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Abstract 

Temporal demand aggregation has been shown in the academic literature to be an 

intuitively appealing and effective approach to deal with demand uncertainty for fast 

moving and intermittent moving items. There are two different types of temporal 

aggregation: non-overlapping and overlapping. In the former case, the time series are 

divided into consecutive non-overlapping buckets of time where the length of the time 

bucket equals the aggregation level. The latter case is similar to a moving window 

technique where the window’s size is equal to the aggregation level. At each period, the 

window is moved one step ahead, so the oldest observation is dropped and the newest is 

included. In a stock-control context, the aggregation level is generally set to equal the 

lead-time. In this paper, we analytically compare the statistical performance of the two 

approaches. By means of numerical and empirical investigations, we show that unless the 

demand history is short, there is a clear advantage of using overlapping blocks instead of 

the non-overlapping approach. It is also found that the margin of this advantage becomes 

greater for longer lead-times.  

Keywords: Temporal aggregation, overlapping, non-overlapping, empirical investigation. 

1. Introduction 

Demand forecasting is the starting point for most planning and control organisational 

activities. Moreover, one of the most important challenges facing modern companies is 

demand uncertainty (Chen and Blue, 2010; Rostami-Tabar et al., 2013). High variability 

in demand for both fast moving and slow or intermittent moving items (items with a high 

proportion of zero observations) pose considerable difficulties in terms of forecasting and 

stock control (Syntetos and Boylan, 2001; Teunter et al., 2010; Strijbosch et al., 2011). 

Stock control is particularly challenging in military, aerospace, automotive and other 

sectors in which there is a volatile demand across a wide variety of stock keeping units 

(SKUs). 
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Fast-moving demand may be subject to erratic ‘spikes’. Similarly, slow moving or 

intermittent demand may be ‘lumpy’ with infrequent high volume of demand. In both 

cases, the data is not only noisy but, often, its distribution does not confirm to any of the 

standard distributions, such as the normal or the negative binomial.  

 

There are many approaches that may be used to address the non-standard demand 

patterns often observed in practice. Non-parametric approaches are promising because, 

by definition, the standard shapes of parametric distributions do not need to be assumed. 

An advantage of using parametric methods is that it is usually straightforward to find the 

distribution of lead-time demand from the distribution of time per period. In the non-

parametric case, we also need to find this lead-time distribution. An appealing approach 

to address this problem is known as temporal aggregation (Nikolopoulos et al., 2011; 

Babai et al., 2012; Syntetos, 2014; Kourentzes and Petropoulos, 2015).  

 

Temporal aggregation refers to the process by which a low frequency time series (e.g. 

quarterly) is derived from a high frequency time series (e.g. monthly). Such aggregation 

may reduce the coefficient of variation of the data, thereby allowing for more accurate 

forecasts. This approach is particularly appealing when forecasts of total demand over an 

aggregated time period are needed; this is a common requirement in inventory control. 

Note that there is another aggregation approach discussed in the literature and often 

applied in practice that may also lead to the reduction of demand uncertainty and the 

improvement of stock control performance. This approach is referred to as cross-sectional 
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aggregation, which involves aggregating different time series in order to improve 

performance across a group of items (Kefeng and Philip, 2003; Zhang and Burke, 2011; 

Rostami-Tabar et al., 2015). 

 

With regards to temporal aggregation, there are two different types of aggregation: non-

overlapping and overlapping. In the former case, the time series are divided into 

consecutive non-overlapping buckets of time where the length of the time bucket equals 

the aggregation level. The latter case is similar to a moving window technique where the 

window’s size equals the aggregation level. At each period, the window is moved one 

step ahead, and so the oldest observation is dropped and the newest is included. 

The potential forecasting benefit of non-overlapping temporal aggregation was 

recognised by Willemain et al. (1994) for intermittent demand.  In this context, 

Nikolopoulos et al. (2011) and Babai et al. (2012) analysed the empirical forecasting and 

stock control performance of the non-overlapping temporal aggregation approach. They 

have shown that an aggregation approach may offer considerable improvements in 

forecasting and stock control. In the context of fast-moving demand following an Auto-

Regressive Moving Average (ARMA) demand processes, Rostami-Tabar et al. (2013, 

2014) analysed the effect of non-overlapping temporal aggregation on demand 

forecasting. They showed that, for high values of positive autocorrelation in the 

disaggregated demand, the non-overlapping aggregation approach is outperformed by 

non-aggregation. More recently, Kourentzes et al. (2014) proposed a Multi Aggregation 

Prediction Algorithm (MAPA) which uses multiple non-overlapping temporal 

aggregation levels simultaneously and combines the forecasts to produce an overall 
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forecast. They found that MAPA improved forecasting accuracy, in terms of both error 

variance and bias. 

