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Simultaneously Generating Secret and Private Keys
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Abstract—This paper studies the problem of simultaneously
generating secret key (SK) and private key (PK) between Alice
and Bob, in a cooperative pairwise independent network (PIN)
with two relays. In the PIN, the pairwise source observed by
every pair of terminals is independent of those sources observed
by any other pairs. The SK needs to be protected from Eve, while
the PK needs to be protected not only from Eve but also from
the two relays. Two cooperative SK-PK generation algorithms
are proposed: both of them first generate common randomness,
based on the well-established pairwise key generation technique
and application of the one-time pad; but then, the two algorithms
utilize the XOR operation and a specific random-binning based
SK-PK codebook to generate the expected keys, respectively.
The achievable SK-PK rate regions of both the two proposed
algorithms are analyzed. Of particular interest is the second
algorithm with random-bing based codebook, whose achievable
key rate region is demonstrated to be exactly the same as the
derived outer bound, a crucial step for establishing the key
capacity of this PIN model. Finally, the two proposed SK-PK
generation algorithms are extended to a cooperative wireless
network, where the correlated source observations are obtained
from estimating wireless channels during a training phase.

Index Terms—Information-theoretic security, secret key, pri-
vate key, key capacity region, cooperative PIN model.

I. INTRODUCTION

Realizing secret key generation in a variety of discrete
memoryless source (DMS) models has received considerable
attention from an aspect of information-theoretic security [1].
Ahlswede and Csisár first studied in [2] the secret key genera-
tion problem between two terminals, based on their correlative
observations and public transmissions between them, and
found the secret key capacity. Since then, this result has been
extended to various multi-terminal models, such as the works
in [3]–[11], whose aim is to find the secret key capacity for a
variety of DMS models.

The pairwise independent network (PIN) model is a spe-
cial case of the multi-terminal DMS model in [4], where
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the pairwise source observed by every pair of terminals is
independent of those sources observed by any other pairs. The
PIN model was introduced in [6] for group key generation, and
the cooperative key generation problem has also been studied
in [6]. Many other related works have also investigated PIN
models [7]–[10] where each of them aimed to find the secret
key capacity of a particular model.

In recent years, the PIN model has been applied to practical
wireless communication networks, in which the physical layer
(PHY) resources (i.e., wireless channels) have been exploited
for key generation. This PHY security approach has recog-
nized as a promising solution in recent years (e.g., [12]–[21]).
Based on channel reciprocity for time-division duplex (TDD)
systems and noisy estimates of common fading channels,
common randomness (CR) can be extracted from wireless
channels for generating secret keys. A key assumption used in
these works is that physical channels associated with the eaves-
droppers are independent from the legitimate users’ channels.
This assumption is valid in rich scattering wireless systems, as
long as the eavesdroppers are half-wavelength away from the
legitimate users [22]. In addition to these source-model-based
secure methods, there also exists another type of research in
the area of PHY security, which is based on channel models.
Compared to the secrecy communications in channel models
(e.g., [23]–[27]), the PHY key generation approach in source
models [12]–[21] enjoys the benefit that secret keys can be
obtained, no matter how strong the eavesdropping channels
are.

Since user cooperation can effectively enlarge the secret key
capacity, some existing works have investigated the issue of
cooperative key generation using additional helper nodes, such
as those in [3], [6], [7], [10], [19], [20]. Motivated by this, this
paper aims to investigate the key generation problem in a four-
terminal cooperative PIN model with the public discussion.
Unlike most existing works that focused on generating a single
key [3], [6], [7], [10], [19], [20], in the considered model,
Alice and Bob wish to generate a secret key (SK) and a private
key (PK) simultaneously, with the help of two external relays.
The SK needs to be protected from Eve that has access to
the public discussion, whereas the PK needs to be protected
from Eve and the two relays. The motivation for using this
model is that the two terminals may need to agree on several
keys, with different security clearance levels in the presence
of eavesdroppers in practical systems. For instance, in tactical
networks or wireless networks for the financial industry, Alice
and Bob may wish to simultaneously exchange two types of
data with different security constraints, where one type of data
with a lower security constraint can be revealed to the licensed
users in these networks, but the other type of data with a higher
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security constraint is not allowed. Correspondingly, two types
of keys with different security clearance levels are required.
The work of simultaneously generating the SK-PK pair has
been considered in the three-terminal source model in [5], [11],
where a common SK is generated among three terminals, and a
PK is generated between two of them. This SK-PK generation
problem is fundamentally different from that considered in this
paper, as explained in Section II.

The aim of this work is to derive theoretical bounds in
terms of key rates, which will shed a new light on generating
symmetric keys with different security levels in PIN models.
For the considered cooperative PIN model, we summarize the
contributions as follows.

1) We first propose a cooperative SK-PK generation algo-
rithm, which is based on the well-established point-to-
point pairwise key generation technique [2], application
of the one-time pad [1] and the XOR operation. Specif-
ically, this algorithm consists of three main steps: a) the
pairwise key is first generated; b) application of the one-
time pad enables Alice and Bob to share additional CR;
c) the total CR shared by Alice and Bob in the previous
two steps is converted to the SK and PK using the XOR
operation. In addition, the achievable SK-PK rate region
of this proposed algorithm is analyzed.

2) Then, the second cooperative SK-PK generation algo-
rithm is proposed, which also consists of three main
steps: the first two steps are the same as those in the first
proposed key generation algorithm mentioned above, for
generating CR, but the third step utilizes the construction
of a specific random-binning based SK-PK codebook to
map the total CR into the SK-PK pair. Comparing the two
proposed key generation algorithms, the first one enjoys
low complexity, whereas the second is demonstrated to
achieve a larger SK-PK rate region.

3) The SK-PK capacity region for the considered PIN model
is established. Specifically, the analysis shows that the
achievable key rate region of the second proposed SK-PK
generation algorithm is exactly the same as the derived
outer bound, a key step for proving the key capacity
region. A few existing works can be viewed as special
cases of this SK-PK capacity region.

4) Finally, the two proposed cooperative SK-PK generation
algorithms for the PIN model are extended to a practi-
cal cooperative wireless network. The terminals utilize
the estimates of the wireless channels obtained from a
training process as the correlated observations, and the
training-based SK-PK rate regions are also developed.

Traditional security schemes rely on public key infrastruc-
tures (PKI) to manage secret keys. Unlike the traditional PKI-
based schemes that rely on computational hardness of prob-
lems, the PHY-based key generation algorithms can achieve
information-theoretic secrecy [1], i.e., they do not assume a
computationally bounded eavesdropper. In addition, we have
to note here that the second proposed SK-PK generation
algorithm is an extension of our recent work [10], but the
key generation algorithm in [10] only focuses on generating
a PK. The problem of simultaneously generating both the SK

and PK considered in this paper is more challenging, which is
reflected in both the algorithm design and key capacity region
analysis.

This paper is organized as following. Section II describes
the definitions of the considered cooperative PIN model.
Section III provides the main results of this paper, including
the two proposed algorithms, their achievable SK-PK rate
regions and the capacity region of the considered model. The
two proposed algorithms are extended to the wireless network
in Section IV. Some conclusion remarks are given in Section
V.

