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ABSTRACT

Palaeorecords which depict changes in sulphur dynamics form an invaluable resource for recording
atmospheric pollution. Tree rings constitute an archive that are ubiquitously available and can be
absolutely dated, providing the potential to explore local- to regional-scale trends in sulphur availability.
Rapid isotopic analysis by a novel “on-line” method using elemental analyser isotope ratio mass spec-
trometry (EA-IRMS) is developed, achieving sample precision of <0.4%, using sample sizes of 40 mg
wood powder. Tree cores from NE Italy show trends in pollution, evidenced through increasing con-

Igﬁ{;ﬁ:ﬁjs' centrations of sulphur towards the youngest growth, and inverse trends in sulphur isotopes differenti-
Isotopes ating modern growth with light sulphur isotopes (+0.7%,) from pre-industrial growth (+7.5%,)
Tree rings influenced by bedrock composition. Comparison with speleothem records from the same location
Biogeochemistry demonstrate replication, albeit offset in isotopic value due to groundwater storage. Using EA-IRMS, tree
Speleothems ring archives form a valuable resource for understanding local- to regional-scale sulphur pollution
Pollution dynamics.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Changes in atmospheric sulphur aerosols over time represent a
principal driver of climatic variability and an essential forcing
mechanism for climate modelling (e.g. Charlson et al., 1991;
Shindell et al., 2003). The varying flux of sulphur to the atmo-
sphere modulates climate on a range of timescales. Inventories of
anthropogenic sulphur emissions to the atmosphere have identi-
fied clear trends of increasing regional pollution levels prior to the
introduction of clean-up technologies fitted to power stations and
industry. The subsequent onset of reductions in sulphur loading to
the atmosphere depends upon location and emissions policy.
Whereas in many European countries, sulphur emissions peaked in
the 1970s (Smith et al., 2001, 2011; Vestreng et al., 2007), newly
emerging industrial nations are struggling to curb emissions and in
many cases have yet to reach peak emissions status (Schreifels et al.,
2012; Su et al., 2011). However, understanding the spatial patterns
of sulphur emissions and their possible impact upon environmental
status is not straightforward. The extraction of sulphur from
palaeoarchives is difficult, and fraught with poor analytical
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resolution. Many types of archive are also frequently distal from
points of emission and they rarely respond rapidly to direct changes
in atmospheric composition.

Trees take up nutrients from the environment to store them in
annual growth rings, producing archives of environmental change
which respond rapidly to external biogeochemical cycling
(Watmough et al., 1999). However, until recently sulphur concen-
trations contained within tree rings have only been explored by few
environmental scientists owing to difficulties associated with the
extraction of a robust signal and uncertainties regarding post-
depositional mobility (e.g. Barrelet et al., 2006; Fairchild et al.,
2009; Novak et al, 2009; Pyatt, 1975; Tendel and Wolf, 1988).
Stable isotopes of sulphur render the sulphur isotopic content of
palaeoarchives one of the most important diagnostic signatures
available, but their extraction from tree ring archives remains
limited (e.g. Giesemann et al., 2005; Kawamura et al., 2006; Yang
et al., 1996). Here, we present an analytical technique using on-
line combustion of wood powders using elemental analyser to
extract sulphur from woody tissues for isotope ratio analysis. We
compare records of tree sulphur with established speleothem
sulphur archives obtained from the same location and address the
ability of trees to record regional pollution dynamics. The rapidity
and precision of the technique, coupled with absolute dating of
widely-available tree ring archives, should help achieve
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understanding of regional pollution dynamics through sensitive,
high resolution records of atmospheric sulphur variability.

2. Sulphur cycling in trees
2.1. Pollutant impact upon forested environments

The role of air pollutants on tree growth, or as triggers to forest
decline is recognized in many areas of high atmospheric pollutant
load (e.g. Muzika et al., 2004; Rinne et al., 2013). However, it is
difficult to isolate precise cause-and-effect relationships, due to
synergistic relationships between pollutant types and background
natural environmental stresses including soil moisture, trace metal
contents, frost, stand structure, and pathogens (McLaughlin and
Braker, 1985). Effects of pollution can be either through direct up-
take of gaseous atmospheric pollutants, or through acid deposition
which alters soil pH and mobilises trace elements in concentrations
toxic to plant species (Tendel and Wolf, 1988). The trace elemental
content of tree rings and foliage is one such indicator of pollutant
stress, which has provided variable measures of success in deter-
mining environmental pollution status and pollutant dispersion
patterns (e.g. Baes and McLaughlin, 1984; Guyette and Cutter, 1994;
Siegwolf et al., 2001).

