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NON-LINEARITIES IN FINANCIAL BUBBLES:  

THEORY & BAYESIAN EVIDENCE FROM S&P500 

 

1. Introduction 
 

In August 2015, the Chinese stock market lost over 30% of its stock value, 

experiencing one of the worst stock market crashes in recent financial history. 

Despite the efforts made by the Chinese Government and the Chinese Central 

Bank to prevent the crash by implementing a strict legislatory framework on 

short selling as well as by providing huge cash injections to brokers so as to 

stimulate stock demand, the Shanghai Stock Exchange experienced an 

unprecedented crash. As a result, on the 24th of August, the Shanghai Stock 

Exchange experienced an overall devaluation of approximately 8% in stock 

prices, the so-called “Black Monday” of the Chinese Stock Market (The New 

York Times, 25 August 2015). 

Despite the fact that in the long history of financial bubbles the Chinese 

case is not the first and certainly not the last one, only limited attention has 

been paid by the scientific community to creating a rigorous and robust 

framework for the detection of bubble formation based on a credible Early 

Warning Mechanism (EWM). In general, EWMs are essential components of 

time-varying macroprudential policies that can help reduce the high losses 

associated with both banking and country specific crises. In this context, the 

EWMs employed should not only have sound statistical forecasting power, 

but also need to satisfy several additional requirements.  

Analytically, the importance of bubble dating lies on the appropriate 

timing, which is a crucial requirement for EWMs. In this context, 

macroprudential policies need time before they become effective (Basel 

Committee 2010) and, hence, signals should need to arrive at a relatively early 

stage in order to prevent policy measures from being costly (Caruana 2010). 

The stability of the signal is a second, largely overlooked, requirement. More 
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precisely, policy makers tend to base decisions on trends rather than reacting 

to changes in signaling variables immediately (Bernanke 2004). Meanwhile, 

the gradual implementation of policy measures may also allow policy makers 

to affect market expectations more efficiently and deal with uncertainties in 

the transmission mechanism (CGFS 2012). Finally, a last requirement is that 

EWM signals should be easy to interpret, as any signals that do not “make 

sense” are likely to be ignored by policy makers (Önkal et al 2002; Lawrence 

et al 2006). In sum, well designed EWIs, in terms of timing and signal 

processing, can reduce uncertainty and allow for more decisive policy action. 

Thus far, one of the main reasons behind the inability of most models 

to capture the formation of bubbles, at a relatively early stage, is the fact that 

bubble formation has inherent non-linear characteristics, which are difficult to 

capture using standard linear models. This, clearly, implies that any 

econometric test that aims at capturing the formation of bubbles, especially at 

an early stage, should be able to capture their non-linear character.  

Additionally, another equally important challenge for the econometric 

detection of bubbles is their dating, in the sense that an econometric test 

should be able to accurately date the bubble periods detected in the sample. 

Of course, early detection and accurate dating of financial bubbles could have 

important policy implications, especially for central bankers and policy 

makers since it could assist in the implementation of relevant policy actions 

that could potentially ease the consequences of bubbles. More specifically, the 

importance of early identification lies in the timing of specific 

countermeasures that could potentially prevent: a) the magnitude of a 

potential collapse through regulatory interventions in the financial markets; 

b) the potential downturn effects of bubble collapse in the economy through 

appropriate inflation targeting, and c) the devastating spillover effects in the 

global economy through interest rate and/or exchange rate setting. 

Due to the fact that, according to the recent financial history of bubbles, 

more than one bubble could occur in the same sample period (Ferguson 2008), 

any econometric test for bubble detection should be structured upon flexible 
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backward and/or forward recursive estimation techniques. However, 

relatively limited research has been done in the literature using recursive 

estimation techniques for dating multiple bubble episodes. See Phillips and 

Yu (2011), and Phillips et al. (2011a, 2011b, 2013, 2014, 2015a) and Phillips et 

al. (2015b) [hereafter PSY].  

Meanwhile, nonlinear economic models have become quite popular 

lately, because economic data exhibit significant non-linearities. To this end, 

in this paper, we propose a rigorous and robust mathematical and 

econometric framework for the detection of bubbles, which is structured upon 

Artificial Neural Networks (ANN), that are perfectly capable of capturing any 

neglected non-linearity. In fact, this is the first paper in the relevant literature, 

to the best of our knowledge, which employs ANNs, to capture neglected 

non-linearities in bubbles.  

After all, according to PSY, the use of computationally efficient dating 

methods “over long historical periods presents a more serious econometric 

challenge due to the complexity of the nonlinear structure and break 

mechanisms that are inherent in multiple-bubble phenomena within the same 

sample period”. Finally, our approach provides a recursive algorithm for the 

accurate detection of bubbles, which serves as an EWM that could be used in 

order to guide a policy decision in an uncertain environment, without the 

need of taking into consideration the policy maker’s preferences (e.g. Pesaran 

and Skouras 2002; Granger and Machina 2006; Baxa et al. 2013). 

In brief, the present paper contributes to the literature in the following 

ways: (a) It establishes a rigorous framework, based on ANNs, under which 

bubble detection could be achieved, while emphasizing on the presence of 

non-linearities; (b) It provides a new algorithm for the accurate and early 

detection of bubble formation, as well as for the identification of potential 

explosive behaviors; (c) it illustrates the proposed test by early detecting and 

capturing accurately the bubble episodes that are present in the S&P 500 

index for the time period 1871 (M1)-2014 (M6), and by identifying more 

episodes compared to a competitive methodology in the literature. 
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This paper is structured as follows: in section 2, a review of the 

literature takes place; section 3 presents the theoretical model; section 4 sets 

out the proposed non-linear test; section 5 presents the empirical analysis; 

finally, section 6 concludes. 

 

2. Related Literature 

According to Kindleberger (1978) a bubble is defined as “an upward price 

movement over an extended range that then implodes”. Brunnermeier (2009) 

argued that bubbles “are typically associated with dramatic asset price 

increases followed by a collapse”, whereas Garber (2000) defined a bubble as 

the part of the price movement that cannot be explained by fundamentals. 

Also, Barlevy (2007) described a bubble as “a situation where an asset´s price 

exceeds the fundamental value of the asset”. In brief, a bubble occurs when 

the market value is higher than the fundamental (Diba and Grossman 1988). 

Some researchers (e.g. Wu 1997) define bubbles as the difference between the 

fundamental value and the market price allowing, thus, for negative bubbles.  

Reasons for the occurrence of bubbles include, among other things, greed 

(Kindleberger 1978), introduction of breakthrough technologies or financial 

innovations (e.g. Perez 2009); existence of rational and irrational traders 

(Dufwenberg, Lindqvist and Moore 2005; Hong, Scheinkman  and Xiong 

2007); institutional restrictions on short selling (Haruvy and Noussair, 2006); 

herding (DeMarzo, Kaniel and Kremer 2008), speculating investors 

(Greenwood and Nagel 2005; Scheinkman and Xiong 2002), and “bubble 

riding” (Abreu and Brunnermeier 2003, and Temin and Voth 2003).  