Throughout this paper, a random variable is denoted as an
upper case letter, such as X , whose realization and finite alpha-
bet are denoted as a lower case letter x and a calligraphic letter
X , respectively. Let Xn denote an n-vector (X1, · · · , Xn). In
addition, for a message Wα obtained over n channel uses, Rα

represents its average rate, i.e., Rα = (1/n)H(Wα). For two
such messages Wα and Wβ , let Wα ∧ Wβ denote the one
of them with a smaller rate. Also, C represents an arbitrary
constant. Note that Wα = C if Rα = 0.

II. A COOPERATIVE PAIRWISE INDEPENDENT NETWORK
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Fig. 1. The cooperative PIN model for the SK and PK generation.

Consider a cooperative PIN model with four terminals
(Alice, Bob, two relay nodes) and a passive eavesdropper
(Eve). This network is assumed to be a DMS model with
alphabets (XA,XB ,X1,X2) and a public channel. Note that
if there does not exist the public channel, according to
[14], [19], the terminals can still use the wireless channel
to exchange messages. Alice, Bob and two relays observe
n independent and identically distributed (i.i.d.) repetitions
of the random variables (XA, XB , X1, X2), respectively, de-
noted by (Xn

A, X
n
B , X

n
1 , X

n
2 ). Assume that Eve does not

have source observation correlated to the other terminals’
observations, but she has access to the public channel noise-
less. In this PIN model, following [6], [7], suppose that
XA = (YB,A, Y1,A, Y2,A), XB = (YA,B , Y1,B , Y2,B), Xi =
(YA,i, YB,i, Y3−i,i), i = 1, 2, and the pairs (Yj,k, Yk,j) are
mutually independent, i.e.,

p(XA, XB , X1, X2) ,
∏

(j,k)∈A

pYj,k,Yk,j
(yj,k, yk,j), (1)
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where the set A is defined as

A , {(A, 1), (A, 2), (B, 1), (B, 2), (1, 2), (A,B)}. (2)

Without loss of generality, the public discussion over the
public channel is assumed to include r rounds with 4r
successive time slots, in which the two relays, Alice and
Bob take turns to transmit messages. Let the sequence of
4r random variables F = (F1, · · · , F4r) to denote these 4r
transmissions, and Ft is the transmission in the t-th time slot,
1 ≤ t ≤ 4r. Specifically, relay 1, relay 2, Alice and Bob trans-
mit F1, F2, F3, F0, respectively, where Fi = {Ft}t:t mod 4=i,
i = 1, 2, 3, 0. Each Ft is generated according to its own
observation and all the previous transmissions F t−1 =
(F1, · · · , Ft−1), i.e., Ft = ft(X

n
1 , F

t−1), ft(X
n
2 , F

t−1),
ft(X

n
A, F

t−1), ft(X
n
B , F

t−1) when t mod 4 = 1, 2, 3, 0,
respectively. Following the definitions in [3], each ft, 1 ≤
t ≤ 4r, is assumed to be a deterministic function.

As shown in Fig. 1, with the help of the two relays,
Alice and Bob wish to generate a SK KS and a PK KP

simultaneously. The SK needs to be protected from Eve but
does not need to be secret from the two relays; while the PK
needs to be protected from not only Eve but also the two
relays. Note that the relays are curious but honest, i.e., they
follow the proposed transmission protocols for helping Alice
and Bob to generate keys, but would also try to intercept the
key information if they can.

The secret key and private key are formally defined as
follows, where a random variable U is said to be ϵ-recoverable
from another variable V if there exists a deterministic function
g such that Pr(g(V ) ̸= U) ≤ ϵ.

Definition 1: A random variable pair (KS ,KP ) is said to
be an ϵ-(SK,PK) if they satisfy the requirements [11]:

• KS and KP are mutually independent.
• The pair (KS ,KP ) can be ϵ-recoverable from (Xn

A,F)
and (Xn

B ,F), respectively.
• KS and KP are nearly uniformly distributed, i.e.,

1

n
H(KS) ≥

1

n
log |KS | − ϵ, (3)

1

n
H(KP ) ≥

1

n
log |KP | − ϵ, (4)

for sufficiently large n, where |KS | and |Kp| are the
alphabet sizes of KS and KP , respectively.

• KS and KP satisfy the secrecy conditions:

1

n
I(KS ,KP ;F) ≤ ϵ, (5)

1

n
I(KP ;F, X

n
i ) ≤ ϵ, i = 1, 2, (6)

where (5) implies that Eve intercepts insignificant amount of
information about the SK and PK, and (6) ensures that the PK
almost does not leak any information to each relay.

Remark 1: Note that the secrecy constraint on the private
key KP in (6) corresponds to the case that the two relays
are non-collusive when they try to intercept the private key
information. If we consider the case that the two relays are
collusive, i.e., they collaborate with each other to intercept the

private key, the secrecy constraint in (6) should be replaced
by1

1

n
I(KP ;F, X

n
1 ,X

n
2 )≤ϵ. (7)

Definition 2: A SK-PK rate pair (RS , RP ) is said to be
achievable if for any ϵ > 0, δ > 0 and a sufficiently large n,
there exists an ϵ-(SK, PK) pair (KS ,KP ) such that

1

n
H(KS) ≥ RS − δ,

1

n
H(KP ) ≥ RP − δ. (8)

The set of all achievable rate pairs (RS , RP ) is defined as
the SK-PK capacity region, denoted as CSP . If the case that
the two relays are collusive as shown in (7) is considered, the
SK-PK capacity region is denoted as C(c)

SP .

III. KEY GENERATION: ALGORITHMS AND RATE REGIONS

This section will provide the main results with respect to
the cooperative PIN model defined in Section II, including the
two proposed key generation algorithms, their achievable SK-
PK rate regions and the key capacity of the considered model.
For notational convenience, we first define

Ij,k , I(Yj,k, Yk,j), for ∀(j, k) ∈ A, (9)

where A is defined in (2). Furthermore, define

I
(1)
min , min{IA,1, IA,2, IB,1, IB,2}, (10)

I
(2)
min , min

{
IA,1 + IA,2, IA,1 + I1,2 + IB,2,
IB,1 + IB,2, IA,2 + I1,2 + IB,1

}
. (11)

We now turn our attention to constructing cooperative key
generation algorithms for the considered PIN model.

A. The First Algorithm

The first cooperative SK-PK generation algorithm is pro-
posed based on the careful combination of the point-to-point
pairwise key generation technique [2], application of the one-
time pad [1] and the XOR operation. Specifically, three main
steps are considered: 1) every pair of the four terminals agrees
on a pairwise key using their correlative observations; 2) the
two relays help Alice and Bob to share additional CR based
on repeated application of the one-time pad over the public
channel; 3) the total CR shared by Alice and Bob is divided
into two parts: one part is agreed on as the expected SK,
whereas the other part is converted to the expected PK using
the XOR operation. The first SK-PK generation algorithm
is summarized in Algorithm 1. The details of each step are
provided as follows.

