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Snowball Earth theory provides a powerful framework for understanding 1 

Neoproterozoic panglaciations, although some predictions are apparently 2 

contradicted by geological evidence. Snowball theory posits that the 3 

panglaciations were terminated after millions of years of frigidity by a positive 4 

feedback, in which initial warming from rising atmospheric CO2 was amplified by 5 

reduction of ice cover and planetary albedo (1, 2). This threshold behaviour implies 6 

that most of the glacial record was deposited in a brief 'melt-back' period (3), an 7 

interpretation apparently inconsistent with geological evidence for glacial-8 

interglacial cycles in low palaeolatitudes (4-6). Here we use geological and 9 

geochemical evidence combined with numerical modeling experiments to 10 

reconcile these apparently conflicting views. New evidence from Svalbard 11 

(Norwegian High Arctic) indicates oscillating glacier extent and hydrological 12 

conditions within continental deposits of a Cryogenian glaciation, during a period 13 

when pCO2 was uniformly high. Modeling experiments show that such oscillations 14 

can be explained by orbital forcing in the late stages of a 'Snowball' glaciation, 15 

while pCO2 was rising towards the threshold required for complete melt-back. This 16 

enriched Snowball Earth theory can potentially explain complex successions 17 

observed at other localities.  18 

The Wilsonbreen Formation in NE Svalbard contains a detailed record of 19 

environmental change during the Marinoan, the second of the major Cryogenian 20 

glaciations (650-635 Ma) (7, 8). At this time, Svalbard was located in the Tropics on 21 

the eastern side of Rodinia (9, 10). The <180 m thick Wilsonbreen Formation was 22 

deposited within a long-lived intracratonic sedimentary basin (11). It is subdivided 23 

into three members (W1, W2 and W3) based on the relative abundance of diamictite 24 



and carbonate beds (7, 8; Fig. 1; Supplementary Figures 1 & 2). The occurrence 25 

throughout the succession of lacustrine sediments containing both precipitated 26 

carbonate and ice-rafted detritus, and intermittent evaporative carbonates and 27 

fluvial deposits, indicates that the basin remained isolated from the sea, consistent 28 

with eustatic sea level fall of several hundred metres and limited local isostatic 29 

depression (Supplementary Information; 12). This makes it ideal for investigating 30 

environmental change within a Neoproterozoic panglaciation, as it provides direct 31 

evidence of subaerial environments and climatic conditions. 32 

We made detailed sedimentary logs at ten known and new localities extending 33 

over 60 km of strike (Fig. 1; Supplementary Figure 1; see Methods). Seven sediment 34 

facies associations were identified, recording distinct depositional environments that 35 

varied in spatial extent through time (Supplementary Figure 3; Supplementary 36 

Information). These are: FA1: Subglacial, recording direct presence of glacier ice, 37 

FA2: Fluvial channels, FA3: Dolomitic floodplain, recording episodic flooding, 38 

evaporation and microbial communities; FA4: Carbonate lake margin, including 39 

evidence of wave action; FA5: Carbonate lacustrine, including annual rhythmites and 40 

intermittent ice-rafted debris; FA6: Glacilacustrine, consisting of ice-proximal 41 

grounding-line fans (FA6-G) and ice-distal rainout deposits (FA6-D); and FA7: 42 

Periglacial, recording cold, non-glacial conditions. Additional descriptions are 43 

provided in the Supplementary Information. The vertical and horizontal distribution 44 

of these facies associations (Fig. 1) allows the sequence of environmental changes to 45 

be reconstructed in detail.  46 



(1) The base of the Formation is a well-marked periglacially weathered horizon 47 

with thin wind-blown sands (Supplementary Figure 4a-b). This surface records very 48 

limited sediment cycling in cold, arid conditions.  49 

(2) At all localities, the weathering horizon is overlain by fluvial channel facies 50 

(FA2) and mudstones, marking the appearance of flowing water in the basin and 51 

implying positive air temperatures for at least part of the time (Supplementary 52 

Figure 5a).  53 

(3) Glacilacustrine deposits (FA6-D) record flooding of the basin and delivery of 54 

sediment by ice-rafting (Supplementary Figure 4c-d). Far-travelled clasts are 55 

common, indicating transport by a large, continental ice sheet.  56 

(4) Warm-based, active ice advanced into the basin, indicated by traction tills and 57 

glacitectonic shearing (FA1; Supplementary Figure 4e-g). (1 – 4 make up Member 58 

