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Abstract

Many real world phenomena are described through models that include an unobserved
process which is usually characterised by a continuous distribution. Such models are
widely used in geostatistics where a continuous spatial phenomenon is modelled through

an underlying latent Gaussian process.

If the observed data are also Gaussian then inference for the underlying process and
the model parameters is relatively straightforward. In many applications though the as-
sumption of normally distributed data is not sensible and the assumption of Poisson
or binomial data is more suitable. These models, with non-Gaussian data, are known
as generalised linear spatial models (GLSM). In such cases, inference requires more so-
phisticated techniques and a common approach is the use of Markov chain Monte Carlo
methods (MCMC). However, the correlation between the components of the latent pro-
cess and the correlation between the latent process and the model parameters generally
hinders the performance of any MCMC scheme which updates the latent process and

the parameters sequentially.
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In this thesis we focus on the Poisson GLSM and elaborate on the problem of the correla-
tion within the latent process. In particular, our aim is to construct an efficient proposal
distribution for sampling from the posterior distribution of the latent process condition-
ally on the other parameters. Initially, we investigate the idea of constructing a global
normal approximation to the conditional posterior distribution of the latent process and
use it as the proposal distribution in a simple and fast MCMC scheme. For this purpose,
we initially employ various transformations of the data and find that some of the con-
structed schemes perform well in certain low dimensional scenarios. Subsequently, we
construct one dimensional proposals for each component of the latent process through
an approximation to each univariate marginal posterior conditional on a few principal
components. The suggested MCMC scheme updates each component of the process sep-
arately and then proceeds by updating the few important principal components. As
suggested by our results, this method has a stable and efficient performance in a variety

of scenarios and dimensions.
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CHAPTER 1

Introduction

1.1 Motivation

Geostatistics is a branch of spatial statistics focusing on the study of a continuous spa-
tial phenomenon. Such phenomena could be the temperature, radioactivity or even the
intensity of weed growth over a predefined area of study. This kind of phenomena can
conceptually be described by a continuous stochastic process, which however, is not di-
rectly observed. Instead, what we have available is only a finite sample of observations
of a random variable at specific locations over the study area. However, the locations of
the data are not informative about the process we want to model. These observations,
are usually assumed to be either identical to or a noisy version of the underlying true
process or of a function of it. Interest usually lies in either predicting the realisation
of the process at unsampled locations or making inference about the parameters of the

model.



The typical modelling framework for such geostatistical problems is the generalised linear
spatial model (GLSM). The GLSM is a generalised linear model but with an additional
layer of stochasticity, the underlying latent process, in the linear predictor. The modelling
of this process depends on the problem under study. It could for instance be modelled
as a stationary or non-stationary Gaussian process, Gaussian Markov random field or
we could even loosen the assumption of Gaussianity. In this Thesis we focus on the
traditional GLSM as introduced in Diggle et al. (1998) where it is modelled through a
stationary Gaussian process. The parameters involved in the model are of two types.
Those used to model the trend and those used to model the spatial dependence, i.e., the
covariance structure of the process. The GLSM gives the flexibility of modelling various
types of data such as Poisson or binomial and also has as a special case the linear spatial
model where the response variable is assumed to be normally distributed. In this thesis

we deal with non-linear models and especially the Poisson GLSM.

Under the Bayesian framework, inference on the latent process and the parameters of
the model relies on the use of MCMC methods since direct sampling from their joint
posterior distribution is not possible; unless the data are Gaussian. Usually, in order
to sample from this joint posterior an MCMC scheme will alternate between updating
the parameters conditionally on the latent process and then updating the latent process
conditionally on the current values of the parameters in the chain. Although such a

scheme might appear straightforward to implement, it entails practical difficulties.

First of all, the latent process is usually of high dimension and this automatically hinders
the performance of any MCMC scheme since mixing and convergence times increase with
the dimension of the target; as also does their computational cost. Moreover, there is

dependence between the latent process and the parameters and this will usually cause



the chain to converge and mix slowly. If the updating mechanism, say, for one of the
parameters is not efficient this can also affect the mixing of the other components that

are updated conditionally on that parameter.

Another challenging issue, is sampling from the posterior distribution of the latent pro-
cess conditional on the parameters. The problem lies not only on the dependence of the
latent process with the parameters but on the fact that the components of the process
can be strongly correlated & posteriori. This posterior dependence in combination with
the dimensionality of the process makes the construction of an efficient proposal chal-
lenging. Updating the latent process in blocks can lead to poor mixing for the same
reasons as explained in the previous paragraph. On the other hand, updating the latent
process in one step is also demanding since a proposal distribution that aattempts to

match the shape of a correlated high dimensional target is hard to construct.

All parameters affect how strong the posterior correlation within the latent process
will be but a very important contributing factor is the data and more specifically the
amount of information they provide on the latent process. For instance, if the data are
weak then the main contribution to the posterior distribution of the process will come
from the prior, and the posterior dependence can therefore be strong. On the other
hand, if the data are strongly informative then the likelihood will contribute more to the
posterior distribution and the components of the latent process will be approximately
independent d posteriori or at least less correlated than d priori. This is a key obstacle
in constructing a generic MCMC scheme that would perform efficiently irrespective of

the observed data.

Christensen et al. (2006) have suggested an MCMC scheme that attempts to provide a

solution to all of the aforementioned problems. Their approach is based on a reparam-



eterisation of the process and the mean parameters so that these are all approximately
independent with zero mean and unit variance. Additionally, these transformed random
variables are also expected to be approximately independent of the parameters associ-
ated with the covariance structure of the process. They have provided a good, workable
solution to the difficult problem of dependence between the latent process and the other

parameters.

Finally, before closing this section we should mention that alternatives to MCMC meth-
ods for inference on GLSMs do exist such as the more recently introduced approach of
integrated nested Laplace approximation (INLA) (Rue et al. 2009). INLA is a method
of approximate Bayesian inference and unlike traditional MCMC it is a non-sampling
based technique and provides approximate inference through a series of accurate Gaus-
sian and Laplace approximations. Another fundamental difference between INLA and
MCMC is that the former assumes that inferences are to be drawn on the marginal
posterior distributions of each component of the latent process and these exactly are the
posteriors that it attempts to approximate. The procedure followed in order to approx-
imate these posterior marginals can be briefly summarised in the following steps. First
of all, the joint posterior distribution of the model parameters is approximated using
the Laplace approximation and subsequently the marginal posterior of each parameter
is obtained by numerically integrating out the remaining model parameters. Then, the
marginal posterior distribution of each component of the latent process given the model
parameters is approximated. This is achieved using a series expansion that takes into
account third order terms that account for the skewness. Finally, the model parameters
are integrated out of the product of the two marginal approximations in order to obtain

the marginal posterior of each component of the latent process. Great computational



gains are achieved when the underlying latent process has a Markov structure as illus-
trated in Rue et al. (2009). Although this is not required for the implementation of the
suggested methodology, methods for approximating Gaussian processes through Gaus-
sian Markov processes do exist Rue & Held (2005), Lindgren et al. (2011) and reduce
the comptutauional complexity of the problem. For a comparative study between INLA

and specfic MCMC methods we refer the reader to Taylor & Diggle (2012).

1.2 Scope and Outline

The focus of the present thesis is to provide an efficient MCMC scheme for inference
on generalised linear spatial models. Since Christensen et al. (2006) have provided a
framework for breaking the dependence between the process and the parameters we
constrain our focus on the development of an efficient proposal for the latent process.
Therefore, the methodology developed in Chapter 3 and Chapter 4 considers that all
parameters in the model are fixed and interest lies only on sampling from the posterior
distribution of the process given all the parameters. Although our focus is placed on the
Poisson generalised linear spatial model, most of the proposed methodology could also

be extended to the case of a Binomial generalised linear spatial model.

In Chapter 2 we provide material that is relevant and needed for the rest of the thesis.
In Section 2.1 we outline some fundamental MCMC algorithms that will be used later
on and discuss some issues related to their practical implementation, performance and
efficiency. Section 2.2 introduces the reader to the area of geostatistics and the associated
models. We describe the formulation and components of the linear spatial model along
with the inferential procedure usually used and, in Section 2.2.6, extend these in the

case of the generalised linear spatial model, which is the focus of this thesis. Finally, in



Section 2.2.7 we review some of the MCMC schemes that have been suggested in the

literature for inference on the generalised linear spatial model.

In Chapter 3 we focus on constructing a single global normal approximation to the
posterior density of interest. In particular, we explore the idea of applying a normal ap-
proximation to the conditional density of a transformation of the data. This enables us to
work under the framework of the linear Gaussian model, where the form of the posterior
is tractable. In that way we are able to find an approximate posterior distribution for
the latent variables and use this as a proposal in a simple, fast and straightforward-to-

implement MCMC scheme.

In Chapter 4 we employ concepts of multivariate analysis and rather than constructing a
global approximation to the target we use an approximation to each univariate marginal
posterior conditional on a few principal components. In that way, we develop a two-
stage proposal mechanism where each component of the process is updated separately
and subsequently, the mixing of the algorithm is improved by additionally updating the
few important principal components. This results in an efficient algorithm with stable

performance across different datasets and dimensions.

Both in Chapter 3 and Chapter 4 the efficiency of the constructed algorithms is assessed

and compared against existing schemes through extensive simulation studies.



CHAPTER 2

Background material

2.1 A review of Markov chain Monte Carlo algorithms

Markov chain Monte Carlo (MCMC) methods constitute a unified framework which
enables sampling from complicated and analytically intractable distributions. This is
achieved by constructing an ergodic Markov chain with stationary distribution identical
to the distribution of interest. In our case this stationary distribution will be the posterior
distribution, w(@|y), of a d-dimensional vector of continuous random variables 6, given
the observed data, y. Once a sufficiently large sample is obtained, Monte Carlo estimates

of any functional of @, that we are interested in, can be obtained.

This section introduces the reader to the MCMC algorithms that are used in this thesis,
namely the Metropolis-Hasting (MH), Random Walk Metropolis (RWM), Metropolis
Adjusted Langevin Algorithm (MALA) and Riemann manifold MALA (MMALA) algo-

rithm. In particular, we begin by setting out the basic MH algorithm and outline how the



rest are special cases of it. Theoretical properties and technical conditions for the con-
vergence of these algorithms have been investigated over the last 20 years. However, we
are mainly interested in their practical implementation and therefore focus on providing
an intuitive interpretation of each algorithm and aspects that define their performance.
Unless otherwise stated, the two main sources of this section are Gilks et al. (1996) and

Gamerman & Lopes (2006).

2.1.1 Metropolis-Hastings algorithm (MH)

The MH algorithm, Metropolis et al. (1953) and Hastings (1970), uses an appropri-
ate transition density such that the constructed Markov chain converges to the desired
stationary distribution. Let ¢(€,0) denote the probability (density) of moving to 6*
given that we are at 0. A sufficient condition for a Markov chain to have a stationary

distribution, 7(6) = w(0|y) is, for g(0,0") to satisfy the detailed balance,

m(6)g(0,0%) = m(87)g(6", ).

This condition is equivalent to the statement that, at stationarity, the chance of being
at @ and moving to 8" is the same as the chance of being at 8* and moving to 8. The
MH algorithm proposes the chain to move to a new state 8" which is generated from a
proposal distribution ¢(0*|0). However, the proposed value is not always accepted, but
is accepted according to some probability «(0,0"). This acceptance rate is chosen such

that the probability (density) of moving to 8* given that we are in 0, where 8% # 0, is,

9(0,0%) = q(6%)16)a(6,0%), (2.1.1)



whereas the probability (mass) of proposing a value and rejecting it so that we stay at
0; is given by

9(6,0)=1— /q(0*|0)a(0,0*)d0*.

In general, the probability of moving to any set C given that we are at 6 is given by

9(0,C) = /Cq(e*\a)a(e,a*)do* +1(6€C) {1 - /q(o*ya)a(a,e*)de*} .

The so called acceptance ratio a6, %) is defined in such a way that when combined with
the transition kernel gives a chain satisfying the detailed balance equation. In particular

it is set to be

oo m(6")q(0160")
a(6,0") = min <1, 7T(9)q(0*|0)> , (2.1.2)

ensuring that the chain has as stationary distribution 7(6) = 7(0|y).

Proposition 2.1.1. The Metropolis Hastings algorithm satisfies the detailed balance

equations.

Proof.

9(0,6")m(0) = q(67(0)x(6,0%)7(0)

UATLLAN

- oo (15

= min (7(8)q(0*]0),7(0)q(68]6%))

() N
= win(Zgnaion-1) 7000

= q(0]6%)a(6",0)m(0)

= 9(6%,0)m(67)



In practice, in order to draw samples from 7(0|y) the MH algorithm proceeds as follows:

e Initialise 8 = 6°

Draw 6P from a density q(6""P|6°“")

Calculate the acceptance probability

(2.1.3)

DT OP cur | prop
a(gcur’ Gprop) = min <1 7T(0 )Q(a |0 ))

’ ﬂ_(acur)q(oprop|ocur)

Draw u ~ UJ[0, 1]

o If u < (0", 0P"P), set " = PP else keep O°“" unchanged.

Whether or not the proposal was accepted store 8°“" as the next element of the

chain

From (2.1.3), it is easy to notice that any proposed values outside the support of 7 will

have an acceptance ratio of 0, since w(67"°P) = 0,

7_‘_(Oprop)q(acur | oprop)
T (ecur)q(aprop | ecur)

=0,

and will therefore be rejected. Hence, ideally we want to use a proposal such that
support(q(-|@)) C support (7). This however, might sometimes be computational in-
feasible in practice especially for complicated high dimensional targets constrained in
subsets of R. In such cases, one would use a proposal with support greater than that of
the target and use rejection sampling in order to only propose sensible values of 8 (see

algorithm A1 in Section 3.2.2 for such a practice).

Finally, the ergodicity of the resulting Markov chain can be guaranteed if it is =-
irreducible and aperiodic. The property of m-irreducibilty ensures that the whole support
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of the taregt, 7w, can be explored in a finite number of transition steps. More formally,

Definition 2.1.2. A Markov chain is w-irreduciple if for every 0 € © there existsn € Z
such that g"(0,C) > 0 for all subsets C C © where w(C') > 0.

However, even if the chain is w-irreducible convergence to m might not be guaranteed. To
overcome such an issue we also need the property of aperiodicity. Aperiodicity ensures

that chain does not have any cyclic behaviour. In particular,

Definition 2.1.3. A Markov chain with stationary distribution 7 is called aperiodid if
there do no exist disjoint subsets of ®, O1,...,0n, for N < 2, with g(0,0;4+1) = 1 for

all 0 € ©; and also g(0,01) =1 for every O € Op.

2.1.2 Efficient MCMC: convergence and mixing

The key conditions in order to draw valid inference based on samples drawn from a
constructed using MCMC is that the chain has converged to 7(-), in total variation sense
(see Definition 2.1.4), and has also adequately explored the support of the distribution.
These two properties, namely convergence and mixing, are the ones that determine the

efficiency of an MCMC scheme.

Consider that we are interested in estimating the expectation of some real-valued func-
tion 7(@) under 7(-), i.e., r := E;[r(0)], using the output of an MCMC scheme that
was run for n iterations. Since in practice the chain is unlikely to start in stationarity,
it will require a certain number of iterations, ¢, until it has effectively converged and
is producing samples from 7. Including the initial ¢ draws in the estimation of r would

bias the estimate 7,,. It is common practice, therefore, to base inference on the last n —c¢
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samples and estimate r through,

This procedure of discarding an initial number of iterations is known as burn-in. Apart
from visual inspection of traceplots of the chain there are many diagnostics in the lit-
erature for assessing whether a chain has converged and, if so, the number of iterations
that were needed for convergence to be achieved; being therefore a very useful tool for
defining an appropriate burn-in period. There are available both single chain diagnostics
such as the ones proposed by Geweke (1992) and Raftery & Lewis (1992) and multiple
chain diagnostics such as the diagnostic of Gelman & Rubin (1992) and its multivari-
ate extension of Brooks & Gelman (1998a). All of these diagnostics, assess whether the
distribution of either, parts of the same chain or two different chains are similar or not
by comparing either the first two moments or a certain set of quantiles of the empirical

distribution of the chains.

Mixing on the other hand relates to the dependence between the samples drawn under
7(-). If the samples drawn are strongly dependent then the chain will be slowly mix-
ing, meaning that the process will move slowly. As such, longer runs would be needed
to adequately explore the target distribution and provide accurate estimates, 7, with
standard errors equivalent to those obtained had the samples been drawn independently
from 7. In particular, if we set N = n — ¢ and denote by 0 the first sample drawn after

the burn-in, then, under stationarity, the variance of 7y is given by,
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where

S = al
C 1423 Cor(r(80),7(8;))

(2.1.4)

and [ is the first time that Cor(r(0;),r(0,4;)) falls below some predefined level, so as to
be considered negligible. The denominator of (2.1.4) is the estimated integrated auto-
correlation time, and ESS represents the number of independent samples to which the
N drawn dependent samples are equivalent; in the sense of providing estimates with

similar standard errors.

A certain limit theorem holds for any Markov chain that converges to 7 at a geometric

rate; such chains are called geometrically ergodic.

Definition 2.1.4. Let the distribution of the chain, started at an initial point 0, after n
iterations be g"(0,-). An ergodic Markov chain, is geometrically ergodic with stationary

distribution 7 if there exist a positive constant b < 1 and a real valued function M such

that,
19"(0,-) = =()l < M(6)",
VO,n € Z" and where || - || denotes the total variation distance. For two densities my,
mg on E| the total variation distance is defined as, |[m; —ma|| := sup |mi(A) —ma(A4)|.
ACE

Geometrically ergodic chains satisfy the following central limit theorem,

#n % normal <Eﬂ[r(0)],N1/2vr> :

Ideally we would like to have a sampler that converges quickly to the stationary distri-
bution of interest and also mixes fast. In practice mixing is usually assessed by visual

inspection of traceplots, autocorrelation plots and estimation of ESS.
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2.1.3 Random walk Metropolis (RWM)

A special case of the MH algorithm is the Random Walk Metropolis, as introduced
in Metropolis et al. (1953) where the proposal distribution ¢is symmetric and centred
on the current value of 0. In this case, the only difference in the above algorithm is
the simplification of the acceptance ratio to a(6°",P"P) = min <1, %), since,
due to the symmetry of g, q(@°"|6P"P) = q(6P"°P|0°""). A widely used proposal for

the RWM that satisfies the above is the normal distribution where the proposed jumps

(6P7°P — °“") are normally distributed with mean 0, i.e.,
0P ~ MVN (6" AI), (2.1.5)

where the proposal variance, A, is called the ‘tuning parameter’ and I denotes the identity
matrix. In this case the RWM algorithm proposes a value from the above proposal and
this is always accepted if this move is uphill, i.e., if the proposal has a higher posterior

density than the current one; it is accepted with probability a(8°“", P"°P) otherwise.

For kernels of the form (2.1.5), the choice of A is of vital importance since it determines
how large or small the jumps from @°“" to 6P"°P will be. If A is too small then the
proposed and current values are going to be too similar leading to high acceptance rates
but also to high autocorrelations in the sample since accepted moves will be very close
together. On the other hand, large values of A would result in low acceptance rates and
high autocorrelation since the chain rarely moves. In both cases the chain needs a large
number of iterations to explore the target. It has been shown (Roberts et al. 1997) that
in certain scenarios the optimal acceptance rate for the RWM is between 20% and 30%),

and uses a tuning, A oc d~! where d is the dimension of the target distribution 7(8).
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Finally, in the above we have oulined the simplest version of RWM with common variance
A for all d components of @ and no correlation structure. This however in practice is quite

unrealistic in many cases. We discuss how this can be overcome in Section 2.1.5.