1) Pairwise key agreement: In this step, each pair of the
four terminals (Alice, Bob and the two relays) agrees on a
pairwise key using their correlative observations. In particular,
Alice (Bob) and relay i agree on a pairwise key WA,i (WB,i)
using the observations Y n

i,A and Y n
A,i (Y n

i,B and Y n
B,i), i = 1, 2;

the two relays agree on W1,2 using Y n
2,1 and Y n

1,2; Alice and
Bob agree on WA,B using Y n

B,A and Y n
A,B . Each pairwise key

Wj,k, is generated using the standard point-to-point techniques

1In the rest of this paper, the two relays are assumed to be non-collusive
shown in Eq. (6), unless stated otherwise.
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Algorithm 1: The First Algorithm for the PIN

Step 1: Pairwise key agreement:
• Based on Slepian-Wolf coding, every pair of the four

terminals agrees on a pairwise key using their correlated
source observations. In particular, Alice (Bob) and relay i
agree on a pairwise key WA,i (WB,i), i = 1, 2; the two
relays agree on W1,2; Alice and Bob agree on WA,B .

Step 2: Generation of additional CR:
• For each i = 1, 2, divide the pairwise keys as: WA,i =
(W 1

A,i,W
2
A,i), WB,i = (W 1

B,i,W
2
B,i).

• Each relay i sends W 1
A,i ⊕W 1

B,i over the public channel,
so that Alice and Bob can agree on the common message
Wi , WA,i since they know either W 1

A,i or W 1
B,i.

• Then, the two relays help Alice and Bob to share
one more common message W̃1,2, utilizing application
of the one-time pad with respect to the pairwise keys
(W 2

A,1,W
2
B,1,W

2
A,2,W

2
B,2,W1,2) as shown in Fig. 2.

Step 3: SK and PK agreement:
• Now, for the CR (WA,B ,W1,W2, W̃1,2) shared between

Alice and Bob in the previous two steps, let WA,B =
(KS,3,KP,3), Wi = (KS,i,KP,i), i = 1, 2.

• Alice and Bob agree on KS , (KS,1,KS,2,KS,3, W̃1,2)
as the final SK, and KP , (KP,3,KP,1 ⊕ KP,2) as the
final PK.

[2], [14], which is based on Slepian-Wolf coding [28], [29]
and public communication Fj,k, where (j, k) ∈ A and A is
defined in (2). 2 The rate of each pairwise key Wj,k is denoted
as (1/n)H(Wj,k) = Rj,k. These rates should satisfy

Rj,k ≤ I(Yj,k, Yk,j)− ϵ1, ∀(j, k) ∈ A, (12)

so that each pairwise key is uniformly distributed and ϵ-
recoverable at its corresponding terminals. Furthermore, these
pairwise keys do not leak any information to the public
discussion, i.e.,

1

n
I(Wj,k;Fj,k) ≤ ϵ, ∀(j, k) ∈ A. (13)

According to the definition of the PIN model, the pairs
{(Wj,k, Fj,k)(j,k)∈A} are mutually independent.

2) Generation of additional CR: In the previous step, Alice
and bob have generated some CR (i.e., the pairwise key
WA,B). In this step, the two relays will help Alice and Bob to
share additional CR (or common messages) based on repeated
application of the one-time pad [1]. Each relay i divides the
keys WA,i and WB,i into two non-overlapping parts, i.e.,
WA,i=(W

1
A,i,W

2
A,i), WB,i=(W

1
B,i,W

2
B,i), with each part’s

2Take the source pair (Y n
A,B , Y n

B,A) for example. According to Slepian-
Wolf source coding [28], [29], Alice can transmit nH(YB,A|YA,B) bits
of information over the public channel, such that Bob can recover Alice’s
observation sequence Y n

B,A, Then, Alice and Bob utilize correlation between
Y n
B,A and Y n

A,B to agree on their pairwise key. One can refer to [2], [14] for
more details of this pairwise key generation.

rate fixed as

R1
A,i = R1

B,i = min{RA,i, RB,i} , Ri, (14)

R2
A,i = RA,i −Ri, R2

B,i = RB,i −Ri. (15)

Note that W 1
A,i and W 1

B,i have the same size; R2
A,i = 0 if

RA,i ≤ RB,i, R2
B,i = 0 if RA,i ≥ RB,i. These partitions

can be obtained via the mappings: WA,i → W1
A,i ×W2

A,i and
WB,i → W1

B,i×W2
B,i. These mappings are revealed to all the

other nodes (including Eve). In the next, additional CR will
be generated.

First, each relay i sends W 1
A,i ⊕ W 1

B,i over the public
channel. Since Alice and Bob know either W 1

A,i or W 1
βi,i

,
they can decode both W 1

A,i and W 1
B,i and set the Wi , W 1

A,i

as the common message, Wi ∈ Wi. The rate of Wi is Ri

defined in (14). Due to the concept of the one-time pad in
[1], Wi(= W 1

A,i) is information-theoretically secret from the
public transmission when R1

A,i = R1
B,i.

Public
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Fig. 2. The CR generation model formed by the pairwise keys
(W 2

A,1,W
2
B,1,W

2
A,2,W

2
B,2,W1,2), from which the common message W̃1,2

can be generated between Alice and Bob in Step 2.

Second, the two relays will help Alice and Bob to further
generate one more common message W̃1,2, based on the CR
generation model in Fig. 2 that is formed by the pairwise keys
(W 2

A,1,W
2
B,1,W

2
A,2,W

2
B,2,W1,2). A classical method, termed

as the “tree-based SK generation method”, can be utilized to
generate W̃1,2, by treating the model in Fig. 2 as a weighted
graph [6], [7]. According to [6], [7] and Eq. (15), the optimal
rate of W̃1,2 is

R̃1,2 , min

{
R2

A,1 +R2
A,2, R

2
A,1 +R1,2 +R2

B,2

R2
B,1 +R2

B,2, R
2
A,2 +R1,2 +R2

B,1

}
(16)

= R̂1,2 −R1 −R2 (17)

where, for simplicity, R̂1,2 is defined as

R̂1,2 ,min

{
RA,1+RA,2, RA,1+R1,2+RB,2

RB,1+RB,2, RA,2+R1,2+RB,1

}
. (18)

Alternatively, another simpler approach (without find-
ing the maximum spanning tree) can be used to gener-
ate W̃1,2, by observing that at least two of the messages
(W 2

A,1,W
2
A,2,W

2
B,1,W

2
B,2) have a zero rate as shown in (14)

and (15). Three cases are considered:
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i) If RA,i ≤ RB,i for ∀i = 1, 2, or RA,i ≥ RB,i for ∀i =
1, 2, we cannot generate W̃1,2 with a positive rate, so
simply set W̃1,2 = C.

ii) Otherwise, if RA,1 ≥ RB,1 and RA,2 ≤ RB,2, relay 1
sends W 2

A,1⊕W1,2 over the public channel, so that relay 2
and Alice can agree on a common message W 2

A,1∧W1,2.
Then, relay 2 sends (W 2

A,1 ∧W1,2)⊕W 2
B,2 so that Alice

and Bob can agree on W̃1,2 , W 2
A,1 ∧ W1,2 ∧ W 2

B,2,
whose rate is min{R2

A,1, R1,2, R
2
B,2}.

iii) Similar to the previous case, if RA,1 ≤ RB,1 and RA,2 ≥
RB,2, Alice and Bob can agree on W̃1,2 , W 2

A,2∧W1,2∧
W 2

B,1 with the rate min{R2
A,2, R1,2, R

2
B,1}.

Summarizing these three cases, the rate of W̃1,2 is equal to
Eq. (16) or (17).