Despite the fact that several approaches, even seminal ones (e.g. Fama, 

1965), have denied the possibility of bubbles in financial markets, the 

phenomenon has made its appearance long ago (e.g. Dutch Tulipmania [1634-

1637], Mississippi Bubble [1719–1720]) and has often led to generalized and 

deep economic recessions. As a result, Fama’s Efficient Market Hypothesis and 

other similar theories have not always found so much support. After all, 
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probably the most prominent economist, who considered the existence of 

bubbles in financial markets, was John Maynard Keynes (1936).  

Following the related literature on financial bubble detection, Shiller 

(1981) and Lerroy and Porter (1981) were probably the first to develop 

variance bound tests for equity prices. Despite the fact that Shiller’s (1981) 

variance bound test was not initially developed for bubble detection, the 

works of Blanchard and Watson (1982) and Tirole (1985) suggested that 

violation of variance bounds could be attributed to the presence of bubbles. 

Nevertheless, the variance bound tests were heavily criticized by a number of 

authors like Flavin (1983), Mash and Merton (1983), Mankiw et al. (1985), 

Kleidon (1986) and Flood et al. (1994), due to the fact that the variance bound 

tests could fail not only if bubbles exist but also if any of the assumptions of 

the present value model is violated.  

In a different approach, West (1987) developed a two-step test for the 

identification of bubbles in equity prices based on Euler’s equation of no 

arbitrage process and the autoregressive process of dividends that governs 

the market fundamental stock price. Despite the fact that West’s (1987) test 

was more attractive than the variance bound test as it explicitly incorporated 

the null hypothesis of no bubbles, once again Dezbakhsh and Demirguc-Kunt 

(1990), as well as Flood et al. (1994), criticized the econometric procedure of 

the test because it exhibited significant size distortions in small samples.  

Another popular approach for bubble detection was the one proposed 

by Diba and Grossman (1987, 1988a, 1988b), who tried to exploit the 

theoretical properties of bubbles. Their test allowed for unobserved 

fundamentals in the market fundamental price and a bubble would exist if the 

dividends and stock prices did not have the same order of integration. 

However, Evans (1991) criticized the test of Diba and Grossman (1988b) by 

arguing that it was unable to capture a periodically collapsing bubble. 
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Following Evans (1991), a vast literature emerged concerning the 

detection of bubbles, like Hall and Sola (1993), van Norden (1996), van 

Norden and Vigfusson (1998), Driffil and Sola (1998), and Hall et al. (1999) 

who incorporated regime switching models for bubble detection. In the 

meantime, in a seemingly unrealted approach, Wu (1997) used Kalman 

filtering in an attempt to test for bubbles, while Wu and Xiao (2002) tried to 

establish a test for bubbles based on the residuals of the cointegrating 

equation between dividends and stock prices. 

This signified the formation of the latest strand in the literature of bubble 

detection where researchers based the existence and detection of bubbles on 

the unit root behavior of key fundamental financial variables. In a prominent 

paper, Phillips and Yu (2011) introduced a recursive regression methodology 

in order to analyze the bubble characteristics of various financial time series 

during the subprime crisis. Phillips et al. (2011a) extended the work of 

Phillips and Yu (2011) by introducing a relevant econometric framework 

where more than one bubbles could exist in the same sample. Phillips et al. 

(2011b) provided the identification conditions regarding the explosive 

behavior of bubbles based on the unit root behavior of relevant financial time 

series.  

Breitung and Holmes (2012) investigated the power properties of 

rational bubbles considering a large variety of testing alternatives, while 

Breitung and Kruse (2013) showed that structural break Chow-type tests have 

considerable power for the detection of bubbles. Again, Phillips et al. (2013) 

illustrated their proposed bubble specification and dating algorithm using 

data from S&P500 series, while Phillips et al. (2014) provided the asymptotic 

properties of the related bubble dating and identification conditions. Finally, 

in two seminal works, Phillips et al. (2015a) and PSY provided probably the 

only framework, thus far, in the existing literature, under which an EWM is 

established for the detection of multiple bubble episodes. 
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3. The Theoretical Model  

 

From a technical point of view, probably the most important feature of 

bubbles is that they are characterized by explosive growth patterns, despite 

the fact that speculative movements are often assumed to follow a random 

walk process (e.g. Blanchard and Watson 1982, Campbell, Lo, and MacKinlay 

1997). And it is exactly this, the most common way to identify a bubble, by 

applying tests for a structural change from a random walk regime to an 

explosive one. Such tests have been developed by Phillips, et al. (2011a), 

Phillips and Yu (2011), Homm and Breitung (2012), Phillips et al. (2014), and  

PSY. 

3.1 Time Series Model 

 

From a technical perspective, the identification of bubbles involves the use of 

key financial time series variables, such as dividends, stock prices, equity 

prices etc.  

 

For any financial time series variable, 𝑥!! , 𝑗 ∈ 𝐽, we will make a number of 

fairly standard assumptions: 

 

Assumption 1: The time series xt is assumed to conform to the standard 

additive component model, i.e. every financial time series variable 𝑥!! , 𝑖 ∈ 𝐼, 

follows the process: 

 

𝑥!! = 𝑠!! + 𝑔!! + 𝑐!! + 𝜀!!, 𝑖 ∈ 𝐼  (1) 

 

where:  𝑠!! is the seasonal component, 𝑔!! is the trend component, 𝑐!! is the 

cyclical component and 𝜀!!~𝑁(0,𝜎
!) is the error term.  
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For the sake of simplicity, and without loss of generality, we also make the 

following assumption: 

 

Assumption 2: The trend and constant term of the series 𝑥!! , 𝑖 ∈ 𝐼, are both 

assumed to be equal to 0. 

 

In case, (deterministic) terms are to be considered, the standard procedure is 

to apply demeaning and detrending procedures before computing the 

relevant test statistics. 

Now, we present the general formulation of the unit-root test upon 

which the econometric testing of bubbles will be based. 

 

Assumption 3: The unit root detection is described by the following model: 

𝛥𝑥!! =   𝜌𝑥!!!! ∙ 𝐺(𝑥!!!!;   𝛾)   +   𝜀!! , 𝑡!   =   1, . . . ,𝑇, 𝑖 ∈ 𝐼 (2) 

where 𝜀!!   ~𝑁𝐼𝐷  (0,𝜎
!) and G is a sufficiently smooth function. 

 

With reference to the aforementioned general specification, without 

deterministic components, the most popular unit root test in the literature, i.e. 

the traditional Dickey Fuller (D.F.) test, is based on the 𝑡-statistic of 𝜌 from the 

model:   

𝛥𝑥!! =   𝜌𝑥!!!! +   𝜀!, 𝑖 ∈ 𝐼  (3) 

 

The null hypothesis, 𝐻!, of a unit root is parameterized by 𝜌 =   0. 

