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Research highlights 

► Exposure to 4-Nonylphenol induced hormetic dose-dependent changes in testicular structure 

and sperm parameters. 

► High-dose exposure of Sprague-Dawley rats to 4-Nonylphenol exerted adverse effects on the 

male reproductive development and function. 

► Subacute exposure to 4-Nonylphenol caused oxidative stress in testis and activated the 

p53-Bcl-2/Bax and -Fas/FasL pathways, resulting in testicular apoptosis. 

 

 

ABSTRACT  

  This study tested the hypothesis that prepubertal exposure to 4-Nonylphenol (NP) affects 

reproductive function in male rats. Twenty-four rats at five-weeks-old were randomly divided into 

four groups and treated with NP at varying concentrations (0, 5, 20, and 60 mg/kg/2d) for thirty 

days by intra-peritoneal injection. 60 mg/kg NP induced spermatogenic degeneration and 

pronounced deficits in epididymal sperm count, motility and function, whereas potentially 

stimulatory effects were observed at 5 NP mg/kg. Moreover, 60 mg/kg NP resulted in a significant 

reduction in fructose, FSH and LH; induced apoptosis related to oxidative stress; inhibited mRNA 

and protein levels of Bcl-2 and PCNA; as well as the additional up-regulation of p53, Bax, Apaf-1, 

cytochrome c, cleaved-caspase-3, Fas and FasL expression. Our data suggest potentially hormetic 

effects of NP on spermatogenic function. High-dose NP impairs testicular development and 

function by reducing cell proliferation and inducing apoptosis involving oxidative stress-related 

p53-Bcl-2/Bax and -Fas/FasL pathways. 

Keywords:  

4-Nonylphenol, Hormetic effect, Reproductive toxicity, Oxidative stress, Apoptosis, Intrinsic 

and extrinsic apoptotic pathways, Rats 

1. Introduction 

4-Nonylphenol (NP) has received increased international attention due to its widespread 

environmental occurrence, as it is known to disturb hormone functions and inhibit stimulation of 

the endocrine system [1]. NP has been detected in almost all environmental water matrices, 

including drinking water, and has been shown to have relatively high coefficients for adsorption 

onto sediment and soil [2]. Due to its lipophilic properties and long half-life, NP is ubiquitous in 

the food chain, including fish, animal tissues, milk, and cereals [3]. Due to the concerning 

environmental concentrations (surface water) and potential toxicity of NP, the chemical has 

been included in the list of 33 priority hazardous substances regulated by the European Parliament 

Directive 2008/105/EC [4]. 

The entry of NP into the biological system has attracted concern about reproductive and 

developmental disorders in human populations exposed to the affected food chain [2, 5]. To date, 

we are aware of only one epidemiological study; was an investigation conducted in China that 

addressed urinary NP level in relation to idiopathic male infertility [6]. The results of in vitro 

studies have suggested that exposure to NP negatively affects sperm motility and viability [7, 8]. 

http://mct.aacrjournals.org/content/4/2/207.short
http://mct.aacrjournals.org/content/4/2/207.short
http://onlinelibrary.wiley.com/doi/10.1002/j.1939-4640.2000.tb03273.x/pdf
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Similarly, previous in vivo studies have demonstrated that NP exposure adversely impacts 

spermatogenic development and decreases sperm counts and motility [9, 10]; however, there 

have been no reports that describe the adverse effects of NP on epididymal sperm parameters 

in rats at prepubertal age. This stage is considered as one of highly sensitive periods to subtle 

effects of xenoestrogens exposure and thus the effects of NP need to be observed at this 

developmental time point [11, 12]. 

Oxidative stress (OS), which results from an imbalance between reactive oxygen species 

generation and antioxidant defences, has been linked to germ cell apoptosis and male infertility 

[13]. Previous studies unanimously supported that OS potentially interferes with normal 

spermatogenic process and sperm functionality in mammals [14, 15]. Interestingly, NP 

administration not only induces oxidative stress in the testis, but also triggers testicular apoptosis 

[15, 16]. Furthermore, Lu et al. reported that OS is involved in NP-mediated apoptosis in testicular 

germ cells in vivo [10]. OS is capable of inducing apoptosis that is largely dependent on caspase 

activities[17]. It is has been determined that caspase activation occurs through mitochondrial 

cytochrome c/Apaf-1 and Fas/FasL signalling pathways in vivo and in vitro[18]. We believe that 

further investigation regarding the apoptotic mechanism of NP-induced OS and the subsequent 

activation of extrinsic and intrinsic apoptosis signalling pathways are necessary to better 

understanding of the toxicological effects of NP. 

In this study, male rats were treated with NP during the prepubertal period, followed by 

evaluation of epididymal sperm parameters and histopathological examination. Serum 

follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone concentrations and the 

content of fructose in testis were evaluated. The in vivo antioxidant activity of NP and relative 

changes in anti-oxidative gene and pro-/anti- apoptotic gene mRNA expression were studied to 

reveal the underlying apoptotic mechanisms. We then investigated the potential role of NP in 

proliferation inhibition and apoptosis induction of the germ cells in the testis, and explored the 

NP-induced mitochondria-and death receptor-mediated apoptosis. 

2. Materials and methods 

2.1. Chemicals 

4-Nonylphenol (Mixture of isomers; CAS no. 84852-15-3; empirical formula C15H24O; 

molecular weight 220.35) with 99% analytical standard was purchased from ACROS Organics 

(Leicestershire, UK). DeadEndTM Fluorometric TUNEL System kit was purchased from Promega 

(Madison, WI, USA). Mouse monoclonal proliferating cell nuclear antigen (PCNA) antibody and 

p53 were purchased from Abcam Inc. (Cambridge, MA, USA). FSH immunoradiometric assay 

(IRMA) kits and LH radioimmunoassay (RIA) kits were purchased from MP Biochemicals 

(Asse-Relegem, Belgium). BCA protein assay kit and RIPA lysis buffer were purchased from the 

Beyotime Company of Biotechnology (Shanghai, China). The fructose assay kit, malondialdehyde 

(MDA), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) kits were obtained 

from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). TRIzol® Reagent and 

Platinum® SYBR® Green qPCR SuperMix-UDG kit purchased from Invitrogen (Carlsbad, CA). 