The overlapping temporal aggregation approach has also been discussed in the literature. 

Among others, Mohammadipour and Boylan (2012) have analysed the theoretical and 

empirical forecasting outperformance of overlapping temporal aggregation under Integer 

ARMA processes. Porras and Dekker (2008) have shown good stock control performance 

for overlapping temporal aggregation, based on an empirical investigation conducted 

with a Dutch petrochemical complex. 

Although the literature on the overlapping and non-overlapping temporal aggregation 

approaches has been growing in recent years, these two aggregation approaches have 

never been compared, to the best of our knowledge. This constitutes the objective of this 

work in which we attempt to establish some theoretical properties of the approaches. 

Based on these properties, we compare the performance of the two approaches through 

numerical and empirical investigations. 

The contribution of this paper is threefold: 

1. We derive the variance expression of the overlapping blocks estimator of the 

cumulative demand distribution for independently and identically distributed (i.i.d.) 

demand; 

2. We provide a general condition, for i.i.d. demand, for the variance of the 

overlapping blocks approach to be lower than the non-overlapping blocks (NOB) 

approach; 

3. We show that there exists situations under which the non-overlapping blocks 

approach is less variable than the overlapping one. 
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The remainder of the paper is structured as follows. In Section 2, we describe the 

assumptions and notations used in this study, and we present the theoretical comparative 

analysis of the two aggregation approaches. More results are provided in Section 3 when 

the demand is Poisson distributed.  A numerical evaluation of the theoretical results 

obtained for Poisson distributed demand is presented in Section 4, followed by an 

empirical analysis conducted in Section 5. The paper concludes in Section 6 with a 

summary of the paper’s results, along with suggestions for further research in this area. 

2. Theoretical analysis 

2.1 Assumptions and notations 

The aim of this section is to provide some theoretical properties of aggregated demand 

under both temporal aggregation approaches. 

We assume that historical demand values are observed from an independently and 

identically distributed (i.i.d) time series  nYYY ,....,, 21 . For the reminder of the paper, we 

adopt the following notation: 

n : length of the demand history (i.e. the number of observed demand values); 

m : aggregation level (i.e. the number of demand values to be aggregated);  

y : value of the aggregation of m successive demands 

)(yFm : Population cumulative distribution function (CDF) of the aggregation of m 

successive demand values; 

)(ˆ yF OB
m : estimated cumulative distribution function of the aggregated demand under the 

Overlapping Blocks (OB) approach; 

)(ˆ yF NOB
m : estimated cumulative distribution function of the aggregated demand under 

the Non-Overlapping Blocks (NOB) approach; 
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)(CSLS NOB

m : Order-Up-To-Level (OUTL) calculated with the NOB approach for a given 

Cycle Service Level target, CSL; 

)(CSLS OB

m : OUTL calculated with the OB approach for a given Cycle Service Level 

target, CSL.  

2.2 Analytical results 

In this subsection, we first recall some known statistical properties of the NOB estimator, 

namely the expressions of the expected value and the variance of the estimator, )(ˆ yF NOB
m . 

Then, we derive the same statistical properties of the OB estimator, )(ˆ yF OB
m . 

Under the NOB approach, it is straightforward to establish the bias and variance 

properties of the estimated Cumulative Distribution Function (CDF). The estimator 

)(ˆ yF NOB
m  is an unbiased estimator of the population CDF, i.e.  

  )()(ˆ yFyFE m
NOB

m                                                                                                              (1) 

 

In addition, the variance of )(ˆ yF NOB
m  is given by: 

 

 
k

yF

k

yF
yFVar mmNOB

m

2)()(
)(ˆ                                                                                        (2) 

 

where: 
m

n
k   (this result is based on the assumption that n  is an integer multiple of m ). 

 

Under the OB approach, the expectation and the variance of the estimator )(ˆ yF OB
m  are 

given in Proposition 1. 
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Proposition 1. 