The vast majority of empirical tests in the literature are based on 

alternative forms of the D.F. test above (Equation 3). However, some other 

unit root testing attempts are also present in the literature, where researchers 

have attempted to capture bubbles based on some non-linear unit root 
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specification. More precisely, Kapetanios et al. (2003) or KSS extended the 

standard approach on unit root testing through the introduction of a so-called 

exponential smooth transition autoregressive (ESTAR) model and decided to 

consider the following ESTAR process, emphasizing the expected low power 

of the linear augmented D.F. test, when applied to such a series: 

𝛥𝑥!! = 𝛾𝑥!!!! 1− exp −𝜃𝑥!!!!! + 𝜀!!), 𝑖 ∈ 𝐼 (4) 

 

The analysis of KSS focuses on 𝜃 , with 𝐻0:  𝜃 =   0and 𝐻1:  𝜃 > 0. As γ is 

unidentified under 𝐻0,𝜃 =   0 cannot be tested. Hence, they based their work 

on Luukkonen et al. (1988) and employed a first-order Taylor series 

approximation to the ESTAR model under the null 𝐻0:  𝜃 =   0. The relevant 

equation is: 

𝛥𝑥!! =   𝜌𝑥!!!!! +   𝜀!!, 𝑖 ∈ 𝐼 (5) 

 

where the nonlinear test relies on the t-statistic of ρf  rom the O.L.S. regression 

on the previous equation. 

However, it should be noted that the aforementioned models (i.e. 

linear, or ESTAR, etc) are not grounded on some formal mathematical or 

statistical criterion, but rather on the modeling choices of each individual 

researcher. Therefore, both attempts that are equivalent to the assumption 

that either G 𝑥!!!!;   𝛾 ≡ 1  or  𝐺 𝑥!!!!;   𝛾 ≡ 𝑥!!!!!, 𝑖 ∈ 𝐼, which are implied by 

the linear and ESTAR models, respectively,  need to be reconsidered. 

For instance, changing the degree of the implied polynomial assumed 

in the aforementioned ESTAR process would lead to another exponential 

power of the relevant test. Hence, misspecification issues arise from ignoring 

potential nonlinear terms. As a result, it would seem absolutely imperative to 

test for the presence of nonlinear terms. 

In this work, in order to overcome these serious drawbacks which 

result from the arbitrarily assumptions about the processes to be followed, 

instead of fitting the G function with a pre-specified equation, we will use an 
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Artificial Neural Network (ANN) to let the dataset itself serve as evidence to 

support the model’s approximation of the underlying specification.  

 

3.2 ANNs Formulation 

As we have seen, the main idea is to express the arbitrary specification 

𝛥𝑥!! =   𝜌𝑥!!!! ∙ 𝐺 𝑥!! − 1;   𝛾 , 𝑖 ∈ 𝐼 not as a pre-specified form based on a priori 

assumptions, but rather let the dataset itself determine the specification of 

the underlying process. In other words, instead of fitting 𝛥𝑥!! with a pre-

specified functional form, ANNs let the dataset itself serve as evidence to 

support the model’s approximation of the specification. In what follows, we 

proceed by providing a formal definition of ANNs. 

 
Definition 1: ANNs are collections of functions that relate an output variable 

Y to certain input variables 𝑿! = [𝑋!,… ,𝑋!] . The input variables are 

combined linearly to form N intermediate variables 𝑍!, . . . ,𝑍! ∶   𝒁! =

𝑋′𝛽!(𝑘   = 1,… . ,𝑁), where 𝛽! ∈ ℝ!are parameter vectors. The intermediate 

variables are combined non-linearly to produce Y: 

𝑌 = 𝑎!𝜑(𝛧!)!
!!!  (6) 

where: φ is an activation function, the αn ’s are parameters and N is the 

number of intermediate nodes (Kuan and White 1994).  

We make use of a single layer ANN to avoid computational and 

energetic requirements (see Sanger 1989). Hence, it is worth mentioning that 

the mechanism behind ANNs is that they combine simple units with 

intermediate nodes, so they can approximate any smooth nonlinearity (Chan 

and Genovese 2001). In fact, ANNs provide very good approximations to a 

large class of arbitrary functions while keeping the number of parameters to 

a minimum (Hornik et al. 1989, 1990). Also, they can approximate their 

derivatives, a fact which justifies their success (Hornik et al. 1990, Brasili and 

Siltzia 2003). 
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To sum up, ANNs are data-driven and self-adaptive, nonlinear 

methods that do not require specific assumptions about the underlying 

specification (Zhang and Berardi 2001). In addition, they are universal 

approximators of functions. In this paper, we use a ANN formulation in 

order to capture and model nonlinearities in bubbles. 

 

3.3 Mathematical Properties 

As we have seen in the previous section, the main idea for capturing a 

financial bubble episode is to thoroughly investigate the respective unit root 

behavior of the financial time series variable. To this end, using the general 

specification of unit root detection, i.e. 𝛥𝑥!! =   𝜌𝑥!! − 1 ∙ 𝐺 𝑥!! − 1;   𝛾 , 𝑗 ∈ 𝐽 we 

will formally approximate the function G, using an ANN. To do so, we will 

make use of the formal definitions of open set, open covering, compact set, 

dense set and closure (e.g. Rudin, 1976) that will help us formally state our 

main Theorems, below. In what follows, we will make use of Hornik’s (1991) 

Theorem (see Theorem 1, Appendix), which states the conditions under which 

an ANN specification can approximate any given function. 

In simple words, according to Hornik’s (1991) Theorem, ANN’s that are 

based on non-constant, continuous and bounded activation functions are 

capable of approximating any smooth function as long as the domain of the 

function is compact. Thus, we begin by formally defining the set of times 

series (Definition 2, Appendix), which constitutes the domain of the function, 

and then we prove that this set could be considered as being compact (see 

Theorem 2). 

 

Theorem 2: If 𝑥!! , 𝑖 ∈ 𝐼,   is an arbitrary time series, such that 𝑥!! ∈ ℝ
!  ∀𝑖 ∈ 𝐼 

and  ∀𝑡 ∈ 𝑇 and the set of time series 𝑥!! ⊂!∈! ℝ!, is closed and bounded, 

then 𝑥!!!∈!  is a compact subset of ℝ!. 

Proof: See Appendix. 
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Please note that the implicit assumptions made for the time series set is 

that it is closed and bounded. The financial time series set could be 

considered as being closed since it could contain all its boundary points.  

Additionally, we consider the financial time series set to be bounded since all 

financial time series could have a finite time dimension. 

Next, in order to be able to apply Hornik’s (1991) Theorem, we also 

need to formally prove that the proposed specification, for the unknown 

function G of the general unit root specification, possesses all the 

mathematical properties that Theorem 1 explicitly states. Below, Theorem 3 

formally presents the proposed functional specification and proves the 

relevant properties. 