W1.)  59 

(5) Ice retreat is recorded by a second periglacial weathering surface (FA7). This is 60 

overlain by fluvial channel, floodplain, lake-margin and carbonate lacustrine 61 

sediments of W2 (FA2-5; Supplementary Figure 5), recording a shifting mosaic of 62 

playa lakes and ephemeral streams. Lakes and river channels supported microbial 63 

communities. Millimetre-scale carbonate-siliciclastic rhythmites indicate seasonal 64 

cycles of photosynthesis. The environment appears to have been closely similar to 65 

that of the present-day McMurdo Dry Valleys in Antarctica, though with less extreme 66 

seasonality due to its low latitude (13). 67 

(6) Water levels and glacier extent underwent a series of oscillations, recorded by 68 

switches between glacilacustrine diamictite (FA6-D) and fluvial, lacustrine and lake-69 



margin sediments (FA2-5) in W2. Sedimentation rates inferred from annual 70 

rhythmites in W2 suggest that each retreat phase may have lasted ~104 years.  71 

(7) A second major ice advance marks the base of W3, with widespread 72 

deposition of subglacial tills and glacitectonism of underlying sediments. Basal tills 73 

are absent from the northernmost locality, but close proximity of glacier ice is 74 

recorded by grounding-line fans (FA6-G; Supplementary Figure 4h-i). 75 

(8) Ice retreated while the basin remained flooded and glacigenic sediment 76 

continued to be delivered to the lake by ice rafting. Thin laminated carbonates (FA5) 77 

in W3 indicate periods of reduced glacigenic sedimentation, indicative of minor 78 

climatic fluctuations over timescales of ~103 years (Supplementary Figure 5g).  79 

(9) A sharp contact with overlying laminated 'cap' carbonate (Supplementary 80 

Figure 2) records the transition to post-glacial conditions. At some localities, basal 81 

conglomerates provide evidence of subaerial exposure followed by marine 82 

transgression. The cap carbonate closely resembles basal Ediacaran carbonates 83 

elsewhere, and marks global deglaciation, eustatic sea-level rise and connection of 84 

the basin to the sea (1, 12, 14). 85 

Environmental and atmospheric conditions during deposition of W2 and W3 can 86 

be further elucidated by isotopic data from carbonate-associated sulphate in 87 

lacustrine limestones (Fig. 2 and Supplementary Figure 6). These display negative to 88 

extremely negative 17O values with consistent linear co-variation with 34S, 89 

indicating mixing of pre-glacial sulphate and isotopically light sulphate formed in a 90 

CO2-enriched atmosphere (15, 16). The observed values could reflect non-unique 91 

combinations of pCO2, pO2, O2 residence time and other factors, but a box model 92 

(17) indicates pCO2 was most likely ~10 to 100 mbar (1 mbar = 1000 ppmv).  93 



These values are far too high to permit formation of low-latitude ice sheets in the 94 

Neoproterozoic, but they are consistent with a late-stage Snowball Earth. For an ice-95 

free Neoproterozoic Earth, model studies indicate mean terrestrial temperatures in 96 

the range 30-50°C for pCO2 = 10 to 100 mbar (18). Formation of low-latitude ice 97 

sheets requires much lower pCO2, on the order of 0.1 - 1 mbar (2, 19, 20). Once 98 

formed, however, ice sheets can persist despite rising CO2 from volcanic outgassing, 99 

due to high planetary albedo. This hysteresis in the relationship between pCO2 and 100 

planetary temperature is a key element of Snowball Earth theory. It implies that W2 101 

and W3 were deposited relatively late in the Marinoan, after volcanic outgassing had 102 

raised pCO2 from 0.1 or 1 mbar to 10 or 100 mbar. Modeled silicate weathering and 103 

volcanic outgassing rates indicate that this would require 106 to 107 years (21).  104 

The consistent co-variation of 17O and 34S in lacustrine limestones in both W2 105 

and W3 suggests no detectable rise in atmospheric pCO2, as this would alter the 106 

slope of the mixing line (Fig. 2). This implies that the glacier oscillations recorded in 107 

