 
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Figure captions  656 

Figure 1.  A patch (S) with centroid C ( yx, ), dA is the differential area of point (x, y), 657 

oxy is the geographic coordinate system. 658 

 Figure 2.  A polygon with its MWB box (in blue) and MB (in red) box. 659 

Figure 3.  A polygon with its MWB box and MB box completely coincident. C is the 660 

centroid of the polygon, and AB and EF are the major and minor axes of the MWB box, 661 

respectively, and MN and PQ are the major and minor axes of the MB box, 662 

respectively. (a) the centroid lying on the minor axis of MWB; (b) the centroid lying on 663 

the major axis of MWB. 664 

Figure 4.  The Geographic location of study area. 665 

Figure 5.  Part of study area showing (a) slightly saline soil patches with their MWB 666 

and MB boxes, (b) moderately saline soil patches with their MWB and MB boxes and 667 

(c) severely saline soil patches with their MWB and MB boxes. 668 

Figure 6.  Different saline soil classes identified by the rule sets developed by the 669 

proposed novel indices. 670 

Figure 7.  A patch example with MB box (in red), MWB box (in blue) and MAB box 671 

(in green). 672 
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