2.1.4 Metropolis adjusted Langevin algorithm (MALA)

The RWM is a local algorithm in that the proposed value is in some sense close to
the current value. This closeness is quantified by v/A. In what follows, we outline the
Metropolis Adjusted Langevin Algorithm (MALA) which constitutes a more sophisti-
cated algorithm and it is an extension of the RWM. For a more detailed description we
refer the reader to Roberts & Tweedie (1996), Roberts & Rosenthal (1998) and Roberts

& Rosenthal (2001).

It appears sensible to try encourage the chain to propose values with higher posterior

density so as to achieve higher acceptance rates.

A Langevin diffusion process 6y, for a density 7(8), evolves according to the following

stochastic differential equation,
1
do; = §Vlog7r(0t)dt+dBt, (216)

with B; denoting a d-dimensional Brownian motion. Under certain technical conditions
(see references above), this has as asymptotic distribution, 7(6;), as t — oo. The discrete

analogue of the above process can be written as,

A
0, = 0,1+ 5 Vlogn(0,1) + N2,
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where Z ~ N(0, I) and therefore

Ot ~ MVN <0t_1 + ;V]Og?’r(ot_1>,)\f) .

Hence, if we use this as the proposal mechanism (with 6; = 6"°? and 6;,_; = 0°"") we
might suspect that convergence to the target m(0) is faster than the usual RWM. As we
see, this proposal incorporates gradient information in the mean and for that reason it
tends to move the chain to regions of higher posterior density. In that way, we encourage
the chain to move towards the nearest posterior mode and stay in the main posterior
mass of the distribution. As with the RWM, the parameter \ defines the size of the

proposed jumps.

Since now the shape of the proposal is closer to that of the target in conrast to the
RWM, fewer proposals will be rejected and for that reason the optimal acceptance prob-
ability, a(0°“", 8P"°P) for MALA proposals is around 40% — 60%. In particular, Roberts
& Rosenthal (1998) showed that for target distributions consisting of iid components the
optimal acceptance rate is close to 57.4% and is achieved for values of A oc /3. Sum-
marising, as d — oo the MALA algorithm results in higher optimal proposal variances

along with higher optimal acceptance rates and therefore better mixing properties.

Nonetheless, besides these advantages of MALA a word of caution is needed if the
target has tails as light as or lighter than those of a Gaussian density. In this case,
when in the tails of the posterior, the magnitude of the gradient of the log posterior
can be so large that the subsequenr proposal will be even further out in the tails. This
could lead to not exploring the main body. For instance, let 7(f]y) e=0"/4 leading

to Vlog(n(A|ly)) = —62. Then for large values of #, the magnitude of the gradient will
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be even larger, compared to #, having as a result a great increase in the mean of the
proposal distribution so that the proposed value will usually lie in the tails of the target.
In order to tackle this problem, Roberts & Tweedie (1996) describe the truncated MALA
where they place an upper bound on the magnitude of the gradient term in the mean of

the proposal.

Furthermore, the MALA algorithm is likely to perform worse than the RWM when
dealing with multimodal targets. If the current position of the chain is close to one
mode, the MALA will tend to move the chain towards that mode and keep it always
there. Therefore, it is possible to stay trapped in a particular mode for many iterations.
Given that in practice the algorithm is run for a finite number of iterations it is possible
that the drawn posterior samples would not represent the true target leading to wrong

inferences.

2.1.5 Preconditioned MALA and RWM

So far, we have assumed the use of a constant tuning, A, for all the components of 8 and
no covariance structure. However, in practice this could be quite unrealistic since each
component can have different variance and there may also exist correlations. Therefore,
principle components of 8 with smallest variance will be mixing well whereas those with
larger variances, will be mixing poorly. So it would be better to use a covariance matrix
where the diagonal elements need not be the same, and if correlations are present in the
posterior then the off-diagonal elements would not be zero. This technique is known as

preconditioning.

Roberts & Stramer (2003) introduce the preconditioned MALA where the proposal takes

17



the form,

A
6, ~ MVN (ot_l + 5 MV logn(6;-1), AM) . (2.1.7)

The same approach can be applied in the case of the RWM, e.g. Sherlock et al. (2010).

The corresponding preconditioned RWM uses the following proposal, distribution,
0y ~ MVN (0;_1,\M).

The main question though, is how to choose this covariance matrix. Ideally, we would
like to have a proposal distribution which mimics the target distribution in the sense of
having similar curvature. One approach for finding a suitable covariance matrix for our
proposal would be to run a simple MALA /RWM algorithm with only a constant tuning
for a fixed number of iterations, estimate the covariance matrix from the drawn posterior
samples and use this matrix as M for the preconditioned MALA/RWM. However, this
approach is quite empirical as the shape of the target can depend on the current position.
Additionally, more than a few iterations may be needed to obtain a covariance matrix

close to the true one.

2.1.6 Manifold MALA and simplified manifold MALA

Let the likelihood of € be L(0) and let the prior distribution of 8 be p(@). It is known
from likelihood theory that, asymptotically, a consistent estimate for the covariance

matrix of 6 is the inverse of the expected Fisher information matrix,

2 -1

0
—F — log {L(0
10 | 5o 105 {L(6)}
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Subsequently, taking the equivalent measure for the posterior density of 8, 7(0|y), results

in a consistent estimate of the posterior covariance matrix of 8 and is given by

2 —1

0
M(0) = _Ey|9 Mbg {m(0]y)} )

The idea of using M (0) as the preconditioning matrix in the MALA proposal (2.1.7)
is exploited in Girolami & Calderhead (2011) and the resulting algorithm is known as

simplified manifold MALA (sMMALA).

Girolami & Calderhead (2011), employ concepts of Riemann geometry and Hamiltonian
dynamics and construct efficient algorithms working well in high dimensions with strong
posterior correlations. The authors, construct two algorithms namely manifold MALA
(MMALA) and Riemann manifold Hamiltonian Monte Carlo (RMHMC). The RMHMC
lies beyond the material used/covered in this thesis and we therefore restrict ourselves
in briefly describing the idea of MMALA since a simplified version of it will be used later
in the thesis. For an introduction and review of Hamiltonian Monte Carlo schemes we

refer the reader to Chapter 5 of Brooks et al. (2011)

In analogy to (2.1.6), the underlying diffusion of the simple preconditioned MALA is
described by,

1
d6; = 5 MV log m(6;)dt + M'/%dB;,

where the preconditioning matrix M is fixed. Girolami & Calderhead (2011) construct a
preconditioning matrix that is position specific and therefore define the above diffusion

with a position dependent volatility matrix as shown below,

1
a8, = 5 {M(6:)V logw(8:)dt + A(6:)} + M'/*(6,)dBr,
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where

d
(00 = M@ 5g {100, 210 72) (218)

In the above expression we have accounted for the transcription error in the drift term
clarified by Xifara et al. (2014). Using an expansion of the gradient term in (2.1.8),
Girolami & Calderhead (2011) discretise the above equation to obtain the proposal
density

0P ~ MVN (11 (0", \) , A\M (6°")) (2.1.9)

with the i-th element of @ (6°“", \) given by,

d
A
0 4+ S{M(6°7) Vologm (6°"[y)}, — A :{M(OC“”")
Jj=1

8M_1 (acur)

A )

]

Do | >

M~ (67 } |

d
> (00 {pr o) M

(2.1.10)

In that way, according to the authors, the diffusion is defined on a Riemann manifold
and the use of M (0°“") is justified as it can be viewed as the metric tensor describ-
ing the curvature of the manifold. In the case where the elements of A(6;) are 0, the
resulting proposal reduces to a preconditioned MALA with the position dependent pre-
conditioning matrix M (0“"). As we see from expression (2.1.10), the MMALA can be
computationally expensive since it requires the calculation of third derivatives whereas

the typical gain in efficiency over SMMALA can be small.
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2.1.7 Independence sampler (MHIS)

Another type of MH algorithm is the Independence Sampler, Tierney (1994), for which
the proposal does not depend on the current value of the chain, 8°". The next value
in the chain is not actually independent of the current one since the usual accept reject
scheme is used. Since the proposal distribution, ¢, does not depend on the current value

the acceptance probability becomes

) (aprop)q(ecur)
a0, 0P"°P) = min (1 . 2.1.11
( ) ) 1 < ’ (acur)q(aprop) ( )

In the case of the MHIS the need of a proposal that mimics the target is very important.
One useful strategy is to choose a proposal with mode, and curvature at the mode,
matching these of the target distribution. Moreover, in order to be sure that the whole
target is explored we want the proposal to have heavier tails than the target distribution;
this is known as the heavy tail rule. If the proposal has lighter tails than the target then it
is highly likely that the proposed values will be within the main body of the distribution
and the tails will not be well explored. However, when eventually the chain does move
to the tail, the probability that subsequent proposals will be accepted is very small and
so the chain mixes very poorly. For instance consider that 6 is one dimensional and the
proposal has lighter tails than the taregt as illustrated in Figure 2.1 and a relatively
constant ratio 7(6)/q(#) for values of € in the main body of the distribution. Assume
that the current value of € is #; and a move to 0 is proposed. In this case, m(62)/q(62)
will be very high and ince 7(61)/q(0;) is relatively constant, the value of the acceptance

ratio, in 2.1.11,
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Figure 2.1: Density of the proposal distribution, ¢(f) (dashed line) and of the target
distribution 7(6) (solid line).

will be large. Therefore, such a proposed value as 0y will be accepted. If however we
consider the opposite scenario of currently being to #» and proposing a move to 61,
the ratio m(601)/q(01) is almost constant and m(f2)/q(62) is very high. Therefore, the

acceptace ratio

will be very small and such moves will be always rejected making the return back to the

main body of the target difficult .

As a final note we would like to mention the effect of choosing as a proposal the prior
distribution. This might seem quite tempting since the acceptance ratio simplifies further
to just the ratio of the likelihoods. However, if the likelihood is informative, so that the
posterior and prior are dissimilar, then we might end up with very low acceptance rates.

In particular, we will be proposing values that have high probability according to the

22



prior but may not correspond to a large likelihood value and having, as a result, to reject

these moves. See Gamerman & Lopes (2006) for a detailed discussion.

2.1.8 Adaptive MCMC

As already mentioned, an appropriately shaped and also optimally tuned proposal distri-
bution is crucial for constructing a well-mixing MCMC scheme. However, in complicated,
high-dimensional targets this can be extremely difficult especially when a good estimate
of the posterior covariance matrix is not available. But even in low-dimensional targets
defining an optimal value for the tuning parameter A can be painful since, usually in

practice, this has to be done through trial an error.

Adaptive MCMC was created to provide a solution to such problems and minimise, as
much as possible, the user intervention. The idea behind adaptive MCMC schemes is
to use the information that becomes available as the sampler runs. This information is
used in order to automatically update the variance of the proposal distribution, using
estimates obtained from the empirical distribution of the chain so far, according to a

pre-defined updating rule.

Although in practice such schemes have by now become straightforward to implement
there are certain issues to be considered. First of all, if the chain starts away from the
main body of the target distribution, i.e., in the tails, then there is a chance for the
chain to stay there for a long time and, in the time available, not explore areas with high
posterior probability. This is because the algorithm learns about this insignificant area
and automatically adjusts the proposal distribution so that it can efficiently explore that
specific part of the support. Therefore, even if the sampler is ergodic, given that it is run

for a finite number of iterations, the posterior estimates obtained might not represent
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the truth since it may take a long time to obtain an adequate sample. For that reason,
in practice, the proposal distribution will sometimes use a mixture of an adaptive and a
non-adaptive kernel in order to minimise the chance of being trapped in such areas (see

for instance Sherlock et al. (2013) and Fearnhead et al. (2014)).

Another issue is by how much and how often should the proposal variance change during
the MCMC scheme. For instance, it is sensible to initially let the sampler run with a
fixed proposal and once a certain number of accepted moves has been achieved then
start adapting the proposal distribution. This is to ensure that the chain has moved

sufficiently so that the covariance matrix is not singular.

However, since the transition kernel keeps changing for as long as the sampler runs,
convergence to the stationary distribution is not anymore guaranteed and hence nor is the
ergodicity of the chain. There has been a lot of research on the ergodicity and convergence
properties of adaptive MCMC schemes and two important concepts that have arisen are
the diminishing adaptation and the containment condition. Let (8., ;) be the position
and transition kernel at the n-th iteration under the adaptive scheme. Given the starting
value and initial kernel (8g,~p), the containment condition states that if the chain were
to start at 6, with a non-adaptive fixed kernel ~, then, irrespective of n, the chain
will have nearly converged to 7(-) after N iterations, for large enough N. For nearly
all possible (6,,,7,). As mentioned in Brooks et al. (2011), Chapter 4, the containment
condition will usually hold for most adaptive schemes given that a reasonable adaptation

rule is used and therefore focus is placed on the notion of diminishing adaptation.

Diminishing adaptation suggests that changes in the proposal should become negligible
as the chain evolves. This is to ensure that after a large number of iterations the successive

transition kernels are similar and therefore reach an equilibrium. However, these changes
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should also be large enough to reflect necessary changes in the covariance matrix.

For a thorough review and theoretical justifications on convergence and ergodicity results

of adaptive MCMC we refer the reader to Andrieu & Thoms (2008) and Roberts &

Rosenthal (2009) and the references therein.

2.2 Model based geostatistics

As mentioned in the Introduction of the thesis, Geostatistics concerns the study of a
continuous spatial phenomenon. This phenomenon is usually modelled through a sta-
tionary Gaussian process, {S(z) : * € R?}. By stationary we mean that the expectation
and variance of the process is the same for all  and the correlation between S(x;) and
S(x;) only depends on the distance between x; and x;. Additionally, the Gaussianity of
the process S(x) implies that S(x;), ..., S(x4) are jointly normally distributed for any
set of locations x1, ..., x4, . This process however, is not directly observed. Instead, there
is available only a finite sample of observations of a random variable, Y, at specific
sampling locations, x;, i = 1,2, ...,d, over the area of interest. These observations, v,
are usually assumed to be either identical to or a noisy version of the underlying true
process or of a function of it. Interest usually lies in predicting the realisation of the
process, or a functional of it, at unsampled locations or making inference about some

parameters of the model.

The term ‘model-based geostastics’ was introduced in the seminal paper of Diggle et al.
(1998) to describe the unified modelling and inferential framework provided by the au-

thors.

In this section we describe the components and the formulation of the simple linear
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spatial model and show how this is extended to the generalised linear spatial model
just like the simple linear model extends to a GLM. The LSM and the GLSM can be
viewed as a linear or generalised linear mixed-effects model (Breslow & Clayton 1993)

respectively where the random effects form a Gaussian random field.

In Section 2.2.2 we outline the simple LSM along with the inferential procedure usually
used. Section 2.2.3 presents the most widely used covariance functions used to model
the spatial dependence and the characteristics that each one bestows on the underlying
process. Finally, in Section 2.2.6 we describe the GLSM and review some of the current
MCMC schemes used for inference in Section 2.2.7. Unless otherwise stated, the two
main sources of information for this Section are Diggle et al. (2007) and Diggle et al.

(2003).

2.2.1 The Gaussian process

As it constitutes a key component of the linear spatial model this section focuses on the

definition of the Gaussian process and the notion of weak and strong stationarity.

Definition 2.2.1. A stochastic process, or random field, S with parameter space T is a
collection of random variables {S(x) : ® € T'}. The dimension of T is N and the random
variables S(x) are vectors of dimension n then the random field S is said to be an (N,n)

random field.

In our setting @ represents the spatial coordinates of a sampling point and therefore the
set T is of dimension N = 2. Also, at each @, S(x) is one dimensional and therefore gives
rise to an (2, 1) dimensional random field. For every stochastic process we can define the

mean and covariance function given by



respectively. If the mean function of the process S is constant for every x and the

covatriance function, c¢(zx;, x;), only depends on the difference x; — x;, i.e.,

ple+t)=p(x) and c(x; +h, zj+h)=c(x;, x;)

then the process S is said to be weakly stationary. A stronger form of statioanrity is
that of strong stationarity. The stochastic process S is said to be (strongly) stationary
if, its finite-dimensional distributions are invariant under the operation (4), i.e., if the
joint distribution of (S(x1 + h), ..., S(xq + h)) is independent of h for all z; € R? and

any d > 1.

Definition 2.2.2. The Gaussian process S, or a Gaussian random field, is a random
field for which the joint distribution of (S(x1),...,S(xq)) is multivariate Gaussian for

any finite d > 1 and every (x1,...,xq).

In the case of a Gaussian process weak stationarity implies strong stationarity. For that
reason in the following sections we do not distinct the two and in general refer to a
stationary Gaussian process without clarifying whether the process is weakly or strongly
stationary. In general though this does not hold. If a stochastic process is strongly sta-
tionary then it is also weakly stationary but the opposite does not hold. For a thorough
study of Gaussian processes and in general random fields we refer the reader to Adler &

Taylor (2007).

2.2.2 The linear spatial model (LSM)

Let {S(x) : € R?} be the underlying process of interest and y = (y1,...,5a) be a
realisation of the observable random variable Y = (Y7, ...,Yd)’ at sampling locations

{x1,...,2q4}. Also let us assume that f;, ¢ = 1,...,d, is a column vector of available
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explanatory variables measured at the sampling locations @;. In practice, S(x;), i =
1,...,d, is assumed to be normally distributed with mean 0 and marginal variance o?2.
The correlation structure of the process S(x) will be discussed later. For i = 1,...,d,
conditionally on S(x), Y; are assumed to be independent following a normal distribution

with variance 72 and mean linearly related to f; and S(z;). The equivalent mathematical

formulation of the model is given by,

Y= fiB+S(@) + Z,  i=1,..d (2.2.1)

where Z; ~ normal (0,7’2) and are mutually independent. At a specific location, even
if the true value of the underlying process were known there would be some variability
between consecutive measurements. Such variations are depicted by the conditional vari-
ance, 72, of Y;|S(x;), 3 which is either interpreted as measurement error or small scale

variation.

It is intuitive to assume that nearby locations would give rise to similar measurements
while the correlation between two locations fades away as their distance increases. The al-
ternative, where the correlation increases with distance, would not lead to a positive def-
inite covariance matrix. Let S := (S(x1), ...,S(azd))/ and Cor(S(x;), S(x;)) = p(uij; @)
where p(- ; ¢) denotes a correlation function parametrised over some correlation param-

eter ¢. Then it follows that,

S ~ MVN (0,0%R(¢)) (2.2.2)

where R(¢) denotes the correlation matrix with elements R;; = p(u;j; ¢) and conse-
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quently

Y ~MVN (FB,0*R(¢) + 7°I) (2.2.3)

with F' representing the design matrix, with rows f;, and I being the d x d identity

matrix.

A widely used equivalent formulation considers an underlying Gaussian process which
does not have a constant zero mean. In this case the covariate information is incorporated

in to the mean of the process. If we define n := FG + S, then,

Y =n+2, (2.2.4)

where n = (n(x1),...,n(xq)) ~ MVN (Fﬁ, 02R(¢)), Z ~ normal (0, 7'2[). Equivalently,

Yi=fiB+8@)+Zi= mi+Z;, for i=1,...d (2.2.5)

where marginally, n; ~ Normal (fg,@‘,az). Note that the process {n(x) : ¢ € R?} is no
longer stationary as defined in Section 2.2.1 but, as mentioned in Diggle et al. (2007), it
is covariance stationary. In the absence of explanatory variables, where f;,@ is replaced
by a constant and fixed mean effect 3, then both n(x) and S(x) are stationary Gaussian

processes.

Although the working framework of the normal model is well established, the assumption
of a linear relationship between the response variable Y and the signal process appears
to be quite unrealistic in real life phenomena. Consider for instance applications where
the observable variable Y concerns counts or in general has an asymmetric distribution.