W2 and W3 occurred during a relatively short time interval (<105 years, 21) toward 108 

the end of the Marinoan. In turn, this implies that the remainder of the Wilsonbreen 109 

Formation (including the basal weathering horizon) represents many millions of 110 

years, during which pCO2 built up from the low values necessary for inception of low-111 

latitude glaciation to those indicated by the geochemical evidence. The weathering 112 

horizon provides direct evidence of cold, arid conditions during this interval, prior to 113 

the appearance of fluvial and glacilacustrine sediments in the basin. 114 

The evidence for ice-sheet advance/retreat cycles at low latitudes in a CO2-115 

enriched atmosphere motivated a series of numerical simulations to test the 116 

hypothesis that these cycles were linked to Milankovitch orbital variations. We 117 



employed asynchronous coupling of a 3D ice sheet model and an Atmospheric 118 

General Circulation Model using the continental configuration of (22). We first ran 119 

simulations with a modern orbital configuration to examine ice-sheet behaviour 120 

through a large range of pCO2 values from 0.1 to 100 mbar (23; Supplementary 121 

Figures 7-10). Consistently with previous results (2, 20), at low pCO2 (0.1 mbar), 122 

global ice volume reaches 170 x 106 km3 but substantial tropical land areas remain 123 

ice free due to sublimation exceeding snowfall (Supplementary Figure S10a). Ice 124 

volume remains relatively constant for pCO2 = 0.1 to 20 mbar (Supplementary Figure 125 

S10b), due to an increase in accumulation that compensates for higher ablation rates 126 

(Supplementary Figure 13). In contrast, above 20 mbar, ice extent in the eastern 127 

Tropics significantly decreases (Supplementary Figure 10c). At pCO2 = 100 mbar, 128 

most of the continental ice cover disappears except for remnants over mountain 129 

ranges (Supplementary Figure 10d). 130 

To test the sensitivity of the tropical ice sheets to Milankovitch forcing, 131 

experiments with changing orbital parameters were initialized using the steady-state 132 

ice sheets for pCO2 = 20 mbar. Although obliquity has been invoked as a possible 133 

cause of Neoproterozoic glaciations (24), this mechanism remains problematical and 134 

cannot account for significant climatic oscillations at low latitudes (25, 26).  We 135 

therefore focused on precession as a possible driver, and used two opposite orbital 136 

configurations favoring cold and warm summers, respectively, over the northern 137 

tropics (CSO: cold summer orbit and WSO: warm summer orbit) (Supplementary 138 

Figure 14). Switching between these configurations causes tropical ice-sheets to 139 

advance/retreat over several hundred kilometers in 10 kyr (Supplementary Movie 1), 140 

with strong asymmetry between hemispheres (Fig. 3). Shifting from WSO to CSO 141 



causes ice retreat in the southern hemisphere and ice sheet expansion in the 142 

northern hemisphere (Supplementary Figure 14c-d). Significant ice volume changes 143 

occur between 30° N and S, but are less apparent in higher latitudes. This reflects 144 

higher ablation rates in the warmer low latitudes (Supplementary Figure 14e-h), and 145 

higher ice-sheet sensitivity to shifting patterns of melt. Larger greenhouse forcing at 146 

the end of the Snowball event implies increasing ice-sheet sensitivity to subtle 147 

insolation changes. Given a strong diurnal cycle (23), our simulations also predict a 148 

significant number of days above 0°C in the tropics (Supplementary Figure 15), 149 

consistent with geological evidence for ice rafting, liquid water in lakes and rivers, 150 

and photosynthetic microbial communities.  151 

Our results show that geological evidence for glacial-interglacial cycles (5-7) is 152 

consistent with an enriched Snowball Earth theory. Termination of the Marinoan 153 

panglaciation was not a simple switch from icehouse to greenhouse states but was 154 

characterized by a climate transition during which glacial cycles could be forced by 155 

Milankovitch orbital variations. The geochemical evidence presented here implies 156 

that at least the upper 60-70% of the Wilsonbreen Formation was deposited in ~105 157 

years, on the assumption that a trend in pCO2 would be evident over longer 158 

timescales (21). Rates of CO2 build-up, however, may have slowed in the later stages 159 

of Snowball Earth due to silicate weathering of exposed land surfaces, so it is 160 

possible that the oscillatory phase was more prolonged.  161 

Initiation of low latitude glaciation in the Neoproterozoic requires low pCO2 (0.1 - 162 