Since the criterion of the one-time pad is used, the public
discussion will not leak any information about these common
messages (WA,B ,W1,W2, W̃1,2) between Alice and Bob, i.e.,

1

n
I(WA,B ,W1,W2, W̃1,2;F) ≤ ϵ, (19)

where WA,B is the pairwise key between Alice and Bob, and
F is the set of all the transmissions over the public channel
(including the public communications in the first two steps).
However, each relay observes part of the common messages:
relay 1 observes (W1, W̃1,2) and relay 2 observes (W2, W̃1,2).

3) SK-PK agreement: In this step, Alice and Bob
will agree on the SK-PK pair based on the total CR
(WA,B ,W1,W2, W̃1,2) assembled from the above two steps.
Specifically, the common message WA,B is divided into two
non-overlapping parts: WA,B = (KS,3,KP,3); similarly, let
Wi = (KS,i,KP,i), i = 1, 2. Here we set

RS,3 +RP,3 = RA,B , (20)
RS,i +RP,i = Ri, i = 1, 2, (21)
RP,1 = RP,2. (22)

Now, Alice and Bob agree on the SK KS

by concatenating (KS,1,KS,2,KS,3, W̃1,2), i.e.,
Ks = (KS,1,KS,2,KS,3, W̃1,2), which is obviously
secret from Eve shown in (19). Moreover, Alice and
Bob implement the XOR operation on KP,1 and KP,2,
and agree on KP = (KP,3,KP,1 ⊕ KP,2) as the final PK.
Since KP,1 ⊕ KP,2 is independent of KP,1 and KP,2, it is
not difficult to prove that KP is secret from both Eve and
each relay. Hence the secrecy constraints in (5) and (6) are
satisfied, and the achievable SK-PK rate pair (RS , RP ) can
be expressed as

RS = RS,1 +RS,2 +RS,3 + R̃1,2, (23)
RP = RP,3 +RP,1. (24)

In summary, the key rate region achieved by the first
proposed algorithm is given in the following theorem.
Theorem 1: The SK-PK rate region, RSP,1, for the co-

operative PIN model in Section II is achievable, where

RSP,1 ,
{
(RS , RP ) : RS , RP ≥ 0,

RP ≤ IA,B + I
(1)
min,

RS + 2RP ≤ 2IA,B + I
(2)
min,

RS +RP ≤ IA,B + I
(2)
min

}
. (25)

Proof: We have verified that the rate pair (RS , RP )
in (23) and (24) is achieved; here, we only need to show
that it can be transformed into Eq. (25). For a given tuple
(R1, R2, R̂1,2, RA,B), by applying Fourier-Motzkin elimina-
tion to eliminate R̃1,2, RS,j , RS,j for j = 1, 2, 3 in Eqs.
(17), (20)-(22), (23)-(24), the rate pair (RS , RP ) satisfies the
constraints in the following region:

RP ≤ min{R1, R2}+RA,B , (26)

RS + 2RP ≤ R̂1,2 + 2RA,B , (27)

RS +RP ≤ R̂1,2 +RA,B . (28)

Recalling the definitions in (14), (18) and the constraints in
(12), the region of (RS , RP ) given in (25) is achievable, and
Theorem 1 has been proved.

B. The Second Algorithm

Now we consider the second cooperative SK-PK generation
algorithm which is based on the careful combination of point-
to-point pairwise key generation technique, application of
the one-time pad and the construction of a specific random-
binning based SK-PK codebook. There are three main steps,
where the first two of them are the same as those in the first
algorithm mentioned above, but in the third step, Alice and
Bob map the total CR assembled from the previous two steps
into the SK-PK pair (KS ,KP ) via a random-binning based
SK-PK codebook. The second SK-PK generation algorithm
is summarized in Algorithm 2. The details are provided as
follows.

The first two steps follow the same protocol as that in
Algorithm 1, from which Alice and Bob agree on the total
CR (WA,B ,W1,W2, W̃1,2) based on pairwise key generation
technique and repeated application of the one-time pad over
the public channel. The rates of these common messages,
i.e., WA,B , Ri and R̃1,2 are given in Eqs. (12), (14) and
(17), respectively. Note that WA,B is only known by Alice
and Bob; W1 and W2 are revealed to relay 1 and relay 2,
respectively; W̃1,2 is known by all the four terminals. These
common messages satisfy the constraint (19).

Now, we will describe the third step in details. In this
SK-PK agreement step, Alice and Bob will generate a SK-
PK pair (KS ,KP ). In particular, a random-binning based
SK-PK codebook is utilized which maps the total CR
(WA,B ,W1,W2, W̃1,2) into the SK-PK pair (KS ,KP ), whose
details are given as follows.

Codebook Generation: The alphabets of WA,B , W1, W2,
W̃1,2 are WA,B = {1, · · · , 2nRA,B}, Wi = {1, · · · , 2nRi},
i = 1, 2, W̃1,2 = {1, · · · , 2nR̃1,2}, respectively. Define their
Descartes product as W , WA,B ×W1×W2×W̃1,2. Then a
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Algorithm 2: The Second Algorithm for the PIN

Steps 1 and 2: Follow the same protocol as that in Algorithm
1, from which:
• Alice and Bob agree on the total CR
(WA,B ,W1,W2, W̃1,2) based on the pairwise key
generation technique and repeated application of the
one-time pad over the public channel.

• Here WA,B is only known by Alice and Bob; W1 and
W2 are revealed to relay 1 and relay 2, respectively; W̃1,2

is known by all the four terminals. All these common
messages are secret from Eve.

Step 3: SK and PK agreement:
• Randomly grouped all the four-dimensional sequence w =

(wA,B , w1, w2, w̃1,2) in W , WA,B ×W1 ×W2 × W̃1,2

into a certain amount of bins each with an equal number
of codewords. This binning assignment is termed as the
SK-PK codebook, which is revealed to all the terminals
(including Eve).

• Alice and Bob find the common-message sequence
(WA,B ,W1,W2, W̃1,2) in the SK-PK codebook, then set
its indices of the bin number and the number in this bin,
i.e., (KP ,KS), as the final PK and SK.

SK-PK codebook is constructed. Specifically, randomly and
independently partitions all the 2n(RA,B+R1+R2+R̃1,2) four-
dimensional elements w = (wA,B , w1, w2, w̃1,2) in the set
W into 2nRP bins each with 2nRS elements, where

RS ≥ max{R1, R2}+ R̃1,2 + ϵ2, (29)

RP = RA,B +R1 +R2 + R̃1,2 −RS ≥ 0. (30)

Each codeword in this SK-PK codebook can be indexed as
w(kP , kS), where kP ∈ {1, · · · , 2nRP }, kS ∈ {1, · · · , 2nRS}.
The binning assignment for this SK-PK codebook (denoted as
C) is revealed to all the other terminals (including Eve).