The mean and variance of the estimator )(ˆ yF OB
m  are given by i) and ii) respectively. 

i)   )()(ˆ yFyFE m
OB

m   

ii)   
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The proof of Proposition 1 is given in Appendix A. The first term on the right-hand-side 

of the variance expression represents the cross-terms, in the calculation of expected 

squares, with complete commonality of time periods. The second term represents the 

cross-terms with no commonality. The final term represents cross-terms with partial 

commonality of time periods, with the variable s  signifying the number of common 

periods. The variable )(ys represents the probability that the sum of the observations in 

each block of a pair, with s  common periods between the two blocks, does not exceed 

the value y .  

 

Both approaches lead to unbiased estimators for i.i.d. demand. Moreover, the variances of 

the estimator under both approaches are functions of )(yFm  and 
2)(yFm . Under the 

overlapping approach, there is in addition a new term )(ys  that results from taking into 

account the correlation between the blocks, when estimating the cumulative probability 
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of the aggregated demand. Furthermore, it is obvious that when m = 1,  )(ˆ yFVar OB
m  

reduces to  )(ˆ yFVar NOB
m , as the two approaches are the same. 

 

In the remainder of the paper, the performance of the two approaches will be compared 

based on the analytical results presented above. In the theoretical analysis, the 

outperformance of an approach will be assessed by the reduction in the variance of the 

CDF (Cumulative Distribution Function) estimates. In the empirical analysis, stock 

control performance will also be examined.   

 

2.3 Comparative analysis 

In this subsection, we find the condition under which the NOB approach gives a lower 

variance of the estimate of the cumulative distribution, for a given value of y , than the 

OB approach. The condition follows from Proposition 1 and is expressed below as 

Proposition 2. 

 

Proposition 2 

The NOB approach has a lower variance of the estimate of the cumulative distribution, 

for a given value of y, than the OB approach, for aggregation level m, and length of 

history n (a multiple of m) if and only if:   
1

2

2 2
1

2( 2 1) 1 ( 2 1)( 2 2)
( ) ( ) 1 ( )

( 1) ( 1) ( 1)

m

s m m

s

n m s m m n m n m
y F y F y

n m n n m n n m





         
        

        
  

Proof of Proposition 2. 

The relative reduction in the variance of the estimate of the CDF stemming from the use 

of the OB approach instead of NOB, for given values of block size (m), length of history 

(n) and aggregate demand over the block (y),  ),,( ynm , may be defined as: 
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   
 )(ˆ

)(ˆ)(ˆ
),,(

yFVar

yFVaryFVar
ynm

NOB

m

NOB

m

OB

m 
                                                            (3) 

The non-overlapping blocks approach outperforms the overlapping one if and only if 

0),,(  ynm , which occurs when: 
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Or equivalently: 

 

2
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1                                                                    
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1
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s
































   (5) 

which ends the proof of Proposition 2.                                                                                 

Proposition 2 shows that for the simplest non-degenerate case, m = 2, the general 

condition for the outperformance of the NOB approach is: 

 

2

221 )(
2

)1(
)(

2

)1(
)( yF

n

n
yF

n

n
y





                                                                           (6) 

 

This inequality is not highly sensitive to the value of n , as will be demonstrated in 

Section 4 of this paper. However, there are some sensitivities to low values of n . For 

example, if 8.0)(2 yF , then the right-hand side of the inequality takes the value 0.6933 

for 3n , but a value of 0.7133 for 12n . Therefore, we may expect short demand 

histories to favour NOB, all other things being equal.  
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If we keep n  fixed, and consider the effect of the distribution on the inequality, it is clear 

that distributions which have higher values of )(1 y , with the same cumulative 

distributions, )(2 yF , will also favour NOB . These are often associated with more highly 

intermittent series. Please note that demand intermittence has been characterised in the 

academic literature by various criteria (Williams, 1984; Johnston and Boylan, 1996; 

Syntetos et al., 2005). In this paper, the probability of zero demand is the considered 

criterion, i.e. we assume that a higher intermittence of the demand is characterised by a 

higher probability of the demand being equal to zero. For example, a series with 8.0)0( p

and 1.0)1( p  is more intermittent than a series with 6.0)0( p and 3666.0)1( p but 

has the same cumulative value 8.0)1(2 F . However, it has a higher value of  )1(1  (= 

0.7120) than the less intermittent series, which has a lower value of  )1(1  (=0.6926). 

Thus, the less intermittent series favours the OB approach, for all values of 3n  , 

whereas the more highly intermittent series favours the NOB approach for  3n  and, on 

further analysis of the right-hand side of the inequality, for 9n . Thus, more intermittent 

demand histories would seem to favour the NOB approach, all other things being equal. It 

should be noted that these insights have arisen from consideration of the case of m = 2. 