In Section 2.2.6 we talk about the generalised linear spatial model which deals with non
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Gaussian data. Historically, before the introduction of GLSMs, approximate normality
of the response variable was achieved through a transformation of the data and then
inference was carried out under the Gaussian framework. A widely used family of such
transformations is the Box-Cox (Box & Cox 1964) which however can be applied to
strictly positive-valued data and comes at the additional cost of estimating an addi-
tional parameter. Additionally, after such transformations, the model parameters, i.e.,
3, might not have a sensible natural interpretation. For a more detailed discussion and
implementation of Box-Cox transformations on the geostatistical model see Christensen,

Diggle & Ribeiro (2001).

To simplify notation for the rest of this thesis we will suppress S(x;) to S; and n(x;) to

;-

2.2.3 Models for the correlation structure

In the previous section we briefly discussed some of the assumptions made regarding the
correlation structure of the latent process. For instance, the process is often assumed to
be stationary, isotropic and also the correlation between any two points should decrease
as the distance increases. In addition, the correlation function used should be positive

definite.

A flexible family of correlation functions satisfying these properties is the Matérn family

as introduced by Matérn (1960) given by,

(u/¢)" Ku(u/¢)
2T (k)

plus 6, 1) = (2.2.6)

where I'(+) is the Gamma function and K (+) corresponds to the modified Bessel function

of order k. The parameter ¢ > 0 is a scale parameter which gives the rate of decay of the
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correlation as the distance u increases. Given any two points w units apart, the larger ¢

is, the higher the correlation between these two points will be.

The Matérn family gains its flexibility from the shape parameter k since it defines the
differentiability of the correlation function at the origin or equivalently the smoothness
of the stochastic process S(-). In particular, k reflects the short distance dependence of
the random field. As k increases the correlation remains at higher levels for longer and

the latent process becomes smoother.

A particular property that describes the smoothness of a stochastic process is the mean-

square differentiability.

Definition 2.2.3. Mean Square Differentiability
A stochastic process S(x) with finite second moments is mean-square differentiable with

mean-square derivative S () if as ||| — 0,

E

ell

{S(m +e S S/(m)ﬂ 0. (2.2.7)

Higher order derivatives can be obtained in a similar way. A very helpful result that pro-
vides links between the differentiability of the correlation function at the origin with the
mean-square differentiability of the stochastic process is the following. If the correlation
structure of the latent process S(x) is modelled using the Matérn family of correlation
of order £ then S(x) is [k — 1 times mean-square differentiable, where [x denotes the
smallest integer that is not greater than x. The more times mean-square differentiable
a process is the smoother it will be and therefore the stronger the correlation near the

origin, i.e., for distances very close to 0.

To illustrate the effect of mean-square differentiability we consider two well-known cases
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of the Matérn family; the exponential and Gaussian correlation functions. In particular,
as k — 00, p(u; ®) — exp{—(u/$)?} corresponding to the Gaussian correlation function,
which should not be confused with the normal distribution, and for k = 0.5 we obtain

the exponential correlation function given by p(u; ¢) = exp(—u/¢).

Figure 2.2 shows the exponential and Gaussian correlation functions. Since the param-
eters ¢ and k are not orthogonal the values of ¢ have been matched so that in both
cases p(u) = 0.05 at the same distance u. For the exponential correlation ¢ = 1 and
for the Gaussian correlation function ¢ ~ 1.73. A process arising form the exponential
correlation function is not mean-square differentiable whereas process arising form the
Gaussian correlation function is infinitely mean-square differentiable. As we see, in the
case of the exponential correlation function the correlation drops quickly near the origin
whereas in the case of the Gaussian the correlation stays near 1 for distances up to 0.5.

Other valid correlation functions outside the Matérn family, are the powered exponential
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Figure 2.2: Correlation against distance. Left: exponential correlation function with
¢ = 1, Right: Gaussian correlation function with ¢ = 1.73. The parameter ¢ has been
matched so that in both cases p(u) = 0.05 at the same distance wu.

and the spherical correlation function. The powered exponential function which is given
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p(u; ¢, a) :exp{— (Z)a}, 0<a<?2

embodies both the exponential, for a = 1, and the Gaussian correlation for a = 2.
However, the powered exponential family is not as flexible as the Matérn family since

the underlying process S(x) will not be mean-square differentiable for a < 2.

The spherical correlation function,

is not mean-square differentiable but it is even more restrictive than the powered expo-
nential since it assumes that at distance equal to ¢ the correlation becomes exactly zero
and therefore has a finite range. As illustrated in Warnes & Ripley (1987), Mardia &
Watkins (1989) and further discussed in Stein (1999), the spherical correlation function
can usually give rise to a multimodal log-likelihood and therefore maximum likelihood

techniques can be problematic when it comes to parameter estimation.

For simplicity, throughout this thesis we will usually denote the correlation matrix
R(¢,k) simply by R. If we want though to stress that this matrix is a function of

¢,k we will use R(¢, k).

For a more thorough and technical investigation of correlation functions we refer the

reader to Chapter 2 of Stein (1999).

For the LSM inference can be carried out both under the classical and Bayesian frame-
work. The likelihood is tractable since the spatial process can be integrated out and

maximum likelihood estimates of the parameters can be obtained. In a Bayesian setting
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on the other hand conjugate priors can be used for the parameters leading to exact

sampling from the full posterior distribution.

2.2.4 Classical Inference and prediction for the LSM
Maximum likelihood estimation

In theory, the parameters of the model to be estimated are 3,02, ¢, k. However, the
parameter k is in practice poorly identified. Ideally the choice of xk should be based on
some scientific knowledge on the smoothness of the spatial process and the correlation
function to be used. Since this is not always the case, in practice, s is ussually either
assumed to be fixed to an arbitrary value or the log-likelihood is maximised with respect
to k over a discrete set of values, i.e., x € {0.5,1.5,2.5,3.5}. Estimation of 3,02 and ¢

can be carried out assuming « is fixed. The likelihood of the LSM is given by,

1 1
1(B,0%,¢,0%) = — 5dlog(27r)—§1og](72R(¢)+T2I|

— 5 - FB) (*RG) + D) (y - FP).

In order to obtain the maximum likelihood estimates, B, &2, <2> , we proceed with the
following reparametrisation. Let v? := ;—3 then the correlation matrix for S becomes

C = R + I and the log-likelihood is now given by,

1(B,0% ¢,0%) = —% {dlog (27) + log |o%C| + % (y—FB) C™'(y— F,@)} . (2.2.8)
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Treating the correlation matrix C' as being fixed, i.e. for a fixed pair (¢, v), maximisation

of the above likelihood yields the maximum likelihood estimates,

B(4,1°) = (F’C—1F> F'Ccly,

5 (60.7) =
and substitution of the above estimates into (2.2.8) gives,

! (B(ﬁba v), 6% (¢, v), ¢, V) = —% {dlog(27) + log |6°C| + d} . (2.2.9)

Therefore, for any given pair (¢,v) we find 8 (¢,r) and hence 62 (¢,r) which is sub-
stituted into 2.2.9 to give the value of the profile log-likelihood for that combination of
(¢, v). This function of (¢, v) is then maximised numerically using an iterative procedure

such as the Nelder-Mead algorithm.

Prediction in the classical setting

As briefly mentioned in Section 2.2.3, in geostatistics it is of interest to predict the reali-
sation of the underlying process S at unsampled locations. Under the classical framework
estimation of model parameters and prediction constitute two different steps, with the

latter having the former as a prerequisite.

The approach used for prediction is to estimate the minimum-mean-square-error pre-
dictor which in the case of the LSM coincides with the Kriging predictor. For instance
let T be the random variable, that is a linear function of S, that we want to predict.
The estimate 7' = E[T|Y] is the predictor of T that minimises the mean square error

N\ 2
E [(T — T) ] and has prediction variance Var[T'|Y].
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For instance, let ** denote a location at which we have not sampled and we wish to
predict the signal at this location, i.e., T = S* = S(x*), based on the information
provided from the data y at the sampled locations {1, ..., z4}. If we denote by r* the
vector with elements 77 = p(||* — x;||; ¢) for i = 1,...,d, then the joint distribution of

(T,Y) is a multivariate normal as shown below,

~ MVN 02
Y Fp3 r* C

Therefore, the distribution of T'|Y will be normal with mean and variance given by
ET|Y]= r*’C—l(y —FB) = T and Var [T)Y] = o2 (1 _ r*/C’_lr*) '

Equivalently, if T' = n(z*) = f;ﬁ + S(x*), where f; denotes the vector of covariates for

the location x*, then the estimate of T is given by,

T = f.B+r"C(y—Fp)

d
= F.B+) wix)(yi — £:8) (2:2.10)

i=1
In the geostatistics’ literature this method is known as Kriging and is attributed to Krige
(1951). As we see, from (2.2.10) the Kriging predictor is actually compromise between
the unconditional mean at location x* and the deviations of the observed data from
their means. This compromise depends on the sampling design, the model parameters
the prediction location * and the observed data. Whereas, the prediction variance does
not depend on the data y. Since in practice the model parameters 3,02, ¢ and 72 will

be unknown their estimates, i.e., maximum likelihood estimates, would be used in the
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above expressions. In cases where interest lies in predicting non linear functionals of S
simple Monte Carlo is usually used where we iterate between sampling from S*|y and
computing the functional of interest, resulting in a sample from the predictive of the
functional of interest.

For a thorough overview of the underlying theory of Kriging see Stein (1999) and Chiles

& Delfiner (1999).

2.2.5 Bayesian inference and prediction for the LSM

Under the Bayesian framework, all parameters of the model are treated as random vari-
ables and prior distributions are assigned to each parameter. In order to make inference
about the parameters of the model we have to sample from the posterior distribution
m (B,02,¢, 72|y). Under the use of certain prior distributions for the parameters we
can simulate exactly from the above posterior distribution without the need for MCMC
schemes. In this Section we briefly describe this approach as used in Diggle et al. (2003)
and Diggle et al. (2007) and try to keep the notation consistent with the notation therein.

Equations provided without proof are taken directly from Diggle et al. (2003)

Often, x is chosen from a discrete set of positive values according to scientist’s beliefs
and therefore, in this section, for simplicity of presentation it is assumed to be fixed.
Additionally, we assume that 72 = 0; for details see Diggle et al. (2007). In the following
we use p(-) to denote prior distributions and 7 (-) for the posteriors. The conjugate prior
of (B,02|¢), is the normal-Scaled-Inverse x2. More explicitly, we assign the following

priors to the parameters,

810, ¢ ~ MVN (m,0°V) and  [0%[¢] ~ X3y (no. 52), (2.2.11)

37



where X%CI (no, S2) denotes the Scaled-Inverse x? distribution with n,, degrees of freedom

and scale parameter S2. with probability density function given by,

po”) o (o2)(1+ne/2) P\ T2 )

Expression (2.2.11) can also be written as (8,02|¢) ~ Nx3q; (mgs, Vg, ne,S%). Using

Bayes’ theorem,

w(8,0%ly, ) < L(B,7%,0%, ¢, 1) x p(Blo*, ¢) x p(o®|¢),

where p(B|o2, ¢), p(c?|¢) are the prior distributions as given in (2.2.11). It follows that

the posterior distribution of (3,02), 7(3, 0%y, #), is a normal-Scaled-Inverse x?,

(B’U2|ya ¢) ~ NX%CI(B) VB’»”O’ + d7 D2)a

with

Vilmg+ FR'y) | V=V, '+FR'F)™,

and
neS2 + m/ﬁvglmg +y R ly—p3 Vﬁgl,é

D? =
Ng + d

In principle the prior distribution for ¢, p(¢), could be continuous, however, choosing it
to be discrete allows us to sample from the posterior 7(¢|y) exactly. Therefore, the joint
posterior distribution of the parameters is m(¢, 0%, Bly) = 7(B,0%|p,y) x 7(¢|ly) with

the posterior distribution of ¢ being

—(ng+d)

w(oly) o< p(9)[V 52 IRITVA(D?) .
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In order to sample from the posterior distribution of (3,2, ¢) we begin by calculating
the posterior probabilities 7(¢|y) and hence sampling ¢ from 7(4|y), simulate o2 from

7(0?|$,y) and finally simulate 3 from 7(8|02, ¢, y).

Now, let n* = (n(x3), ..., n(x},)) be a vector with the values of the signal process that we
want to predict at m unobserved locations (7, ...., z},). According to our model setting,

(Y,n*) have a multivariate normal distribution. Therefore,

(1Y, 0% B,¢) ~ MVN (F'8+ Q R\ (y - FB),c*(R' ~QR™'Q)), (2212)

where F*, F' correspond to the design matrices regarding the unobserved and observed

locations respectively. @ is a d x m matrix with elements, Q;; = Cor(n(z;),n(z})) and

R* is an m x m matrix with elements R;; = Cor(n(z;]),n(x})).

The predictive distribution of n*, assuming a given value of ¢ is obtained by integrating

out 3,02 from the joint posterior distribution of 5%, 3, 02 as shown below

|y, ) = / / (1|5, B, 0% 8) x w(8, 0|y, §) dBdo?,

resulting in an m-dimensional multivariate t-distribution the mean and variance of which

is,
Eln*l¢,y] = (F* - Q R'F)V 5V ;'my; + (Q’R—l +(F* - Q/R‘IF)VBF'R*) Y,
Varln'[o,y] = o* (R* = @ R7'Q) + (F* - QR'F)(V;' + V') ' (F* - Q R'F),

respectively. Finally, the predictive distribution of n* = n(x*) at an arbitrary location
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x*is given by

wmwnz/ﬂmwywwmm¢

In order to simulate from this predictive distribution, we sample ¢ from 7(¢|y) and then

simulate n* from 7(n*|¢,y).

2.2.6 The generalised linear spatial model (GLSM)

Diggle et al. (1998), were the first to introduce the use of generalised linear spatial models
(GLSMs) in the geostatistical setting and predict non-linear functionals of S under the
Bayesian framework using Markov Chain Monte Carlo methods. This is achieved by
incorporating the signal process S within the linear predictor of a Generalised Linear

Model (GLM) (McCullagh & Nelder (1989)).

The assumptions underlying the GLSM are similar to those in the case of the LSM
with two fundamental differences. First of all, Y;|S(x;) is not Gaussian and also the
mean of the response variable Y is not linearly related with the process S. As in the
LSM we assume that Y;|S(x;) are mutually independent and we denote the conditional

expectations by u; = E[Yi|s(x;)]. However, now

h(pi) = fiB+ S(ai) = n; (2.2.13)

where h(-) is the link function, f; are the explanatory variables associated with location
x;. Using the same notation as before S = (S(z1), ..., S(x4)) for the signal at sampling
locations x; for ¢ = 1,...,d, § ~ MVN (0, 02R) with R being the correlation matrix as
defined in Section 2.2.3. Therefore, the marginal distribution of S; = S(«;) is a normal

distribution with mean zero and variance o2.
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For instance, if we consider the case where the response variable Y concerns counts then
a sensible model may be the Poisson. In this case, the canonical link function is the

logarithm and a general Poisson GLSM would be as follows,

Yi|S; ~ Poisson (),

log(ui) = fiB+Si=mn.

In the case of a Binomial GLSM using the logistic link function we would have,

Yi|S; ~ Binomial (n;,p;),

logit(p;) = log (1 b ) = fiB+ Si=n;.

1

with n; being the number of independent trials at location x;.

The likelihood for the GLSM is given by the d-fold integral

d
L(B,0%¢) — / T1 (wilsi: Bpsilo®, 6)ds
=1

d
= /H Filni)p(nilB, 0%, d)dn (2.2.14)
=1

As we see, the above likelihood can not be expressed analytically and the dependence
between the components of s does not allow the likelihood to be expressed as the product
of one-dimensional integrals. Under the Bayesian framework MCMC methods are used
in order to make inference for the latent process and the parameters eliminating the
need to evaluate integrals such as (2.2.14). In addition, the Bayesian approach provides
a unified framework for estimation and prediction and naturally incorporates parameter

uncertainty.
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As a final note we want to stress a potential drawback of the model. Diggle et al.
(1998), point out that the regression parameters should always be interpreted condi-
tional on the process S since there can be confounding between the deterministic trend
modelled by the regression parameters and the underlying S. Reich et al. (2006) proved
collinearity between the fixed and random effects of the conditional autoregressive model
using arguments that are directly transferable to the GLSM and provided an alternative
reparametrisation. This issue is also further studied in Hughes & Haran (2013) where
additional reparametrisations of the model are suggested and achieving also reduction

of the dimensionality of the random effects.

2.2.7 MCMC algorithms for inference on the GLSM

Under the Bayesian framework prior distributions will be assigned to each model param-
eter and interest will lie in sampling from the joint posterior distribution of S, 3,02, ¢.
In the following we will denote the prior distributions by p(-) and the posterior distribu-
tions by 7(+|y) therefore the joint posterior of the latent process and the parameters will
be 7 (S B, 02, ¢|y) Usually, it might be hard to elicit informative priors and researchers
have resorted to the use of improper flat priors. Caution is needed in such cases since this
can lead to an improper posterior distribution. It is known for example that an improper
prior on ¢ will lead to an improper posterior w(¢|y) leading to invalid inferences. For a

detailed discussion on this issue see Christensen et al. (2000) and references therein.

As we have discussed in Section 1.1 the main difficulties in constructing an efficient
MCMC algorithm in order to sample from the joint posterior of the latent process
and the parameters are the posterior dependence between the components of the la-
tent process and also the dependence of the latent process and the model parameters.

Papaspiliopoulos et al. (2003) elaborate on the issues of dependence between parameters
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and the informativeness of the data for a variety of hierarchical models and show that

the use of certain parametrisations appear to improve the mixing of MCMC schemes.

In the following, we present some of the existing MCMC algorithms that consider sam-
pling from the joint posterior of the parameters and the latent process. Most of these
schemes attempt to tackle some of the aforementioned problems by either tailoring
the proposal distributions to match the shape of the posterior or employ various re-
parametrisations, mainly of 3 and S, that aim to remove some of the prior or posterior

dependence.

Diggle et al. (1998) assume uniform priors on 8 = (02, gb) , 3 and making use of the condi-
tional independence structure of the parameters in the provide an MCMC scheme which
updates 8, 3 and S using MH proposals. The constructed MCMC algorithm consists of
the following three steps. Update 8|S using as a proposal distribution the prior distri-
bution of 8, update all components of S through d univariate updates on S;|S_;,0, 3,y
proposing values form their univariate prior normal distributions p(S;|.S_;, ¢) and finally
update 8|S, y. A practical drawback of this scheme is the computational cost. At each
iteration of the algorithm the d univariate updates of S require the inversion of the
(d—1) x (d —1) covariance matrix of S;|S_;. Also, in cases where the components of S

have strong posterior correlation, such updates might hinder the mixing of the MCMC.