2.2. Sulphur concentrations within tree rings

Where trees have been exposed to twentieth century increases
in atmospheric SO, pollution and catchment acidification, transient
increases in the sulphur concentration profiles of tree rings have
been noted and concluded to reflect levels of fossil fuel consump-
tion in the surrounding areas (Giesemann et al., 2005; Kawamura
et al., 2006; Tendel and Wolf, 1988; Pyatt, 1975). Analysis under-
taken by synchrotron radiation (X-ray fluorescence emission
(Sulphur K lines) using 2.5 keV monochromatic radiation) in
Fairchild et al. (2009) identifies some of the highest resolution
trends in sulphur concentration using tree cores taken from NE
Italy (the same cores which are re-analysed for sulphur isotopic
composition as a part of this study). These are interpreted to
represent limited pre-1960 sulphur inputs, commensurate with a
dominant control from the pre-industrial atmosphere, and a post-
1960 increase in tree ring sulphur concentration, attributed to the
onset of industrialisation and enhanced loading of sulphur emis-
sions to the atmosphere. Peaks in sulphur concentration are
frequently seen to occur in the most recent growth of tree ring
time-series (out of phase with the expected peak in emissions to
the atmosphere on a national scale), and have previously been
interpreted to reflect either: storage of sulphur in the soil and
biomass during biogeochemical cycling, thereby de-coupling con-
ditions of atmospheric pollution from those recorded in the trees
(Fairchild et al., 2009); or as sulphur storage within the outer active
zone of tree growth during formation of woody tissues (Barrelet
et al., 2006; Fairchild et al., 2009; Ulrich et al., 2009). Synchrotron
radiation has also highlighted the immobile nature of sulphur
(beyond the outer active zone) as compounds fixed within the
primary cell wall structures, minimizing the concern over element
translocation between tree rings (Fairchild et al., 2009; Sandstrém
et al., 2005). There is also understanding of variability in sulphur
concentration across an annual cycle linked to biogeochemical
cycling and seasonality of incorporation into early wood/late wood
cell structures (Barrelet et al., 2006; Fairchild et al., 2009). However,
multiple sources of sulphur to trees (gaseous uptake; soil/ground-
water; geological substrate), and physiological effects of variable
root depth accessing sulphur reserves of differing composition
(Yang et al., 1996), and bioaccumulation of trace elements in the
active region of tree growth (Barrelet et al., 2006; Ulrich et al.,

2009), have lead to uncertainty in attributing concentration pro-
files to time-resolved records of twentieth century atmospheric
pollutant status.