Revert Aid First Strand cDNA Synthesis kit was purchased from Fermentas UAB (Vilnius, 

Lithuania). Rabbit monoclonal antibody against pro-caspase-3 was purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). Rabbit monoclonal antibodies against p53, Bcl-2, PCNA, 
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Bax, Apaf-1, cytochrome c, cleaved-caspase-3, Fas, FasL and TNF-α were purchased from Cell 

Signalling Technology (Cambridge, MA, USA). Goat anti-rabbit and anti-mouse secondary 

antibodies were purchased from Amersham (Buckinghamshire, UK).  

2.2. Animals and treatment 

All animal experimental procedures were carried out in accordance with the Guide for the 

Care and Use of Laboratory Animals published by Ministry of Health of People’s Republic of 

China. The experimental protocols were approved by the Institutional Animal Care and Use 

Committee of Tongji Medical College (Wuhan, China).  

Twenty-four Sprague-Dawley (SD) rats, clean-grade healthy, male, 4 weeks old, weighing 

140-160 g, were purchased from Tongji Medical College Animal Centre (Wuhan, China), and 

were housed in an animal room where the temperature (22-25°C) and relative humidity (45-60%) 

were controlled. A 12-h day-night cycle was maintained for the lighting period. Rats had free 

access to purified water and animal feed.  

After a week of acclimatisation, 5-week-old rats were randomly allocated into four groups (n = 

6): three NP treatment groups (5, 20 and 60 mg/kg body weight/two days) and a control group. 

Rats were exposed to different doses of NP dissolved in corn oil by intraperitoneal injection for 30 

consecutive days to cover the spermatogenic cycle according to Yu et al. [19]. The injection 

volume of each dose was 10 mL/kg body weight and rats were weighed immediately prior to 

treatment to calculate the actual volume of administration. The control rats received the same 

volume of corn oil vehicle. 

2.3. Collection of blood and testis samples 

After treatment, six rats in each group were weighed accurately. Rat blood samples were 

collected from the eye vein by removing the eyeball quickly. Then the rats were sacrificed by 

decapitation, and their testis were dissected out immediately, trimmed off the attached tissues and 

weighed on the ice plate. The blood was allowed to coagulate for 2 h at 4°C and then centrifuged 

at 3000 rpm for 10 minutes. Serum was separated and stored at -20°C until biochemical analysis. 

The tissue (5×5×3 mm) cut from the left testis was fixed with 4% paraformaldehyde buffer, 

processed, embedded in paraffin for haematoxylin-eosin (H&E) staining, terminal 

deoxynucleotidyl transferase-mediated nick and labelling (TUNEL) analysis and 

immunohistochemistry. The tissue (2×2×2 mm) cut from the right testis was fixed in 2.5% 

glutaraldehyde for electron microscopic observations. The rest of the tissue of the bilateral testis 

was frozen by immersion in liquid nitrogen and stored at -80°C until biochemical analysis.  

2.4. Detection of semen parameters 

The left epididymis was used for evaluation of sperm parameters. After decapitation, cauda 

epididymis and ductus deferens were dissected out immediately, trimmed off the attached tissues. 

Then, the left epididymis of each rat rinsed briefly in pre-warmed physiological saline (37°C) and 

then placed in a small petri dish with 2 mL sperm nutrient solution (0.35 g/L NaHCO3, 4.2 g/L 

HEPES, 2.0 g/L BSA, 0.35 g/L NaHCO3, 0.1 g/L sodium pyruvate, 0.9 g/L D-glucose, and 0.025 

g/L soybean trypsin inhibitor in Hanks balanced salt solution, pH=7.4, 37°C). Ten deep cuts were 

made along the proximal and distal cauda of epididymis to release the sperm and stored in a CO2 
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incubator (humidified atmosphere of 95% air, 5% CO2, 37°C) for 5 minutes. Following this, a 

sperm suspension (5µl) was applied onto a clean glass slide and computer-assisted semen analysis 

was used to detect sperm count, motility and motion parameters, as previously described [20]. The 

control data are consistent with normal historical control data for this lab. 

2.5 Determination of sperm malformation rate 

The right epididymis was used for routine sperm deformation test. Sperm suspension taken 

from the right epididymis from each rat was prepared as described above (Section 2.4). A drop of 

the suspension was placed on a clean slide and smeared evenly, after which the smears were air 

dried, fixed with 1% paraformaldehyde, and then stained with 2% eosin for 2 h. The slides were 

washed in water and air dried again. Under the microscope, 400 sperm were observed per rat. The 

percentage of abnormal sperm was recorded. 

2.6. Estimation of fructose and hormone levels 

The serum was stored at -80°C was thawed. Serum hormone concentrations were measured by 

double-antibody ELISA methods using LH, FSH and T RIA kits according to the standard 

protocol supplied by the kit manufacturer. The content of fructose and protein in the testis were 

determined according to the methods described in the references using commercial kits. All 

samples and standards were run in triplicate. 

2.7. Testicular Histopathology 

The tissues were embedded in paraffin. Then 4-µm sections were cut and stained with HE, and 

examined under a fluorescence microscope (Olympus, Tokoy, Japan) according to standard 

protocols. 

2.8. Assay of oxidative biochemical parameters 

OS markers including MDA, SOD and GSH-Px were detected in both plasma and testis samples. 