Christensen, Moller & Waagepetersen (2001) study the property of geometric ergodicity
of RWM and MALA updates on S for the Poisson GLSM and show that truncated MALA
updates on a reparametrisation of S are more efficient. In particular they express the
latent process as S = QI where @Q is the Cholesky square root of the prior covariance

matrix of S and I' ~ MVN (0, I). Considering that all other parameters in the model
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are fixed the gradient of the log-posterior with respect to = is given by

V(v) = 8(1 log [r(vy)] = —v + Q' (y — p),

where p = exp{FB+ S} = exp{F3+ Q~}. Since the gradient above grows expo-
nentially with -y, through u, to secure the geometric ergodicity they use the truncated

gradient, V¢(7),

Vi) = —v+Q (y— {nAHY,

where H is the truncation constant and the minimum, A, is applied component wise to
each element of p. In that way the authors avoid very extreme proposed jumps of ~, as
we have discussed in Section 2.1.4. As noted by the authors, we want the two gradients
to be equal for most values of v in the main body of the target distribution therefore
they choose H to be at least two times bigger than the maximum observed count y.
Therefore they update I', which is effectively S with the prior dependence removed,
using the proposal

A
,-Yprop ~ MVN (,Ycur 4 §vt(,ycur)7 AI)

and then transform back to s = Q«. This parametrisation of S is actually a non-centered
parametrisation in the context of Papaspiliopoulos et al. (2003) and Papaspiliopoulos
et al. (2007) and is expected to perform better when the data are weak and the main
contribution comes from the prior distribution of §|3, 02, ¢. Finally, the authors indicate
that the property of geometric ergodicity can still be preserved when 3 is updated
through RWM or MALA updates as long as it has a multivariate normal prior and the

parameters o2 and ¢ are fixed.
This result is further used in Christensen & Waagepetersen (2002) where a full MCMC
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scheme on S, 3,02 and ¢ is considered using independent informative priors for the
model parameters obtained using previous analyses. In the constructed MCMC scheme
one-dimensional RWM updates are implemented on log(c) and log(¢) whereas S is
updated in one block using the truncated MALA proposal described above. With the
only difference being that @ is the Cholesky square root of the prior correlation matrix
of S. As far as 3 is concerned they follow the same strategy as for S and standardise 3
with respect to its prior covariance matrix. In particular, the prior distribution for 3 is
a multivariate normal with mean mg and covariance matrix 33 and therefore 3 can be
written as,

B=ms+ Kb (2.2.15)

where K is the Cholesky square root of X5 and b ~ MVN (0, I'). Hence the proposal of
updating b is,

A
bProP  MIVN (bcur + Ebvt(bcur)’ )\bI>

where V¢(b) is the truncated version of V(b) = % log [w(bly)]
Vib)=-b+ K F (y—{uAH}).

Then, 3 is obtained using (2.2.15). The authors compare this MCMC scheme with an
equivalent scheme where RWM updates are also used for S and 3 and argue in favour
of the truncated MALA updates. A drawback of this scheme is the need to calculate the

Cholesky decomposition of the prior covariance matrix of S each time that ¢ is updated.

Diggle et al. (2003) also adopt the above truncated MALA update for the latent process
and combine it with the results on the LSM when using a conjugate prior for (,8, 02).

However they work in terms of 1 rather than S since in this case Y is conditionally
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independent of 3,02, ¢ given 1. More explicitly, using the same conjugate prior for

(,8, 02) as in (2.2.11) the marginal prior for n|¢,

p(nl) = / p(n168. ®)p(y|m)dBdo? (2.2.16)

results in the d— dimensional ¢ distribution, ¢,,, (mg, S2 (FVﬁF = R)) and the con-

ditional posterior of n|¢ is given by

m(nly, ¢) < p(yln)p(nle), (2.2.17)

which, does not admit a closed form. Diggle et al. (2003) express  with respect to ~
/ ! 1/2
through n = F mg+S, (R + FVgF ) v, so that @ priori v ~ ty4n, (0, I,) and make
use of the MALA update suggested by Christensen, Moller & Waagepetersen (2001) in
order to update v|y,¢. The parameter ¢ is assigned a finite discrete prior, p(¢), in
order to ease computations. Doing that, we are able to precompute the covariance
matrix FVgF/ + R in advance, for all possible values of ¢. The parameter ¢ is updated
using a RWM with a normal proposal which is rounded to the nearest ¢ value in the

discrete set of p(¢).

Now, the distribution of (3, 02|, ¢) is the normal Scaled Inverse x? as given in (2.2.12)
with the only difference that 7 is now substituted for y. This is because we consider that
72 = 0 and therefore the distribution of Y in the linear model is the same of that of
71 in the present case. Therefore, we can simulate directly from (3, 0?|n,y) using the
updated value of n|y, ¢. This framework gives flexibility by integrating out some of the
model parameters and also ensures a proper posterior distribution. However, in cases

where the correlation matrix is parametrised by more than one parameter the storage
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requirements for precomputing the needed covariance matrices would be large.

A more sophisticated MCMC scheme is presented in Christensen et al. (2006) extending
the ideas in Christensen & Waagepetersen (2002). The authors make a quadratic ap-
proximation of the posterior distribution 7(n, 3|6, y) and remove much of the posterior
dependence within 7 and B and also make 1 and 3 approximately orthogonal to o2
and ¢. Effectively, their approach lies under the framework of partially non-centered
parametrisations presented in Papaspiliopoulos et al. (2003) and Papaspiliopoulos et al.

(2007).

To begin with, they work under the setting of 3 ~ MVN (F3,X) where ¥ = 0’R
and E[Y;|n;] = m;h~1(n;), for i = 1,...,d with m; being known scalars. We consider the
case where the covariance parameters, @ = (¢, 0?), are fixed since they do not affect the
resulting transformations of S and 3. Let also 3 ~ MVN (mg, Q2); then the log-posterior

distribution of (n, 3|0, y) is given by,

logm(n, 8|0, y) = log f(y|n) + log p(n|B,0) + log p(B|0) + const. (2.2.18)

Using a Taylor expansion for log f(y|n) around 7 where 7); = argmax f(y;|n;) we obtain

that,

/

1 A~ A ~
log f(y|n) ~ —5(77 —n) A(1)(n — 1) + constant

where A(7)) is a diagonal matrix with entries —88—7722 log f (yﬂm)‘n:ﬁ. If we plug this ap-
proximation into (2.2.18) we can derive that the posterior of 7 is approximately multivari-
ate normal with mean 3 (A (A) A + X' Fp) and variance 3 where 3 = (Z1+A (ﬁ))f1

Equivalently, we get that 3 is approximately normally distributed with mean given by

~ ’ ~ ~ f -1
Q (F S-1SA (7)) + Q‘1b> and variance {2 = (Q—l +F (AA) S+ 1) " AR) F) :
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This motivates the transformation of np and 3 to,

S = <5:‘1/2> (n-S(@a+="Fp)) (2.2.19)
3= (521/2>71 (ﬁ o) (F’z—lfm (#H) 7+ Q‘lb)) (2.2.20)

so that S and B are multivariate standard normal variables consisting of uncorrelated
components being also approximately uncorrelated with 8. The proposed algorithm for
simulation from the joint posterior distribution 7 (n, 3|0, y) consists of two blocks using
MALA proposals. The exact proposals are, ,épmp|5’, 6,y ~N (,@CW + %‘%5(5), 55—771) and
S”’""py,é,e,y ~ N (Scm + %ﬁ(gcw),dgfn) Where §(.§') =S+ Vlogw(g\,é,e,y) and
f(/é) = B+Vlog 7r(,[§|07 y) After each update, the current values of n and 3 are obtained

using (2.2.19) and (2.2.20).

In the case where the correlation parameters 8 = (o, ¢) are unknown then one just has
to add the logarithm of their prior distribution, logm(f]y), in (2.2.18) and the sampling
algorithm would further include two one-dimensional RWM steps. Based on the fact
that these two parameters usually exhibit posterior dependence and that their posterior
distributions can be heavily skewed the authors suggest to update 6, = log(o) and

0y = 2log(c) — log(¢) instead.

The approach of Girolami & Calderhead (2011) has been briefly described in Section
2.1.6. In the following we provide the exact proposal distribution used for updating the
latent process m conditionally on the parameters, focusing on the MMALA rather than
the RMHMC. In their example, they consider the case Y;|n; ~ Poisson (mexp(n;)) and
n ~ MVN (,un, 3 (02, (;5)) where m is a known scalar and p, = uplgx1 with p, being a

constant mean. Let 8 = (“17’ o2, ¢). In order to construct the preconditioning matrix,
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M, the authors take the expectation of the second derivative of the log posterior over

both the data and the latent process, i.e.,

2 —1

0 -1
M = —-E — 1 0 = (A+X7!
y,n|0 87]8?7/ og {7T(77| ay)} ( + ) )

where A is a d x d diagonal matrix with diagonal elements E [exp(n;)] = exp{, + 3 X}
for ¢ =1,...,d. In that way, the curvature of the random field is constant and the matrix
M does not depend on m. Therefore the full MMALA for the latent process reduces
to a simple MALA update with a fixed preconditioning matrix M. The exact proposal

distribution is therefore,
A
NP ~ MVN (n““" + §MV log m(n“" |0, y), )\M) :

In Chapter 3 we will refer to this simple preconditioned MALA as pMMALA. However,
based on what was introduced in Section 2.1.6 the preconditioning matrix should be
constructed based on,

2 —1

0 1
) 7
y|n,0 onon

M(n) = log{n(n,y)}| =(A+Z7") ",

where in this case A is a d x d diagonal matrix with diagonal elements exp{n;} for
i = 1,...,d. In that way, the proposal would use a position specific preconditioning

matrix since it would depend on 7 resulting in the sSMMALA.

Haran & Tierney (2012) consider the construction of a simple MCMC scheme and in
particular a MHIS in order to make inference on a model similar to the Poisson GLSM.
The fundamental difference between their model and the GLSM is that in the former,

the spatial dependence is modelled through a Gaussian Markov random field. Similar
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to the motivation of Chapter 3 of this thesis, their suggestion is to employ a Gaussian
approximation to the posterior of interest and use a heavier-tailed version of it as a
proposal in a MHIS. Their algorithm shares similarities with the algorithm L1 that we
propose in Section 3.1.2 including the exact transformation used on the data in order
to achieve the Gaussian approximation. However, we believe that the information pro-
vided by the authors regrading the performance of the algorithm is limited and concrete

conclusions can not be drawn.

Giorgi et al. (2015) share ideas from Christensen (2004) and construct an algorithm
that combines Monte Carlo maximum likelihood techniques and MCMC sampling. For
instance, estimates for the parameters of the model are obtained using Monte Carlo
maximum likelihood and the latent process conditional on the parameters is updated

using the parametrisation of Christensen et al. (2006).
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CHAPTER 3

Single block MHIS proposals for the latent variables in a GLSM

Throughout this thesis we focus on the Poisson GLSM, a model with correlated Gaussian
latent variables, and consider inference on the latent variables using the MH algorithm.
In this Chapter we consider all latent variables being updated as a single block. We
demonstrate the full derivation of our proposals and their performance in this particular

case.

Throughout this Chapter it is assumed that the covariance parameters (02, ¢) from
(2.2.2) are known and that we wish to perform inference for the Gaussian latent process
and the mean parameters 3 from (2.2.13). In practice one usually wishes to perform
inference on the joint distribution of all of the parameters and the Gaussian process.
However, MCMC algorithms typically alternate an update of the Gaussian process given
the covariance parameters with an update of the covariance parameters given the Gaus-

sian process. The focus of this thesis is on improving the former step, and this is why
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we assume that the covariance parameters are known.

In particular, we explore the idea of applying a Gaussian approximation to the density
of a transformation of the data, conditional on the Gaussian process. This enables us to
work under the framework of the linear Gaussian model, where the form of the posterior
is tractable. In that way we are able to find an approximate posterior distribution for the,
potentially transformed, latent variables given the transformed data, and use this as a
proposal in our MCMC algorithm. We correct for the approximation with the usual MH
accept-reject step. Additionally, non-linear terms of the distribution of the latent process
are replaced with fixed values based on the data, resulting in an MHIS. The algorithms
presented in this chapter require no tuning and they also automatically select initial

values for the latent process.

In Section 3.1.1 we outline a general algorithm based on the link function which can
be implemented on any GLSM, and show the exact form of the proposal for a Poisson
GLSM in Section 3.1.3. Thereafter, the constructed proposals focus on the Poisson GLSM
and in Section 3.1.4 we provide a further transformation which attempts to reduce the
error in the approximations to the mean and variance of the transformed data. Section
3.2.1, illustrates the use of Anscombe’s transformation on the data which results in a
different proposal, and in Section 3.2.3 we present some further approximations for the
expected value of the transformed data. Finally, in Section 3.3 we compare our suggested

algorithms against those already existing in the literature.
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3.1 The link function transformation

3.1.1 A general algorithm

Let the d-dimensional vector Y be the response variable arising from a distribution
within the exponential family and suppose that conditional on the parameters and latent

variables its mean is modelled as

h(E[Y|n]) =h(n) =n=FB+S,

where h() is the link function, F' is the design matrix, 8 the vector of regression coeffi-

cients and S is the spatial process having the following priors,

B ~ MVN(,0°55)

S ~ MVN(0,0%R),

where the correlation matrix, R, depends on the parameter ¢ as introduced in Section

2.2.2.

Consider a random variable such as a Poisson random variable with a large mean, or
a binomial random variable with a large number of trials and a success probability not
close to 0 or 1. Such a random variable has a distribution which is close to normal
and, moreover its standard deviation is much less than its mean. Hence, any suitably
well-behaved transformation of it will also have a distribution which is approximately
normal, and for a reasonably accurate description of this random variable it should be

sufficient to obtain its mean and variance.

Consider now the transformed variable Y! = h(Y"). In order to obtain a normal ap-
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proximation of the likelihood we use the Delta method, i.e., we first approximate the
moments of Y!|n using a second order Taylor expansion about p := E(Y), (see, for
example, Casella & Berger (1990)). For ease of notation, since Y;|n;, i = 1,...,n are inde-
pendent, we illustrate the Taylor expansion in the univariate case and drop the subscript

i. Thus, denoting E [Y;|n;] by u(n), we have,

2
Yin ~ h(u)+(Y—u)8gif)+;(Y_M)288’L(2“),
2
= 77+(Y—u)ail9;m+(y_#)288f2(2/t)7 (3.1.1)

evaluated at p = p(n). In the above expression we have neglected the term %(Y —

39°h(p) for some t(n,Y) € [0, 1].
T PR 1) €01

It is crucial to the efficiency, but not to the accuracy, of our technique that each succes-
sive term in this Taylor expansion is small in comparison with the previous term. The
probability that each term is negligible compared to the previous one, tends to one as
the probability that an observation is, in some sense, closer to the mean tends to one.
For the Poisson model this occurs as the mean, u — oo whereas for a Binomial, B(n, p),

model this occurs as n — oo provided p € (0,1).

The expected value of Y} |n; is approximated by

19%h (i .
BV~ ) = 1+ 5 g Vel =+, (312

19h (i)

l

and taking into account only terms up to first order, the variance can be approximated
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) 2
Var[¥!n] = {8’5(;‘)} VarlYifni] = 3. (3.1.3)

Therefore, assuming for now that pu;,X7 are known, and assuming a Gaussian distri-
bution for each Y}, we have that approximately Y} |n; ~ N(n; + pf, X%). Extending the
above approximation to the multivariate case, we can obtain the following approximation

for the joint distribution of (Y, n)

y! Fug+p' o (FE4F + R) o®(FsF + R) + "

n Fus o (FSoF +R)  o*(FSsF +R) D
(3.1.4

where p* is a vector with elements p and 3* is a diagonal matrix with diagonal elements

*
M.

If 3.1.4 were true, then the distribution of n\Yl would be

MVN (g0, 1) (3.1.5)
(see, for example, Diggle et al. (2007)); where,
’ ’ —1
oy = Fiig + 0*(FSsF + R) [0X(FEsF + R)+ 3| (y' = Fug— '), (3.1.6)

/ / / -1 /
S, = 02 (FEF + R)—0*(FE3F +R) {GQ(FzﬁF +R)+ 2*} oX(FEsF +R).
(3.1.7)
Our suggestion is to use this conditional distribution as a proposal for 17 in our MCMC

algorithm in order to draw samples from the posterior distribution of m|y. However,

p* and ¥* are functions of 1 and are unknown. Since, though, E[Y] = h~!(n), we
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approximate p*(n), £*(n) with p*(h(Y)) and Z*(h(Y)).

Furthermore, as far as the regression parameter 3 is concerned we have that

Fus | | o (FSF +R) 0°F3;
~ MVN , : (3.1.8)
B s 0?5 F P
Thus,
Blm ~ MVN (0, Zg). (3.1.9)
where,

/ / -1
Ky = Mg+ o*SsF [02(F25F + R)} (n— Fug)

/ , -1
Sy = 023 — 023 F [UQ(FzﬁF n R)] o F3, (3.1.10)

Hence, having sampled from n|y we can use the updated value of n in order to sample

exactly from the posterior distribution of 8|n,y.

3.1.2 The algorithm (L1)

We illustrate the resulting MHIS algorithm, L1, that draws samples from the posterior
distribution of n, Bly. Let, nP"°P, " be the proposed and current value of the latent
process 7. Since, y' = h(y) is substituted for 1, the proposal distribution derived from
(3.1.5) and (3.1.7) will not depend on n°“". Therefore, the resulting algorithm will be an

MHIS and we denote the proposal density by ¢*(n|y'). Then the algorithm reads,
e Set initial values n° =n©), § = 1.

e Propose, nP"°P according to (3.1.5) — (3.1.7)
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e Accept with probability,

(n”“’”ly)q*(nc“”!yl)) .

v
a ncur’ ,r’prop = min (1, -
( ) m(newr ly)g* (nrrorlyt)

o If pPTP is accepted, set " = nP"P.

e Store n) = set i =i+ 1.

In practice, in order to ensure that the algorithm is geometrically ergodic, the multi-
variate normal proposal for n is replaced with a d-dimensional multivariate Student’s

t,~distribution with density given by

v+d

/ —

1 2
* l -1
7 (Mly’) o (1 +- (n - u,ﬂyz) 2 (n - uw)) (3.1.11)

After the MCMC algorithm has completed I iterations, a sample for 3 can be drawn,

through the following step,

e Using each n(®, simulate 3% using (3.1.9) — (3.1.10)

3.1.3 Example: Poisson GLSM

We will now consider a Poisson GLSM and illustrate the exact form of the proposal distri-
bution derived in the previous section. More explicitly, we have that Y;|n; ~ Poisson(u;)

where u; = €. The canonical link function is,

W) =log(ps) =m = f38+s; for i=1,..,n. (3.1.12)
Therefore,
0 0?
h(p;) = e ™, h(u;) = — =2
o (i) = e o2 (i) = —e
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Combining these expressions with (3.1.2) and (3.1.3) the mean and variance of Y}|n; are

1, . e
E[Y]|n;] = ni — 2¢ " Var[Y]|n;] = 3f; = e (3.1.13)
Thus, pf = —%e‘”i, and substituting n; = y! = log(y;) for the non linear terms we obtain
1 1 1 1
LT S A S (3.1.14)
2eYi 2y; eYi  Yi

A word of caution is needed for the Poisson GLSM when using the canonical link function
since log(y;) = —oo if y; = 0. In this case, we substitute y; = 0.5 when taking the
logarithm. This is supported by the general argument provided in Section 3.1.4 and is

also supported by Haran & Tierney (2012).

As a final comment, when the above algorithm was implemented we found that ignoring
the correction term p did not noticeably alter the performance of the algorithm. Fur-
thermore, a MH version of the algorithm was explored where 7; in the terms ) and X*
was replaced with the current value of the process rather than using the approximation
N yf However, the gain in efficiency was minor, yet the extra computational cost
was very high since the mean and the covariance matrix of the proposal distribution
had to be calculated at every iteration. Therefore, the results presented in Section 3.3

correspond to the algorithm illustrated above ignoring the correction term ;.

3.1.4 An alternative approximation for the Poisson GLSM (L2)

In Section 3.1.1 we outlined a general method for constructing the proposal distribution
which applies to any GLSM. In this section we provide a further approximation for the

case of a Poisson GLSM through which the leading error term in the Taylor expansion
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for the expectation of the transformed data disappears.