 

Theorem 3: If 𝑥!! , 𝑖 ∈ 𝐼 is an arbitrary time series and the set of time series 

𝑥!! ⊂!∈! ℝ! is a compact subset of ℝ!, whereas 𝜑:  ℝ! → ℝ is a non-constant, 

bounded and continuous function, then any function  𝑘:ℝ! → ℝ of the form 

𝑘(𝑥!!!!) ≡ 𝜌𝑥!!!! ⋅ 𝐹(𝑥!!!!), 𝜌 ∈ ℝ,𝑡 ∈ 𝑇, where: 𝐹 𝑥!!!! ≡ 𝑎!𝜑(𝛽! ⋅ 𝑥!!!!)
!
!!! , 

with  𝑎!,𝛽! ∈ ℝ  ∀𝑛 ∈ ℕ, and 𝑎!≠ 0, for some  𝑛 ∈ ℕ, is also continuous, bounded 

and non-constant. 

 

Proof: See Appendix. 

 

Having formally shown that the proposed specification is fully 

compatible with Hornik’s (1991) Theorem, below we state our main result 

(Theorem 4), which states that the specification can formally approximate 

arbitrarily well the general non-linear specification. 
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Theorem 4 

If the set 𝑥!! ⊂!∈! ℝ, 𝑡 ∈ 𝑇  is a compact subset of ℝ, then the family of 

functions ℱ = {𝑘(𝑥!!!!) ∈ C 𝐺!!∈! : 𝑘(𝑥!!!!) ≡ 𝜌𝑥!!!! ⋅ 𝐹(𝑥!!!!) , 𝐹 𝑥!!!! ≡

𝑎!𝜑(𝛽! ⋅ 𝑥!!!!)
!
!!! , with   𝑎! , 𝛽! ∈ ℝ∀𝑛 ∈ ℕ ,𝜌 ∈ ℝ}   is dense in the set of 

functions ℋ = 𝐺!!∈!  

 

Proof: See Appendix. 

 

In simple words, Theorem 4 implies that the proposed specification 

𝑘(𝑥!!!!) ≡ 𝜌𝑥!!!! ⋅ 𝐹(𝑥!!!!) ,   𝐹 𝑥!!!! ≡ 𝑎!𝜑(𝛽! ⋅ 𝑥!!!!)
!
!!! , with 𝑎! , 𝛽! ∈

ℝ∀𝑛 ∈ ℕ,  𝜌 ∈ ℝ is a global approximator to any arbitrary specification ρxt-

1⋅G(xt-1; γ) and, hence, the proposed specification could approximate arbitrarily 

well the general non-linear unit root specification. 

 

4. The Test  

 

As PSY have emphatically pointed out, the econometric identification of 

multiple bubbles over time is difficult mainly because of the complex non-

linear structure involved in the multiple breaks that produce the bubble 

phenomena. This is the reason why a general nonlinear ANN approximation is 

used in this work as the main mechanism in the proposed econometric test. 

 

4.1 Formulation 
 

We have formally, shown that the proposed specification  𝑘(𝑥!!!!) ≡ 𝜌𝑥!!!! ⋅

𝐹(𝑥!!!!) , 𝐹 𝑥!!!! ≡ 𝑎!𝜑(𝛽! ⋅ 𝑥!!!!)
!
!!! , with   𝑎! , 𝛽! ∈ ℝ∀𝑛 ∈ ℕ,𝜌 ∈ ℝ  is a 

global approximation to any arbitrary non-linear unit root specification, i.e. 

𝜌𝑥𝑡 − 1 ⋅ 𝐺(𝑥𝑡 − 1;   𝛾). Therefore, ∀𝑖 ∈ 𝐼,  the general unit root test of the form 

𝛥𝑥!! = 𝜌𝑥!!!! ⋅ 𝐺 𝑥!!!!;   𝛾 + 𝜀! could be approximated arbitrarily well by the 
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test  𝛥𝑥!! = 𝑘 𝑥!!!! + 𝜀!, where 𝜀! satisfies the usual assumptions.3 In detail, 

exploiting the proposed NN specification, the relevant testing equation 

becomes: 

𝛥𝑥!!= 𝜌𝑎!𝑥!!!! ⋅ 𝜑(𝑥!!!!;   𝛽!)
!
!!! ,  ∀𝑖 ∈ 𝐼  (7) 

 

Now, without loss of generality, we can safely make an additional simplifying 

assumption about the behavior of the employed time series. 

 

Assumption 4: 𝑥!! represents time series of the form:  𝑥!! = ln  ( !!!
!!!!!

). 

 

For instance, 𝑥!!would naturally represent the logarithmic return of asset 

prices between two time periods in time t and t-1, e.g. daily. As a result, 

the  quantity  𝑥!! = ln !!!
!!!!!

  hovers  around  zero, or    𝑥!! ∈ 𝐵 0, 𝜀 .   

This is due to the fact that the quantity (before taking natural 

logarithms) :   !!!
!!!!!

∈ 𝐵 1, 𝜀   hovers  around  unity, or     !!!
!!!!!

∈ 𝐵 1, 𝜀 , even for 

large daily fluctuations in prices 𝑃!!. However, it should be noted that large 

daily fluctuations in prices 𝑃!! are extremely improbable, even in developing 

markets. Additionally, we have to make an assumption about the activation 

function 𝜑 of the ANN.  

 

Assumption 5: Without loss of generality, we may assume, that the activation 

function of the ANN has the following form: 

  𝜑 𝑧! = 𝑒!!! − 1 (8) 

 

                                                
3 It should be noted that lag augmentation, in case of serial dependence, does not affect either 
the test or its mathematical derivation. On the contrary, lags of the dependent variable may 
indeed be included to eliminate serial correlation. 
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It should be noted that 𝜑 𝑧!  is continuous, non-constant and bounded when 

𝑧!! ∈ 𝐵 0, 𝜀 , and β is a positive real number. 

Of course, it should also be pointed out that other alternative activation 

functions could be used. See Bishop (1995). However, in general, the empirical 

results are robust, regardless of the activation function used (Haykin, 1999).  

 In this work, and given the complexity of the problem, the chosen 

function is able to transform the model to one which lends itself to empirical 

estimation, contrarily to other possible activation functions. In this sense, the 

argument by Kuan and White (1994) is in force: ‘‘given the popularity of 

linear models in econometrics, this form is particularly appealing, as it 

suggests that ANN models can be viewed as extensions of, rather as 

alternatives to, the familiar models”.  

Now, based on equation (8), equation (7) takes the following form: 

 

𝛥𝑥!! = 𝜌𝑎!𝑥!!!! ⋅ [𝑒
!!!!!

!!!
!!! − 1] (9) 

 

 

In what follows, we will make use of Taylor’s expansion Theorem, to 

get an equivalent but more convenient form, of the term: 

𝑒!!!!!
!! − 1 (10) 

Thus, by applying the aforementioned Theorem around   𝑥! = 0, we get that: 

𝑒!!! ≈ 1+𝑧!! (11) 

 

Hence, taking into consideration equation (11), equation (9) becomes: 

 

𝛥𝑥!!=𝜌𝑎!𝑥!!!! ⋅ 1+ 𝑥!!!!
!! − 1 + 𝜌𝑎!𝑥!!!! 1+ 𝑥!!!!

!! − 1 +⋯+ 𝜌𝑎!𝑥!!!! 1+
𝑥!!!!