Notably, testicular tissues were homogenised in RIPA lysis buffer. The protein content of testicular 

homogenate supernatant was quantified via BCA protein content assay. The levels of MDA and 

the activities of SOD and GSH-Px were determined using commercial kits. All assays were 

performed according to the instructions of the manufacturer. 

2.9. Transmission electron microscopy (TEM) 

After being fixed in 2.5% glutaraldehyde, small testicular specimens were post-fixed for 2 h 

with 1% osmium tetroxide, dehydrated and then embedded in Eponate-12 overnight. Finally, 

ultrathin sections were stained with 1% uranyl acetate and 1% lead citrate. The ultrastructural 

features of germ cells were examined and photographed using a Tecnai G2 12 Transmission 

electron microscopy (FEI Company, Holland). This experiment was repeated twice. 

2.1.1. TUNEL staining and quantitative analysis 

Germ cell apoptosis was evaluated by the terminal deoxyribonucleotidyl transferase 

(TDT)-mediated dUTP-digoxigenin nick end labeling (TUNEL) assay. To detect nuclei with DNA 

fragmentation, representing a hallmark of apoptosis, paraffin-embedded sections (4-µm thick) 

were stained by using the DeadEndTM Fluorometric TUNEL System kit. After adding DAPI 

nuclear stain in mounting medium, images were examined by the fluorescence microscope to 

http://www.baidu.com/link?url=swLpmOqsbeZF28sbeVoLZoIZ0G2E2OOqhUkYtkYqxyUedXeBaX8Oxszk2NfTe-hX8LhxbY3qvptg_bpVmmY4fK
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detect localised green fluorescence of apoptotic cells. Two testicular cross-section slides from each 

rat were used for the quantitative study. Apoptotic index was calculated [100%×(number of 

TUNEL-positive nuclei/total number of nuclei)]. The result was regarded as the mean of six 

different seminiferous tubules on each section. The image was captured with a colour video 

camera. 

2.1.2. Cell proliferation assay and localization of p53 by immunohistochemistry 

Paraffin wax tissue sections of 4-µm thickness were deparaffinised and rehydrated. 

Endogenous peroxide activity was inhibited by incubating sections in 0.3% hydrogen 

peroxide/methanol for 30 minutes. Sections were then incubated overnight at 4°C with mouse 

monoclonal anti-PCNA (1:200 dilution) and anti-p53 (1:500 dilution), respectively. A secondary 

anti-mouse antibody (1:500) was then applied to each slide, followed by incubation with 

streptavidin horseradish peroxidase enzyme conjugate. Immunoreaction products were stained 

with using 3,3′-diaminobenzidine as a chromogen. Each slide was counterstained with Mayer′s 

haematoxylin. Negative controls were prepared with the sections stained without the primary 

antibody. For each section, six seminiferous tubules were counted for the total number of nuclei 

versus nuclei positively stained in brown. The percentage of PCNA-positive cells was calculated 

as follows: (number of PCNA-positive cells)/(total number of cells within the tubule)×100. The 

immunohistochemical expression of active p53 was examined and photographed under a 

fluorescence microscope. These analyses were performed in two sections from each rat. 

2.1.3. Real-Time Quantitative PCR 

Real-time (RT) PCR was performed to quantify gene expression following the method of Quan 

et al. [20]. Briefly, total RNA was extracted with Trizol reagents according to the manufacturer’s 

protocol. Primer sequences used for real-time RT-PCR analysis are summarised in Table S1. Equal 

amounts of RNA (2 µg) was reverse-transcribed into complementary DNA using Revert Aid First 

Strand cDNA Synthesis Kit. Afterwards, RT-PCR was performed with an ABIPRISM® 7900HT 

Sequence Detection System (Applied Biosystems) using Platinum® SYBR® Green qPCR 

SuperMix-UDG with ROX. β-actin was regarded as a housekeeping gene. The results were 

represented as a ratio: targeted gene/β-actin mRNA. 

2.1.4. Protein extraction and Immunoblotting 

After the indicated treatment, SCs were harvested and washed twice with ice-cold 

phosphate-buffered saline and lysed in lysing buffer. Protein content was quantified using a BCA 

protein assay kit, and lysate containing 20–50 µg of protein was subjected to SDS-polyacrylamide 

gel and then transferred electrophoretically onto a nitrocellulose membrane followed by Western 

blot analyses as described previously [21]. The immune-reactive protein bands were visualised 

using the enhanced chemiluminescence plus Western blot detection system. Densitometric 

analysis was performed on scanned images of blots using the Gel-Pro Analyzer 4.0 software. 

2.1.5. Statistical Analysis.  

All statistical calculations were performed using the SPSS statistical package 12.0 (SPSS Inc., 

Chicago, IL, USA). Quantitative results were expressed as mean ± standard deviation (SD) of at 

least three independent experiments. Statistical significance between three or more groups was 
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performed by the one-way analysis of variance (ANOVA). Student-Newman-Keuls (SNK) test 

was used to determine significant differences between treated and control groups. We considered 

values of P<0.05 to be statistically significant. 

3. Results 

3.1. General observation 

No deaths were observed in any group. No significant difference was observed in the initial 

body weights, terminal body weights, body weight gain or the weight coefficient of testis among 

the four groups (P>0.05, data not shown).  

3.2. Evaluation of testicular sperm counts and motility 

Data from computer-assisted sperm analysis are shown in Table 1. When rats were treated with 

the 60 mg/kg NP, significant decreases (p<0.05) in total sperm counts, motility and motile density 

were observed in comparison with the control group. In contrast, marked increases in total counts, 

motility and motile density were observed in rats treated with the 5 mg/kg NP (p<0.05). 

Accordingly, there was a statistically significant difference (p<0.01) between the 5 mg/kg and 

60 mg/kg groups.  