Let Y; ~ Poisson(y;), where in our case p; = €, with 7; being the linear predictor as
defined in 3.1.12. For ease of notation we ignore the subscript ¢ and define the transformed

variable Y? = log(Y + «). If we set,

T

o -1 k Y — k
::kz( k) ((u+§))’“’ (3.1.15)
=1

then under the assumption that ‘%‘ < 1, YP can be approximated through a Taylor

expansion of Y about u by,

YP = log(Y +a)=log(Y —pu+a+u)
= log(p+ao)—T (3.1.16)

a
= log(p) + log (1 + M> -T

Q

(6% OJQ 043
1 —_— 4+ — | =-T. 3.1.17
osli) + (2= gzt o) (3.1.17)

Now, consider the expectation of Y? given by,

E[Y?] =log(p+a) —E[T].

We want the accuracy of our approximation to be of order O (/fz) and we therefore

have to include all terms of 7" up to k£ = 4. To see this, recall that the first five central
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moments of a Poisson random variable Y with mean p are given by,

E[(Y—u)l} = 0, E[(Y—u)z]=E[(Y—u)3}=u,

E [(Y - u)ﬂ = 3 +p, E [(Y - u)5] = 10p% + O(p).

Hence, the expectation of T is given by,

o (W E|(Y —p)t
=) = 3! k) Euw)’ﬁ}

k=1

%

3u* + _
H . K -+ H ,“4 (’)( 3)
2(n+a)?  3(p+a)  4(p+ )

%

1 « 1 « 1 da
—(1-2=)—-—=(1-3— +(3,u—120¢+1—>+(’) w3
2u< u) 3u2< u) 43 [ (n™)

1 (5-12a) 3
— . 1.1
2 - 12,2 + 0 (p?) (3.1.18)

%

Substituting now back to (3.1.17) we obtain the expectation of Y? through,

a o o 1 (5—12a)

E[Y?] ~ 1 S T M P Gt -3
[Y?] 0g(u)+<u 2u2+3u3> YRRRLY: +O (u?)
~ +£ _1 _i_i _&2_3 _|_O( _3)
= )T 2\"T e T 12 K

For the calculation of the variance of Y7, consider the form of Y? in (3.1.16) for simplicity
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and notice that

Var [Y?]

— E|(v?)?] - E[v7]

= E[T?] - E*[T] = Var[T]. (3.1.19)

Hence, we only need to calculate the expectation of T2,

#+ E [(Y - u)’f“]

E[T?] =) (_2 (T ) (3.1.20)

k=1

To account for all O (u~?) terms we evaluate E [T?] for all pairs (k,) such that k+1 < 4

and obtain that,

Elv-w] E[0-w'] pE[r-w]

= ey

=l

1

(-5)

Grap T2 rap TOW)

1 a 11 a _
—2<1—3>+12M4(3;ﬁ+u) <1—4M)+O(M %)

W

= f+i(7—8a)+(9(/f3)

po Ap?

Combining this expression with (3.1.18) and (3.1.19)

Var [Y7?]

E [T?] — E* [T]

61



Notice that when o = 0,

1 5 1 3
EVPl sy — — — 2 —2 Var [YPl~ = + — +O(p 3
Y ~n—5 12M2+o(u ), Var[V?] R (1),
and when o = 0.5,
E[Y?] ~q— —— to(u?), Var[Y”]~ >+ -~ +0u™). (3.1.21)
2442 ’ po 2p?

Hence, by choosing o = 0.5, the O(p~!) term in the expectation disappears and the
O(u=2) reduces by an order of magnitude. Moreover, in the variance the O(u~2) term
also becomes smaller. Therefore, the choice of a = 0.5 leads to smaller errors in the

approximations E[Y?] ~ n and Var[Y?] = %

Extending the approximation made in Section 3.1.1, we wish to approximate the variance

of Y? by a function of the form %w and would like this to be unbiased to o(u~2).

Consider, therefore,

R | Y —p _I_LOO B L (Y — )k
&) _u+6<1+u+5> _u+6kzzo( R
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This has expectation given by,

Q

2[v07) ~ 5 (gt o)

1 H -3
= wxB T aep 3 oW

-1 -3
= ! (1 + ﬁ) +pu? (1 + ﬁ) +O(u?)

= — -+ Oou).
Lt (1)

Comparing now this with the variance given in (3.1.21) we see that,

1 1 1 1-8 1
- 9 =—+ 9 5 = 5
poo2ut pop 2
which indicates that the bias in our choice of ﬁ for the variance is of order o(u~?).

Hence, we approximate the distribution of Y|n; by,

1
YP|lp, ~ N .
) |nl <nl7 yz + 05)

Extending to the multivariate case and taking into account the structure of the GLSM we
can approximate the joint distribution of the vector random variables (7, Y?) through
a multivariate normal distribution similar to the one obtained from (3.1.4). The only
differences, now, are that firstly there is no first order correction term p* and secondly,
the diagonal elements of the covariance matrix 3* will be of the form 1/ (y; + 0.5). The

proposal for our MCMC scheme is therefore, n|Y? ~ MVN (,umyp, 277|yp) with mean
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and variance given by
’ ’ _1
Hpjyr = Fg + o*(FEsF + R) [JQ(Fng + R) + 2*} (y? — Fug)
/ ’ ’ 71 ’
Sy = *(FSF + R) - 0*(FSsF +R) [X(FSsF + R)+ 2| o*(FSsF +R).

3.2 Using Anscombe’s transformation for the Poisson GLSM

The two main characteristics of the normal distribution are symmetry and independence
between variance and mean. This is in contrast with the Poisson or Binomial distributions

which are skewed and where mean and variance are related.

So far, in the case of a Poisson GLSM, we have employed the logarithmic transformation
of the data in order to obtain an approximate Gaussian distribution. As discussed in the
beginning of this Chapter, by the Central Limit Theorem a Poisson random variable,
Y, with a large mean is approximately Gaussian in distribution. By the Delta method,
the logarithm of Y is also approximately Gaussian. However, simple simulations with
a mean in the range 20 to 100 show that the Gaussian approximation to Y is gener-
ally more accurate than that to to log(Y'). In particular, log(Y’) has a relatively heavy
left-hand tail, destroying the approximate symmetry. Moreover, the logarithmic trans-
formation does not provide us with a variance that is relatively independent of the mean.
To achieve that we employ the transformation introduced by Anscombe (1948) that re-
duces the positive skewness of a Poisson random variable and also leaves the variance
approximately independent of the mean. In the same article, Anscombe also introduces
a transformation for binomial data which could serve as the basis for a proposal for a

binomial GLSM.
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3.2.1 The Anscombe transformation

Let Y; ~ Poisson(u; = €”) and define Y;* = |/Y; + 2. Anscombe (1948) showed that

approximately,
1 2400 — 7
E[VYH_O‘}%\/W_ 1/2 3/2
8, 1281
1 3—8a  32a% — 520+ 17
% [\/Y ] S
ar it a 4{ + 811 + 32#? }

Therefore, choosing o = % gives the Anscombe transformation that makes the first order

term in the variance disappear resulting in a variance that is closer to a constant. Hence,

we derive,
3 3 1 1
E[Ym] =E \/Yi+ %\/uﬂr— + (3.2.1)
8 8 8/‘1/2 64/~L:‘3/2
/ 3 1 1
A ~

However, we can further exploit this approximation. In particular, considering a second

order Taylor expansion of /u; + % and for ‘%‘ < 1 we can write,

3\ 1/2 X 3\ 1/2 3 9
= =21+ = ~ — .
(“ i 8) 8 ( i 8u) VI G /i 51207
Substituting now back to (3.2.1) we can derive an equivalent approximation to the mean

of the transformed random variable lQA which reads,

3
Yi+g

~ ! ! (3.2.3)

+ — ,
L6y 512,57

7

B ln] = B

where p; = €. Our suggestion is to use (3.2.2) and (3.2.3) results in order to define a

good proposal for our MCMC scheme.

We work under the same setting as in Section 3.1.1 but we now define the transformed
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databy YA = /Y; + 2. According to the result described above, we will use the followin
1 8 g

approximation,

1 1
Y;*|n; ~ normal (e’”/z + 1766—777:/27 4) .

Our aim, is to have data that are approximately Gaussian and centred on the param-

eters which in turn have a Gaussian prior resulting in a Gaussian posterior. Therefore,

"71

let ¢; = €"/2 and set p} = © . We now introduce two different methods for obtain-

ing a Gaussian approximation to 1: moment matching and linearisation via a Taylor

approximation.

3.2.2 Using moment matching

Using the properties of log-normal distribution we can derive the prior mean, variance

and covariance for @ from the prior Gaussian distribution of 7). These are,

E[wz] :eXp{ fuﬁ"’ (f Eﬁfz"i'Ru)} = Hapy

2

Var[yy;] = (exp {(1 (f;zﬁfz‘ + Rzz)} - 1> exp {f g+ — (f Ssf + Rﬂ)} =V,

Cov[vy, ] = <exp{ 2(f Eﬁfj—i_Rw)} )

x exp{; (f; +f;-) 1+ "; (f;ngi + R+ £55f, +Rjj)} =V

To summarise, 1 has, a priori, a multivariate log-normal distribution with mean g,
and covariance matrix V' with elements py, and V;, V;; respectively. In order to work

under the Gaussian framework we approximate this log-normal distribution by a normal
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distribution with the same mean and variance. Therefore, we are now able to derive the
approximate joint distribution of 4, Y4,

Py 4 14
~ MVN : : (3.2.4)

y4 Moy + 1 V (V+1I)
If (3.2.4) were true, then the conditional distribution of ¥|y“ would be,

Wl ~ MVN (g0, Vg ) (3.2.5)

with mean and variance given by,

1.\* i
Popjys = My +V (V + 4I> (¥ — py — 1) (3.2.6)

1\ !

which is now our new proposal in the MCMC scheme to sample from the posterior distri-
bution 7(n|y). Once more, we make use of the transformed data for the correction term
in the mean and replace pu* with 1/(16y*) leading to a MHIS. However, the components
of 1 can only take positive values, whereas, the approximation of the log-normal by
a normal distribution can give rise to negative values of 1. Therefore we impose the
constraint that each component of a proposed value must be positive. In practice, we

sample from this truncated distribution by rejection sampling.
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Algorithm (A1)

Let PP, 4p““" be the proposed and current value of @. Moreover, denote the proposal

distribution derived in (3.2.5)-(3.2.7) by ¢(v|y“) and the target by 7(1p|y), where

9
m(Ply) = ‘#‘W(my)‘nﬂlog(«p)'

The MCMC scheme used in order to draw samples from 7(n|y) is as follows,
e Set initial values 9" = ",
e Propose, PP according to (3.2.5)-(3.2.7)
o If gy >0, fori=1,...d,

— Accept with probability,

W(@l)pro”\y)q(t/)‘:“r!y/‘))

cur DPropy _ :
O‘(,ltb a,ltb ) min (17 W(,(pcur‘y)q(,lpprop’yA)

— If q/;PrOp is accepted, set ,l/)cur — ,(pp'rop

— Obtain " = 2log(¢p“").

3.2.3 Linearisation of the transformed variable v

As described in the previous section, using Anscombe’s transformation the latent process
7 has to be transformed to 1. An important drawback of this approach is that although
1 has a log-normal distribution we consider it having a normal distribution, albeit with
the same expectation and variance. In this section, in order to avoid this misspecifica-
tion, we approximate @ through a linear relationship with 1 while keeping Anscombe’s

transformation for the data. To do that, we Taylor expand (n) about n = m, for
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some ‘central’ value m, such as an approximation to the posterior expectation of 1, and

construct a proposal for 7.

In the following, for ease of notation we denote the prior mean of the process n by p,
and its prior covariance matrix by V. Recall that ¢ = e? and yr =]y + % and define

m
2

D,, to be a diagonal matrix with diagonal elements equal to e 2. Finally, let ¢, be a

column vector with elements the diagonal of V',,. Using results of Section 3.2.1 we have

that approximately,
Y4 p ~ MVN(9, 0.251). (3.2.8)

A first order Taylor expansion for ¢ gives,

- en/2
_ dmedm)
Lm 1
~ e? 1+§(17—m) , (3.2.9)

The expected value and variance of ¢ can be approximated by,

po = El] = Dy (14 50, - m))

1
Vy = Var[yp] = ZDmVan’ (3.2.10)

Consequently, we can approximate the distribution of @ through a multivariate normal

distribution with mean and covariance matrix given by (3.2.10) so that 1p ~ MVN(p,,, V).
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Combining this with the normal likelihood of y“ |+ as shown in, (3.2.8), we obtain that,

’lp‘yA ~ MVN(IJ’w|yA7 Vq,/)\yA)

where,

1N\
Hylga = My +Vy <V¢ + 4I> (y" = hy)
(3.2.11)

1 \!
In order to obtain our proposal for n we rearrange expression (3.2.9) such that,

1
n:2<D;}¢—1+2m>.

Using now the conditional mean of % as given in (3.2.11), our approximation is that
77|?/A ~ MVN(un|yA7 Vn|yA)7

where the mean and variance read,

_ 1
“n\yA =92 (D’mll*l’wkl/A -1 + 2m> y

Voya =4D 'V aD} (3.2.12)

ul

respectively. As illustrated in previous sections both E [Y*|n] and E [Y?|n] are approx-
imately equal to 1. Therefore, the above algorithm could be implemented either using,

m = log(y) or m = log(y + 3). We choose to use set m = log(y) and denote this
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algorithm by RA. Additionally, we try an iterative scheme in order to obtain a value

for Hyya closer to the the true posterior expectation p,,. More explicitly, we give the

(1)

plyA using (3.2.11) and and the conditional mean

initial value m = log(y) and calculate p

@ 6

of (3.2.12); we then set m = ,u(lz’A and repeat the calculations to obtain Boyas By

ul
The intuition behind this iterative scheme is that after several iterations m should more

closely approximate E[n|y]. This iterative version of RA with 3 iterations will be referred

to as iRA.

If n; is small, i.e., m; ~ 0, then the Anscombe approximation will be poor but the
likelihood in expression (3.2.8) is relatively uninformative compared to the prior variance
in expression (3.2.10). If the likelihood now was completely uninformative then g, =
Hyjya and Vi = V4 and the back transformation given in (3.2.12) would be exact
reducing to

nly* ~ MVN (p,, V) .

Our algorithm would therefore be exact in the case of a completely uninformative like-

lihood.

On the other hand, if 7; is large then the Anscombe transformation will be accurate
and the likelihood in expression (3.2.8) would be very informative compared to the
prior. Therefore, with an appropriate choice choice of m the Taylor expansion should be

accurate resulting in an accurate posterior for 7.
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3.3 Simulation study and results

3.3.1 Simulation study

In this section we assess the performance of our proposals. We compare our algorithms
against the algorithm of Christensen et al. (2006) and the pMMALA, the further simpli-
fied version of SMMALA as described in Section 2.2.7, suggested by Girolami & Calder-
head (2011). The comparison is made on a simple scenario of a Poisson GLSM where
all parameters describing the covariance structure and the mean are fixed to their true
values. Therefore inference concerns only the latent process 1. As we have discussed
in Section 3.1.1, given a sample 7, it is straightforward to produce a sample from the
posterior of (3, .S). The constructed normal proposals of the previous sections have been

replaced by the Student’s t—distribution with 10 degrees of freedom; see (3.1.11).

Design of simulation study

We assess the performance of each algorithm under different scenarios of parameter val-
ues in three different dimensions. In particular, we explore the performance of the algo-
rithms when the dimension of the process 1, is equal to d = 25,49, 100. The observations
are sampled on a regular grid in the square {1, 2, ..., \/&}2 For the mean of the process,
we consider u, € {log(1),log(10),log(100)} and for the variance 0% € {%,1,3}. As far as
the correlation structure is concerned, we use the exponential correlation function with
¢ € {1,10,100}. We set the default parameters to (”77 =log(10),02 =1,¢ = 10) and
test the effect of the parameter values by making a single change from this combination
each time, resulting in seven different scenarios of parameter values within a given di-
mension. Finally, three different datasets, namely di, d2, ds, were simulated for each of

the seven scenarios for all three different dimensions.
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Data simulation and standardisation

We treat all parameters as known and fixed to their true prior values. However, in a full
MCMC scheme we would also sample these parameters from their posterior distribution.
This could give rise to parameter values which were typically quite different to the truth
and more representative of their posterior distribution given the particular dataset. Given
the large correlation between the latent variables in some of our simulations (¢ = 10
and ¢ = 100) we expect, in particular, considerable variability in the sample mean,
7, compared with the variance, 02/d, that would arise if the latent variables were iid.
At the same time, given their high correlation, the variability of the individual values
about 1 will be small compared with 0. We therefore expect that often the posterior
for p, will be centered at a value that is both quite different to the true mean pu,),
and more appropriate for use in generating samples from the latent variables using an
independence sampler. Since we are not performing inference on the parameters, we
simply ensure that the true mean will be sensible for use in our independence sampler
by sampling the latent variables subject to the constraint that n = u,. In practice,
we achieve this by sampling the latent variables n"“¢ by its true distribution and then

setting

true —true

/7 B S T

S
I

Choice of proposal distribution

In order to define a proposal distribution for our MCMC schemes we considered cases
where the chain starts at the tails of target and assessed its convergence and mixing be-
haviour. Therefore, using the posterior samples drawn from the algorithm of Christensen
et al. (2006), a sample vector of 1, lying in the tails of the target was identified. This

was subsequently used as initial values in our algorithm that was run for 10° iterations
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using different proposal distributions such as t4, t19, t20 and normal.

In Figure 3.1 we provide some indicative boxplots of the effective sample sizes achieved
from algorithm L1 at a single run for different scenarios of parameter values using a
ty4, t1p and tog proposal distribution for dimension d = 25. As we see the t4 proposal
always achieves the lowest ESS. In most cases 59 appears to perform better than the
t10 proposal in terms of ESS but we have found cases such as the one in the top left plot
where the t1¢p proposal outperforms the t99. In practice we have seen cases were a tog
proposal presented extended periods of rejections either in the beginning of the chain or

even after 4 x 10° iterations.

A normal proposal would be highly inefficient due to its very light tails. The resulting
sampler would not be geometrically ergodic and therefore a central limit theorem would
not hold (Roberts and Rosenthal, 2008). In our experiments we encountered cases where
very few, if any, proposed moves were accepted. Therefore such a choice was rejected.
On the other hand with a t4 proposal a central limit theorem would hold for every
function h with finite second moment. However, such a proposal would again lead to
an inefficient sampler due to its wrong shape. This was evident in our experiments
through the presence of very low acceptance rates and hence very low ESS that were
achieved. Since as limgr_oc Tqr(x) = ®(x), the optimal value for df will lie between these
two extremes. However, the optimal value for df will be different for each scenario of
parameter values, dimension and dataset. We are in favour of avoiding extended periods
of rejections and slow mixing rather than attempting to achieve an extremely accurate

shape for our proposal. For that reason we chose to use a t1y proposal.
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Figure 3.1: Boxplots of ESS obtained form algorithm L1 for seven different scenarios of
parameter values and dimension d = 25.
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MCMC implementation

Initial runs of the algorithm of Christensen et al. (2006) were implemented for all sce-
narios for each dataset. A sample point from the posterior with marginal components
always lying within the 0.01 and 0.99 quantiles of their distributions was chosen, by
rejection sampling, and was used as the starting value for each of the algorithms in our
simulation study for that particular dataset. The algorithms were run for 10° iterations
and the first 2 x 10° iterations were discarded as burn in. All results are based on 8 x 103

samples drawn from the posterior distribution of n|y.

We monitor acceptance rates («), effective sample sizes (ESS) and the CPU time that
was needed for 8 x 10° samples to be drawn. Finally, we divide the ESS by the CPU

time in order to get a measure of efficiency for each algorithm, the adjusted ESS.

Assessment of convergence

In this thesis we measure the efficiency of a MCMC sampler in terms of the adjusted
ESS. However, before proceeding to the comparison of ESS of two different algorithms it
is crucial to ensure that both samplers have adequately explored the target distribution.
This is because a MCMC algorithm can successfully explore the main body of the target

distribution and achieve high ESS while failing to explore the tails.