!! − 1 +⋯+   𝜌𝑎!𝑥!!!! ⋅ 1+ 𝑥!!!!
!! − 1  

 

𝛥𝑥!! = 𝜌𝑎!𝑥!!!!
!!!!+𝜌𝑎!𝑥!!!!

!!!!+…+𝜌𝑎!𝑥!!!!
!!!!, ∀𝑖 ∈ 𝐼 (12) 

Now, without loss of generality, ∀  𝑛 ∈ ℕ, let: 𝜌𝑎! = 𝜅! and 𝛽! + 1=𝛿!. Thus, 

we get: 
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𝛥𝑥!! = 𝜅! ⋅ 𝑥!!!!
!! + 𝜅! ⋅ 𝑥!!!!

!! + …+ 𝜅! ⋅ 𝑥!!!!
!!, ∀𝑖 ∈ 𝐼 (13) 

With the inclusion of the error term, we have the following test:  

Proposition 1: The null hypothesis, 𝐻!, of a unit root is parameterized by a 

test of 𝜅!!
!!! = 0,  𝛿! ∈ 𝐵(1, 𝜀) , 𝜀 > 0  , n = 1,2,…N in: 

𝛥𝑥!! = 𝜅! ⋅ 𝑥!!!!
!! + 𝜅! ⋅ 𝑥!!!!

!! + …+ 𝜅! ⋅ 𝑥!!!!
!! + 𝜀!!, ∀𝑖 ∈ 𝐼  (14) 

Proof: See Appendix. 

It is worth noting that equation (14) could be seen as a generalization of KSS.  

 

Now, following PSY and the relevant strand in the literature, the 

previous model specification is complemented with transient dynamics, just 

as in standard ADF unit root testing. Hence, the proposed specification takes 

the form: 

𝛥𝑥!! = 𝜅! ⋅ 𝑥!!!!
!! + 𝜅! ⋅ 𝑥!!!!

!! + …+ 𝜅! ⋅ 𝑥!!!!
!!+ 𝑏!𝛥𝑥!!!!

!
!!! ,  ∀𝑖 ∈ 𝐼 (15) 

 

Of course, in order to allow application of the test with intercept, or intercept 

and trend terms included, these deterministic terms are removed via 

preliminary regression with the demeaned or detrended version of 𝑥!. 

 

4.2 Existence of Bubbles  

 

In what follows, we propose a generalized max NN Unit Root (NNUR) test for 

the presence of bubbles, as well as a recursive forward and backward 

technique, based on Bayesian Methods, to detect and time-stamp the bubble 

origination and termination dates, where flexible window widths are used in 

their implementation.  
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Instead of fixing the starting point of the recursion on the first 

observation, the proposed test extends the sample coverage by changing both 

the starting point and the ending point of the recursion over a feasible range of 

flexible windows and is, therefore, suited to analyzing long historical data 

(PSY).  

Now, following the literature on the econometric detection of bubbles 

as set out earlier, we may make the following assumption: 

Assumption 6: ∀𝑖 ∈ 𝐼  the error term, 𝜀!!~𝑁(0,𝜎!!
!) , where 𝜎!!

!  follows a 

GARCH process of the form:𝜎!!
! = 𝑔 𝜎!!!!

! , 𝜀!!!!
! = 𝑎! + 𝑎!𝜎!!!!

! + 𝑎!𝜀!!!!
! (16) 

where: 𝑎! > 0,𝑎! > 0,𝑎! > 0. 

In what follows, we perform repeated NNUR tests on sub-samples of 

the data on a recursive, backward and forward manner, changing the starting 

and ending points. We proceed by providing a simple algorithm for the 

implementation of the test, regarding the detection of bubbles in a time frame. 

The following simple algorithm sets out the mechanism behind the proposed 

approach. 

Step 1: Let 𝑖 ∈ 𝐼, and 𝑥!! an arbitrary time series of length 𝑇 > 0 and consider a 

sample of it, the so-called window 𝑊 with length 0 <𝑊 < 𝑇. 

Step 2: Partition the sample 𝑊  into all the possible sub-samples 𝑟!! =

[𝑟!! , 𝑟!!] ⊆𝑊 where 𝑟!! is the starting date of the j-th sub-sample and 𝑟!! the 

respective ending date. In this way, we obtain the set of all subsamples 

𝑟! = 𝑟!!!∈!  in W.  

Step 3: Compute the model’s significance 𝑆𝑖𝑔 − 𝑁𝑁!, corresponding to F-like 

tests, to obtain the set of Sig-s which refers to each window 𝑊as 𝑆𝑖𝑔 − 𝑁𝑁! =

𝑆𝑖𝑔 − 𝑁𝑁!!∈!⊆ℕ . Note that these models do not necessarily belong to a single 

sub-sample. 
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Step 4: For all the subsamples with the same starting point, choose the 

𝑆𝑖𝑔 − 𝑁𝑁!,𝑚 ∈ 𝑀 ⊆ 𝐽 that are (equally or) more significant than their 

corresponding critical values𝑆𝑖𝑔 − 𝑁𝑁!∗, to obtain the set 𝑆𝑖𝑔 = 𝑆𝑖𝑔 −!∈!⊆!

𝑁𝑁!, which corresponds to the set of sub-samples 𝑟!! = 𝑟!!!∈!⊆! .  Note 

that this choice reduces the cost of keeping the non-significant values in the 

set. 

Step 5: Compute the 𝑚𝑎𝑥!∈!⊆! 𝑆𝑖𝑔 − 𝑁𝑁!  on the set 𝑆𝑖𝑔 − 𝑁𝑁!!∈! . 

Step 6: (a) If there is only a single maximal point   𝑚𝑎𝑥!∈!⊆! 𝑆𝑖𝑔 − 𝑁𝑁!  for 

all the models with the same starting point, a unique bubble exists in the sub-

sample𝑚∗. (b) (i) If multiple maximal points exist in different neighborhoods 

of the same subsample, then multiple bubbles exist. (ii) If multiple maximal 

points exist in the same neighborhood of the same subsample, then one 

bubble exists: The one with the longer duration.  

Step 7: Repeat steps (1)-(6) for all the possible sets  𝑆𝑖𝑔 − 𝑁𝑁!, 𝑗 ∈ 𝐽. 

Step 8: Repeat steps (1)-(7) for all the models with the same ending point. 

Step 9: Repeat steps (1)-(8) above for all possible (rolling) windows W. 

Note that the initial size of the window (𝑤!) is equal to the one 

suggested in PSY, namely: 𝑤! = 0.01+ 1.8/ 𝑇. Of course, a parameter to 

account for data frequency could easily be included in the model. The dating 

of bubbles is done trivially in the spirit of PSY. 

For expository reasons, we provide the following Data Generating 

Process (DGP), using standard notation. Consider a time series 𝑋!, with length 

T>0. Let T be partitioned into 𝑗 ∈ 𝐽 sub-samples, 𝑟!!. Let 𝑟!!
∗ be the only sub-

sample where the bubble occurs. The DGP has the following representation: 

𝑋! = 𝑋!!!
!!!1 𝑟!! ≠ 𝑟!!