2.3. Sources of sulphur to trees

Plants which utilize soil as their growth medium receive sulphur
inputs from two distinct sources: either as uptake of nutrients from
soil and groundwater via root systems; or through the direct uptake
of constituent gases from the atmosphere via foliage (Fig. 1) (Krouse,
1977; McLaughlin and Brdker, 1985; Xiao et al., 2012). Due to the
large range in isotopic values between sulphur inputs to the atmo-
sphere (European pollution —3 to +99%, (Mayer, 1998); marine
aerosol +219%, (Rees et al., 1978); volcanic emissions ~09%,; conti-
nental and intertidal biogenic emissions 0 to —30%, (Nielson, 1974)),
tree ring archives of sulphur form a powerful diagnostic tool for
understanding past atmospheric variability where processes of
fractionation during uptake and biogeochemical cycling can be
accounted for. The soil/groundwater system receives sulphur inputs
from precipitation and weathering of bedrock. Subsequent biogeo-
chemical cycling serves to control speciation, concentration and
availability of sulphur compounds throughout the system. Biogeo-
chemical cycling through forest environments involves processes of
assimilation (the uptake and incorporation of sulphate into plants),
mineralisation (the conversion of organic sulphur compounds back
into sulphate), adsorption/desorption (binding/release of sulphur
compounds by inorganic means) and oxidation (e.g. Krouse et al.,
1991; Likens et al., 2002; Mayer et al., 1995; Mitchell et al., 1998,
2001). Sulphur isotope fractionation does not occur during adsorp-
tion/desorption (Van Stempvoort et al., 1990), and is restricted to
just 1—-29%, during assimilation and mineralisation such that there is
a slight preference for 3%S incorporation into the reaction products
(Krouse et al., 1991; Mitchell et al., 2001; Thode et al., 1991). How-
ever, where reducing conditions persist within soils and ground-
waters, dissimilatory sulphate reduction carries a distinctive
isotopic fractionation, such that residual sulphate becomes enriched
in 34S (e.g. Chambers and Trudinger, 1979). Where the depth of the
plant root system is invariant through time (Yang et al., 1996) uptake
of sulphate and storage within woody tissues thereby forms a good
representation of environmental conditions, unless redox condi-
tions are strongly reducing. Two pathways to incorporation deter-
mine whether the assimilated sulphur is stored in reduced format
(the reductive pathway), or as sulphate, (the sulphation pathway). In
higher plants, the sulphation pathway is of minor significance
(Leustek and Saito, 1999). The dominant presence of reduced
sulphur has been demonstrated by Fairchild et al. (2009) within the
woody tissues of conifers Abies alba and Picea abies, using X-ray
absorption and near edge structure (XANES) analysis, and suggested
to form the majority of the sulphur signal incorporated into tree ring
archives.

Where the foliage of plants is directly exposed to the atmosphere,
direct atmospheric uptake of SO, with little accompanying isotopic
fractionation creates a sulphur signature similar to that of the at-
mosphere (Trust and Fry, 1992). After diffusion through the stomata,
SO, dissolves and the majority is metabolised ultimately to produce
organic sulphur compounds (Kaiser et al., 1993). Poor permeability of
the leaf cuticle to atmospheric sulphate means dissolved sulphate is
predominantly assimilated through the root system, whilst SO, is the
dominant form of sulphur assimilated through foliage (Jedrysek and
Katuzny, 2002). Uncertainty remains regarding the relative contri-
bution of sulphur within foliage obtained from either direct atmo-
spheric uptake, or groundwater sources, although foliage from rooted
plants has been used successfully to directly reflect seasonality in air
pollution (e.g. Xiao et al., 2012) and to reflect atmospheric uptake of
SO; in pine needles (e.g. Gebauer et al., 1994). Where vegetation is
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Fig. 1. Sources of sulphur to tree ring records of environmental change and associated isotopic fractionations. Isotopic values of precipitation, soil water, ground water and bedrocks

are sourced from Wynn et al. (2013) monitoring undertaken between 2005 and 2007.

subjected to high concentrations of atmospheric SO, (Jedrysek and
Katuzny, 2002) or other forms of biotic/abiotic environmental stress
(Bloem et al., 2005) sulphur compounds may be emitted from foliage
as hydrogen sulphide gas (H,S) to play a key role in plant defence
systems. The direct effect of H,S release upon residual sulphur iso-
topic composition in the foliage is to cause 34S enrichment within
vegetation compared to input values (Trust and Fry, 1992).

2.4. Sulphur isotope records in tree rings

The isotopic composition of sulphur incorporated into annual
ring structures will therefore represent a weighted balance be-
tween 1) the amount of sulphur assimilated from soil/groundwater
stores, reflecting atmospheric deposition, biogeochemical cycling,
bedrock weathering and fractionation during assimilation, 2) that
incorporated through direct gaseous uptake through foliage and 3)
the amount of H,S emitted as a function of physiological stress,
causing 34S enrichment in residual leaf sulphur (Fig. 1). As direct
gaseous uptake of SO, through foliage appears to be less important
in determining the sulphur composition of tree rings than soil/
groundwater stores when sulphur supply to the root system is high
(Rennenberg, 1984), stable sulphur isotopes of tree rings have the
potential to fingerprint sources of sulphur contained within soil