Key Generation: Alice and Bob find the index (KP ,KS) in
the SK-PK codebook such that the codeword w(KP ,KS) =
(WA,B ,W1,W2, W̃1,2), where (WA,B ,W1,W2, W̃1,2) is the
common-message sequence generated in the previous two
steps; KP and KS represent this codeword’s bin number and
the number in this bin, respectively, which are independent of
each other and uniformly distributed.

Analysis of Secrecy Constraints: We will analyze secrecy
constrains in (5) and (6) averaged on C. Based on Eq.
(19) and the fact that both KS and KP are determined by
(WA,B ,W1,W2, W̃1,2), we have

1

n
I(KS ,KP ;F|C) ≤

1

n
I(WA,B ,W1,W2, W̃1,2;F|C)

=
1

n
I(WA,B ,W1,W2, W̃1,2;F) ≤ ϵ. (31)

Next, averaged over C, we will prove that
(1/n)I(KP ;X

n
i ,F|C) is arbitrarily small for

∀i = 1, 2, as long as n is sufficiently large. We
first calculate I(KP ;Wi, W̃1,2|C) as following. Define

W , (WA,B ,W1,W2, W̃1,2) for simplicity, then

I(KP ;Wi, W̃1,2|C)
= I(KP ,W;Wi, W̃1,2|C)− I(W;Wi, W̃1,2|KP , C)
(a)
= I(W;Wi,W̃1,2|C)−H(W|KP ,C)+H(W|Wi,W̃1,2,KP ,C)
=H(Wi, W̃1,2)−H(W|KP , C)+H(W|Wi, W̃1,2,KP , C),

(32)

where (a) is due to the fact that KP is determined by W. The
first term in the above equation is H(Wi, W̃1,2) = n(Ri +
R̃1,2), and the second term can be calculated as

H(W|KP , C) = H(W|C)+H(KP |W, C)−H(KP |C)
=H(W)−H(KP |C)
≥ n(RA,B +R1 +R2 + R̃1,2)− nRP

(b)
= nRS , (33)

where (b) is obtained according to (30). The third term in (32)
can be bounded in the subsequent lemma.

Lemma 2: When RS satisfies (29),

H(W|Wi, W̃1,2,KP , C) ≤ n(RS −Ri − R̃1,2 + δn)

for i = 1, 2, where δn → 0 as n → ∞.
Proof: Refer to Appendix C.

Now, recalling Eq. (32), I(KP ;Wi, W̃1,2|C) ≤ nδn can be
obtained. Without loss of generality, let i = 1, then

I(KP ;W1, W̃1,2,F|C)
≤ I(KP ;W1, W̃1,2|C) + I(KP ,W;F|W1, W̃1,2, C)
= I(KP ;W1, W̃1,2|C) + I(WA,B ,W2;F|W1, W̃1,2, C)
(c)

≤ n(δn + ϵ), (34)

where (c) is obtained according to (19). In this key generation
algorithm, Xn

1 − (W1, W̃1,2,F)−KP is a Markov chain, so

I(KP ;X
n
1 ,F|C)≤ I(KP ;W1, W̃1,2,F|C)≤n(δn + ϵ).

Symmetrically, we have I(KP ;X
n
2 ,F|C) ≤ n(δn + 2ϵ).

In summary, the key rate region achieved by the second
proposed algorithm is given in the following theorem.

Theorem 3: The SK-PK rate region, RSP,2, for the co-
operative PIN model in Section II is achievable, where

RSP,2 ,
{
(RS , RP ) : RS , RP ≥ 0,

RP ≤ IA,B + I
(1)
min,

RS +RP ≤ IA,B + I
(2)
min

}
. (35)

Proof: We have verified that the rate pair (RS , RP )
in (29), (30) is achieved; here, we only need to show that
it can be transformed into Eq. (35). Given a fixed tuple
(RA,B , R1, R2, R̃1,2), the region of (RS , RP ) in (29) and (30)
can be equivalently rewritten as

RP ≤ min{R1, R2}+RA,B − ϵ2, (36)

RS +RP = R1 +R2 + R̃1,2 +RA,B . (37)
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Then, according to (14) and (17), the above region of
(RS , RP ) can be shown as

RP ≤ min{RA,1, RA,2, RB,1, RB,2}+RA,B − ϵ2, (38)

RS +RP = R̂1,2 +RA,B , (39)

where R̂1,2 is defined in (18). Now, according to the constraint
on each pairwise key rate in (12), the region of (RS , RP ) given
in (35) is achievable, and Theorem 3 has been proved.

Remark 2: From Theorems 1 and 3, one can observe that
the second algorithm achieves a larger key rate region, but the
first algorithm enjoys lower complexity since only a simple
XOR operation is used in the third step.

Remark 3: The two proposed SK-PK generation algorithms
can be extended to the cooperative PIN model with M(≥ 2)
relays, in which the tree-based SK generation approaches [6],
[7] can be utilized in the second step for key propagation
among these relays. This could be the topic of future research
and will not be considered in this paper.

C. SK-PK capacity

The following theorem shows that the second proposed
algorithm can achieve the capacity region.
Theorem 4: The SK-PK capacity region of the consid-

ered PIN model is equivalent to RSP,2, i.e., CSP = RSP,2.
Proof: The achievability of CSP has been proved in

Theorem 3, and the proof of the converse will be provided
in Appendix A.

A few existing works can be viewed as special cases of the
SK-PK capacity region in Theorem 4.

Remark 4: If Alice and Bob only generate the SK RS (i.e.,
set RP = 0), Theorem 4 reduces to the SK capacity in [6]
(Theorem 2) when m = 4 therein.

Remark 5: If Alice and Bob only generate the PK RP (i.e.,
set RS = 0), Theorem 4 reduces to the PK capacity in [10]
(Theorem 1) with two relays. The PK generation work can
also be found in [19] (Section VI), where a training-based
approach is utilized to generate the relay-oblivious key (i.e.,
PK) in a cooperative wireless network.

If the two relays are collusive as shown in (7), the capacity
region is given in the following.
Lemma 5: When the two relays are collusive, the SK-PK

capacity region of the considered PIN model is

C(c)
SP ,

{
(RS , RP ) : RS , RP ≥ 0,

RP ≤ IA,B ,

RS +RP ≤ IA,B + I
(2)
min

}
. (40)

Proof: The achievability of C(c)
SP can be easily proved,

where only the point-to-point pairwise key between Alice and
Bob can be utilized to generate the PK. The proof of the
converse will be provided in Appendix B.

Fig. 3 illustrates the three SK-PK rate regions, where C(c)
SP ⊆

RSP,1 ⊆ CSP (= RSP,2).
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Fig. 3. The three SK-PK rate regions.

D. Discussion for the General DMS Model

In a general DMS model, all the terminals may not
observe pairwise independent sources defined in Section
II, and we should consider the general source distribution
p(XA, XB , X1, X2) rather than its special case in Eq. (1).
Obviously, analyzing the SK-PK capacity region of this gen-
eral DMS model is more challenging. For the addressed PIN
model, the two-terminal Slepian-Wolf source coding scheme
has been employed among every pair of the four terminals,
in order to generate CR between Alice and Bob. But, for the
general DMS model, we need to employ the multi-terminal
Slepian-Wolf source coding scheme [4], [28], [29] for the four
terminals to generate CR between Alice and Bob. Then, CR
shared by Alice and Bob can be converted to the SK and PK
by using a method similar to the third step of Algorithm 1
or 2. Designing key-generation algorithms for such a general
scenario is out of the scope of this paper, and the study of
the SK-PK capacity region for the general DMS model is a
promising future research direction.