1 mbar, 2, 19, 20), implying that the oscillatory phase was preceded by a prolonged 163 

colder period (~106 to 107 years) during which pCO2 gradually increased by volcanic 164 

outgassing (21). This timescale is in agreement with recent dates indicating the 165 



Marinoan lasted ~15 million years (27). The basal weathering horizon is consistent 166 

with a period of low temperatures and limited hydrological cycle prior to the 167 

oscillatory phase (2, 19). 168 

Additional work is needed to refine the upper and lower limits of pCO2 conducive 169 

to climate and ice-sheet oscillations in Snowball Earth. Factors not included in the 170 

present model, such as supraglacial dust or areas of ice-free tropical ocean (28-30), 171 

can be expected to make the Earth system more sensitive to orbital forcing. While 172 

many details remain to be investigated, our overall conclusions remain robust. 173 

The Neoproterozoic Snowball Earth was nuanced, varied and rich. We anticipate 174 

that detailed studies of the rock record in other parts of the world, in conjunction 175 

with numerical modeling studies, will continue to yield insight into the temporal and 176 

regional diversity of this pivotal period in Earth history. 177 

 178 

 179 

Methods 180 

 181 

Sedimentology. Lithofacies were classified based on grain size, internal sedimentary 182 

structures and deformation structures, and bounding surfaces. Detailed stratigraphic 183 

logs were made in the field, supplemented by drawings and photographs of key 184 

features. Samples were taken for polishing and thin sectioning, to allow detailed 185 

examination of microstructures in the laboratory. In addition, data were collected on 186 

clast lithology, shape, surface features and fabric. Diamictites of the Wilsonbreen 187 

Formation are commonly very friable, allowing included clasts to be removed intact 188 

from the surrounding matrix, allowing measurement of both clast morphology and 189 



orientation, using methods developed for unlithified sediments. Clast morphology 190 

(shape, roundness and surface texture) was measured for samples of 50 clasts to 191 

determine transport pathways. Clast fabric analysis was performed by measuring a-192 

axis orientations of samples of 50 clasts with a compass-clinometer, and data were 193 

summarized using the eigenvalue or orientation tensor method. Orientated samples 194 

for measurement of Anisotropy of Magnetic Susceptibility (AMS) were collected 195 

using a combination of field-drilling and block sampling. AMS was measured using an 196 

AGICO KLY-3 Kappabridge operating at 875 Hz with a 300 A/m applied field at the 197 

University of Birmingham and an AGICO MFK-1A Kappabridge operating at 976 Hz 198 

with a 200 A/m applied field at New Mexico Highlands University. 199 

 200 

Geochemistry. Laboratory procedures for extracting, purifying, and measuring the 201 

triple oxygen (δ18O and ∆17O) and sulfur (δ34S) isotope composition of CAS in bulk 202 

carbonates are detailed in ref 16. Briefly, fresh carbonate-bearing rock chips were 203 

crushed into fine grains and powders using mortar and pestle. Rinsing the fines with 204 

18 MΩ water revealed little water-leachable sulphate in all the Wilsonbreen 205 

carbonates. Subsequently, ca. 10 to 30 g carbonates were slowly digested in 1-3 M 206 

HCl solutions. The solution was then centrifuged, filtered through a 0.2 μm filter, and 207 

acidified before saturated BaCl2 droplets were added. BaSO4 precipitates were 208 

collected after >12 hours and purified using the DDARP method (see Supporting 209 

Information). The purified BaSO4 was then analyzed for three different isotope 210 

parameters: 1) ∆17O, by converting to O2 using a CO2-laser fluorination method; 2) 211 

δ18O, by converting to CO through a Thermal Conversion Elemental Analyzer (TCEA) 212 

at 1450 °C; and 3) δ34S, by converting to SO2 by combustion in tin capsules in the 213 



presence of V2O5 through an Elementar Pyrocube elemental analyzer at 1050 °C. The 214 

∆17O was run in dual-inlet mode while the δ18O and δ34S in continuous-flow mode. 215 