Examples for m = 3 will be examined later in the paper.  

 

We now analyse the asymptotic comparative performance of both approaches, i.e. the 

performance for large values of the length of the demand history n . 
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Proposition 3 

Asymptotically (i.e. as n ), the NOB approach has a lower variance of the estimate 

of the cumulative distribution than the OB  approach if and only if :  
1

2

1

1 1
( ) ( ) ( )

( 1) 2

m

s m m

s

y F y F y
m





    
  

where the notation is unchanged from Proposition 2.  

 

Proof of Proposition 3. 

For large values of n , the above condition can be written as: 

 

2

2

2

21

1
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)1(

)22)(12(
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yF
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



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
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





















         (7) 

 

which is equivalent to: 

 

  22322

2

2

2

21

1
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2

)1(
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yFnmnmmmnmnm
n
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n
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m

m
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s

s
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









            (8) 

Hence, asymptotically, when n , )..( ynm  (i.e. NOB outperforms OB) if and only  

 

if   2
1

1

)()(
2

1
)(

)1(

1
yFyFy

m
mm

m

s

s 





 

 

This leads to Proposition 3.                                                                                                  
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Proposition 3 shows that, asymptotically, the comparative performance of the two 

approaches is determined by the relation between the variables 





1

1

)(
m

s

s y  and )(yFm . 

The outperformance conditions presented in Proposition 2 and Proposition 3 will be 

analysed numerically in Section 4.  

 

3. Analytical results under Poisson distributed demand 

We now investigate the comparative performance of the two approaches when the 

demand is distributed according to a Poisson distribution with parameter  , i.e. when the 

probability of having k demands per time unit is given by: 

!
)(

k
ekp

k  for any integer k ≥ 0. 

 

Before proceeding to the special case of Poisson demand, we recall that )(ys and 

)(yFm  can be written as follows: 

 

   
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s Ypy               (9) 

 

and    


 










11
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0 10 0 0

)(............)(
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m YpyF                                                (10) 

 

The relative benefit stemming from the use of OB instead of NOB, denoted by ),,( ynm , 

can be written as following for the general case: 
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 
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which is equivalent to: 

 

 
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Now, for Poisson demand, we may establish the asymptotic result given in Proposition 4. 

 

Proposition 4 

When   tends towards infinity, the relative benefit stemming from the use of the OB 

approach tends towards 1
)1(


mnm

n . In addition, when both   and n tend towards 

infinity, the relative benefit stemming from the use of the OB approach tends to  
m

m1 . 

The proof of Proposition 4 is given in Appendix B. The significance of the result lies in 

the large reductions in variance that may be accrued by using the OB approach, instead of 

NOB. For an aggregation level of m = 2, reductions of up to 50% may be attained for 

very long demand histories and high mean demands. For higher values of m, the 

reduction in variance is even higher.  

 

4. Numerical analysis 

For the purpose of the numerical analysis, we consider the case of Poisson distributed 

demand. We first numerically compare the outperformance conditions presented in 

Proposition 2 and Proposition 3 for m = 2. Then we numerically analyse the comparative 

performance of the two approaches for different values of n, m and  . 
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Let ),,2(
*

1 yn  denotes the value of  ),,2(1 yn  at which the NOB approach has the 

same variance as the OB approach for 2m , i.e.  

2

22

*

1 )(
2

)1(
)(

2

)1(
),,2( yF

n

n
yF

n

n
yn





                                                                  (13) 

Then, the asymptotic condition of the outperformance of the NOB approach is reached at 

the following limiting value: 

 

 2

22

*

1 )()(
2

1
),,2(lim yFyFynn                                                                        (14) 

In Table 1, we show some numerical values of ),,2(
*

1 yn  and ),,2(lim
*

1 yn  for 

different values of n. 

Table 1. Numerical comparison of the outperformance conditions 

n )(2 yF  ),,2(
*

1 yn  ),,2(lim
*

1 ynn   

4 

0.90 0.844 0.855 

0.95 0.920 0.926 

0.99 0.984 0.985 

8 

0.90 0.849 0.855 

0.95 0.923 0.926 

0.99 0.984 0.985 

12 

0.90 0.851 0.855 

0.95 0.924 0.926 

0.99 0.985 0.985 

 

24 

0.90 0.853 0.855 

0.95 0.925 0.926 

0.99 0.985 0.985 

 

 

The results of Table 1 show that the value of ),,2(
*

1 yn  is not highly sensitive to the 

value of n . Consequently, the gap between ),,2(
*

1 yn   and its asymptotic value is low 
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for low values of n  and becomes very low for 12n , with almost no difference (to the 

third decimal place) for )(2 yF  = 0.99. This shows that for such demand histories, the 

asymptotic condition is a very good approximation for assessing the comparative 

performance of the two approaches. 