Regarding the motility parameters, except for a significant decrease in the density of FP 

detected at NP 60, no alterations of other motility parameters such as curvilinear velocity (VCL), 

straight line velocity (VSL) and average path velocity (VAP) were found in the 60 mg/kg group 

when compared with the 0 mg/kg group. Notably, the density of sperm with forward progression 

(FP) was significantly elevated (p<0.05) in rats treated with 5 mg/kg NP compared with the 

0 mg/kg group. However, the VCL, maximal amplitude of lateral head displacement (ALH) and 

the density of FP in the 60 mg/kg group were much lower than those in the 5 mg/kg group 

(p<0.05). 

3.3. Effect of NP on rat sperm quality 

Compared with the 0 mg/kg group, the percentages of B, C, D and C&D grade motile sperm 

did not reveal any significant alterations after exposure to 5 mg/kg NP, but there was a significant 

increase in sperm of grade A and A&B (p<0.05, Table 1). The percentage of A&B grade sperm 

tended to decrease in the 60 mg/kg group when compared with the 0 mg/kg group, but there was 

no significant difference between the two groups (p>0.05).  

3.4. The frequency of abnormal spermatozoa 

As shown in Fig. 1, the changes in epididymal sperm characteristics were observed in response 

to NP treatment. Five different abnormalities in sperm morphology were found: coiled and bent 

tail, tailless form, double head, pin head and big head. The 5 mg/kg and 0 mg/kg NP-treated 

groups did not differ significantly in terms of their percentage of total sperm abnormalities, but the 

20 mg/kg and 60 mg/kg NP-treated rats had significantly higher abnormal sperm morphology rates 

than the 0 mg/kg group (p<0.05; Table 1). 

3.5. Effects on reproductive hormones and fructose 

The plasma levels of FSH and LH were reduced in a dose-dependent manner, and there was a 
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significant difference (p<0.05) between the 0 mg/kg and 60 mg/kg groups (Fig. 2). In the 60 

mg/kg group, the plasma testosterone levels did not significantly change compared to the 0 mg/kg 

group (Fig. 2). The fructose level dramatically dropped in rats treated with the 60 mg/kg NP when 

compared with the control (p<0.05; Fig. 2). 

3.6. NP-induced testicular histopathological changes 

NP also induced histological alterations in the testis (Fig. 3). The 0 mg/kg group showed all of 

the successive stages of spermatogenesis, and a compact and a regular arrangement of cells in the 

seminiferous tubules (Fig. 3A). The rats exposed to NP at 5 mg/kg did not exhibit histological 

differences compared to the control (Fig. 3B); whilst abundant sperm could be detected in the 

lumen of the seminiferous tubules. Exposure of the rats to 20 and 60 mg/kg NP provoked severe 

seminiferous tubule destruction, namely the spermatogenesis spermatogenesis derangement, 

spermatogenic cell sloughing and the vacuolization of the seminiferous tubular cells (Fig. 3C and 

D), particularly in the 60 mg/kg group. 

3.7. Role of NP on OS 

Testis from rats in the 60 mg/kg group showed a significant depletion in SOD and GSH-Px 

activity (p<0.05), while the level of MDA was increased (p<0.05) when compared with the 

controls (Fig. 4A). Similarly, when compared with the control, NP-treated rats at NP 20 and 

60 mg/kg showed a marked decline (p<0.05) in serum SOD and GSH-Px activity and a 

pronounced increase (p<0.05) in the MDA content (Fig. 4B). Furthermore, the mRNA levels of 

CAT, GPx1, SOD1 and CYP1B1 were significantly lower at NP 60 (p<0.05, Fig. 5).  

3.8. Ultrastructural Observations 

The TEM examination revealed that seminiferous tubule basement membrane in the 0 mg/kg 

group was smooth and compact; spermatocytes appeared normal; and endoplasmic reticulum and 

mitochondria were evenly distributed into the cytoplasm (Fig. 6A). The rat testis at NP 5 mg/kg 

did not show any obvious ultrastructural change when compared to the 0 mg/kg group. However, 

in the 20 mg/kg group, more intracellular vacuoles and lipid droplets were present; the nucleus 

had irregular nuclear membrane and abnormal distribution of heterochromatin; mitochondria were 

swollen, and the endoplasmic reticulum was expanded. At NP 60 mg/kg, germ cells with cellular 

fragmentation similar to apoptosis, disruption of cellular junctions and condensed nucleus were 

observed; the number of mitochondria and the amount of endoplasmic reticulum was decreased; 

and some of nucleolus and nuclear membrane even disappeared. 

3.9. Effects of NP on the Apoptosis and Proliferation of Spermatogenic Cells 

Higher-dose NP increased apoptotic testicular cells, detected with TUNEL staining (Fig. 6B), 

from 7.2±2.4% (20 mg/kg) to 8.5±1.9% (60 mg/kg). Compared with controls (1.03±0.25%), 

TUNEL-positive cells were considerably elevated by NP treatment (20 and 60 mg/kg) (p<0.01). 

Conversely, the percentages of PCNA-positive cells in the 20 and 60 mg/kg NP-treated group 

(72.55±9.36% and 54.36±8.33%, respectively) were statistically lower than in controls 

(88.62±7.25%) (p<0.05, Fig. 7A). Moreover, RT-PCR analysis revealed that NP treatment (20 and 

60 mg/kg) significantly decreased the PCNA1 mRNA level compared with the control (p<0.01, 

Table 2). Interestingly, PCNA-positive cells were more abundant in the 5 mg/kg group 
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(92.74±10.52%) than the control, meanwhile, the PCNA1 mRNA level markedly up-regulated in 

the 5 mg/kg group (p<0.01). 