and groundwater systems and identify changing pollution dy-
namics throughout the twentieth century. However, measurement
of sulphur isotopes in woody tissues has been limited by low
sulphur concentrations. Measurements have therefore been
restricted to hyper-concentrating species or using large quantities
of sample materials. Yang et al. (1996) studied Tamarix aphylla,
achieving annual resolution of analysis from 1 g of wood powder.
Through the use of reaction bombs to dissolve large volumes of
material (minimum 5—8 g) resolution of one sample per 5 years
was obtained by Giesemann et al. (2005) and Kawamura et al.
(2006). Both latter studies obtained isotopic evidence supportive
of tree rings providing suitable archives of atmospheric sulphur
pollution. This highlights the potential for tree ring archives of
sulphur isotopes to be used as a readily available, sensitive record of
local atmospheric change if methods can be improved to enhance
spatial resolution of analysis, optimise analytical precision, and
increase sample throughput.

3. Methods
3.1. Site and sample description

Environmental background to the field site and details of samples collected
in the vicinity of Ernesto Cave (NE Italian Alps, 1167 m a.s.l, 45° 58’ 37" N, 11° 39’
28" E) are provided within Fairchild et al. (2009) and Lageard et al. (2007).
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Grotta di Ernesto is a shallow cave site developed within the dolomitized Jurassic
limestone in which extensive in-situ monitoring of cave atmosphere (Frisia et al.,
2011), hydrology (Miorandi et al., 2010), and drip water and speleothem
geochemistry (Borsato, 1997, 2007; Fairchild et al., 2000; Frisia et al., 2003, 2008;
Hartland et al., 2012; Huang et al., 2001; Wynn et al., 2008, 2010, 2013), make
this an ideal site to compare cave speleothem records of twentieth century
environmental change with terrestrial records from tree ring dendrochemistry.
Soils in the area are up to 1 m thick (calcareous brown forest soils; Rendzic
Leptosol, pH 6.5—7.7) and overlie Jurassic dolomitized limestones with blocks of
red marly limestones. They support a mixed conifer-deciduous forest in which
the main species are Fagus sylvatica, Picea abies and Abies alba. Vegetation
growth is well managed and dominated by deforestation events in the 19th and
20th centuries, thereby limiting longevity of available tree ring records. Sulphur
pollution at the site has been documented in Wynn et al. (2010) and attributed
to industrial activity within the nearby Valsugana valley, transported up to
4000 m altitude by strong vertical air mixing (Gabrielli et al., 2006). The sulphur
biogeochemical cycle, traced from precipitation input to speleothem host, has
been described within Wynn et al. (2013). Samples were collected within a 4 km
radius of the cave site using 5 and 12 mm diameter increment borers and
standard dendroecological procedures were used to produce absolutely dated
records and mean ring-width chronologies. Thirty individual trees were used to
build a master chronology for sample cores collected from Abies alba (see
Fairchild et al. (2009), Supplementary information). Of the collected cores, two
trees (Abies 1, cambial age 160; and Abies 2, cambial age 90) underwent pre-
liminary investigation for sulphur concentration and intra-cellular speciation
(Fairchild et al., 2009) as a background to developing a method for extracting
sulphur isotopes from the same samples. In sampling the trees, no oils, polish
wax or lubricant was used to reduce potential contamination from sulphur-
containing compounds.

Wood powders were extracted by carefully drilling 5-year blocks of dated rings
to yield a well-mixed, representative sample of approximately 40 mg for sulphur
isotope analysis. On a sub-section of the conifer samples, a cold resin extraction was
conducted using a 9:1 high purity (Aristar grade) acetone:water mixture for 48 h,
followed by multiple washes with hot and cold deionised water to remove the
potentially mobile resinous component and any surface bound mobile (soluble)
sulphur.