 

In Figure 1, we plot the variation of ),,( ynm  with respect to the length of the demand 

history n and the mean demand  for y = 1 and for m = 2 and m = 3. To simplify the 

presentation of the results, we do not show findings for m ≥ 4 but it is straightforward to 

extend to these cases.  

 

 

Figure 1. The relative benefit of the OB approach for Poisson distributed demand 

 

The results in Figure 1 show that the ratio ),,( ynm  is negative in almost all cases, 

which means that, under the Poisson assumption, the OB approach leads to a variance 

reduction, which shows the outperformance of this approach. The results also show that, 

for very low values of , i.e. slow moving demand, the relative benefit from using OB 

instead of NOB is low when n is low. Moreover, there are very few values where the 




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relative benefit is positive, which correspond to cases where both   and n are very low. 

Figure 1 illustrates that the relative benefit stemming from the use of OB instead of NOB 

increases substantially as the aggregation level m increases from 2 periods to 3 periods. 

Further increases will follow as m increases to 4 periods or more. 

 

In Table 2, we show the benefit of using the OB approach as compared to the NOB for an 

infinite value of   (i.e. as an approximation for a very fast moving item) and different 

values of n. Again the results are reported for m = 2 and m = 3. 

 

Table 2. Asymptotic benefit under Poisson distributed demand 

n 6 12 18 24 30 ∞ 

% benefit 
m = 2 -40.00 -45.45 -47.06 -47.83 -48.28 -50.00 

m = 3 -50.00 -60.00 -62.50 -63.64 -64.29 -66.67 

 

 

The numerical results in Table 2 show that for a very fast moving item, characterised by 

Poisson distributed demand, the benefit of using the OB approach is very high varying 

from 40% to 50% for m = 2 and from 50% to 66.7% for m = 3. Obviously, this benefit is 

relatively lower for slow moving items, i.e. for lower values of  . To illustrate this effect, 

we report in Figure 2 the relative benefit as a function of n for   = 0.5 and y = 1. 
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Figure 2.  Relative benefit of using OB with respect to n when   = 0.5 and y = 1 

 

Figure 2 shows that for m = 2 and values of 4n  (i.e. a very short demand history), the 

NOB approach performs better than OB with a benefit varying between 0% and 3%. 

Moreover, when m increases, (e.g. m = 3), the NOB approach performs better than OB 

for values of n that can go up to 6. However, for higher values of n, OB outperforms 

NOB and the benefit of using the former approach can go up to 11%. 

 

In summary, the most interesting insights that could be provided based on the analysis of 

the Poisson case are the following. With the exception of the context of short demand 

histories’ length, overall the OB approach outperforms the NOB approach and the 

relative benefit stemming from the use of OB increases substantially as the aggregation 

level or the rate of the demand increases.  

 

5. Empirical analysis 
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In this section, we discuss details related to our empirical investigation. First, we provide 

information on the empirical data used in this research. Then, we present the 

experimental structure employed, some simulation related details and the empirical 

results.  

 

5.1. Empirical data 

For the purpose of our investigation, we use a dataset that comes from the US jewellery 

industry. It contains the weekly demand history of 4,076 intermittent demand SKUs over 

a period of one year (52 weeks). The lead time is fixed for all SKUs to one week. 

Descriptive statistics are provided in Table 3. ‘Demand sizes’ refer to the sizes of demand, 

when demand occurs, i.e. the relevant statistics refer only to demand occurring periods. 

‘Demand intervals’ refer to the number of periods with zero demand plus one (for 

example, if there are no zero demands between two periods with occurring demands, the 

demand interval is one). ‘Demand per period’ refers to all periods, including both the 

demand occurring and non-demand occurring ones. In order to illustrate the calculation 

of demand sizes, demand intervals and demand per period, we consider the following 

example with a demand history of 24 periods: 

 

0 0 0 3 0 0 2 0 0 0 0 2 0 0 0 4 0 0 0 0 0 6 0 1 

 

In this example, the demand sizes are 3, 2, 2, 4, 6 and 1 which provides an average 

demand size of 3. Let us suppose that the period immediately preceding this history 

contained a non-zero demand value. Then the demand intervals are equal to 4, 3, 5, 4, 6 

and 2, which leads to an average demand interval of 4 and a demand per period equal to 

0.75.  
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These calculations are done per SKU in the dataset then averaged across SKUs to result 

in the statistics shown in Table 3. 