IV. KEY GENERATION IN WIRELESS NETWORK

In this section, the SK and PK generation problem is
studied via the PHY resources in the wireless network, and
the algorithms and analysis results in the previous section for
the PIN model will be extended to the wireless network.

A. Model

Fig. 4 shows the considered cooperative wireless network,
which is a practical example of the PIN model in Section
II, where the correlated source observations can be obtained
from channel estimates. In this wireless network, there exists
a wireless link between every pair of the four terminals,
and these wireless channels are assumed to be reciprocal.
Hence there are six wireless channels associated with the
terminals, whose coefficients are denoted as hj,k(= hk,j)
for ∀(j, k) ∈ A, where A is defined in (2). Specifically,
the channel gain from Alice to relay 1, relay 2 and Bob
are denoted hA,1, hA,2, hA,B , respectively; the channel gain
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Fig. 4. Illustration of the cooperative wireless network and the channel
estimates at each terminal.

from Bob to relay 1, relay 2 are denoted as hB,1, hB,2,
respectively; the channel gain between the two relays is h1,2.
For simplicity, these channel gains are assumed to be Gaussian
random variables, i.e., hj,k ∼ N (0, δj,k)

2. All the terminals
know the statistics of these channel gains, but do not know
their exact values a priori. This model is ergodic block fading
in the sense that all the channel gains remain fixed for a block
of T symbols and change randomly to other values in the next
block.

All the four terminals are half-duplex constrained
and equipped with a single antenna. Let Sα =
[sα(1), · · · , sα(Lα)]

T for α ∈ {1, 2, A,B}. In particular, (S1,
S2, SA, SB) denote the signals transmitted by (relay 1, relay
2, Alice, Bob) in (L1, L2, LA, LB) channel uses, respectively.
For simplicity, an equal power constraint is assumed for each
of these four terminals during its transmit period, i.e.,

1

Lα
E{ST

α ,Sα} ≤ P, α ∈ {1, 2, A,B}. (41)

Eve receives messages from the wireless channels and the
public channel but does not send any signals. Since rich
scattering is assumed for the considered wireless network,
the wireless channels experienced by Eve are independent
of the channels associated the four terminals. Note that such
an assumption is commonly used in many existing works for
PHY-based key generation (e.g., [12]–[21]). 3

B. Training-based SK-PK Generation

The correlative source observations in Section II can be
obtained via a training process [13], [19]. In the training
period, (relay 1, relay 2, Alice, Bob) take turns to transmit

3The issue with respect to sparse scattering is more challenging, since
sparsity leads to sparsity leads to increased spatial correlation between Eve’s
channel gains and the four terminals’. In this case, we should consider the
general DMS model without the pairwise independent assumption, and the
proposed algorithms should be modified, in which Alice and Bob need to
sacrifice part of secret/private key rates in order to confuse Eve, as shown
in [3] for the general DMS model with only one relay. The study of key
generation in sparse scattering environments is out of the scope of this paper,
which could be a topic of future research.

training sequences (S1, S2, SA, SB) in four successive time
slots in each fading block, respectively. The size of each
sequence Sα is Tα × 1 for α ∈ {1, 2, A,B}, where Tα ∈ Z+

and T1+T2+TA+TB = T . According to the power constraints
in (41), the energy of each sequence is ||Sα||2 = TαP. After
the training period, all the four terminals estimate the corre-
sponding wireless channels, and the channel estimates can be
obtained at each terminal shown in Fig. 4, which can be treated
as correlative source observations. From n fading blocks,
Alice and relay 1 can collect n estimates, i.e., (h̃n

1,A, h̃
n
A,1).

Similarly, channel estimates associated with the other five
wireless channels can be obtained by corresponding terminals,
i.e., Alice, Bob, relay 1 and relay 2 observe (h̃n

1,A, h̃
n
2,A, h̃

n
B,A),

(h̃n
1,B , h̃

n
2,B , h̃

n
A,B), (h̃n

2,1, h̃
n
A,1, h̃

n
B,1), (h̃n

1,2, h̃
n
A,2, h̃

n
B,2), re-

spectively. The details of how to obtain these correlated
channel estimates have been provided in many existing works
(e.g., [14], [19], [20]), so they are omitted in this paper for
simplicity.

Using these correlated channel estimates, the four terminals
can generate six independent pairwise keys Wj,k, ∀(j, k) ∈
A, where A is given in (2). According to existing works for
training-based key generation (e.g., [14], [19]), these pairwise
key rates have the following rates:

IGj,k,I(h̃j,k; h̃k,j)=
1

2T
log2

(
1+

TjTkP
2δ4j,k

δ4 + (Tj + Tk)δ2δ2j,kP

)
,

∀(j, k) ∈ A, (42)

where δ2 is the variance of Gaussian noise at each terminal
in the training period.

Using these pairwise keys, the SK-PK generation scheme in
Algorithms 1 and 2 can be utilized to simultaneously generate
the secret key and private key shared by Alice and Bob. The
details of these proposed algorithms are provided in Section
III. Next, the SK-PK rate regions achieved by these algorithms
will be presented.

According to Theorem 1, Algorithm 1 achieves the region

RG
SP,1 ,

∪
T∈T

{
(RS , RP ) : RS , RP ≥ 0,

RP ≤ IGA,B + I
G,(1)
min ,

RS + 2RP ≤ 2IGA,B + I
G,(2)
min ,

RS +RP ≤ IGA,B + I
G,(2)
min

}
, (43)

where I
G,(1)
min and I

G,(2)
min are defined in Eqs. (10) and (11) by

replacing Ij,k with IGj,k, (j, k) ∈ A; T is defined as

T ,
{
(T1, T2,TA, TB) : T1, T2, TA, TB ≥ 0,

T1 + T2 + TA + TB = T
}
; (44)

According to Theorem 3 and Theorem 4, Algorithm 2
achieves the training-based SK-PK capacity region that is

RG
SP,2 = CG

SP ,
∪
T∈T

{
(RS , RP ) : RS , RP ≥ 0,

RP ≤ IGA,B + I
G,(1)
min ,

RS +RP ≤ IGA,B + I
G,(2)
min

}
, (45)
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proposed algorithms for different values of T , where P = 20,
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2
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If the two relays are collusive as shown in (7), according
to Lemma 5, the training-based SK-PK capacity region is

CG,(c)
SP ,

∪
T∈T

{
(RS , RP ) : RS , RP ≥ 0,

RP ≤ IGA,B ,

RS +RP ≤ IGA,B + I
G,(2)
min

}
. (46)

C. Numerical Results

In this subsection, some numerical results of the SK-PK rate
region in Eqs. (43)-(46) will be provided for different choices
of the parameters.