In Section 2.1.2 we mentioned some widely used convergence diagnostics which deal with
assessing whether the distribution of either, parts of the same chain or two different
chains are similar or not. However, such a conclusion is reached by comparing either
the first two moments or a certain set of quantiles of the empirical distribution of the
chains. As mentioned in Brooks & Gelman (1998b) such convergence diagnostics are

not appropriate when inference relies on distributional summaries other than the first
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two moments. Boone et al. (2014) for instance, illustrate a simple example where two
distributions can have the same mean, variance, 2.5%, 97.5% quantlis but have markedly
differet densities. In such cases, the diagnostics mentioned above would fail to detect the

dissimilarity of the two distributions.

For that reason, we feel we have to protect the assessment of convergence from such
cases. Sharing similar motivation with Brooks et al. (2003) and Boone et al. (2014), we
employ the two-sample Kolmogorov-Smirnov statistics and construct a non-parametric

diagnostic that assesses the shape of the whole distribution.

The two sample K-S test (Kolmogorov 1933) is a non-parametric test used to assess
whether the equality of two distribution functions. In practice one has two samples and
wishes to assess whether they arise from the same distribution. This is achieved by com-
paring their empirical distribution functions (edf) using as test statistic the maximum
difference between the two edfs. More explicitly, we have two independent random sam-
ples X = (X1, X9,...,Xy,) and Y = (Y1, Y2, ...,Y,,) with cumulative distribution func-
tions F1, Fb respectively and we are interested in testing, Hg : Fy = Fy vs. Hy : F} # Fy.

Let the empirical distribution functions (edf) of X, Y to be,

ni

Fu@)= 23 T(X; <) and Foyla)= - Y 1(Y; <a),
j=1 j=1

respectively, then the KS statistic is defined as,
T := sup |Fy, (z) — Fp,(2)|.
X

The null hypothesis Hy is rejected at significance level « if the statistic 1" is greater

than the critical value ¢(«). Tables with the critical values of the distribution of T are
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available such as in Conover (1999).

Henceforth we refer to the algorithm of Christensen et al. (2006) as CRS. Consider any
algorithm and let s;, (i = 1,...,d) be the posterior sample for the i—th component of
the latent variable, S;, after burn-in has been discarded. We first apply a uniform (across
components) thinning, to the sample as follows. For each component, i, we repeatedly
thin the sample by a factor of 2 until the estimated lag-1 autocorrelations of S; and of S?
using the thinned sample are both not significantly different from zero, at the 5% level
and under the null hypothesis of Gaussian noise with no correlation; let ¢; be the number
of thinnings required and let 0, = maxg—y . ,} t;. Each component, ¢, is then thinned
by a factor of two a further (¢4, — t;) times. By thinning all components equally, we
preserve the correlation structure between the components of S and at the same time

obtain close to zero correlation within each marginal sample.

For each data set and for each pair of algorithms, CRS and some other algorithm, G, K-S
tests were conducted on each of the d marginal components of the pair of thinned samples,
leading to d K S statistics, K.S1,...,KSy. Since the components of S are positively
correlated the marginal K5 statistics might be related and so they cannot be treated
as being independent tests of convergence. In order to account for this correlation and
incorporate it into our null hypothesis we conduct a permutation test (see Davison &
Hinkley (1997)). A single test statistic K = Z?:l KS; is created from the marginal
K S statistics, and a further M = 1000 pseudo test statistics K" = Zf-l:l KS™ m =
1,..., M are created from 1000 x d marginal pseudo K S statistics. The marginal test
statistics K.S/", (i = 1,...,d) are generated together as follows. Suppose that the thinned

sample sizes are nors and ng so that laying one beneath the other leads to an (ncrs +

ng) X d matrix. A random permutation on the numbers 1,.. ., (ncrs+ng) was generated

78



and applied simultaneously to all d columns of the matrix. K.S;" is then generated by
conducting a K-S test on the first nogrg elements of column 7 against the last ng elements.
The sample K',..., K™ is then a sample from the distribution of K under the null

hypothesis of,

Hy : The thinned samples from G and from C'RS both represent independent

identically distributed draws from the same joint distribution for S (3.3.1)

3.3.2 Results

Tables 3.3.1-3.3.5 display summaries of the performance of L1, 1.2, A, RA and iRA
respectively for all three dimensions and scenarios of parameter values whereas Tables
3.3.6 and 3.3.7 illustrate the same summaries for the algorithm of Christensen et al.
(2006) and pMMALA respectively. Both algorithms were tuned to have acceptance rates
between 58% and 60%, which is close to the approximately optimal 57% for MALA
algorithms. As already mentioned we record acceptance rates, relative ESS, i.e., ESS/8 x
10°, CPU timings and adjusted ESS for each algorithm. The relative ESS and adjusted
ESS are summarised in terms of their minimum, median and maximum values. The three
different columns within each scenario of parameter values correspond to the different

simulated datasets.

We illustrate with grey colour the cases for which, according the permutation tests, we
failed to accept the null hypothesis (3.3.1). Additionally, we use (x) to denote the cases
where the thinning process resulted in sample sizes that were less than 50 and therefore
the permutation test was not conducted for that chain since it would have little power

to detect any discrepancies.
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The most immediate pattern in Tables 3.3.1-3.3.5 is that both acceptance rates and ESS
decrease as dimension increases for all of our algorithms whereas, according to Tables
3.3.6 and 3.3.7, the performance of Christensen et al. (2006) and pMMALA appears
to be more stable across dimensions. For our algorithms this is due to a single global
approximation to the posterior. Even when ¢ = 1, which corresponds to the lowest corre-
lation between the components of n, our algorithms perform poorly. To give an intuition
behind this, suppose that the posterior distribution of i is w(n) ~ H?zl m;(n;) and our

proposal is ¢(n) = ngl qi(n;). For simplicity, let us assume that the approximation to

mi(n)

each component is of similar accuracy in the sense that inf, q?(n)
7

= §, Vi. Consequently,
infy, % = 0. For such an MHIS, it is well known (e.g. Liu (1996), Murray (2004)) that
an upper bound on the total variation distance between the target and the distribution
of the state after n iterations is proportional to (1 — §4)". Therefore, the rate of con-
vergence decays exponentially with dimension. Considering the poor performance when
the components of the process are approximately independent in each case, either the

Gaussian approximation of the data or the Gaussian approximation of the prior for

is not sufficiently accurate.

Algorithm L1

We now look at each algorithm separately starting from L1 and Table 3.3.1. Keeping o2
and ¢ fixed, the performance of the algorithm improves as the prior mean g, increases.
In this case, the normal approximation to the distribution of Y is more accurate since
each successive term in (3.1.1) is negligible compared with the previous term and in
combination with the normal prior the overall normal approximation is better. On the
other hand, with the prior mean fixed, the performance of the algorithm deteriorates

as o increases. This could be due to the fact that, while assessing the effect of 2 on
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the performance of the algorithm we keep the mean of the likelihood fixed and close
to 10 which is not high enough for our Gaussian approximation for Y to be good.

2 increases the normal prior becomes less informative and the

At the same time, as o
likelihood contributes relatively more to our proposal. Since the likelihood approximation
is not especially accurate this results into lower acceptance rates and ESS. However, we
should always keep in mind that in the standardisation of 7 we have not accounted
for the variance. Therefore, we cannot draw clear conclusions about its true effect on
the performance of the algorithms. Finally, as the prior correlation increases, i.e. as ¢
increases, the shape of the posterior is closer to normal (see Figure 3.4) and therefore
our proposal matches its shape reasonably well leading to better results. This is because,
increasing correlation leads to (d — 1) small principal components and one considerably
large. In this case, all small (d — 1) principal components will have a very small variance,
and there will be a lot of variability only along one component. Therefore, the prior
becomes a lot more informative on these small principal components while the likelihood,
and any approximation made to it, does not play an important role. These result in a
MHIS where the inaccuracy in our approximation to the likelihood only has a real

impact on one of the d principal components. We therefore expect to avoid the curse of

dimensionality.

Algorithm L2

In Section 3.1.4 we showed that the transformation log(Y +0.5) should be more accurate
and therefore provide a more efficient proposal for algorithm L2. In Table 3.3.2 we see
that although in some cases L2 might provide better acceptance rates than L1; it always
performs worse than L1 in terms of minimum ESS. This small increase in acceptance

rates does give an indication of the improved accuracy, but acceptance rates cannot be
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used to compare efficiency. When the transformation log(y + 0.5) is used, the diagonal
elements of X* become larger resulting in a smaller proposal variance proposal. This,
or the altered mean or even the combination of both appears to actually reduce the

accuracy of the proposal.

Algorithm A1l

Table 3.3.3 illustrates the results for algorithm A1. For this algorithm there are two things
to consider, the normal approximation to the likelihood and the normal approximation
of the log-normal prior of the transformed parameter . For increasing p,,, Anscombe’s
approximation for the Poisson distribution becomes more accurate. Although the infor-
mativeness of the data increases as the true mean increases, that of the prior remains
unaffected. Hence, more weight is given to the improving approximation of the likelihood.
Increasing o2 increases the skewness of the log-normal distribution so that it cannot be
effectively approximated by the normal distribution. Consequently, our normal approx-
imation to the target fails with increasing prior variance and this is demonstrated in
the results of Table 3.3.3. In terms of ESS, this can only be seen for dimension d = 25
since in higher dimensions we cannot make any statement regarding convergence for the
corresponding scenarios of increasing o2. However, the fact that a sufficiently large iid
sample could not be obtained through our thinning process, indicates that the proposal
is poor. Due to variability between the different datasets no obvious pattern can be seen

for the correlation parameter ¢.

Algorithms RA and iRA

Table 3.3.4 and Table 3.3.5 correspond to algorithms RA and iRA respectively. Both

algorithms are expected to present the same pattern of performance since both use the
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same proposal distribution. The only difference lies in the iterative scheme we employ
in order to obtain the mean of the proposal for iRA, and through which we expect it to
perform better. Indeed, we find that iRA always performs at least as well as RA and it
often performs better by a factor of two or three. As in algorithms L1 and Al, increasing
H,, leads to better performance of the algorithms. This is a by-product of the likelihood
and prior approximations. For the likelihood approximation we have used Anscombe’s
transformation which does perform better with increasing mean of the Poisson. Let us
now consider the effect of increasing p,, to the linear approximation of ¢ by n. The Tay-
lor expansion of the exponential function, e, holds for small x so that each successive

2 x3,2%, ... is small compared to the previous one. In our case = (1 — m) where

term x
m = log(y). As p, increases we have already justified that E [log (Y) 7] ~ n and there-
fore the approximate linear relation between 1 and 1 becomes more accurate leading to
a more efficient normal approximation (see Equation 3.2.9). Furthermore, as the prior

2 increases, while 7 and ¢ remain fixed, the accuracy of the approximation

variance o
decreases since 1) can be very different from its expectation. With increasing prior vari-

ance approximating n via log(y) fails as mentioned earlier. Once more, no immediate

effect of ¢ is apparent in the data.

Algorithm of Christensen et al. (2006) and pMMALA

Table 3.3.6 and Table 3.3.7 illustrate the results of the algorithm of Christensen et al.
(2006) and pMMALA respectively. As we see, the latter always provides better minimum
and median ESS whereas the former tends to achieve higher maximum ESS. The algo-
rithm of Christensen et al. (2006) provides more stable results due to the standardisation

of the latent process with respect to the posterior mode and variance.

Table 3.3.7 illustrates that the range of ESS, as defined by the difference between max-
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imum and minimum, is quite wide compared to that provided by the remaining algo-
rithms. In order to construct the preconditioning matrix used in the proposal of pM-
MALA, Girolami & Calderhead (2011) choose to take the expectation over both the
latent process and observations rather than using the current values of the latent pro-
cess or the data. Consider, for instance, an ideal situation where the shape of the proposal
matches exactly the shape of the posterior. In this case, the proposed jumps will tend
to be larger in directions where the target is wider and smaller in directions where the
target is narrower. However, if the shape of the proposal and target do not match then
to obtain the same overall acceptance rate, the size of proposed jumps will be limited
by the narrow target directions so that the movement in the wide target directions will
be relatively slow. Therefore, we could expect such a pattern in the ESS of pMMALA,
since the chain will mix well for components with variance similar to the expected one
whereas it will mix poorly for those having a considerably different variance. This is also
supported by the fact that this pattern is more obvious for scenarios with large prior
variability between the components of 1 (i.e., large o or low ¢). On the other hand,,
Christensen et al. (2006) use the observed information matrix and thay make use of the
data by using the maximum likelihood estimate of 7;. Therefore the proposal used by
the algorithm of Christensen et al. (2006) would be more appropriate for a particualr

dataset.

The best performing of our proposed algorithms are L.1 and iRA since they provide better
acceptance rates, ESS and adjusted ESS. It also appears that L1 performs better than
iRA when the p, = log(100) irrespective of dimension. The algorithm of Christensen
et al. (2006) appears to have a more robust performance than our algorithms, both

within and between dimensions. However, irrespective of the dimension, the algorithm
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L1 always achieves better ESS and adjusted ESS than the algorithm of Christensen
et al. (2006) when p, = log(100). Whereas, the algorithm iRA always performs better
than the algorithm of Christensen et al. (2006) when ¢ = 100. As far as the adjusted
ESS is concerned, under this simple scenario where the parameters of the model are
assumed to be fixed, our algorithm has an advantage over pMMALA and the algorithm
of Christensen et al. (2006). Since the latter are both MALA algorithms have in general
higher computational cost. Therefore, in cases where the performance of our algorithms,
in terms of ESS, is comparable with that of Christensen et al. (2006) and pMMALA,
our algorithms tend to provide higher adjusted ESS, especially when d = 25. However,
in the case of a full MCMC where o2 and ¢ are also updated at each iteration, the
computational cost of L1 would also increase since it would require additional matrix
multiplications. Given this, it might well be sensible to have a large number of updates

to S before updating ¢ and o2.
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Investigation of the accuracy of our proposals

To visualise the constructed proposals and investigate how accurately they approximate
the target distribution we assess the contours of our proposals. We consider a bivariate
example where all parameters’ values are fixed apart from the correlation parameter
¢. The prior mean of the process is set equal to u, = (log(10),1og(10)) and the prior
variance o2 = 1. Regarding the correlation structure, we use the exponential function,
as in the simulation study, we set the distance between the two points to be equal to 1
and use three different values for ¢ € {1,10,100}. Finally, the Poisson observations are

set to be y = (10, 10).

Figures 3.2-3.4 display the contours of the log target, in black, with the contours of the
log proposals superimposed in red. Figure 3.2 corresponds to the case ¢ = 1, Figure 3.3
to ¢ = 10 and Figure 3.4 to the case ¢ = 100. The top line of each Figure shows the
proposals of the algorithms L1, L2, the middle line the proposals of RA and iRA on the

7 scale and the bottom line shows the proposals of A both on @ and n scale.

As we can see, neither the posterior of 1 nor that of 1 is close to Gaussian. However, the
contours of 1 are closer to ellipses than the contours of v, especially as the dependence
increases. The effect of using a Student’s t1g proposal is clearly illustrated in these
graphs as all the proposals have much heavier tails than the target. At least for this
two dimensional example, the first four algorithms, namely, L1, L2, RA and iRA appear
to represent the posterior better than A. All proposals seem to approximate the target

reasonably well around the mode but fail to capture its shape as we move into the tails.
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Figure 3.3: Contours of bivariate log-target (Black lines) and log-proposals (Red lines)
distribution. Top row: Proposals of the L1 (left) and L2 (right) algorithms. Middle
row: Proposals of the RA (left) and iRA (right) proposals. Bottom row: Proposal
of A algorithm on m scale (left) and 1) scale (right). Parameters’ values fixed to be
y = (10,10), p,, = (log(10),log(10)), 0? =1, ¢ = 10 and distance between points set
equal to 1.
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Figure 3.4: Contours of bivariate log-target (Black lines) and log-proposals (Red lines)
distribution. Top row: Proposals of the L1 (left) and L2 (right) algorithms. Middle row:
Proposals of the A1 (left) and A2 (right) algorithms on 7 scale. Bottom row: Proposals
of the A1 (left) and A2 (right) algorithms on 1) scale. Parameters’ values fixed to be
y = (10,10), p,, = (log(10),log(10)), 0? =1, ¢ = 100 and distance between points set
equal to 1.
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3.4 Discussion

In this Chapter, we have presented five MHIS proposals which propose a joint update on
all latent variables using a Gaussian approximation to the posterior distribution. The
first two algorithms, L1 and L2, employ a transformation of the data using the link
function. The remaining algorithms apply the Anscombe transformation to the data
and also utilise a transformation of the parameters in order to create an approximate

Gaussian posterior.

In Section 3.3 we compared our algorithms against each other and against the algorithms
existing in the literature and assessed their performance on a simple Poisson GLSM over

a variety of prior parameters’ values.

We have found that a single global Gaussian approximation to the posterior does not
provide an efficient MHIS proposal, mainly due to the non-Gaussian shape of the target
of interest. The initial approach of exploiting the structure of the Poisson GLSM and
use the link function to construct appropriate transformations of the data proved to be
the best performing (algorithm L1). In theory algorithm L2 should perform better than
L1 since the transformation used leads to smaller approximation errors. However, we
found that the resulting smaller variance and the altered mean of the proposal had a

negative effect on the algorithm leading to a very poor performance.

As far as Anscombe’s transformation is concerned, linearising 1 should overcome the
problem of approximating the log-normal prior of ¥ by moment matching. These two
algorithms, namely RA and iRA, indeed provided better results than A but still did not

outperform L1.

Overall, the higher the prior mean of 7 is, the better our algorithms perform, with L1
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performing even better than the algorithm of Christensen et al. (2006). Provided that
o2 is small, if K, was large then it would give rise to large 7;’s which, in turn, generate
large observations y;. Therefore, one could identify in advance, based on the observed
data, whether L1 would perform at least as well as the algorithm of Christensen et al.

(2006) avoiding all the additional computational complexity of the latter.

Finally, the performance of our algorithms is greatly affected by increases in the dimen-
sion of the target. One possible solution could be to construct univariate proposals which
update each component of 7 separately and resort to MH schemes other than the MHIS.
If such proposals could be combined with a way of capturing the dependence structure
of 1, in cases where the data are weak resulting in high posterior dependence, this could
give rise to an efficient MCMC scheme. Such an approach is investigated in the following

chapter.

As a final note, we would like to consider a potential improvement of algorithm L1. Let
nP P ~ MVN (,u,n‘yz, Emyz) as derived in Section 3.1.1, Expression (3.1.5) to Expression

(3.1.7). Consider now a new proposal, nP"°P*  of the form,

NP = By + V1 = (ncw - “’n\yl> T <npmp - “nlyl>

where ¢ € (0, 1] that would, in a way, weight the new proposed value for 1 according to
the current value and nP"°P. At stationarity and if the posterior distribution were truly

equal to its MVN (umyz,E ) approximation then nP"°P would have an expectation

nly!
of Holyt and variance of Enlyl and so the acceptance probability for the move would be

1. If ¢ = 1, then we recover exactly nP"°P whereas when ¢ = 0 we recover n“". Our

suggestion is to use P P* as the proposed value in the MCMC scheme where ¢ is set to
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be sufficiently small, e.g., 0.05. In that way we will always propose a value closer to the
current one avoiding proposals very far away from what already has been accepted. Given
the low computational cost of the algorithm defining an efficient value for ¢ through trial

and error should not be problematic.
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CHAPTER 4

Single component MH proposals for correlated latent variables

In this chapter, as in Chapter 3, we employ MH proposals with a ¢- distribution. In con-
trast with the approach of the previous Chapter, however, our proposals are univariate
and are, in general, not independence samplers. The general approach of Chapter 3 was
to utilise Gaussian approximations to the likelihood in order to obtain a a joint Gaussian
approximation to the posterior distribution of the latent process 1. Here however, we
create univariate proposals using the Laplace approximation, by matching the mode and
curvature of the conditional log posterior, and each component of the latent process is

updated separately.