Both the ∆17O and δ18O were run on a MAT 253 at Louisiana State University whilst 216 

the 34S was determined on an Isoprime 100 continuous flow mass spectrometer at 217 

the University of Lancaster, UK. The ∆17O was calculated as ∆17O ≡ δ’17O ‒ 0.52×δ’18O 218 

in which δ’ ≡ 1000ln (Rsample/Rstandard) and R is the molar ratio of 18O/16O or 17O/16O. 219 

All δ values are in VSMOW and VCDT for sulphate oxygen and sulfur respectively. 220 

The analytical standard deviation (1σ) for replicate analysis associated with the ∆17O, 221 

δ18O, and δ34S are ±0.05‰, ±0.5‰, and ±0.2‰, respectively. Since the CAS is 222 

heterogeneous in hand-specimen, the standard deviation is for laboratory 223 

procedures. δ34S values were corrected against VCDT using within run analyses of 224 

international standard NBS-127 (assuming δ34S values of +21.1 ‰). Within-run 225 

standard replication (1 SD) was <0.3 ‰. All geochemical data are included in 226 

Supplementary Table 1. 227 

 228 

Numerical modeling. Model runs were conducted with a coupled atmospheric 229 

general circulation model (LMDz) and ice-sheet model (GRISLI: GRenoble Ice Shelf 230 

and Land Ice model). LMDz (spatial resolution 4° in latitude x 5° in longitude with 38 231 

vertical levels) was run with prescribed continental ice to climatic equilibrium. GRISLI 232 

has a 40km grid size and is driven with downscaled climatic fields of surface air 233 

temperature, precipitation and evaporation. To capture ice sheet – climate 234 

feedbacks, LMDz is rerun using the new ice sheet distribution and topography. This 235 

procedure was repeated each 10 kyr to investigate orbital forcing.  236 

 237 



Surface mass balance (accumulation minus sublimation and melting) was computed 238 

from monthly mean temperature, precipitation and evaporation rate. Melt rate is 239 

calculated using the Positive Degree Day method.  240 

 241 

No sea ice dynamics treatment is specified, the sea ice cover is prescribed and a 242 

thickness of 10 meters is imposed. Ice albedo is fixed at 0.6, while snow albedo 243 

varies from 0.9 from 0.55 as a function of the zenith, and ageing process. Land 244 

ice/snow free surface has the characteristic of a bare soil (rocky regolith) with an 245 

albedo of 0.3.  246 

 247 

Code availability. Code for the GCM LMDz can be accessed at: 248 

http://lmdz.lmd.jussieu.fr. Code for the ISM GRISLI (GRenoble Ice Shelf and Land Ice 249 

model) is not available. 250 

 251 

Additional details of the methods and modeling procedures are provided in the 252 

Supplementary Information in the online version of the paper.  253 

 254 

 255 

https://mail.unis.no/owa/redir.aspx?C=axgv3FBeY0mu4Qm1oMCxyZKlkGHXQ9IIfVXWsA_w3cLmz57JEYz1eHCuh7Hq4Ak8YTlEMOSiKtU.&URL=http%3a%2f%2flmdz.lmd.jussieu.fr


References 

 

(1) Hoffman, P.F. and Schrag, D.P. The Snowball Earth hypothesis: testing the 

limits of global change. Terra Nova 14, 129-155 (2002). 

(2) Donnadieu, Y., Goddéris, Y. and Le Hir, G. Neoproterozoic atmospheres and 

glaciation. In: Treatise on Geochemistry, Second Edition Vol. 6, 217-229 (2014). 

(3) Hoffman, P.F. Strange bedfellows: glacial diamictite and cap carbonate from 

the Marinoan (635Ma) glaciation in Namibia. Sedimentology 58, 57-119 (2011). 

(4) Allen, P.A. and Etienne, J.L. Sedimentary challenge to Snowball Earth. Nat 

Geosci 1, 817-825 (2008). 

(5) Rieu, R., Allen, P.A., Plötze, M. and Pettke, T. Climatic cycles during a 

Neoproterozoic "snowball' glacial epoch. Geology 35, 299-302 (2007). 

(6) Le Heron, D.P., Busfield, M.E., and Kamona, F. An interglacial on snowball 

Earth? Dynamic ice behaviour revealed in the Chuos Formation, Namibia. 