3.1.1. Apoptosis and inflammatory-related mRNAs expression 

As shown in Table 2, in the 60mg/kg NP-treated rats, compared to the control rats, the level of 

caspase-3 mRNA was significantly increased (p<0.05), while the expression level of caspase-7 

was visibly decreased (p<0.01). Significant decreases in mRNA expression levels of anti-apoptotic 

Bcl-xl and Bcl-2 were observed in the 20 mg/kg group compared with those in the 0 mg/kg group, 

whereas NP (60 mg/kg) significantly up-regulated the pro-apoptotic Bax at mRNA levels (p<0.05). 

Furthermore, an obvious increase in the intensity of p53 expression was observed at NP 20 and 60 

mg/kg (Fig. 7B). RT-PCR analysis confirmed a significant increase in mRNA levels of apoptotic 

genes including p53, cytochrome c, Apaf-1, Fas and FasL in the 60 mg/kg group (all p<0.05), 

compared to the control group. There were also significant differences observed between the 

0 mg/kg and 60 mg/kg groups regarding the mRNA expression of inflammatory IL-1β, TNF-α and 

IFN-γ (all p<0.05). Surprisingly, caspase-1, -3, -6, -9 and IFN-γ mRNA expression was 

significantly decreased in the 5 mg/kg group in comparison with the control group (all p<0.05).  

3.1.2. Western Blot Analysis 

Consistent with the results above, the protein levels of Bcl-2, PCNA and pro-caspase-3 

significantly decreased after treatment with NP (60 mg/kg) as shown by Western blot (Fig. 8A) 

and the quantification analysis (Fig. 8B, C and D). Moreover, the expression of p53, Bax, Apaf-1, 

cytochrome c and cleaved-caspase-3 was dramatically up-regulated at NP 60 (all p<0.05, Fig. 8E, 

F, G, H and I). It is noteworthy that the ratio of Bcl-2/Bax for the 20 and 60 mg/kg group was 

significantly increased compared to the 0 mg/kg group (p<0.05, Fig. 8J). We also evaluated in the 

same conditions expression of Fas, FasL and TNF-α, that were significantly increased at NP 60 

(all p<0.05, Fig. 8K, L and M). 

4. Discussion 

Fertility can be evaluated by sperm concentration, motility and morphology [22]. Recently, it 

has been shown that NP has adverse effects on mammalian spermatogenesis [8, 23]. Moreover, NP 

can induce sperm toxicity as well as inhibit sperm motility in vitro and in vivo [7]. Under our 

experimental conditions, a direct relationship between excessive exposure to NP and the degree of 

deterioration in epididymal sperm parameters was observed. Importantly, high-dosage NP 

significantly caused an increase in incidence of sperm deformities. Our results suggest that the 

increases in NP treatment in vivo can impair epididymal sperm function and fertilizing capacity. 

Moreover, the histopathological analyses highlight seminiferous tubule degeneration after the 

higher-dose NP administration. These finding confirms other studies [15, 24] and further indicates 

that prepubertal exposure to excessive NP exposure inhibits the programming of spermatogenesis, 

thereby leading to spermatic damage and male reproductive disorders in pubertal-adolescent, and 

adult phase. 

Spermatogenesis is dependent on a well-orchestrated hormonal environment [25]. Typically, 

LH and FSH are the primary tropic hormones that regulate testicular function [26]. LH and FSH 

secreted by the anterior pituitary can stimulate Sertoli and Leydig cells and, in turn, boost the 

secretion of testosterone from Leydig cells [27, 28]. In our study, although no significant change 
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in the testosterone serum levels, the serum LH and FSH levels at NP 60 mg/kg were considerably 

decreased, suggesting that NP induced hormonal imbalance. Fructose is the primary nutrient 

source for the sperm in the semen [29]. Low fructose concentration in the testis is related to 

low-sperm motility [30]. The diminished levels of testicular fructose observed here are in line with 

the suppression of sperm motility in the NP 60 mg/kg group. Altogether, we speculate that high 

exposure to NP could interfere with hypothalamus-pituitary-testicular axis that regulates Sertoli and 

Leydig cell function, through the production of hormone and fructose, thereby impairing 

spermatogenesis and affecting energy metabolism of sperm [31, 32]. 

The content of lipid peroxidation product and anti-oxidase activities can reflect the degree of 

OS [33]. In this study, the 60 mg/kg NP treatment resulted in a significant decrease GSH-Px and 

SOD activities with increasing MDA levels in testicular tissue and serum, indicating OS 

overwhelming the antioxidant defense system. Likewise, in the 60 mg/kg group, the decrease in 

testicular CAT, GPx1, SOD1 and CYP1B1 mRNA expression suggests spermatogenesis disorders 

that involve the compromised antioxidant capacities [34]. In general, testicular lipids are 

particularly susceptible to oxidative stress as they are relatively high (10-14%) in polyunsaturated 

fatty acids (PUFAs) [35]. PUFAs are an essential requirement for germ cells to maintain plasma 

membrane fluidity and normal physiological function of sperm [36]. Notably, owing to the 

pro-oxidant/antioxidant imbalance, reactive oxygen species attacks PUFAs in sperm cells and 

sperm plasma membrane leading to spermatozoa lipid peroxidation, which impairs sperm function 

[37]. In this regard, we speculate that NP-induced oxidative damage in the testis results in 

spermatogenic dysfunction. 

Increasingly, evidence indicates that oxidative stress mediates apoptosis induced by chemical 

toxicity [17]. Apoptosis is a natural event that regulates germ cell turnover and maintains 

spermatogenesis; the immoderate apoptosis of spermatogenic cells would cause defective 

spermatogenesis leading to infertility [38]. PCNA, as a marker of cell proliferation, is expressed in 

spermatogonia and primary spermatocytes in all stages of the seminiferous tubules [39]. Our 

results demonstrated that higher dose of NP induced abnormal balance between cell proliferation and 

apoptosis, characterized by increased apoptotic germ cells and decreased PCNA-positive 

proliferating cells in seminiferous tubules. Furthermore, we observed that PCNA expression at 

mRNA and protein levels was downregulated at NP 60 mg/kg. Caspase signalling plays a pivotal 

role in the activation of apoptotic signal transmission and completion of apoptosis [40]. 