Table 3. Descriptive statistics of the empirical data  

4,076 SKUs 
Demand Sizes Demand Intervals Demand per period 

Mean St. Deviation Mean St. Deviation Mean St. Deviation 

Min 1.000 0.000 1.275 0.564 0.115 0.323 

25%ile 1.100 0.316 3.286 2.629 0.192 0.445 

Median 1.200 0.426 4.364 3.711 0.250 0.530 

75%ile 1.353 0.651 5.625 5.046 0.365 0.673 

Max 3.194 3.682 8.667 12.987 2.212 2.539 

 

 

The descriptive statistics reported in Table 3 show that most of the SKUs are slow 

moving since the distribution of demand intervals is mainly concentrated around a 

median of 4.4 weeks, and most demands are for one or two units. It should also be noted 

that the average minimum demand interval across SKUs is 1.3 (i.e. a value that is strictly 

higher than 1) which means that for each SKU there are some zero demands between 

demand occurrences. In the following subsections, we analyse the empirical performance 

of both approaches. Firstly, variance reductions are assessed, and then the stock control 

results are examined. 

5.2. Statistical performance 

We present the summary statistics of the variance ratio of the NOB approach to the OB 

approach,    )(ˆ/)(ˆ yFVaryFVar OB
m

NOB
m . Note that the calculation of the variances is 

performed by using the analytical results given in (2) and in Proposition 1 and by 

considering the entire demand history composed of 52 periods, which means that a 

relatively long demand history is considered.  
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Table 4. Empirical comparative performance for long demand histories 

 

m = 2 m = 3 

Variance 

ratio for y=0 

Variance 

ratio for y=1 

Variance 

ratio for y=2 

Variance 

ratio for y=0 

Variance 

ratio for y=1 

Variance ratio 

for y=2 

Min 1.0214 1.0196 0.9953 1.0249 1.0289 0.9970 

25% percentile 1.0392 1.1016 1.1244 1.0691 1.1225 1.1660 

Median 1.0521 1.1332 1.4948 1.0941 1.1524 1.3429 

Average 1.0662 1.1842 1.3853 1.1220 1.1721 1.3061 

75% percentile 1.0806 1.1827 1.6292 1.1511 1.1854 1.4620 

Max 1.4342 1.6308 1.7311 1.9506 1.5562 1.5274 

 

 

The results in Table 4 show that, for a long demand history, the OB approach is expected 

to outperform NOB for almost all the SKUs, with a median benefit, when y = 1, of 13% 

for m = 2 and 15% for m = 3. Furthermore, when y = 2, the median benefit increases and 

can go up to 49% for m = 2 and 34% for m = 3. 

 

We now present the summary statistics of the variance ratio,    )(ˆ/)(ˆ yFVaryFVar OB
m

NOB
m , 

for a length of the history n = 9. The calculation of the variances is no longer based on the 

analytical results given in Proposition 1. Instead, it is performed by splitting the demand 

history in five blocks composed of 10 periods (or 9 periods) when m = 2 (or m = 3), i.e. 

the values of )(ˆ yF NOB
m  and )(ˆ yF OB

m  are first calculated for each block (by first 

calculating the aggregated demands over the block and then deducing the probability that 

the aggregated demand over the block is less or equal to y) and then their variances are 

calculated by considering the 5 blocks. Note that in the former case, we consider a 

demand history composed of 50 periods whereas in the latter, only 45 periods are 

considered. The number of 5 blocks is chosen to ensure a trade-off between the length of 

the blocks and the number of blocks.  A short block length leads to poor estimation of the 
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probabilities whereas a long length of blocks implies a low number of blocks which makes it 

difficult to calculate the variance of the estimates over the blocks. 