3.2. Mass spectrometer analysis

All samples were analysed by continuous-flow-isotope-ratio mass spectrom-
etry using an Isoprime 100 mass spectrometer linked to an Elementar Pyrocube
analyser at the University of Lancaster, Lancaster Environment Centre. Combustion
of 30—40 mg of wood powder in tin capsules at 1030 °C and 70 s oxygen pulse,
yielded product N3, CO, and SO, for analysis. CO, and SO, gases were trapped using
a Thermal Programmed Desorption (TPD) system inherent to the Elementar
pyrocube. The large retention capacity of the CO; TPD column, a programmed
temperature increase and full use of the diluter, controlled the release of large
volumes of CO, gas without overloading the source electronics. Capture and focus
of product SO, within the TPD allowed determination of 345325 (expressed as 5°4S)
where whole-wood sulphur contents were approximately 0.01%. 3>*S values were
corrected to V-CDT (Vienna-Canyon Diablo Troilite) using international standards
NBS-127 and SO5 (assumed values of +21.1 and +0.5%, respectively) (Halas and
Szaran, 2001). Within-run replication of international standards and in-house
BaS04 gave 334S precisions of <0.3%, (1 Standard Deviation, analysed in batches
of n = 4). Standard materials prepared as a bulk volume of homogenised wood
powder yielded internal precisions of <0.5%, (1 SD, analysed in batches of n = 4 in
each analysis sequence), and no sample size dependence. Duplicate samples had a
mean difference of 0.41%, (range 1.1%,—0.1%,) (n = 13), with only four duplicate
analyses exceeding 0.5%, difference. Analytical differences between samples, which
had received resin extraction, were within error of standard material precisions. To
validate the direct EA method of wood powder analysis, a bulk quantity of wood
powder was prepared and analysed by both on-line EA combustion and offline
combustion using Eschka’s reagent (e.g. Kester et al., 2001). 5 g aliquots of wood
powder were mixed with Eschka’s reagent in porcelain crucibles and combusted in
a muffle furnace at 850 °C for two hours. The combusted product was rinsed with
de-ionised water and filtered to remove solid residues. The eluent was acidified to
pH 2 using HCI and boiled to remove any remaining dissolved inorganic carbon.
Sulphate was precipitated as barium sulphate with the addition of excess barium
chloride. Repeated centrifugation and washing with de-ionised water concentrated
the product barium sulphate for analysis. Barium sulphate produced as an end
product of the Eschka digestion was analysed by EA (5**S = 3.7%, SD = 1.5%,
n = 3) and found to be comparable to those analyses of the same material un-
dertaken by direct EA combustion (5*S = 3.9%,, SD = 0.4%, n = 5). Elemental
sulphur concentrations were calculated using the pyrocube Thermal Conductivity
Detector (TCD) and calibrated to a known mass of sulphanilamide. EA blanks
yielded no significant sulphur signal when run using empty tin capsules. The
performance of direct analysis by Pyrocube EA is compared in Table 1 to other
published methods concerning the extraction of sulphur concentrations and iso-
topic values from tree rings.

4. Results

Sulphur concentrations and isotope signatures obtained from
the two tree cores (Abies alba) in the Italian Alps are displayed in
Fig. 2 and compared to speleothem proxy records from the area.!
Values are reported as 5-yearly increments between 1875 and
2004, with the heartwood-sapwood boundary located around
1985. The first 50 years of growth were omitted from analyses due
to possible presence of juvenile effects in the sulphur isotope series
as observed in other tree ring parameters (Loader et al., 2013;
McCarroll and Loader, 2004; Young et al., 2012). Concentrations
range between 88 and 196 ppm %S signatures are reported
between +0.7 and +7.5%,, significantly lower than those contained
within the surrounding bedrock (84S = +19.7%, range = 4.3%,
n = 14) and show an overall inverse trend between concentration
and isotopic values.