∗ + 𝛿!𝑋!!!
!!!

∗
+ 1 𝜀!

!!!!!
∗

+ 𝜀!!!
∗
 

In this scheme, in the pre-bubble period the series follows a pure random 

walk. The bubble expansion period is 𝑟!!
∗which involves a mildly explosive 
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process with expansion rate . The process then collapses and continues its 

pure random walk behavior ∀𝑟!! , 𝑗 ∈ 𝐽. 

• Unit root behavior in 𝑡! can be identified by : !!!
!!!!! !!!!

= 1 (17) 

• An emerging bubble can be identified by:   !!!
!!!!! !!!!

> 1,  !!!
!!!!! !!!!

≤ 1 (18) 

in the time period [𝑡!, 𝑡!] 

• A collapsing bubble can be identified by: !!!
!!!!! !!!

< 1 (19)  

in the time period [𝑡!, 𝑡!]. 

 

5. Empirical Analysis and Discussion 

Having analyzed the model and the proposed test, we continue by elaborating 

on the estimation technique and data used. 

 We use data on the stock price-dividend ratio S&P500 (1871.1-2014.6). 

The S&P 500, i.e. the Standard & Poor's 500, is a stock market index for the US 

and is based on the market capitalizations of 500 large companies having 

common stock listed on the NYSE or NASDAQ. More specifically, the S&P 500 

index components and their weightings are determined by S&P Dow Jones 

Indices. It is one of the most commonly followed equity indices, and many 

consider it as being one of the best representations of the US stock market, and 

a bellwether for the U.S. economy (Phillips et al. 2011a, 2011b). 

The proposed approach uses a Bayesian approach because it has 

numerous advantages related to overcoming the over-fitting problem 

associated with the traditional approaches, but also due to its increased 

flexibility. Probably, the main advantage of our approach is the possibility of 

mixing different pieces of information (sample information, prior 

information, etc) in order to construct a model that accounts for the stochastic 

character of the variables.  

 

Tδ
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Analytically, the main reason for using a Bayesian approach is that it 

facilitates representing and taking fuller account of the uncertainties related to 

model and parameter values. In contrast, most decision analyses based on 

maximum likelihood or least squares estimation involve fixing the values of 

parameters that may, in actuality, have an important bearing on the final 

outcome of the analysis and for which there is considerable uncertainty. 

Hence, one of the major benefits of the Bayesian approach is the ability to 

incorporate prior information, which, along with other numerical methods, 

makes computations tractable for virtually all parametric models. See, for 

instance, Carlin and Lewis (2000), Robert (2001) and Wasserman (2004). 

We statistically assess, using Bayesian techniques, the following system 

of equations: 

𝛥𝑥!! = 𝜅!
!!! ⋅ 𝑥!!!!

!!
!!! + 𝜅!

!!! ⋅ 𝑥!!!!
!!

!!! +⋯+ 𝜅!
!!! ⋅ 𝑥!!!!

!!
!!! + 𝑏!

!!!𝛥𝑥!!!! + 𝜀!
!!!!

!!!

𝜎!!
! = 𝑎!

!!! + 𝑎!
!!!𝜎!!!!

! + 𝑎!
!!!𝜀!!!!

!
  (19) 

The model needs an identification condition for 𝜅!’s, since we are unable to 

identify them with any alternative procedure. In this context, we begin by 

imposing the identification conditions  𝜅!<𝜅!<𝜅! <…<  𝜅! 

We, then, approximate the marginal likelihood of the model using the 

Laplace approximation (DiCiccio et al. 1997). This procedure is fast and easy to 

apply, which is important in this context where repeated MCMC simulations 

have to be considered. It also has the advantage that it takes into consideration 

both the suitability of the model and the overfitting problem. The Laplace 

approximation to the log marginal likelihood of the model is: 

𝐿! = − !!!
!
𝑙𝑜𝑔 𝑨 + !!!

!
log 2𝜋 + !

!
𝑙𝑜𝑔 𝜟𝜥 (20) 

where: 𝜟𝜥 is an estimate of the covariance matrix of the ML estimator of 𝜣𝜥 

(inverse Hessian of the log likelihood). This can be approximated by the 

covariance of the MCMC draws, after convergence and using thinning or an 

autocorrelation – consistent estimate. 
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          Bayesian inference is performed through a Markov Chain Monte Carlo 

(MCMC) procedure (Tierney 1994) that resembles the Gibbs sampler using 

1,500,000 iterations, the first 500,000 of which are discarded to mitigate start 

up effects. The long MCMC is needed to guarantee convergence starting from 

arbitrarily different initial conditions for the parameters. Convergence is 

assessed from ten different chains in terms of computed posterior probabilities 

for the different episodes as well as for the specific period during which the 

episodes occur. 

         Using the proposed specification for the detection of financial bubbles for 

each MCMC draw of parameters (Tierney 1994), we compute the derivatives 

of 𝑘(𝑥!!!!) ≡ 𝑔 𝑥!!!! ⋅ 𝐹(𝑥!!!!) that are used for the identification of unit root 

behavior and thus for the formation and collapse of bubbles. 

The number of nodes is selected from all possible combinations using 

the marginal likelihood in (20), which can be computed relatively easily and 

efficiently. The model with the highest marginal likelihood is selected. In this 

context, by approximating the marginal likelihood of the model using the 

Laplace approximation following DiCiccio et al. (1997), we finally select the 

number of nodes to be N=3. Next, we compute posterior probabilities that we 

have a bubble or collapse during certain periods. 

It should be noted that the parameter estimates are updated from their 

previous values using sampling-importance resampling (Smith and Gelfand 

1992). The size of the resample in SIR was set to 10% of the original MCMC 

samples. Also, the length of the initial sub-sample 𝑟!!, i.e. 𝑟!!is 10, sufficiently 

small so as to ensure that no bubble will be missed and, meanwhile, that there 

are enough observations for estimation, in a Bayesian framework.  

            Of course, we need to ensure the robustness of our results, in the sense 

that they do not depend critically on the assumptions and calculation on 

which they were based. As a result, our analysis was applied to numerous 

logically and empirically plausible priors selected from relevant classes of 

priors (Berger 1985). In this context, in Table 1, we present the baseline priors 
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of 𝜅′𝑠, 𝛿′𝑠 and 𝑎!𝑠, as well as a set of alternative priors, which are centered at m 

and have standard deviations s. 

Table 1: Priors 

 

Parameter Baseline Priors Alternative priors (m) Alternative priors (s) 

𝜅!, 𝜅!, … 𝑁(0,10) 𝑁(0,100) N(0,100)  

𝛿!, 𝛿!,… 𝑁(1,0.01)  N(1,0.1)  N(0,0.1)  

𝑎!,𝑎!,𝑎! 𝑁(0,10)  N(0,100)  N(0,100)  

 
 

We produced 10,000 computations under the specified alternative priors and 

the calculated results – which are available upon request by the authors – were 

not found to be sensitive to the alternative priors used. This clearly implies 

that we can safely proceed based on these findings. For a detailed discussion 

on the theoretical foundations of prior selection see, for instance, Kass and 

Wasserman (1996). 