Table 5. Empirical comparative performance for short demand histories 

 

m = 2 m = 3 

Variance 

ratio for y=0 

Variance 

ratio for y=1 

Variance 

ratio for y=2 

Variance 

ratio for y=0 

Variance 

ratio for y=1 

Variance 

ratio for y=2 

Min 0 0 0 0 0 0 

25% percentile 0.7650 0.7088 0.7069 0.7259 0.7424 0.8167 

Median 0.9504 0.9927 1.1270 0.9722 1.0889 1.3611 

Average 1.0195 1.49284 1.52613 1.1534 1.6431 2.2713 

75% percentile 1.1719 1.7357 1.7446 1.3199 1.8148 5.4444 

Max 7.5600 16.2000 16.2000 9.0741 13.6111 13.6111 

 

 

The results in Table 5 show that a high proportion (i.e. approximately 50%) of the SKUs 

has a variance ratio less than 1, i.e. the NOB approach outperforms OB. These results, 

showing performance superiority of the NOB approach for a short demand history, are 

consistent with the theoretical results established earlier in this paper, which 

demonstrated that such outperformance may arise in these circumstances. A more 

detailed analysis was conducted but no link was established between the variance ratio 

and the degree of intermittence (as characterised by the length of demand intervals). This 

is not consistent with the analytical findings in Section 2.3, and the discrepancy would 

seem to merit further empirical research on other datasets.     

5.3. Stock control performance 

In this subsection, we conduct an empirical comparison of the two approaches when an 

Order-Up-To-Level (OUTL) inventory control policy is used. Under each approach, the 

OUTL is calculated at the end of each period as the minimum number y such that )(ˆ yFm  

is higher than a target cycle service level (CSL, the probability of no stock-outs during a 
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replenishment cycle), as shown in (15) and (16). We assume that unmet demand is 

backordered.  

 

 CSLyFCSLS NOB

my

NOB

m  )(ˆminarg)(                                                                   (15) 

 CSLyFCSLS OB

my

OB

m  )(ˆminarg)(                                                                        (16) 

 

In order to simulate the performance of each approach, we split the demand history 

available (i.e. 52 periods) for each SKU into two parts. The 1
st
 part (26 periods) is used in 

order to initialise the inventory level (that is assumed to be equal to the initial OUTL). 

The 2
nd

 part (26 periods) is used for the out-of-sample generation of results and 

evaluation of performance. In each part, n historical periods are considered to aggregate 

the demand using one of the two approaches and then )(ˆ yF NOB
m  and )(ˆ yF OB

m are 

calculated in order to determine the OUTLs )(CSLS NOB

m and )(CSLS OB

m . The initial values 

of )(CSLS NOB

m and )(CSLS OB

m  are calculated at the end of period 26 and then they are 

updated in each period of the out-of-sample as described above. The order of events in a 

period (i.e. a week) is as follows: the demand is first observed, the order (placed one 

week ago) is received, and a new order is then placed. This dynamic simulation of the 

inventory system uses an OUTL method calculated differently with the two aggregation 

approaches. This enables us to calculate at the end of the demand history, the average 

inventory holding volumes and backordering volumes, which allows a direct comparison 

of the performance of the two approaches. We refer the reader to Syntetos and Boylan 

(2006) for more details on this methodology of inventory performance evaluation of 

estimation methods. 
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We analyse the stock control results by assessing the trade-offs between the average 

(across all SKUs) inventory holding volumes and the average backordering volumes. 

This analysis is conducted for three target CSLs, namely CSL = 80%, 90%, 95%, three 

demand history lengths, n = 6, 12, 24, and two aggregation levels, m = 2, 3.  

We begin by presenting in Figures 3 and 4 the results for n = 24 in the form of efficiency 

curves for inventory holding and backordering volumes. 

 

 

Figure 3. Efficiency curves for m = 2 and n = 24 
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Figure 4. Efficiency curves for m = 3 and n = 24 

 

Figures 3 and 4 demonstrate overall better inventory performance of OB for the case of n 

= 24. Moreover, the improvement in inventory performance is greater for m = 3 than m = 

2.  This is consistent with expectations from our theoretical results on variance reductions. 

 

For the cases of n = 6 and n = 12, no benefits in inventory performance have been 

identified. In some cases, it is not even possible to draw efficiency curves because of 

insensitivity of the inventory holding volumes to the target service level. Insensitivity of 

inventory holding volumes is due to all target service levels (80%, 90% and 95%) being 

achieved at the same OUTL. Such a situation would not arise for faster moving SKUs but 

is more prevalent for slow moving items. This problem is exacerbated for shorter demand 

histories as there is less opportunity to smooth the CDF with fewer blocks. 