5. Discussion

5.1. Sulphur isotopes in tree ring archives as an indictor of
industrialisation

Prior to the onset of industrialisation, sulphur inputs to the at-
mosphere are restricted largely to marine aerosols, volcanic erup-
tions, and background contribution from vegetation and soil
emissions. Soils and groundwaters receive additional contributions
from bedrock weathering. Concentrations of sulphur would thus be
low, and the sulphur isotopic composition of soils under aerobic
conditions would closely reflect that of the atmosphere, with a
minor component from constituent bedrock. The sulphur concen-
trations presented in Fig. 2 replicate those obtained from the same
samples in Fairchild et al. (2009) and represent a limited pre-1960
sulphur input, commensurate with a dominant control from the
pre-industrial atmosphere, and a post-1960 increase in tree ring
sulphur concentration, attributed to the onset of industrialisation
and enhanced loading of sulphur emissions to the atmosphere as
SO, aerosols. Despite the record extending to 2004 however, there
is little evidence of the well-documented decline in European
sulphur emissions to the atmosphere, post-1970 (e.g. Smith et al.,
2011; Vestreng et al., 2007) and catchment acidification reversal
(e.g. Alewell, 2001; Gislason and Torssander, 2006; Sucker and von
Wilpert, 2011) imprinting on the tree ring record. The broad anti-
pathetic trend seen in Fig. 2 between sulphur isotopes and con-
centrations indicates the lightest sulphur isotopic compositions are
commensurate with enhanced sulphur concentrations stored
within the tree rings. This shows the post-1960 source of sulphur to
be predominantly from industrial pollution (range of sulphur iso-
topic values in precipitation from industrialised countries in the
Northern hemisphere —3 to +9%,; Mayer, 1998). Sulphur isotopes
appear to stabilise at minimum values during the 1980s, suggesting
a pollution maxima in sync with measured atmospheric loads from
western European countries. A limited return to pre-industrial
isotopic values would appear to signify continuing high levels of
pollution being experienced at this locale, dominating the atmo-
spheric sulphur load until late into the twentieth century.

Based on contemporary sulphur cycling at the field site moni-
tored between 2005 and 2007 (discussed extensively in Wynn et al.
2013), isotope systematics would appear to support incorporation
of sulphur into the tree ring record with only minimal delay.
Sulphur isotopic values of input precipitation, soil and groundwa-
ters are detailed in Fig. 1. Soil waters support 534S values of +4.0

! Data used in compiling Fig. 2 are stored at the British Atmospheric Data Centre
(BADC). http://badc.nerc.ac.uk.
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Table 1
Comparison of published analytical techniques used to extract sulphur isotopes and concentrations from tree rings.
Sample preparation Isotope analytical technique =~ Mass wood Precision between  Spatial resolution Technique for determination References
technique powder sample preparations of sulphur concentration
required
Hand drilling Pyrocube elemental analyser ~40 mg <0.5%, (n =4; 1SD) 5 years, analysed from 5 mm Simultaneous pyrocube This study
(wood powder) diameter tree core elemental analysis
Parr bomb Thermal decomposition of 8 g aliquots Not quoted 5 years, extracted from tree  Dionex ion chromatography Kawamura
combustion BaSO,4 to SO, cross section et al., 2006
Thermal decomposition of ~1g Not quoted Annual, extracted from tree  XRD analysis Yang et al., 1996
BaSO4 to SO, Cross section
Carlo Erba NA 1500 elemental Not stated Not quoted 5 years, extracted from tree  Automatic S analyser Giesemann
analyser (BaSO4) cross section (LECO SC132) et al., 2005
Eschka digestion Pyrocube elemental analyser ~5g 1.5%, (n=3; 1SD)  Bulk homogenized powder  Gravimetric analysis This study

(BaSOy)

to +5.7%, Whilst the common precipitation input has a weighted
average sulphur isotopic value of +1.2%, (range —1.4 to +7.3%,), the
enrichment in recipient soil waters can be attributed largely to
processes of net assimilation, whereby lighter isotopes are
preferred during uptake of sulphate into vegetation, enriching the
remaining soil water sulphate in 3*S by 1-29%, (e.g. Krouse et al.,
1991; Mitchell et al., 2001; Thode et al., 1991). Despite the short
time difference between monitored isotopic values in the soil wa-
ters and timing of tree core collection, the youngest growth
recorded in the tree rings supports an isotopic value of approxi-
mately 2%, and close to that expected from soil water assimilation
and fractionation during uptake into vegetation. On the basis that
sulphur isotopes provide evidence for a rapid response of tree ring

records to atmospheric forcing and a high pollutant load in this
locale which has prevailed since the 1980s, the peak of sulphur
concentration in the most recent growth is likely the result of a bio-
physical process of trace element concentration enhancement
beneath the bark (Barrelet et al., 2006), rather than a delayed peak
in atmospheric pollution due to biogeochemical sulphur cycling.