 

The results are illustrated in Figure 1, below. 

 

Figure 1.Time series and posterior probabilities of episodes 
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           As can be seen in Figure 1 and in Table 2, the proposed specification is 

able to identify eleven (11) bubble episodes or bubble formations in the 

S&P500 index in the sample period (1871.1-2014.6).  

 

Table 2.Bubble periods and Posterior Probabilities 

Bubble Period in 
years.months 

Probability 
(%) 

Explanation 

1875.7 - 1876.10 92.32 “America's Almost Civil War”, 
crisis 

1877.8 - 1882.6 86.49 
Banking panic 

(Post Long Depression Period) 

1885.11- 1888.5 87.12 “Baltimore” Crisis 

1898.12- 1900.11 81.55 Cuba War of independence, 
Crisis 

1907.3-1908.1 89.13 Banking panic 1907 

1928.8-  1930.10 79.67 Great crash 

1954.6 -1956.12 96.81 Postwar boom 

1973.1-1974.2 75.21 Oil shock 

1986.7 - 1988.9 93.80 Black Monday 

1995.6- 2002.6 91.32 dot-com boom 

2007.1- 2009.6 88.77 Subprime crisis 

 

           In comparison to PSY, we are able to identify four (4) more bubble 

episodes in the S&P500 index and miss only one. See Table 3, below4. 

                                                
4We would like to thank an anonymous referee for suggesting the inclusion of Tables 3 and 4, 
below. 
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Table 3: Comparison for bubble detection 

Bubble Period in 
years.months 

Bubble 
Explanation 

 Bubble detected 
in the present 

paper? 

Bubble 
detected in 

PSY?  

1875.7 - 1876.10 “America's Almost 
Civil War”, crisis 

Yes No 

1885.11- 1888.5 “Baltimore” Crisis Yes No 

1898.12- 1900.11 
Cuba War of 

independence, 
Crisis 

Yes No 

1973.1-1974.2 Oil shock  Yes No 

1917.08-1918.04 The 1917 Stock 
Market Crash 

No Yes 

 
Another very interesting finding is that the bubbles do not have the same time 

duration, in comparison to PSY. See Table 4, below.  

 

Table 4: Comparison between bubble durations  

Bubble Period in 
years.months 

identified in the 
present paper  

Bubble Period in 
years.months 

identified in PSY 

Earlier Detection 
of Bubbles in the 

present paper 
compared to 

PSY? 

How many months 
earlier was the 

bubble detected in 
the present paper 

compared to  

PSY? 

1877.8 - 1882.6 1879.10-1880.4 Yes 14 months 

1907.3-1908.1 1907.9-1908.2 Yes 6 months 

1928.8-  1930.10 1928.11-1929.10 Yes 3 months 

1954.6 -1956.12 1955.1-1956.4 Yes 7 months 
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1986.7 - 1988.9 1986.6-1987.9 No -1 months 

1995.6- 2002.6 1995.11-2001.8 Yes 5 months 

2007.1- 2009.6 2009.2-2009.4 Yes 25 months 

 

          Hence, our bubble detection mechanism seems to be more sensitive to 

bubble formation. 

           As can be seen in Table 4, compared to PSY, the bubble episodes that we 

identify, in general, have longer duration. This means that the proposed 

specification is able to identify bubble episodes earlier, compared to PSY. 

Therefore, the proposed specification could be thought of as an EWM. 

For instance, if we focus on the recent US subprime crisis, the proposed 

test indicates that the bubble started in January 2007 and ended in June 2009. 

According to official data (CIA World Factbook, 2011), the US subprime 

bubble started in December 2007, i.e. almost 10 months after our proposed 

test suggests, i.e. [2007.1− 2009.6] . However, the ending point of the 

identified bubble, and of the one provided by the official statistics, are exactly 

the same. This clearly implies that according to the proposed test, this 10-

month period coincides with the build-up of the bubble. 

Analytically, the proposed specification, based on the aforementioned 

dating algorithm, is capable of sufficiently answering the fundamental 

question of every EWM mechanism, which is the timing of detection, while 

taking into consideration the neglected non-linearities. The appropriate 

timing of an ideal EWM is crucial for policy makers as the EWMs need to 

signal the crisis early enough so that policy actions can be implemented in 

time to be effective. The time frame required to do so depends, inter alia, on 

the lead-lag relationship between changing a specific macroprudential tool 

and on the impact on the policy objective (CGFS 2012).  
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For instance, in contrast to monetary policy, where it takes at least a year 

for interest rates to impact on inflation, this relationship is less well 

understood for macroprudential instruments. Yet, it is likely to be at least as 

long. For instance, banks have one year to comply with increased capital 

requirements under the countercyclical framework of Basel III (Basel 

Committee, 2010). In addition, data are reported with lags and policy makers 

do not act immediately on developments but observe trends for some time 

before changing policies (Bernanke 2004). This urges EWMs to start issuing 

signals well before a crisis occurs as is the case with the suggested approach.  

In fact, early bubble identification could substantially aid policy makers, 

worldwide. The validity of this argument lies of the fact that whilst tools and 

actual policies differ across countries and financial institution, the key 

objective of macroprudential policies, which is the reduction of systemic risk, 

remains the same (e.g. Borio 2009; Disyatat 2010). In this context, a crucial 

component of the macroprudential approach based on EWMs is to address 

the procyclicality of the financial system by, for example, stipulating the 

accumulation of buffers in “good times” so that these can be drawn down in 

“bad times”. See, among others, White (2008). Tools, which are already used 

in this regard, include countercyclical capital buffers or dynamic 

provisioning. See Cukierman (2013). One key challenge for policy makers is 

the identification of the different states in real time, with particular emphasis 

on detecting unsustainable booms that may end up in a financial crisis. 

6. Conclusion 

Despite the fact that the history of financial bubbles is rather long, only 

limited attention has been paid by the scientific community to the creation of 

a rigorous econometric test for the early detection of bubble formation. 

Probably, one of the main reasons behind the inability of most models to 

efficiently capture the formation of bubbles, is the fact that bubble formation 

has inherent non-linear characteristic which are difficult to be captured using 

standard econometric models. 
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Additionally, another equally important challenge for the econometric 

detection of bubbles is the dating of bubbles’ occurance, in the sense that an 

econometric test should be able to accurately date the bubble periods detected 

in the sample. Accurate dating of financial bubbles could have important 

policy implications, especially for central bankers and policy makers, since it 

could substantially aid the implementation of policy actions that could 

potentially ease the consequences of bubbles. 

However, only few papers in the literature use recursive estimation 

techniques for dating multiple bubble episodes. More precisely, a recent 

strand in the literature, attempts to detect and date bubble episodes based on 

the unit root behavior of key financial variables. In this paper, we extended 

this strand of the literature by using ANNs in an attempt to approximate the 

basic unit root specification so as to account for neglected non-linearities. 

Moreover, we provided a recursive dating procedure for bubble episodes and 

we applied both our bubble detection test and its dating mechanism to the 

S&P500 index. 