Specifically, caspase-3 converged with various death signals and has a key role in inducing 

apoptosis [41]. Cleaved-caspase-3 is one of the key executioners of apoptosis [42]. Our results 

revealed that NP activated caspase-3, identified by the production of cleaved-caspase-3. In this 

context, the oxidative stress-mediated caspase activation likely contributes to NP-induced 

testicular apoptosis.  

The molecular mechanisms that promote caspase-mediated apoptosis are usually referred to 

the mitochondrial and death receptor pathways [43]. The Bcl-2/Bax signalling plays a central role 

in regulating the mitochondria-dependent apoptotic pathway for normal spermatogenesis in testis 

[38]. Significant changes in expression of Bcl-2 and Bax were observed in this study, including a 

decrease in the Bcl-2/Bax ratio, which confirmed that testicular cells accept signals to induce 

apoptosis [44]. The death receptor pathway, represented by the Fas/FasL system, has been 

reported to be involved in germ cell apoptosis [45]. The Fas-mediated apoptotic pathway consists 
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of several steps that involve the caspase family; in particular, the activation of Fas/FasL signalling 

can drive apoptosis via caspase-3 [46]. Moreover, the induction of Fas/FasL-driven apoptosis that 

modulated by TNF-α and IFN-γ stimulates the release of pro-inflammatory IL-1β [47]. Herein, we 

demonstrate that the mRNA and protein expression of Fas, FasL and TNF-α visibly changed at NP 

60 mg/kg, while the mRNA levels of IL-1β and IFN-γ were significantly elevated. Accordingly, 

Fas/FasL-induced signalling possibly governs both the functional activation of caspase and the 

subsequent germ cell apoptosis associated with the testicular toxicity induced by NP.  

Accumulation of p53 is important in the cellular emergency response to OS [48]. Once 

activated by OS, p53 transcriptionally triggers the activation of pro-apoptotic Bax and the 

constitutive Bcl-2/Bcl-xL inhibition [49]. The release of cytochrome c, regulated by Bcl-2 family 

members, is the switch to turn on/off apoptosis [50]. To nucleate apoptosome formation, cytosolic 

cytochrome c binds the adaptor protein Apaf-1, accelerating the activation caspases 

cascade-dependent apoptosis [49]. In agreement with this theory, our study showed that p53, 

cytochrome c and Apaf-1was upregulated after 60 mg/kg NP treatment at both mRNA and protein 

levels. Induction of active p53 appears to promote the convergence of the intrinsic and extrinsic 

signalling pathways at the mitochondrial level [51]. Recent research has revealed new aspects 

showing that intracellular OS may not have efficient machinery to activate the intrinsic pathway 

completely and may have to stimulate the extrinsic apoptotic pathway to trigger full caspase 

activation [52, 53]. The cross-talk between these pathways allows caspase-driven signal 

amplification to ensure sufficient removal of damaged cells in testis [51]. Here we suggest that 

Fas/FasL signalling may collaborate in p53-mitochondrial apoptotic program, leading to apoptosis 

in testicular germ cells. Nonetheless, the precise molecular mechanisms involved in the joint 

regulation of p53-dependent intrinsic and extrinsic apoptosis induced by NP are not yet clear. 

Hormetic effects on organisms are considered an adaptive response to a moderate stress 

induced by the stimulus [54]. In this study, the most fascinating finding is the stimulatory effect of 

the 5 mg/kg NP treatment on epididymal sperm production, motility and sperm quality. Moreover, 

that active mature and fully functioning seminiferous tubules were observed at NP 5 mg/kg using 

histopathological techniques. These observations support the concept that NP stimulates a 

response from the testis structure and sperm parameters at low concentrations. Hormesis is 

characterized by stimulatory effects at low dose and inhibitory effects at higher concentrations [55, 

56]. In this respect, our results suggest that NP induces hormetic-like biphasic dose-response 

relationships in testis. Hormetic dose responses represent an overcompensation due to a disruption 

to the homeostasis based biological feedback system [57].Therefore it is not unexpected that such 

hormetic-like biphasic dose responses following moderate NP exposure is the induction of 

adaptive tolerance.  

To understand this further, there is a need to clarify the mechanistic foundations of NP-induced 

hormesis. In our study, 5 mg/kg NP not only markedly suppressed caspase-1, -3, -6, -9 and Apaf-1 

activation at the mRNA level, but also produced a significant increase in the mRNA expression of 

PCNA1, with respect to the control group. Disappointingly, we did not find any other 

association for any of the other tested proteins. This implies that another distinct signalling 

pathway is activated in response to this level of exposure, which poses the question to what type 

of mechanism may contribute to such hormetic or adaptive response to NP treatment. 

Receptor-mediated and cell signalling-mediated bidirectional control of gene expression has been 
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considered as the main hormetic mechanism triggered by exposure to chemicals [58]. It is reported 

that hormesis likely depends upon changes in the regulation of genes critical for OS resistance [55, 

59]. Furthermore, Scott et al suggested that the hormetic effect may be attributed to rapid 

up-regulation of the adaptive-response genes [60]. In this context, hormetic responses driven by 

Apaf-1/caspase genes- induced by NP, is probably involved in spermatogenesis and sperm quality. 

This is under the assumption that Apaf-1-mediated caspase activation is important for the 

regulation of germ cell proliferation and differentiation in testis. In our next study, we will perform 

specific experiments designed to address this hypothesis. 