5.2. Tree-Speleothem comparison

Replication of proxy records engenders strength in interpreta-
tion. This can be replication within the same type of host material
(e.g. multiple tree cores, ice cores, speleothems), but real merit in
understanding environmental processes is afforded through
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Fig. 2. Sulphur isotopes and concentrations in Abies alba from Ernesto Cave, NE Italy.
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consideration of different archives, which develop at the same
location. Records of sulphur concentration and isotopic change
within both speleothems (ER78) and trees (Abies 2) are depicted in
Fig. 3.

Sulphur isotopes within speleothem calcite, extracted from
Grotta di Ernesto within the locale of tree sampling, were analysed
by secondary ionization mass spectrometry and presented within
Wynn et al. (2010). The controls on speleothem sulphur composi-
tion were found to be determined not only by atmospheric input,
but also by biogeochemical cycling through vegetation, soils and
groundwaters (Wynn et al., 2013). Despite a common atmospheric
input and soil water status, each drip site delivering trace elements
to the site of speleothem growth was found to have a unique sul-
phate composition, based on the extent of aquifer residence time,
mixing with stored water and redox status encountered along the
drip water flow pathway. The nature of the record contained within
the associated speleothems was thereby determined by the sub-
tleties of aquifer hydrology, as well as atmospheric forcing. Despite
these additional controls on sulphate biogeochemical cycling, the
sulphur record imprinted in the speleothem maintained a close
resemblance to known trends in atmospheric sulphur loading,
albeit lagged by approximately 15—20 years (Wynn et al., 2013).

As both speleothem and tree ring records derive their dominant
water/nutrient source from common soil/ground water environs,
similarities in the characteristics of both records would be ex-
pected. Both archives depict a low pre-1960 background sulphur
concentration, enriched in >4S due to the relatively greater input of
sulphur from bedrock dissolution. The antipathetic trend between

Year of stalagmite deposition

103

sulphur isotopes and concentrations is also common to both types
of records. Neither record shows a dominant acidification reversal
common to many catchments across Europe, due to biophysical
processes of concentration enhancement in tree ring archives, and
extensive delays due to storage effects in the case of speleothems.