Sedimentology 60, 411-427 (2013). 

(7) Fairchild, I.J. and Hambrey, M.J. Vendian basin evolution in East Greenland and 

NE Svalbard. Precambrian Res 73, 217–233 (1995). 

(8) Halverson, G.P. A Neoproterozoic Chronology IN: Xiao, S. & Kaufman, A.J. 

(Eds.) Neoproterozoic Geobiology and Paleobiology, 231-271 (Springer, New York, 

2006). 

 (9) Li, X.-X., Evans, D.A. and Halverson, G.P. Neoproterozoic glaciations in a 

revised global palaeogeography from the breakup of Rodinia to the assembly of 

Gondwanaland. Sediment Geol 294, 219-232 (2013). 



(10) Petronis, M S, Stevenson, C, Fleming, E J, Fairchild, I J, Hambrey, M, Benn, D 

I., 2013, Paleomagnetic Data from the Neoproterozoic Wilsonbreen Formation, Ny 

Friesland, Svalbard, Norway and Preliminary Data from the Storeelv Formation, Ella 

Ø, Kong Oscar Fjord, East Greenland, American Geophysical Union, Fall Meeting 

2013, abstract #GP41A-1107. 

(11) Harland, W.B. The Geology of Svalbard. Geol. Soc. London Mem., 17 

(Geological Society, London, 1997). 

(12) Creveling, J.R. and Mitrovica, J.X. The sea-level fingerprint of a Snowball Earth 

deglaciation. Earth Planet Sc Lett 399, 74–85 (2014). 

(13) Lyons, W.B. et al. The McMurdo Dry Valleys long-term ecological research 

program: new understanding of the biogeochemistry of the Dry Valley lakes: a 

review. Polar Geography 25, 202-217 (2001). 

 (14) Hoffman, P. et al. Are basal Ediacaran (635 Ma) basal 'cap dolostones' 

diachronous? Earth Planet Sc Lett 258, 114-131 (2007).  

(15) Fairchild, I.J., Hambrey, M.J., Spiro, B. and Jefferson, T.H. Late Proterozoic 

glacial carbonates in northeast Spitsbergen: new insights into the carbonate-tillite 

association. Geol Mag 126, 469-490 (1989). 

(16) Bao, H., Fairchild, I.J, Wynn, P.M. and Spötl, C. Stretching the envelope of 

past surface environments: Neoproterozoic glacial lakes from Svalbard. Science 

323,119-122 (2009). 

(17) Cao, X. and Bao, H. Dynamic model constraints on oxygen-17 depletion in 

atmospheric O2 after a Snowball Earth. P Natl Acad Sci USA 110, 14546–14550 

(2013). 



(18) Le Hir, G. et al. The snowball Earth aftermath: Exploring the limits of 

continental weathering processes. Earth Planet Sc Lett 277, 453–463 (2009).  

(19) Pierrehumbert, R., Abbot, D.S., Voigt, A. and Koll, D. Climate of the 

Neoproterozoic. Ann Rev Earth Planet Sci 39, 417-460 (2011). 

(20) Pollard, D. and Kasting, J.F. Climate-ice simulations of Neoproterozoic 

glaciation before and after collapse to Snowball Earth. In: G.S. Jenkins, M.A.S. 

McMenamin, C.P. McKay and L. Sohl (eds.) The Extreme Proterozoic: Geology, 

Geochemistry, and Climate. Geophys. Monogr. Ser. 146 (AGU, Washington, D.C. 

2004). 

(21) Le Hir, G., Ramstein, G., Donnadiieu, Y. and Goddéris, Y. Scenario for the 

evolution of atmospheric pCO2 during a snowball Earth. Geology 36, 47–50 (2008).  

(22) Hoffman, P.F., Li, Z.X., A palaeogeographic context for Neoproterozoic 

glaciation. Palaeogeogr Palaeocl 277, 158–172 (2009). 

(23) Pierrehumbert, R.T. Climate dynamics of a hard Snowball Earth. J Geophys 

Res 110, DOI: 10.1029/2004JD005162 (2005). 

(24) Spiegl, T. C., Paeth, H. and Frimmel, H.E., Evaluating key parameters for the 

initiation of a Neoproterozoic Snowball Earth with a single Earth System Model of 

intermediate complexity. Earth Planet Sc Lett 415, 100-110 (2015). 