5. Conclusions 

In summary, our study is the first to report that NP induced hormetic dose responses, in which 

low dose NP stimulated spermatogenesis and augmented epididymal sperm parameters in 

prepubertal rats, in contrast, NP at higher dose causes adverse effects such as hormone deficiency, 

disorders of fructose metabolism and testicular oxidative damage, consequently inhibiting cell 

proliferation, impairing testicular functions and compromising sperm function. In addition, NP 

induces testicular germ cell apoptosis by the possible mechanisms of both extrinsic-mediated and 

intrinsic-mediated pathways in vivo. These findings contribute to understanding the mechanism of 

NP on male fertility. Further studies are required to examine the molecular pathways that are 

involved in the alterations described herein. 
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Figure captions 

Fig.1. Effects of 4-nonylphenol on epididymal sperm morphology in rats. Major morphological 

changes in spermatozoa: White arrowheads, normal form; Yellow arrowheads, coiled and bent tail; 

Black arrowhead, tailless form; Red arrowheads, double head; Pink arrowhead, pin head; Blue 

arrowhead, big head. Magnification: ×200. 
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Fig.2. 4-nonylphenol exposure affected the serum hormone and fructose content in testis. Each bar 

denotes Mean ± S.D. of six rats. *P＜0.05, **P＜0.01 versus the 0 mg/kg group, one-way 

ANOVA. 
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Fig.3. Histological morphology of testis stained with H&E from the 4-nonylphenol-treated and the 

control groups. (A) Histological cross-sections of seminiferous tubules and spermatogenesis 

appeared normal in the 0 mg/kg group. (B) In the 5 mg/kg 4-nonylphenol group, most of the 

tubule walls were smooth, and the arrangement of the seminiferous tubule was regular; (C) The 

spermatocyte detached and irregularly lined, and the arrangement of the seminiferous tubule was 

distorted at 4-nonylphenol 20 mg/kg; (D) After 60 mg/kg 4-nonylphenol administration, 

spermatozoas in the tubules reduced as compared with the control group, and the germ cell layers 

of the seminiferous tubules were discontinuous, even some sloughed germ cells detached into the 

tubular lumen. Magnification: ×200. 
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Fig.4. Effects of 4-nonylphenol at different doses on oxidative stress in rats. (A) Effect of 

4-nonylphenol on SOD, GSH-Px and MDA of testicular tissue in rats. (B) Effect of 4-nonylphenol 

on the levels of serum SOD, GSH-Px and MDA in rats. Each bar denotes Mean ± S.D. of six rats. 

*P＜0.05, **P＜0.01 versus group without 4-nonylphenol treatment, one-way ANOVA. 

 

 

Fig.5. Effects of different-dose 4-nonylphenol on mRNA levels of SOD1, CAT, GPx1 and 

CYP1B1 in rat testis. Each bar denotes Mean ± S.D. of six rats. *P＜0.05, **P＜0.01 versus 

group without 4-nonylphenol treatment, one-way ANOVA.  
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Fig.6. Testicular apoptosis was induced by 4-nonylphenol. (A) Electron micrographs of testicular 

tissue in different groups. Seminiferous epithelium from the 0 mg/kg 4-nonylphenol group rats 

showing normal spermatogonia with homogeneous chromatin; In the 5 mg/kg group, the 

morphology of organelles was normal without obvious alteration; In the 20 mg/kg group, swollen 

mitochondria, widened endoplasmic reticulum, big vacuolar spaces, increased lipid droplets and 

heterochromatic nucleus could be seen; In the 60 mg/kg group, showing primary spermatocytes 

with irregular, damaged nuclear membrane, cytoplasmic vacuoles, and damaged mitochondria. 

Bar: 2 μm. Three rats were randomly selected from each treatment group for ultrastructure 

evaluation. (B) Effects of 4-nonylphenol on TUNEL-positive apoptotic changes in seminiferous 

tubules of rats. TUNEL-positive staining indicative of DNA fragmentation was detected as 

bright-green fluorescent on the nuclei of apoptotic cells. Magnification: ×200.  
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Fig.7. Effects of 4-nonylphenol at different doses on the expression of PCNA and p53 in rat testis. 

(A) Testis immunohistochemically stained for PCNA. PCNA-positive (PCNA+) and -negative 

(PCNA-) cells were stained in dark and light blue, respectively. Red arrowheads: PCNA+ cell; 

Black arrowhead: PCNA- cell. In the 0 mg/kg and 5 mg/kg groups, PCNA+ cells were strongly 

detected in spermatogonia and spermatocytes. PCNA+ cells were obviously decreased in the 20 

mg/kg group compared with the 0 mg/kg group. PCNA activity was significantly lower in 

secondary spermatocytes and early-stage sperm cells at 4-nonylphenol 60 mg/kg. (B) 

Immunofluorescence study showing p53 activation in rat seminiferous tubules. p53 expression 

was mainly localised to the early stage sperm cells in seminiferous tubules as indicated by red 

arrowheads. There is a much greater distribution of p53-expressing nuclei in seminiferous tubules 

of the 20 mg/kg and 60 mg/kg groups than the 0 mg/kg group. Magnification: ×200 
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Fig.8. 4-nonylphenol induced testicular toxicity involving the activation of p53-Bcl-2/Bax-Fas 

signalling pathways. (A) 4-nonylphenol regulated the expressions of proteins related to cell 

proliferation and apoptosis. Equal loading of protein was confirmed by stripping the immunoblot 

and reprobing it for β-actin. The immunoblots shown here are representative of three independent 

western blot experiments. Densitometry analyses of the effect of NP on the target protein levels 

are represented for Bcl-2 (B), PCNA (C), pro-caspase-3 (D), p53 (E), bax (F), Apaf-1 (G), 

cytochrome c (H), cleaved-caspase-3 (I), Bcl-2/bax (J), Fas (K), FasL (L) and TNF-α (M). 