Fig. 5 shows the SK-PK rate regions (RG
SP,1 and RG

SP,2)
for different values of block length T , where we set the
power as P = 20, and (δ2A,1, δ

2
A,2, δ

2
B,1, δ

2
B,2, δ

2
1,2, δ

2
A,B) =

(0.5, 1.1, 3.7, 2.1, 3.1, 0.1). As shown in this figure, both the
two regions are enlarged as the block length T decreases.
In addition, the second proposed key generation algorithm
(Algorithm 2) yields larger regions in comparison with the
first proposed one (Algorithm 1).

Fig. 6 plots the SK-PK capacity region CG
SP for different

values of the channel parameters δ21,2 between the two relays,
where we fix T = 28, P = 20. As shown in this figure, the SK
rate can be enlarged as the variance of the inter-relay channel
δ21,2 increases, but the PK rate cannot. This is consistent with
the rate region shown in (40). However, when δ21,2 > 0.5, the
inter-relay channel is not helpful to further enhance the SK
rate. This is because the bottleneck in (45) is IGA,1 + IGA,2 or
IGB,1 + IGB,2, which is not relevant to the inter-relay channel.

Fig. 7 compares the training-based SK-PK capacity re-
gions CG

SP and CG,(c)
SP with respect to the non-collusive and

collusive cases, respectively. Different values of the vari-
ance of the direct link (δ2A,B) have been considered, and
we set T = 28, P = 20, (δ2A,1, δ

2
A,2, δ

2
B,1, δ

2
B,2, δ

2
1,2) =

(0.5, 1.1, 3.7, 2.1, 3.1). From this figure, one can observe that,
for the collusive case, the PK rate decreases greatly as the
direct link becomes weaker. On the other hand, the PK rate in
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the non-collusive case is much larger than that in the collusive
case. This is because the two relays can help Alice and Bob
to improve the PK rate in the non-collusive case, whereas the
PK rate in the collusive case is only depending on the quality
of the direct link between Alice and Bob.

V. CONCLUSION

This paper investigated a cooperative PIN model for simul-
taneously generating SK and PK with the public discussion.
The SK needs to be protected from Eve, while the PK needs
to be protected from not only Eve but also from the two
relays. Two cooperative SK-PK generation algorithms are
proposed for this model, whose key features are to utilize
the XOR operation and a specific random-binning based SK-
PK codebook to generate the expected keys, respectively. The
achievable SK-PK rate regions of these two proposed algo-
rithms are also analyzed. The result shows that the achievable
key rate region of the second algorithm with random-bing
based codebook is demonstrated to be exactly the same as
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the derived outer bound, and hence the capacity region of
this PIN model is established. Next, the two proposed SK-PK
generation algorithms are extended to a cooperative wireless
network, where the correlated source observations are obtained
from estimating wireless channels during a training phase.
As a future direction, this SK-PK generation problem can be
extended to more general networks with more than two relays,
or with more than two terminals that wish to share common
keys.

APPENDIX A
PROOF OF THE CONVERSE OF THEOREM 4

The converse of Theorem 4 can be proved by deriving the
outer bound that consists of the upper bounds on RP and
RP +RS , respectively.

The upper bound of the private key rate RP can be obtained
based on several enhanced source models. In particular, for
any given i = 1, 2, construct an enhanced source model in
which only the secrecy constraint on relay i is considered
(i.e., (1/n)I(KP ;X

n
i ,F ≤ ϵ)) and the secrecy constraint on

relay 3− i is ignored. Moreover, assume Alice to be a genie-
aided supper terminal which combines its own observation
and the observation of relay 3 − i, so Alice observes X̃n

A ,
(Xn

A, X
n
3−i) now. This enhanced source model with alphabets

(X̃A,XB ,Xi) becomes a special case of the cooperative DMS
model in [3]. According to Eq. (2.38) in [3], the private key
capacity of this enhanced source model is I(X̃A, XB |Xi) with
X̃A , (XA, X3−i), which implies that the upper bound on the
private key rate can be obtained as

RP ≤ I(XA, X3−i;XB |Xi)

= I(YB,A, Y1,A, Y2,A, YA,3−i, YB,3−i, Yi,3−i;

YA,B , Y1,B , Y2,B |YA,i, YB,i, Y3−i,i)

(a)
= I(YB,A, Y3−i,A, YA,3−i, YB,3−i;YA,B , Y3−i,B)

= IA,B + IB,3−i, (47)

where (a) is due to the definition of the PIN model in (1).
Similar to the above procedure, another symmetric enhanced

source model can also be constructed, in which Bob is a genie-
aided which has access to the observation of relay 3 − i in
advance, and hence the rate RP can also be upper bounded
by RP ≤ IA,B+IA,3−i. Thus, for any i = 1, 2, RP ≤ IA,B+
min{IB,3−i, IA,3−i}, and the tight upper bound on RP can
be obtained as

RP ≤ IA,B + min
i=1,2

min{IB,3−i, IA,3−i}

= IA,B + I
(1)
min. (48)

In addition, RS + RP will be upper bounded in the next,
based on the secrecy requirement and the reliable requirement.
In particular, the ϵ-recoverable requirement in Definition 1
ensures the reliable requirement, which implies that

H(KS ,KP |F, Xn
A) ≤ ϵ log(|KS | × |KP |) + 1 , nδ1, (49)

H(KS ,KP |F, Xn
B) ≤ nδ1, (50)

where Fano’s inequality is utilized. Based on the above rela-
tionships, we have

n(RS +RP − 2δ)
(b)

≤ H(KS ,KP )

= H(KS ,KP |F) + I(KS ,KP ;F)

(c)

≤ H(KS ,KP |F) + nϵ

≤H(KS ,KP |F)−H(KS ,KP |F, Xn
B) + n(ϵ+ δ1)

≤I(KS ,KP , X
n
A;X

n
B |F) + n(ϵ+ δ1)

≤I(Xn
A;X

n
B |F) +H(KS ,KP |F, Xn

A) + n(ϵ+ δ1)

≤I(Xn
A;X

n
B |F) + n(ϵ+ 2δ1)

≤min

{
I(Xn

A, X
n
1 , X

n
2 ;X

n
B |F), I(Xn

A;X
n
B , X

n
1 , X

n
2 |F)

I(Xn
A, X

n
1 ;X

n
B , X

n
2 |F), I(Xn

A, X
n
2 ;X

n
B , X

n
1 |F)

}
+ n(ϵ+ 2δ1), (51)

where (b) is based on Definition 2 and the fact that KS is
independent of KP ; (c) is obtained according to the secrecy
requirement in (5). Now, the first term in the min-function
in (51) will be calculated, and the other three terms can be
analyzed using similar procedures.