 

6. Conclusions and future work 

In this paper, based on a theoretical analysis, we have shown that the overlapping 

aggregation approach produces unbiased estimates of the cumulative probability of 

demand and we have established an expression for its variance, assuming identically and 

independently distributed demand. Based on this analysis, we have established conditions 

for the variance outperformance of the two approaches.  Our analysis reveals that the 

overlapping approach outperforms the non-overlapping one in most cases. The 

exceptional cases occur with short demand histories and very slow demand. 

 

Through an empirical investigation, we have confirmed that the overlapping approach is 

expected to produce lower variance estimates, for all SKUs, for longer demand histories. 
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We have also shown that the non-overlapping approach is better than the overlapping one 

for 50% of the SKUs for a short demand history of length 9 or 10 periods.  

 

When the stock control performance is analysed, the empirical investigation shows that 

for a demand history of 24 periods, the overlapping approach reduces the inventory 

backordering volumes, whilst maintaining the same inventory holding volumes. For 

shorter demand histories, no benefit in inventory performance has been identified due to 

the lack of opportunity to smooth the CDF with a small number of blocks.   

 

The managerial implications of this research are clear if standard parametric distributions 

are not appropriate and a non-parametric ‘temporal aggregation’ approach is adopted. 

Unless the demand history is short, there is a clear advantage of using overlapping blocks 

instead of the non-overlapping approach. The margin of this advantage becomes greater 

for longer lead-times (equal to the length of the block). There are strong analytical 

arguments to support these managerial implications, in terms of the variance of the 

estimates of the cumulative distribution function. There is also empirical evidence to 

demonstrate that these can be translated into stock-control benefits too. However, these 

benefits should be checked, for example by a simulation exercise, as the evidence to 

support stock-control improvements needs to be verified in a broader range of inventory 

environments.             

 

In the light of the above discussion, an interesting avenue for further research would be to 

broaden the empirical analysis by evaluating more varied datasets, including faster 

moving demands and lumpier demands. Other approaches need to be identified to address 
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the issue of smoothing the CDF such as bootstrapping methods which randomly sample 

non-contiguous time periods. Such methods have been suggested in the literature (e.g. 

Willemain et al. (2000)) and it would be beneficial to analyse their theoretical properties 

and empirical performance. 

Appendix A. Proof of Proposition 1 

We suppose that the observations are split into overlapping blocks of length m, namely 

 OB
k

OBOB BBB ,....,, 21  where 1 mnk  and  11,...,,  miii
OB
i YYYB  for 

ki ,...,2,1 . 

 

We define iZ  as the sum of demand values over a block of length m, i.e. 





m

j
jii YZ

1
1

                                                                                                                  

(A1) 

 

We also define for any value of y the indicator function: 

 











  for     0

for     1
)(,

yZ

yZ
ZI

i

i

iy
                                                                                     (A2) 

 

An estimate of )(yFm  using the overlapping approach is then: 

 

  )(
1

)(ˆ

1
,




k

i
iy

OB
m ZI

k
yF                                                                                              (A3) 

 

We now calculate the expectation and the variance of this estimator )(ˆ yF OB
m . 
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The expectation of )(ˆ yF OB
m is given by: 
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By definition, the variance of the estimator )(ˆ yF OB
m  can be written as: 

 

      22
)(ˆ)(ˆ)(ˆ yFEyFEyFV OB

m
OB

m
OB

m 




                                                                (A5) 

 

The first term may be written:  
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By definition of the indicator function, we have: 

       )()()( ,
2

, yFZIEZIE miyiy   ,                                                               (A7) 

 

which implies that:  
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We now calculate the term 
    



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jyiy ZIZIE

k
)()(

1
,,2

. In this term, there are some 

pairs of blocks that do not overlap and some that do overlap. Hence: 
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The term 
     
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(across the diagonals, from the diagonal which is the one just next to the ‘main diagonal’ 

to the one which is (m-1) away from the ‘main diagonal’). Hence: 
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Assembling the terms in (A8), (A10) and (A11) leads to: 
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which ends the proof of Proposition 1.                                                                                  

 

Appendix B. Proof of Proposition 4  
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The relative benefit from using the OB approach instead of NOB, ),,( ynm  is given by: 
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It is clear that when   tends towards infinity, )(yFm  tends towards 0. This means that 

when   tends towards infinity, ),,( ynm tends towards:  
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We now calculate 
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which can be written as: 
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This means that: 
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In addition, since:  1
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which ends the proof of Proposition 4.     .                                                                           
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