Quantitative data are expressed as mean ± SD. n = 6. The Y axis represents the relative protein 

expression level (the ratio of target protein/β-actin and Bcl-2/bax). * P < 0.05, ** P < 0.01 versus 

control group without NP treatment, one-way ANOVA. 
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Table 1 Effect of 4-nonylphenol at different doses on sperm concentration, motility, motility parameters 

and morphology 

Parameters 
4-nonylphenol (mg/kg body weight every 2 days) 

0 5 20 60 

Sperm density and motility     

Total counts 470.33±166.44 727.67±143.06* 409.50±125.31 278.67±79.20* 

Total motility 229.17±116.46 351.33±82.00** 217.83±55.78 123.17±38.83** 

Total density (millions/mL) 28.96±4.66 39.99±4.89* 23.57±7.29 19.82±4.52 

Activate rate (%) 45.40±9.48 45.80±5.44 51.70±11.65 41.49±2.62 

Motile sperm density (millions/mL) 12.18±1.93 18.96±1.80** 12.82±1.84 9.85±1.55* 

Motion parameters     

VCL (μm/s) 35.92±4.83 40.11±7.51 39.41±3.52 31.47±8.62 

VSL (μm/s) 18.70±3.46 21.81±7.08 17.78±5.58 16.83±5.35 

VAP (μm/s) 22.74±3.61 26.04±7.17 22.30±5.14 20.30±5.51 

Average ALH (μm) 4.95±0.65 5.22±0.77 5.29±0.64 4.21±1.17 

Maximal ALH (μm) 12.39±0.98 13.66±1.49 12.75±1.54 10.68±2.47 

Average BCF (times/s) 9.54±1.05 9.26±0.98 10.35±1.47 8.46±2.24 

Rates of FP (%) 23.42±3.61 25.01±7.20 22.07±8.13 22.50±6.55 

Density of FP (millions/mL) 6.52±1.66 9.89±2.15* 5.09±1.26 3.71±1.14* 

Sperm swimming velocity     

Sperms of grade A (%) 8.87±2.02 15.15.97±3.37** 7.90±2.24 8.85±2.87 

Sperms of grade B (%) 10.58±3.23 9.21±2.16 10.60±2.61 8.54±1.96 

Sperms of grade C (%) 25.96±5.36 20.62±3.09 36.94±10.81** 24.68±4.04 

Sperms of grade D (%) 54.60±9.48 54.42±2.22 44.56±8.79* 57.93±7.18 

Sperms of grade A＆B (%) 19.45±5.02 25.18±4.56* 18.50±4.53 17.39±4.54 

Sperms of grade C＆D (%) 80.55±5.02 74.82±6.31 81.09±6.20 83.02±9.03 

Sperm morphology 

Total abnormalities (%) 5.08±1.82 6.88±1.24 9.46±1.78* 12.29±3.04** 

Note: The control data are within the range of normal historical control data in our laboratory. Mean ± SD, n=6 for 

each treatment group. *P＜0.05, **P＜0.01 versus 0 mg/kg group, one-way ANOVA. Curvilinear velocity (VCL); 

Straight line velocity (VSL); Average path velocity (VAP); Amplitude of lateral head displacement (ALH); Beat 

cross frequency (BCF); Sperm moving in forward linear motion called forward progression (FP). 
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Table 2 Effects of 4-nonylphenol on mRNA levels of proliferation- and apoptosis-related genes of 

testicular tissue in rats 

Gene 
4-nonylphenol (mg/kg body weight every 2 days) 

0  5  20  60  

Proliferation marker     

PCNA1 1.060±0.059 1.552±0.381** 0.306±0.131** 0.643±0.189** 

Caspase family  

Caspase 1 1.062±0.129 0.645±0.192* 1.102±0.388a 1.362±0.376 

Caspase 3 1.018±0.116 0.690±0.187** 0.770±0.148* 1.223±0.177* 

Caspase 6 1.022±0.051 0.820±0.176* 1.033±0.165 0.991±0.171 

Caspase 7 1.008±0.056 1.067±0.062 0.491±0.093** 0.722±0.101** 

Caspase 8 1.036±0.129 0.850±0.154 1.126±0.318 1.076±0.262 

Caspase 9 1.060±0.104 0.659±0.148* 0.723±0.247* 1.243±0.374 

Caspase 11 1.057±0.138 0.914±0.187 1.188±0.286 1.219±0.125 

Bcl-2 family 

Bad 1.019±0.108 1.101±0.063 0.994±0.139 1.016±0.069 

Bax 1.022±0.064 0.843±0.137 1.123±0.218 1.372±0.226*  

Bcl-2 1.011±0.186 1.047±0.089 0.681±0.238* 0.867±0.177 

Bcl-xl 1.008±0.257 1.007±0.108 0.582±0.112* 0.749±0.267 

p53-mediated mitochondrial signal 

Cytochrome c 0.993±0.163 1.011±0.149 1.276±0.284* 1.307±0.257* 

Apaf-1 1.146±0.223 0.858±0.111* 1.208±0.307 1.807±0.189** 

p53 1.005±0.075 1.083±0.143 0.927±0.193 1.285±0.187** 

Death receptor apoptotic signal 

Fas 1.007±0.094 1.857±0.508** 1.958±0.501** 2.024±0.550** 

FasL 0.999±0.088 1.427±0.252* 1.838±0.449** 1.656±0.368** 

IL-1β 1.081±0.137 1.597±0.328** 0.400±0.103** 0.693±0.175** 

TNF-a 1.078±0.075 1.387±0.148 1.435±0.336 1.986±0.519** 

IFN-γ 1.001±0.145 0.537±0.136* 1.369±0.394 1.336±0.427 

Note: The data are expressed as the mean ± SD for six animals per dose. *P＜0.05, **P＜0.01 

versus 0 mg/kg group, one-way ANOVA. 

 