In Section 4.1 we introduce a simple MHIS within Gibbs algorithm in order to draw
samples from the posterior distribution of the latent process using an approximation
to the marginal posterior of each, component of the latent process, s;, ignoring any

existing correlation structure. The MHIS algorithm itself is not expected to be efficient
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when the posterior correlation is strong; however it is a special case of, and will also
serve as the basis for, a more sophisticated MH scheme (Section 4.2) that accounts for
the correlation structure of the latent process by conditioning on the most important
principal components of the prior correlation matrix. Section 4.2.2 we complete this
MCMC scheme by improving its mixing through an update on the principal components.
Section 4.2.3 outlines the issues associated with the number of principal on which we
should condition and provides a diagnostic tool for this purpose. In Section 4.3.2 we
illustrate results of these algorithm and assess their performance over various scenarios

of parameter values.

4.1 A single component MHIS

Recall that the prior distribution of the latent variable n, p(n), is a multivariate normal
distribution with mean u, = F'8 and covariance matrix V, = 0?R, and that this gives
rise to Poisson observations y|n such that y;|n; ~ Pois(e™). In the following, we denote

the Poisson likelihood by L(n) and the resulting posterior by 7(n|y) as in Chapter 3.

To create a simple approximation to the posterior, let us ignore the prior correlation
structure of the process 17 and assume that n ~ MVN(u,n, 02I). Assuming independence
between the components of n, and since the likelihood L(n) is the product [}, L(n:),
we may obtain an approximate posterior distribution 7(n|y), which can be factorised

into the following product,

n

#(nly) = [[#0mly:) = [] 7 (4.1.1)
i=1

i=1

where 7; denotes the approximation to the posterior distribution of the i-th component
of 1. We propose an MHIS within Gibbs algorithm where each component, 7;, is updated
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separately through a Student’s ¢ proposal, ¢(-), with location and scale parameters given
respectively by the mode and curvature at the mode of 7;. If we denote the mode of 7;
by 7; and the inverse of the negative curvature at the mode by 7; then our proposal will

be

¢i(m:) = a(milys) = tio(na; i, 72).

Let, 0™, nf*" be the proposed and current value of the i-th component of n?"°? and

cur

n°". The proposed algorithm would be as follows.

e Set initial values " = n°

e Foriinl:d

— Evaluate 7); and 7;, the location and scale parameters

of the proposal, by maximising 7;(n;|y;)

e For jinl:J

— Foriinl:d
pmp)

* Propose, " from ¢;(n}

x Accept with probability,

a(ncur ,rlprop) — min (1 7T("7p7“0p|y)q(nicur|yi)>

m(mrly)atnf " y:)
x If pP"°P is accepted, set " = nP"pP

We will call this algorithm U-MHIS, where U stands for univariate updates. A naive
implementation of U-MHIS would be computationally expensive since at each iteration,
we would evaluate the quadratic form in the multivariate normal prior of n. Therefore,
the computational cost, at a single iteration, j (which loops through all d components),
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would be O(d?). Additionally, although the maximisation of 7(n;|y;) or equivalently
log {7 (n;|y:)} needs to be performed only once at the beginning of the algorithm, the
computational time may be large if an appropriate interval for the maximisation is not
provided. We now illustrate ways to reduce the computational demand of this algorithm.

These same ideas will also be useful in the algorithms developed later in this Chapter.

4.1.1 Reduction of computational cost
Maximisation of 7(7;|y;)

We first deal with the performance of the maximisation and provide tight bounds on the
location of the maximum. For ease of notation we drop the subscript ¢. To begin with,

for some constants, ¢ and ¢* = c+ %023/2

1

log {(nly)} = c— 5 50— pm)*+ny—e
= - i(77 — )’ e, (4.1.2)
202
where p* = p, + o2y. The mode, 7, therefore satisfies,
= u* —o’el. (4.1.3)

This provides us with a first lower bound as © < p* and hence an upper bound is
f > p* — o?e*". The width of this interval is o?e# which can potentially be large.
Making use of the Taylor series for the exponential and logarithmic function, tighter

bounds can be obtained by the following result.

Proposition 4.1.1. The solution 1 of equation (4.1.3) satisfies the following bounds.

Without any constraints on the parameter values (except for o > 0) the following bounds
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hold,

M*_O.Q

* 2 u* ~
— e <n< .
p—a K 1402

2

In addition, if p* — o%e®” > —1 then a lower bound is,

. 1+ p* 2
n>max{log<1+02>,u —o“e! }7

and when p* > 0 then an upper bound is,

. ) M* _0_2 /’L* M*
n<m1n{ T o2 T4 log <2 . (4.1.4)

Proof. From equation (4.1.3) we have already obtained the bounds p* —o2e!” < i < p*.

Now, €7 > 1+ 17, so,

o= p ol <t —o(1+1)
= “H_:; (4.1.5)
Next, for 7 > —1, log(1 4+ 1) < 7, so using (4.1.3),
log(1+ pu* —o%e™) < 7
s 1
=17 > log <1_—::ZZ) . (4.1.6)

Here, since 7§ > p* —o2e#”, Equation (4.1.6) is certainly valid when p* > —1+o2e#". In

order to obtain the last upper bound for /) we consider Equation (4.1.3) and rearrange
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as follows. Provided p* > 0 and since 7 < p*

pt—olel = el =

>
I

. w*
=1 = (u*—i—l)log <02> . (4.1.7)

Hence, combining the lower and upper bounds according to the value of yu* we obtain

the desired result. O

Having found tight upper and lower bounds for the maximum of 7(7;|y;) we proceed by

illustrating how the computational cost of the acceptance probability can be reduced.

Calculation of acceptance probability

Let

(M P|ly)qa (" [y:)

T,(,rlcur7 in’Op) — ,
m(ner |y)q(nt P lys)

be the ratio in the MH acceptance probability and since in practice we work on the

logarithmic scale consider,

log{r(n™",n"" ")} = log{m(n”""|y)} + log{q(n;""|v:)}
—log{m(n“"y)} —log{q(m" *ly:)}

= Arm— Agq, (4.1.8)

where A = log{m(n*"?|y) } —log{m(n°"|y)} and Aq = log{q(n?" " |y;) } —log{a(n{"" |y:)}.

Since ¢(n;|y;) is a univariate t1o distribution the computational cost of evaluating Aq is

105



O(1). However, the target distribution is d dimensional and since it includes the calcula-
tion of the quadratic form in the normal prior of 7, the computational cost of evaluating

Ar is O(d?). In what follows we show how this can be reduced to be O(d)

Decomposing further the target distribution in terms of log likelihood and prior distri-

bution of 1 we obtain Am = AL + Ap. Here,

AL = log{L(f"; )} — log{L(n{""; )} (4.1.9)

the computational cost of which is O(1), and

Ap = log{p(n”" ")} —log{p(n“™")}

/

1 70 — 7O, cur — cur
= =5 [(np P — ) Vi P = ) — (0 — ) Vo (n —un)],

with computational cost O(d?), provided that the inverse of the covariance matrix is
calculated in advance. Note that for the update of component i, the vectors n?"°P and n““"
differ only at the i-th component that is updated. Therefore we can set PP = 4" 4-ce;,
where e; is the (d x 1) vector which is 1 at the i—th component and zero everywhere

else. After some algebra we derive that

Ap = c(p, — ey [V;l]’i - % [V_l]ii, (4.1.11)

with the subscripts ; and j; denoting the i-th column and (4, %)-th element of the matrix

respectively. In this way the computational cost of evaluating Ap and, equivalently, of
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evaluating the acceptance probability is now O(d) instead of O(d?). Hence, we need only
calculate log{p(n“")} once, before the first iteration of the algorithm, and then, if the
proposed value for n; is accepted, we update the prior by setting p(n") = p(n“") 4+ Ap.
Given that we must perform this operation on each of d components the computational

cost of each iteration, j, is now O(d?) instead of O(d?).

4.2 Principal components conditioning

The proposal distribution constructed in the previous section ignores any correlation
structure of the process S as it is based on the marginal posterior distribution of each
S;. For that reason, it is expected that in cases where the posterior correlation is strong
the performance of algorithm U-MHIS would be poor and result in low acceptance rates

and effective sample sizes.

We can obtain a reasonably accurate normal, or Student’s-t, approximation to the true
Gibbs sampler proposal, 7(s;|s—;, y), using, for example, the Laplace approximation and
we would expect this to result in high acceptance rates. However, for a given correlation
matrix R, calculation of the prior expectation and variance of .S; involves inverting
R_;_;, ie., the matrix R with the i—th row and column removed. A total of d such
O(d?) calculations would make the algorithm O(d*). Furthermore, the Gibbs sampler is
known to mix poorly when the target distribution is characterised by strong correlations,

even in the two dimensional, case as described in Gilks & Roberts (1996).

In the following, we construct an approximation to 7(s;|s—;,y) and use it in an MH
scheme. However, instead of conditioning on the d — 1 components of S we condition
on the few most important principal components of s; this allows reduction of the com-

putational cost. Since these principal components account for much of the correlation
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structure between the s;’s we aim to get approximately the same information as if condi-
tioning on s_;. Furthermore, the fact of conditioning on these few principal components
allows us to improve the mixing of the whole algorithm by performing an additional

update on the principal components themselves.

In Section 4.2.1 we describe how the proposal distribution is constructed, assuming
knowledge of the optimal number of principal components to be used, and describe the
main algorithm. This algorithm it is then extended in Section 4.2.2 in order to improve
the mixing of the principal components through a single block update on them. Finally,
issues related to the number of principal components and how this can be chosen are

outlined in Section 4.2.3.

4.2.1 A single component MH algorithm through principal compo-

nents conditioning

In the following, we work with the non-centred parametrisation of the latent process.
More explicitly, we remove the prior mean, p, = F3, of the process n and work with S.
In that way, the latent process S and the mean parameter 3 are a priori independent.
Moreover, we will be interested in calculating the principal components of the latent
process. To do so, the mean is subtracted in order to center the process around the
origin of the principal axes. Finally, when needed the i-th element of the d-dimensional
vector p, will be denoted by gy, (or 1, in cases where the subscript 7 is dropped in order

to simplify notation).

Consider the spectral decomposition of the prior correlation matrix of .S,

R=LAL, (4.2.1)

108



where L is an orthogonal (d x d) matrix whose columns are the eigenvectors of R, and
A is a diagonal (d x d) matrix with the ordered eigenvalues, A\; > Aa... > Ay > 0, of R
corresponding to the eigenvectors in the columns of L. The principal components, say
P, of S are then given by,

P=1L'S, (4.2.2)

where P is a (d x 1) column vector. Since § ~ MVN (0,02R) then P ~ MVN (0,52%A).
Now let L be the (d x k) matrix consisting of the first & columns of L and A the
(k x k) diagonal matrix with the corresponding k eigenvalues on its diagonal. The first

k principal components, P, of S can therefore be obtained through,

o]l
Il

(i
wn

(4.2.3)

The dimension of P is now (k x 1) and computational complexity of the calculation in
equation (4.2.3) is O(kd). The joint prior distribution of S, P is a multivariate normal

with mean and covariance matrix as shown below,

~ MVN o2

We can now consider the prior distribution of S \15 = p. Using standard properties of

the multivariate normal distribution we derive that,

i =E [S!P - 13} —ip (4.2.4)
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and

o2R = Var [syP - p} — 2 <R - i[ui') . (4.2.5)

Therefore,

S|P = p ~MVN <m UQR) , (4.2.6)

and the marginal posterior distribution of s;|p is,
7 (s4|D, yi) o< f (Si;mi(f?)agan’) L (etnitsy,) (4.2.7)

where py, is the i-th component of the prior mean u,, f (8;m,7) denotes the density
of a univariate normal(ri, 7) random variable S, L denotes the Poisson likelihood of the
observations; m; is the i—th component of m and we make explicit that it is a function
of the principal components. We work in exactly the same way as we did in Section 4.1 to
obtain a Student’s—t approximation, ¢;(s;|p), to 7 (s;|p, v;) and use this as a proposal in
our MCMC scheme. In order to define the location and scale parameters of the proposal
we follow the same arguments as in Section 4.1.1 and evaluate the mode and curvature
at the mode of log {7 (s;|p,v:)}. The only differences in the calculation procedure are
that now instead of o2 we use O'2Rii and we set p* = m; + UQRiZ-yi. Hence, equation
(4.1.3) becomes,

§=p* — o?Ryes T, (4.2.8)

FEach mean m; is calculated by only making use of the ¢—th coordinate of the k eigen-
vectors through,

i = L, 1p (4.2.9)

with computational cost O(k). In our MCMC scheme each individual update of s; also
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causes an update to all p. Let s(¢*") and s(P°P) be the current and proposed vectors of
s respectively differing only at the i—th component. Let also p) and pProP) he the
corresponding principal components. Since at each iteration only one component of the

vector s gets updated then pProp) ig,

)

prror) — plewr) 4 i,i P (S(pmp) — sgcw)) , (4.2.10)

with computational complexity O(k). Let J denote the total number of iterations re-

quired, then our algorithm reads,

Set initial values s(¢¥") and define k.

Obtain L from R via (4.2.1) and hence L and the diagonal of R.

Obtain p(°) from s(<*") via (4.2.3).

Forjinl:J
— Foriinl:d

« Obtain m\"") from p(*) via (4.2.9).

i

l(PTOP) from qi(s(PT0p)|ﬁ(cur)).

* Propose s i

*

Obtain pPP) from sgpmp) via (4.2.10).

*

Obtain M) from pPP) via (4.2.9).

*

Set g(Prop) — gleur) + (S’EPTOP) N Sgcur)) e;.

* Accept sP"P) and hence pP"°P) with probability,

(O ()
T (steun)|y) g; (SZ(P’“OP) |13(cur))

N (S(cur),s(pmw) .— min [ 1, . (4.2.11)
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The acceptance probability in (4.2.11) is evaluated as outlined in Section (4.1.1) and
its computational cost is O(d). Therefore, the overall computational cost for a single
iteration, i.e. I = 1, through all d components remains O(d?). We now also have the
extra cost induced by the spectral decomposition of R, which is O(d?), but this need

only be computed once at the beginning of the algorithm.

Each individual update of the proposed algorithm satisfies detailed balance with respect
to w(s]y). In order to see that, we view the principal components as a function of s, p(s),
and therefore consider the proposal in terms of s. In the following, when we write p¢, p?
we consider p(s(¢")) and p(sPP)) respectively. Let 6(z) be the Dirac delta function.

Hence for the update of the i—th component,

™ (s%y) q(s”|s) a(s%,87) = min{m (s°ly)qi (s7D), 7 (s"|y) @i (s71D")}
d
X H 5 (s? - sj)
=L

— (sl g sl min {1, VLD

7 (sP|y) q; (s{|PP)
d
X H ) (SZ; - sj)

=L
= 7 (s"ly)q(s%|s”)a (s, s).

We will refer to this algorithm as U-PC.

4.2.2 Improved mixing of p through a single block update

The mixing of typical Gibbs samplers is known to be poor when there is strong correla-
tion between the components being updated even in two dimensional targets (see Gilks

& Roberts (1996), Hills & Smith (1992)). High dimensionality of the target amplifies
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this problem rendering the exploration of the target by such schemes potentially very
inefficient. In our MCMC scheme the mixing of the whole algorithm mainly depends on
the mixing of p which is of low dimension, i.e., k. Therefore, we can improve the mixing
of the algorithm by performing an additional update on these k£ principal components

at each iteration j of the algorithm.

Single block RWM update

At a single iteration j, once all d components of the process S have been updated we
perform an additional joint RWM step on p with an adaptive tuning parameter. We use
the adaptive RWM proposed by Fearnhead et al. (2014) with the only difference being
that we keep the covariance matrix of the proposal fixed and only adjust the tuning

parameter.

To find an appropriate covariance matrix for our proposal we use the variance matrix,
>, used by Christensen et al. (2006) to standardise the process S, see Section 2.2.7.
More explicitly, let s* = log(y) — H,, be the mode of the Poisson likelihood and consider

the approximation,

- 52 -1
Y = <—88210g7r(s|y)’88*>

= — (diag(y) + (0’2R)71)_1,

for the posterior covariance matrix of S, where the term log(y) comes from the second
derivative of the Poisson log likelihood and the term ((72R)_1 comes from the second

derivative of the log prior of S. Then the posterior covariance of P can be approximated
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through, g = L SL and our proposal for the j—th iteration reads,

MVN (13<W>,20) wp 0.05,

pPror) ~ (4.2.12)

MVN (fa(cm“),tj?zo) wp 0.95.

In turn, when the adaptive proposal has been used, the adaptive tuning parameter, ¢;,

is updated according to the following rule,

ti(14 ca0/n) if accepted pPoP),
b= (4.2.13)

tj(1 —c¢0/n) if rejected 13(177"01’)’

where the adaptation parameter ¢ is set equal to 0.5, ¢, = 2.3,¢, = 1, and n is the

number of adaptive steps so far. Then, the RWM part of the algorithm is as follows,

e — Propose, pP"P) according to (4.2.12) and adjust t; according to (4.2.13).
— Set, s(Prop) — gleur) 4 L (f,(pmp) _ ﬁ(cur))

— Accept with probability,

(prop)
(cur) o(prop)\ — 3 ™ (S ‘y)
o (s 8 ) min (1, ) ) (4.2.14)

In this part of the algorithm, the computational cost of obtaining s®™P) is O(kd).
Moreover, the calculation of the acceptance probability is O(d + k?). This comes from
the calculation of the likelihood which is O(d) and that of the prior which can be reduced
to O(k?) since we can replace s” R™'s with pZ A~'p. Hence, since k < d the overall cost
of the RWM step is at most O(kd). When the full algorithm, including the RWM step,

is implemented we will refer to it as PC-RWM.
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Single block MALA update

Once all d components of the latent process have been updated, an alternative to the
RWM for updating the block of & components of p is the MALA. We use the same

variance matrix 3o as above and propose p®™P) from,
t
q <ﬁ(pr0p) ’i)(cur‘)) = MVN (ﬁ(cur) + izovﬁ log 7(ply), t20> , (4.2.15)

where t is a fixed tuning parameter and the gradient is given by,

/

- 1 _
Valogn(ply) L (v - LR n-ny) (1.2.16)

Then, the MALA part of the algorithm is as follows,
e — Propose, p7"P) according to (4.2.16).
— Set, srop) — glewr) | [, <1~,<prop> _ ,~_.,<cm~>)_
— Accept with probability,

T ( g(prop) |y) q (ﬁ(cur)|1~,(prop)>

T (S(C“T)‘y) q <I3(Prop) ’i)(cur))

o (S(cur), S(prop)) — min | 1, (4.2.17)

As in the RWM update the overall computational cost of obtaining s®"°P) and calculating
the ratio of the target in the acceptance probability is O(kd). The overall computational
cost of the MALA update though will be determined by the cost of calculating the
proposal. This mainly comes from calculating R™!(n — H,) in 4.2.16 which appears to

be O(d?). It can, however, be reduced to O(kd) by noting that
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4.2.3 Choice of k

In what discussed so far we have assumed knowledge of the exact number k of principal
components on which we should condition in order to construct efficient MCMC schemes.
In the following, we outline the importance of specifying an appropriate k correctly and
the effect of such a choice on the computational cost of the algorithm and the accuracy

of the proposal distribution.