 According to our findings, the proposed specification is fully capable 

of capturing the bubble episodes in the time sample examined. Additionally, 

the bubble periods identified are longer in comparison to PSY. More 

precisely, in all common bubble episodes our proposed specification 

identified the bubble, in the general case, earlier compared to PSY. In other 

words, our specification could be thought of as an EWM for bubble formation, 

which in turn could have important implications. 

In brief, the early identification of bubbles is of outmost importance for 

policy makers and central bankers, as we have seen. The importance of early 

identification lies in the timing of implementation of specific countermeasures 

that could potential prevent: a) the magnitude of a potential collapse through 

regulatory interventions in the financial markets; b) the downturn effects of 

bubble collapse in the economy through appropriate inflation targeting; and 

c) the devastating spillover effects in the global economy through interest rate 

and/or exchange rate setting.  
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Of course, there are still numerous issues that could serve as examples 

for further investigation. For example, from a theoretical point of view, one 

could explore the limit theory characteristics of the proposed approach or, 

from an empirical point of view, one could make an attempt to explore 

alternative NN architectures. Clearly, future research in capturing and 

modeling non-linearities in bubbles would be of great interest. 
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Appendix 

 
Theorem 1: Consider X ⊆ ℝ! a compact subset of ℝ! and C(X) the space of all 

real valued functions defined on 𝑋. Let 𝜑:X → ℝ be a non-constant, bounded 

and continuous function. Then, the family:  

ℱ = {F x ≡ a!φ w!
!x+ b!!

!!! , a!, b! ∈ ℝ, w! ∈ ℝ!} is dense on C X . 

Proof: See Hornik (1991). 

 

Definition 2: If 𝑥!! , 𝑖 ∈ 𝐼  is an arbitrary time series such that 𝑥!! ∈ ℝ
!∀𝑖 ∈ 𝐼, 

and  ∀𝑖 ∈ 𝐼,∀𝑡 ∈ 𝑇, we define 𝑥!! ⊂!∈! ℝ! to be the time series set. 

 

Proof of Theorem 2 

The proof is trivial and is based on the fact that any closed and bounded 

subset of ℝ! is compact (e.g. Rudin 1976). 

 

Proof of Theorem 3 

Without loss of generality, let 𝑔:ℝ! → ℝ be a function of the form 𝑔 𝑥!!!! =

𝜌𝑥!!!! . Then, the function 𝑘:ℝ! → ℝ  is defined as the product of 

functions  𝑔:ℝ! → ℝ and 𝐹 𝑥!!!! :ℝ
! → ℝ, i.e. 𝑘(𝑥!!!!) ≡ 𝑔 𝑥!!!! ⋅ 𝐹(𝑥!!!!). 

(i) Let 𝑖 ∈ 𝐼  and  𝑡 ∈ 𝑇 . 𝐹 𝑥!!!! :ℝ
! → ℝ is non-constant by definition when 

𝑎!≠0, for some  𝑛 ∈ ℕ. In order to prove that 𝑘:ℝ! → ℝ is also non-constant, it 

suffices to prove that 𝑔:ℝ! → ℝ is non constant. But, by definition,  𝜌 ∈ ℝ and 

𝑥!!!! ≠ 0 for some 𝑡 ∈ 𝑇, and, hence  𝑔:ℝ! → ℝ is non constant. 

(ii) Let 𝑖 ∈ 𝐼 and  𝑡 ∈ 𝑇. Since  𝐹 𝑥!!!! :ℝ
! → ℝ is bounded, in order to prove 

that 𝑘:ℝ! → ℝ is bounded, it suffices to prove that 𝑔:ℝ! → ℝ is bounded i.e. 

𝑔 𝑥!!!! < 𝑀 , 𝑀 ∈ ℝ . By construction,   𝑔:ℝ! → ℝ  is bounded since 𝜌 ∈ ℝ 
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∀𝑡 ∈ 𝑇 . Hence, there exists 𝑀 ∈ ℝ such that 𝑔 𝑥!!!! < 𝑀 , ∀𝑖 ∈ 𝐼 .  Hence, 

𝑔:ℝ! → ℝ is bounded. 

(iii) Let 𝑖 ∈ 𝐼 and  𝑡 ∈ 𝑇. The function 𝑘:ℝ! → ℝ is continuous as the product of 

the continuous functions  𝐹 𝑥!!!! :ℝ
! → ℝ and 𝑔 𝑥!!!! :ℝ

! → ℝ. 

 

Proof of Theorem 4 

From Theorem 2, the set of time series is compact. From Theorem 3, any 

function of the form 𝑘(𝑥!!!!) ≡ 𝜌𝑥!!!! ⋅ 𝐹(𝑥!!!!), 𝜌 ∈ ℝ  is continuous, bounded 

and non-constant. Hence, from Theorem 1, the family: ℱ = {𝑘(𝑥!!!!) ∈

C 𝐺!!∈! : 𝑘(𝑥!!!!) ≡ 𝜌𝑥!!!! ⋅ 𝐹(𝑥!!!!),𝐹 𝑥!!!! ≡ 𝑎!𝜑(𝛽! ⋅ 𝑥!!!!)
!
!!! , with  𝑎! , 

𝛽! ∈ ℝ∀𝑛 ∈ ℕ, 𝜌 ∈ ℝ ≠ ∞} is dense in C( 𝐺!!∈! ). 

 

Proof of Proposition 1 

Let 𝑥!!, 𝑖 ∈ 𝐼  be an arbitrary time series of length T>0. Then the proposed 

specification implied by equation (12) for 𝑥!! is: 

𝑥!! = 𝜌𝑎!𝑥!!!!
!!!! + 𝜌𝑎!𝑥!!!!

!!!! +⋯+ 𝑥!!!! + 𝜀! 

By application of the lag operator 𝐿, we get: 

𝑥!! = 𝜌𝑎!𝐿𝑥!!
!!!! + 𝜌𝑎!𝐿𝑥!!

!!!! +⋯+ 𝐿𝑥!! + 𝜀!! 

Using the linearity of the lag operator, we get: 

𝑥!! = 𝜌𝑎!𝐿𝑥!!𝑥!!
!! + 𝜌𝑎!𝐿𝑥!!𝑥!!

!! +⋯+ 𝐿𝑥!! + 𝜀!! 

𝑥!! 1− 𝐿 𝜌𝛼!𝑥!!
!! + 𝜌𝛼!𝑥!!

!! +⋯+ 1 = 𝜀!! 

Therefore, 𝑥!! is a stationary process of the form 𝑥!! =
!!!

!!! !!!!!!!!⋯!!
  when 

1− 𝐿 𝜌𝛼! + 𝜌𝛼! +⋯+ 1 ≠ 0, 𝛽! ∈ 𝐵(0, 𝜀) , 𝜀 > 0. This, in turn, implies that: 

𝜌 𝛼!!
!!! ≠ 0. Thus: 𝜅!!

!!! ≠ 0, since:  𝜌𝑎! = 𝜅!∀  𝑛 ∈ ℕ. This completes the 

proof. 