However, an absolute difference in isotopic values from equiv-
alent dates in each archive identifies subtleties in biogeochemical
cycling. The tree ring record contains lighter sulphur isotope sig-
natures than the speleothem archive. This offset is of variable
magnitude, reaching up to 10%, in some instances (Fig. 3). Whilst
up to 2%, of the difference between speleothem and tree ring re-
cord may be accounted for through processes of assimilation.
Remaining differences are likely due to varying proportions of soil/
groundwater feeding trees and speleothems respectively. Processes
occurring at depth in the epikarst which are largely beyond the root
zone and capable of inducing S enrichment in speleothem
forming drip waters include bedrock dissolution, sulphate reduc-
tion and mixing with groundwater of differing isotopic signature.
Under contemporary conditions (monitoring between 2005 and
2007, Wynn et al., 2013), the influence of bedrock dissolution was
limited to just 2.1% of total drip water sulphur load (accounting for
just 0.5%, enrichment in 34S between soil and drip waters), and
stored groundwater was deduced to be isotopically depleted in 34S,
not enriched. Processes of intense redox cycling were detected in
the drip waters of speleothem ER78 which enrich the 6180504due to
equilibrium fractionation between sulphate and water, but main-
tain 6345504 due to the closed system and maintenance of isotope
balance (Wynn et al., 2013). Thus, at this particular site, the process
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Fig. 3. Records of sulphur loading to both speleothem ER78 and tree ring archives (Abies 1) of environmental change collected from the same field site at Ernesto cave in NE Italy.
Data for speleothem ER78 are originally published in Wynn et al. (2010) and analysed by secondary ionisation mass spectrometry; The age model for ER78 during the most recent
150 years was developed using trace element patterns, 'C dating and laminae counting from the speleothem growth surface, known to be actively growing when collected in the yr
2000 (Smith et al., 2009).
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of assimilation, acquisition of sulphate additional to that present in
the soil waters, and the influence of redox cycling, cannot account
for more than 2.5%, of %S enrichment compared to the tree ring
archives. The only remaining influence upon sulphur isotopic
values of both speleothem and tree ring records, concerns the
storage times associated with the epikarst/soil water respectively.
Enhanced storage due to karst hydrology is known to impart
extensive delays to atmospheric signals reaching the recipient
speleothem (Wynn et al., 2013). For representation of atmospheric
sulphur forcing within speleothems, this delay has been calculated
at Ernesto cave to be 15—20 years (based on an offset between
national atmospheric load and cave drip water chemical composi-
tion (Frisia et al., 2005). However, trees which are predominantly
shallow rooted are likely to extract the majority of nutrients from
the soil zone, where a faster rate of biogeochemical cycling and
limited storage component diminishes any delay between atmo-
spheric deposition and incorporation into the tree ring record. Part
of the offset between speleothems and trees, must thereby be
associated with the magnitude of storage delay imparted between
atmosphere-speleothem and atmosphere-tree. On this basis, the
tree records presented appear to be responding rapidly to the
changing sulphur load, to the extent that the most recent tree ring
534S values from the year 2004 are close to those expected from soil
water inputs. Placing an absolute value on the time-lag between
atmospheric forcing and tree response however, is impossible
without long-term records of soil water sulphate concentration.
The speleothem is lagged by 15—20 years dependent upon addi-
tional storage and mixing within the epikarst. At the time of sam-
pling in the year 2000, the speleothem was still responding to the
peak of atmospheric sulphur loading experienced during the
1980’s.

Variable amounts of bedrock dissolution, redox cycling and
karst storage, as well as fractionation induced through vegetation
assimilation, thereby appear responsible for the isotopic offset
between proxy records and the relative enrichment in speleothem
345, The speleothems formed within the cave environment effec-
tively contain a record which is duplicated within the trees growing
in the same location. However, compared to speleothem archives
which have the added complication of epikarst processes domi-
nating the delivery of nutrients, shallow rooted trees perhaps offer
a more responsive and better source defined archive of atmo-
spheric sulphur loading. Soil, vegetation and groundwater charac-
teristics are thereby fundamental in dictating tree and speleothem
chemical composition in response to atmospheric change.

6. Conclusion

Sulphur isotopic analysis of wood powders by elemental ana-
lyser has relied on trap and purge technology to concentrate
product SO, gases into sample peaks large enough for integration.
This has enabled high resolution, high throughput analysis of tree
ring archives depicting environmental change in sulphur dynamics,
with a particular focus on atmospheric pollutant loading to the
atmosphere and ensuing catchment acidification. Reported trends
in sulphur concentration and isotopic composition within tree ring
archives depend heavily upon background environmental condi-
tions. Primarily these include precursor soil/bedrock sulphur con-
tent and isotopic signature, as well as the nature and extent of soil
biogeochemical cycling, and tree physiology determining depth of
root penetration and possible bio-accumulation effects within
young woody tissues. A comparison of speleothem and tree ring
sulphur series demonstrates similarity between the two archives.
However, compared to tree ring archives which draw water and
nutrients predominantly from the soil zone, speleothems have the
added complication of deeper epikarst processes which induce an

isotopic offset between the two archives at this locale due to stor-
age. We suggest the high degree of analytical precision afforded by
the methods described, as well as the potential for replication be-
tween trees and other proxies of environmental change, support
the further exploration and interrogation of tree rings as precise
archives of regional variability in environmental sulphur, forced not
only through atmospheric pollutant loading but potentially also
through volcanic activity. Such a precisely dated record can be used
to locate the source of past volcanic eruptions, and provide an in-
dependent continental dataset of sulphur forcing for climate
modelling. We believe replicated sulphur concentration and iso-
topic analysis obtained from tree rings at sub-annual resolution
provides the best possibility of building a reliable record of sulphur
forcing and its impact upon climate during the past millennium.
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