As shown in Section II, for ∀1 ≤ t ≤ 4r,
H(Ft|Xn

B , F
t−1) = 0, H(Ft|Xn

A, F
t−1) = 0,

H(Ft|Xn
2 , F

t−1) = 0, H(Ft|Xn
1 , F

t−1) = 0 when t
mod 4 = 0, 3, 2, 1, respectively. Therefore, if t mod 4 = 0,

I(Xn
A, X

n
1 , X

n
2 ;X

n
B |F t)

= H(Xn
A, X

n
1 , X

n
2 |F t)−H(Xn

A, X
n
1 , X

n
2 |Xn

B , F
t)

= H(Xn
A, X

n
1 , X

n
2 |F t)−H(Xn

A, X
n
1 , X

n
2 |Xn

B , F
t−1)

≤ I(Xn
A, X

n
1 , X

n
2 ;X

n
B |F t−1). (52)

If t mod 4 = 3, 2, 1,

I(Xn
A, X

n
1 , X

n
2 ;X

n
B |F t)

= H(Xn
B |F t)−H(Xn

B |Xn
A, X

n
1 , X

n
2 , F

t)

= H(Xn
B |F t)−H(Xn

B |Xn
A, X

n
1 , X

n
2 , F

t−1)

≤ I(Xn
A, X

n
1 , X

n
2 ;X

n
B |F t−1). (53)

Repeating this procedure 4r times from t = 4r to t = 1,
I(Xn

A, X
n
1 , X

n
2 ;X

n
B |F) ≤ I(Xn

A, X
n
1 , X

n
2 ;X

n
B) can be ob-

tained. Then due to the fact that the source observation
at each terminal is i.i.d., it is not difficult to prove that
I(Xn

A, X
n
1 , X

n
2 ;X

n
B) ≤ nI(XA, X1, X2;XB). Hence the first

term in the min-function in (51) can be upper bounded as

I(Xn
A, X

n
1 , X

n
2 ;X

n
B |F) ≤ nI(XA, X1, X2;XB)

= n(IA,B + IB,1 + IB,2). (54)

Using similar proof steps to the other three terms in the
min-function in (51), the upper bound on RS + RP can be
expressed as

RS +RP ≤ IA,B + I
(2)
min + ϵ+ 2δ1 + 2δ. (55)

The converse has been proved according to (48) and (55).
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APPENDIX B
PROOF OF THE CONVERSE OF LEMMA 5

The converse of Lemma 5 can be proved by deriving the
outer bound that consists of the upper bounds on RP and
RP + RS , respectively. The upper bound on RP + RS with
respect to this collusive case is the same as that in Appendix A
with respect to the non-collusive case, which has been derived
in (55). In the next, we only need to derive the upper bound
on the private key rate RP when the two relay are collusive.

According to the ϵ-recoverable requirement in Definition 1
that ensures the reliable requirement, we have

H(KP |F, Xn
A) ≤ ϵ log(|KP |) + 1 , nδ1, (56)

H(KP |F, Xn
B) ≤ nδ1, (57)

where Fano’s inequality is utilized. Based on the above rela-
tionships, we have

n(RP − δ)
(a)

≤ H(KP )

= H(KP |F, Xn
1 , X

n
2 ) + I(KP ;F, X

n
1 , X

n
2 )

(b)

≤ H(KP |F, Xn
1 , X

n
2 ) + nϵ

≤H(KP |F, Xn
1 , X

n
2 )−H(KP |F, Xn

B) + n(ϵ+ δ1)

≤I(KP , X
n
A;X

n
B |F) + n(ϵ+ δ1)

≤I(Xn
A;X

n
B |F, Xn

1 , X
n
2 ) +H(KP |F, Xn

A) + n(ϵ+ δ1)

≤I(Xn
A;X

n
B |F, Xn

1 , X
n
2 ) + n(ϵ+ 2δ1)

(c)

≤ nI(XA, XB |X1, X2) + n(ϵ+ 2δ1)

(d)
= nI(YA;YB) + n(ϵ+ 2δ1) (58)

where (a) is based on Definition 2; (b) is obtained according
to the secrecy requirement in (7) with respect to the collusive
case; (c) follows similar derivation steps from Eq. (52) to (54);
(d) is based on the definition of the PIN model in Section II.

Thus, when the two relays are collusive, RP can be upper
bounded as

RP ≤ I(YA;YB) + δ + ϵ+ 2δ1.

APPENDIX C
PROOF OF LEMMA 2

The proof adopts the procedure in [30] (proof of
Lemma 22.3) with variations. Without loss of general-
ity, only H(W|W1, W̃1,2,K

1
P , C) will be upper bounded;

H(W|W2, W̃1,2,KP , C) can be calculated similarly. Firstly,

H(W|W1, W̃1,2,KP , C)

=
∑

w1,w̃1,2,kP

p(w1, w̃1,2, kP )H(W|w1, w̃1,2, kP , C). (59)

Now, for a codebook c and a given tuple (w1, w̃1,2, kP ),
denote N(w1, w̃1,2, kP , c) as the number of the codewords
w ∈ W = WA,B ×W1 ×W2 × W̃1,2 satisfying: (i) w is in
the kP -th bin of the SK-PK codebook; (ii) the second and the
fourth elements of the sequence w is w1 and w̃1,2, respectively.
Since the SK-PK codebook is constructed based on random-
binning, N(w1, w̃1,2, kP , C) is binomially distributed, i.e.,
N(w1, w̃1,2, kP , C) ∼ B(2−n(R1+R̃1,2), 2nRS ), where 2nRS is

the number of codewords in each bin. Hence its expectation
and variance are

E[N(w1, w̃1,2, kP , C)] = 2n(RS−R1−R̃1,2),

V ar[N(w1, w̃1,2, kP , C)] = 2n(RS−R1−R̃1,2). (60)

Now, define an indicator variable as

E1(w1, w̃1,2, kP , C) ={
1, if N(w1, w̃1,2, kP , C) ≥ 2E[N(w1, w̃1,2, kP , C)],
0, otherwise.

(61)

Then, by Chebyshev inequality

P{E1 = 1} ≤ V ar[N(w1, w̃1,2, kP , C)]
E2[N(w1, w̃1,2, kP , C)]

≤ 2−n(RS−R1−R̃1,2), (62)

which is arbitrarily small when n is sufficiently large.
Now, denote R = RA,B +R1 +R2 + R̃1,2, then,

H(W|w1, w̃1,2, kP , C) ≤ H(W, E1|w1, w̃1,2, kP , C)
= H(E1) + P (E1 = 1)H(W|w1, w̃1,2, kP , E1 = 1, C)

+ P (E1 = 0)H(W|w1, w̃1,2, kP , E1 = 0, C)
(a)

≤ 1 + P{E1 = 1} log |W|
+H(W|w1, w̃1,2, kP , E1 = 0, C)

(b)

≤ 1 + nR× 2−n(RS−R1−R̃1,2)

+H(W|w1, w̃1,2, kP , E1 = 0, C)
(c)

≤ 1 + nR× 2−n(RS−R1−R̃1,2)

+ log
(
2× 2n(RS−R1−R̃1,2)

)
, (63)

where (a) follows from the fact that H(E1) ≤ 1; (b) is due
to (62); (c) is due to the fact that N(w1, w̃1,2, kP , C) < 2 ×
2n(RS−R1−R̃1,2) when E1 = 0. So

H(W|w1, w̃1,2, kP , C) ≤ n(RS −R1 − R̃1,2 + δn), (64)

where δn = 2
n + R × 2−n(RS−R1−R̃1,2). Since RS > R1 +

R̃1,2 as shown in (29), δn → 0 as n → ∞. Recalling (59),
H(W|W1, W̃1,2,KP , C) ≤ n(RS −R1− R̃1,2+ δn) has been
proved.
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