(25) Donnadieu, Y., Ramstein, G., Fluteau, F., Besse, J. and Meert, J. Is high 

obliquity a plausible cause for Neoproterozoic glaciations? Geophys Res Lett 29, 

DOI: 10.1029/2002GL015902 (2002). 

(26) Paillard, D. Quaternary glaciations: from observations to theories. Quaternary 

Sci Rev 107, 11-24 (2015). 



(27) Rooney, A.D. et al. A Cryogenican chronology: Two long-lasting synchronous 

Neoproterozoic glaciations. Geology 43, 459-462 (2015). 

(28) Abbot, D.S. and Pierrehumbert, R.T. Mudball: surface dust and Snowball 

Earth deglaciation. J Geophys Res 115, DOI: 10.1029/2009JD012007 (2010).  

(29) Abbot, D.S., Voigt, S. and Koll, D. The Jormungand global climate state and 

implications for Neoproterozoic glaciations. J Geophys Res-Atmos 116, 

DOI: 10.1029/2011JD015927 (2011). 

(30) Rose, B. E. J. Stable “Waterbelt” climates controlled by tropical ocean heat 

transport: A nonlinear coupled climate mechanism of relevance to Snowball Earth. J 

Geophys Res-Atmos 120, doi:10.1002/2014JD022659 (2015). 

 

Correspondence and requests for materials should be addressed to Doug Benn 

(doug.benn@unis.no). 

 

Acknowledgements 

This work was supported by the NERC-funded project GR3/ NE/H004963/1 Glacial 

Activity in Neoproterozoic Svalbard (GAINS). Logistical support was provided by the 

University Centre in Svalbard. This work was granted access to the HPC resources of 

CCRT under allocation 2014-017013 made by GENCI (Grand Equipement National de 

Calcul Intensif). We also thank Didier Paillard and Paul Hoffman for stimulating 

discussions and valuable insights. 

 

 

Author contributions 



Field data were collected and analyzed by IJF, DIB, EJF, MJH, EAMcM, MSP, PMW and 

CTES. Geochemical analyses were conducted by HB and PMW. Model experiments 

were designed and conducted by GLeH, YD, CD and GR. The manuscript and figures 

were drafted by DIB, IJF and GLeH, with contributions from the other authors. 

 

Competing financial interests 

The authors declare no competing financial interests. 

 

 

  



Figures: 

 

Figure 1: Sedimentary architecture and palaeoenvironments of the Wilsonbreen 

Formation. Regional correlation of facies associations and members W1, W2 and W3 

across NE Svalbard. From north to south, study locations are: DRA: Dracoisen; DIT: 

Ditlovtoppen; AND: East Andromedafjellet; REIN: Reinsryggen (informal name); KLO: 

Klofjellet; McD: MacDonaldryggen; BAC: Backlundtoppen - Kvitfjellet ridge; PIN: 

Pinnsvinryggen (informal name); SLA: Slangen and ORM: Ormen. 

 

 

  



 

 

Figure 2: Co-variation of Δ17O and δ34S from carbonate-associated sulphate in W2 

and W3. Existing data (ref. 16) and new data define a mixing line between pre-glacial 

sulphate (top) and an isotopically light sulphate formed by oxidation of pyrite 

including incorporation of a light-17O signature from a CO2-enriched atmosphere. 

Data from W2 and W3 lie on closely similar trend lines, indicating no detectable 

change in pCO2 between deposition of the two members. 

 



  

Figure 3: Modelled ice sheet oscillations in response to orbital forcing. (a), (b) Land 



ice thickness obtained with 20 mbar of carbon dioxide in response to changes of 

orbital forcing (WSO and CSO, warm/cold summer orbit for the northern 

hemisphere) over the course of two precession cycles (40 ky of simulation). 

Continental areas without ice are light brown, the white line is used to represent the 

old ice-sheet extension (WSO case). The Svalbard area is indicated by a red circle. (c) 

ice thickness variation in 10 ky (WSO case after 20 ky minus CSO case after 30 ky of 

simulation) (d) area covered by ice (m2) in each hemisphere through time ([WSO] 

and [CSO] indicate which orbital configuration is used). 