Computational cost

The mixing time of the RWM on k principal components is O(k) (Roberts & Rosenthal
(2001)) and for the MALA it is O(k'/3), suggesting that k should be chosen as small as
possible. Moreover, as illustrated in the previous Section a large value of £ would increase
the computational cost of the algorithm. In particular, the cost of the d individual
updates, i.e., of a complete j iteration, is O(d?) whereas that of the block update is
O(kd). This suggests that, if k is O(d) then the CPU time needed for updating p would
be of the same order as that of the individual updates. Equivalently choosing k to be o(d)
would render the cost of the RWM/MALA negligible relative to that of the individual

updates.

Approximation of 7 (s;|s_;)

Although the choice of k influences the computational cost of the algorithm and the mix-
ing efficiency of the principal components another important aspect is the accuracy of
our approximation, ¢;(s;|p) to the true conditional of S; given all the other components.
Therefore, we would like to choose k such that ¢; (s;|p) = 7 (s;|s—;), so that the accep-
tance probability is close to 1; the acceptance probability of a true Gibbs sampler. We

make two approximations, the Student’s-t approximation to the conditional posterior of
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s; and the fact that we condition on p rather than s_;. Results for U-MHIS show that

the former is sufficiently accurate in one dimension so we investigate the latter.

Since the likelihood is the same in both cases we compare the prior distributions. Both
are normal distributions and therefore fully characterised by their mean and variance.

For that reason, we simply assess whether,
Var [SZ|1~3] ~ Var [S;|S_;] (4.2.18)

and

E [5i|13] ~ E[Si|S_i] (4.2.19)

for a given value of k. Firstly, we know that on average the two expectations will be

equal since

Es_, [E[Si|S-]] =Ep [E |SiIP|| =E[S)].

However, clearly in general E [S;|S_;] # E [Si|1~3]; for example consider the case where

k = 0 and hence E [51]15} = E[S;]. Nonetheless, if we can find a value for k such that
vF = Var (E 1Si1S_;] —E [SZ-|13D ,

is small and also the variances, of the true conditional distribution and of our approx-
imation, are approximately equal, i.e., Equation 4.2.19 holds, then our proposal would
well approximate the truth (see Appendix 4.5.1 for the exact form of v?). Except for
small edge effects, we expect U%E to be similar for every 7 due to the regular structure of

the grid so we examine the mean over ¢ for each value of k. More explicitly, we look at
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d d d
qu?j ¢ = %ZRM, ot = %ZV&I‘ [Sz‘s—z]
=1 =1 =1

o =

SHN

for all possible values of k within a given dimension. To summarise, v! is the true prior
variance of S;|S_; and v¢ is our approximation to it, i.e., it is the variance of S;|P.
Therefore, Given 4.2.18 and 4.2.19, our goal is to find a value for k£ which would minimise

% and at the same time achieve 7% = ¥

Since its value is irrelevant to our goal, we set 02 = 1 and evaluate the above diagnostics
for three different scenarios of correlation, low, strong and very strong under the expo-
nential correlation function on three different dimensions and three different values for

¢, ¢ € {1,10,100}. The above diagnostics are shown in Figure 4.1.

The first thing to notice is that for the given correlation function and ¢ the pattern in
the graphs is extremely stable with changes in dimension. This is a result of the regular
structure of the grid on the square {1,2, ey \/g}2 Also, once conditioning on many
close values, conditioning on more points further away would not provide much more

information and therefore will not materially change the mean and variance of S;|.S_; .

As ¢ increases the correlation between the components becomes stronger and therefore o
(black dashed line) decreases since the remaining d—1 components are highly informative
about s;. On the other hand, when the s;’s are almost independent conditioning on all
d—1 components adds little information and % is a little less than the marginal variance

of S;.

As the number, k, of principal components on which we condition increases, v* (grey
solid line) decreases since increasing k provides more information about S; conditional

on knowing all the first k£ principal components. For £k = 0 we actually condition on no
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principal components and hence obtain the marginal variance of s;. The stronger the cor-
relation in S the sharper the initial drop in 2% is. This occurs because as the correlation
increases the first principal component explains more of the variability. Irrespective of
the value of ¢, when k = 0 then v} = Var (E[S;|S_;]) (estimated by the black solid line)
which is equal to Var [S;] — Var [S;|S_;] = 1 — Var [S;|S_;]; the behaviour of Var[S;|.S_;]

has already been discussed. Similarly, as k — d, vF — Var [S;|S_].

Proposition 4.2.1. [rrespective of the value of ¢ and dimension, for k = d then,

vF = Var(S;|S_,).

The proof of Proposition 4.2.1 can be found in Appendix 4.5.2.

Critically, with the exponential correlation function, both of the criteria that make our
approximation accurate are met for small k. To be more specific, for the exponential

correlation function, Figure 4.1, in all cases o™

is minimised for values close to k = d/4
but it is relatively flat between d/8 and 3d/8. Therefore we choose k = d/8 wich reduces

the computational cost.

It is obvious that for the exponential correlation function there is a small range of values
for k£ within which both the expectation and variance of our proposal is very close to the
true and small changes in choice of £ would have a negligible effect on our approximation
and also o% is small relative to o*. In order to account for any, even small, inconsistency
between the modes of the two distributions we might ideally choose the value of k at
which 9 is slightly greater than the true of. In that way, our proposal would be more

dispersed that the true density.
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Approximation of 7 (s;|s_;, y)

As k increases the diagonal terms in R, (i.e., 7*) decrease. Since this is the prior variance
in our approximation, if it is very low then it could be so informative that the likelihood
becomes less relevant. As the likelihood is of product form and therefore adds no further

dependence, increasing k could actually increase the posterior correlation.

Additionally, the smaller Ri; the smaller is the variance of our proposal for s; and
therefore the smaller the proposed changes for s;. In cases where the U-PC algorithm is
implemented there is no block update for the principal components and they are only
updated indirectly through those small changes in each s;. For that reason, increasing &

could decrease the mixing of each principal component.

Analytical arguments to account for all the above factors would be too complex, so
we conduct a simulation study to ascertain the actual efficiency of our algorithm, with
or without the block update step of the principal components, p, as a function of the
number of principal components, k, over a variety of scenarios and dimensions.

All three algorithms, namely U-PC, PC-RWM and PC-MALA, were run for the same
seven scenarios of parameter values that have also been used in the simulation studies on
three different dimensions, d € {25,49,100} using the exponential correlation function
for the construction of R. For each scenario of parameter values and dimension each
algorithm was implemented for a variety of values for k € [0,d — 1] and the minimum
ESS was recorded each time. The PC-RWM algorithm was tuned so that the adaptive
part achieved acceptance rates between 32% — 35%. This acceptance rate might be
slightly larger than the optimal 0.234 but as illustrated in Roberts & Rosenthal (2001)
the efficiency of a RWM is relatively stable for values of o between 0.15 and 0.5 In order

to produce these diagnostics for the PC-MALA algorithm we implemented an adaptive
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scheme for the tuning parameter similar to that constructed for the PC-RWM with the
difference being that it was constructed so that the MALA step achieved acceptance

rates close 59%.

In Figures 4.3-4.5 we display the results of this simulation study with each coloured
line corresponding to a different scenario of parameter values (see Figure 4.2 for details)
and each point on the line corresponds to the logarithm of the minimum ESS that was
achieved for a specific value of k. The black dashed line corresponds to that value of k

that was selected as optimal for the accuracy of our proposal based on Figure 4.1, i.e.,

k= d/s.

First of all, the observed pattern is similar in all three plots with the minimum ESS
increasing up to a certain number of principal components and then gradually decreasing
as we condition on more and more principal components. In all three algorithms the
chosen value for k seems to be very close to that achieving the highest minimum ESS
for all scenarios of parameter values and dimension validating our choice. Comparing
across the three algorithms we see that as we move from U-PC to PC-RWM and then
to PC-MALA the performance of the algorithm improves in terms of ESS. In particular,
with the inclusion of the block update on p the improvement is obvious in all scenarios
with the most important increase in ESS occurring for large values of k with the MALA

update stabilising the minimum ESS at higher values than the RWM update.
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(u=log(100), 0°=1, ¢=10)
(u=log(10), 0°=1, ¢=100)
(k= log(10), o°=1, ¢=1)
(u=log(10), 0°=3, ¢=10)
(u=log(10), 0®=1, ¢=10)
(u=10g(10), 0°=0.3, ¢=10)
(k=1log(1), 0°=1, ¢=10)

Figure 4.2: Colour configuration for Figures 4.3-4.5 and Figure 4.7. Each colour corre-
sponds to a different scenario of parameter values.
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Figure 4.3: Algorithm U-PC. Logarithm of minimum relative ESS against different val-
ues of k. Top to bottom: Dimension, d = {25,49,100}. The correlation matrix R is
constructed using the exponential correlation function.
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Figure 4.4: Algorithm PC-RWM. Logarithm of minimum relative ESS against different
values of k. Top to bottom: Dimension, d = {25,49,100}. The correlation matrix R is
constructed using the exponential correlation function.
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4.3 Simulation study and results

In this section we assess the performance of the algorithms U-MHIS, U-PC, PC-RWM
and PC-MALA. In Tables 4.3.1—4.3.3 we monitor minimum, median and maximum ESS,
CPU time needed for 8 x 10° samples to be drawn, adjusted ESS and acceptance rates,
«. Since now each 7); is accepted or rejected separately we obtain d different acceptance
rates and we report the minimum, median and maximum values. The adaptive PC-RWM
algorithm was constructed so that for the block update of p it achieved acceptance rate
between 30% — 35%. Finally, for all three algorithms, i.e., U-PC, PC-RWM and PC-
MALA, k was chosen to be d/8. The PC-MALA algorithm was tuned so that the MALA
update achieved acceptance rates between 57% — 59%. All four algorithms and that of

Christensen et al. (2006) were coded in C.

4.3.1 Simulation study

All five algorithms are implemented on the same seven scenarios of parameter values
as those used in Section 3.3 in three different dimensions d € {25,49,100} using the
same simulated datasets and initial values for the MCMC. Once more, the results are
based on 8 x 105 samples drawn from the posterior distribution 7(n|y) of a total of
105 samples. For a detailed description of the simulation study design see Section 3.3.
Initial runs of the Christensen et al. (2006) algorithm were implemented for all scenarios
for each dataset. A sample point from the posterior with marginal components always
lying within the 0.01 and 0.99 quantiles of their distributions was chosen, by rejection
sampling, and was used as starting value for each of the algorithms in our simulation
study for that particular dataset. The algorithms were run for 10° iterations and the
first 2 x 10° iterations were used as burn in. All results are based on 8 x 10° samples

drawn from the posterior distribution of n|y.
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4.3.2 Results

Tables 4.3.1-4.3.4 show the results from U-MHIS, U-PC, PC-RWM and PC-MALA re-
spectively and Table 4.3.5 shows the results obtained from the algorithm of Christensen
et al. (2006). Overall, both acceptance rates and effective sample sizes have improved
compared to those of the algorithms presented in Chapter 3. Moreover, in contrast with
the multivariate proposals of Chapter 3, increasing dimension of the latent process seems
to have relatively little impact on the performance of the algorithms. All four algorithms
exhibit the same pattern of performance over the different scenarios of parameter val-
ues. For that reason we outline the overall pattern of performance of the algorithms and

remark on any differences where needed.

The performance of the algorithms seems to be mostly affected by the value of the mean
H,, and the correlation parameter ¢. The algorithms that employ the conditioning on the
principal components appear to be less affected by changes in o2 especially as dimension

increases.

The higher the prior mean u,), the more symmetric the Poisson distribution of the data
is. Therefore, the normal approximation of the full conditional becomes more accurate
resulting in the shape of our proposal being closer to the true shape of the posterior.
Additionally, as the data become more informative the the likelihood dominates and the

posterior correlation decreases resulting in better performance of our algorithms.

Increasing o2, increases the range of values for i giving rise to more 7;’s with larger
and smaller values. On the one hand, larger values of 7); result in a large mean for the
Poisson likelihood and therefore our normal approximation becomes more accurate as

explained above. On the other hand, small values of 7; correspond to a low mean for
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the likelihood leading to a less accurate proposal. However, these are less correlated a
posteriori since the prior becomes flat and the likelihood becomes more relevant resulting

in lower posterior correlation.

Similarly, increasing ¢ implies higher posterior correlation having the same negative
effect on all three algorithms. For instance, the U-MHIS proposal is most affected by
such large values of ¢ since it doesn’t account for any correlation and hence its perfor-
mance benefits from low posterior correlations. Looking at the scenario with the highest
correlation, ¢ = 100, and comparing across algorithms the expected improvement in
performance between U-MHIS and that of the remaining algorithms is obvious showing
the positive effect of conditioning on p. Additionally, incorporating the block update on
p in the PC-RWM and PC-MALA does improve the mixing of the whole algorithm as
their performance is even better. In the case of U-PC, PC-RWM and PC-MALA our
proposal mimics that of a Gibbs sampler and increasing correlation hinders their per-
formance. Although the conditioning on p is not as restrictive as full knowledge of all
s_;, it still assumes their partial knowledge on the k most informative directions. Hence,

high posterior correlation still has an effect on their performance.

The increased computational cost of U-PC algorithm compared to that of U-MHIS is
illustrated in the CPU timings which are almost three times higher. On the other hand,
the increase of CPU timings between U-PC and PC-RWM/PC-MALA is relatively small
indicating the importance of choosing a low value for k so that the computational expense

of updating p is comparable to that of the individual updates.

PC-MALA provides the best results in terms of acceptance rates and ESS in all cases
followed by PC-RWM. Comparing the results of PC-MALA with those of Christensen

et al. (2006) in Table 4.3.5 we see that PC-MALA always performs better in terms of
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minimum ESS irrespective of dimension. Although computationally more expensive than
the other three algorithms, PC-MALA seems to also achieve better adjusted ESS than

the algorithm of Christensen et al. (2006) for dimensions d = {49, 100}.

As far as convergence is concerned, we notice that in the case of U-PC algorithm there
are many scenarios were convergence to the same distribution with the algorithm of
Christensen et al. (2006) is rejected. More explicitly, there are 11 rejected scenarios out
of a total of 63 MCMC implementations with p-values between 1% — 2%. We conducted
several investigations in order to justify such an outcome but we were not able to identify

any clear cause. Some of our investigations are presented in the Appendix 4.5.3.

We choose the best performing algorithm, PC-MALA, and perform additional simula-
tions for dimensions d = {196,400} to assess the stability of the results obtained so
far in higher dimensions. Table 4.3.6 and Table 4.3.7 show the results obtained from
PC-MALA and the algorithm of Christensen et al. (2006) on these dimensions. Due to
storage considerations, for dimension d = 400 the chains were thinned by a factor of two
resulting in final samples of size 4 x 10° and therefore the maximum possible value for
the relative ESS displayed in Table 4.3.7 will be 0.5 rather than 1. The pattern remains

the same with PC-MALA still achieving better ESS and adjusted ESS.

The results presented, indicate, first of all, that the diagnostic in Figure 4.1 is sufficient
to provide a near optimal choice of k, as shown in Figures 4.3-4.5, and also, that given
this choice of k£ our MCMC scheme can perform better than that suggested by Chris-
tensen et al. (2006). However, these arguments have so far been established based on
the fact that the exponential correlation function is used. It seems natural to examine

the applicability and efficiency of our methods under different correlation structures.
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Effect of different correlation functions

In the following, we look at the Matérn correlation function with shape parameter kK =
1.5 which we will denote by pa (u/¢2). This correlation function is one time mean-
square differentiable as opposed to the exponential correlation which is not mean-square
differentiable. This implies that the former corresponds to a smoother latent process
with relatively stronger dependence over short distances, i.e., the correlation decays
slower near the origin. Denote the exponential correlation function by p; (u/¢1). In
order for the two correlation functions, and the results presented, to be comparable we
define ¢ by minimising the absolute distance of the two correlation functions over an
infinitely fine two-dimensional grid. More explicitly we set ¢; = {1,10,100} as before

and choose,

$2 = arg,-min /000 2rulpr (u/é1) — p2 (u/P*) |du.

Figure 4.6 shows the diagnostic plots for the choice of k so that ¢;(s;|p) = 7(s;|s—i) (see
Equation 4.2.18 and Equation 4.2.19). The behaviour of ¥, o' and ©® appears to be the
same as in Figure 4.1. The plots, however, now indicate that we need to condition on
more principal components than in the exponential correlation function in order for our
criteria to be met. More explicitly, we see that for ¢ = {10,100}, k should be chosen to
be 2d/7 whereas for ¢ = 1, we should choose k = d/6. We believe that this increase in the
number of principal components has to do with the differentiability of the correlation
function at the origin. As x increases from 0.5 to 1.5 the correlation remains at very
high levels for longer distances, therefore there are now more points on the grid that
are strongly correlated. In Figure 4.7 we assess the performance of PC-MALA across
different values of k. As is the case of the exponential correlation function our choice of

k seems to be sensible since for higher values, the effective sample sizes either decrease
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or at least do not appear to improve.

Based on the results in the simulation studies so far, which were on three replicates for
each parameter scenario, we see that the effects of Monte Carlo variability and different
simulated data sets on the results are relatively small. Each replicate run is, however,
very demanding in terms of both computational time and storage space. Therefore, we
now implement these two algorithms on only one dataset for each scenario of parameter

values.

Tables 4.3.8 and 4.3.9 show the results from the new simulation study for dimensions
d = {25,49,100} and d = {196,400} respectively. As far as PC-MALA is concerned
we see that the acceptance rates have slightly dropped but still stabilised between 50%
and 70% regardless the dimension of the process. Moreover, as expected, condition-
ing on more principal components has increased the computational time. The ESSs
have dropped with the median and maximum effective sample sizes being consider-
ably affected, resulting, therefore in lower adjusted effective sample sizes. In dimensions
d = {196,400} the minimum effective sample sizes are now about to 2 times lower than
before giving rise to roughly 3 times lower adjusted effective sample sizes. We also note
that changes on the parameter values do not seem to affect the performance of the algo-
rithm as much as before. It is interesting that the most affected scenario is that with the
highest mean, i.e., u, = log(100), where the achieved ESS has been reduced by a factor
of 3 compared with k& = 0.5 for dimensions d = {196,400} and by a factor of 4 for lower
dimensions. On the other hand, the algorithm of Christensen et al. (2006) seems to be
less affected by the different correlation structure. The minimum ESS are either on the

same levels as before or slightly improved although the maximum ESS have decreased.

Although PC-MALA appears to be more affected by the change of correlation function
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we see that in dimension d = 400 it still achieves better adjusted ESS than the algorithm
of Christensen et al. (2006) while achieving similar performance in lower dimensions and

always performing better when ¢ = {1,100}.

133



(1,62 ‘889L ‘79T.) (0S¢ ‘The ‘ssp) (8292 ‘FGLL ‘9¥9L) (FOTL ‘OPSL ‘T969) (£03S ‘€009 ‘87ES) (6961 ‘TOST ‘THST) (€88 “60LT ‘L1L) | SSH ey “(py
(2819 ‘spLG ‘cC19) (€871 ‘997 ‘€8%) (cpz9 ‘€29 ‘S799) (899¢ “092¥ ‘69LF) (92¥e ‘9.87 ‘cvTe) (L16 L9TT ‘60€T) (80% ‘qe¥ ‘162) | SSH ‘PN “lpv
(28T ‘z62T ‘1077) (g¢ ‘8¢ ‘qzT) (60GT ‘L9LT ‘c¥Te) (6Lz ‘91T ‘8501) (GLT ‘6T ‘6L9) (€1 ‘16T ‘16€) (ceT ‘eeT ‘99T) SsH W Py
(806" ‘26" ‘<06°) (¢r0" ‘990" ‘G0°) (916" ‘0£6" ‘L16°) (888" ‘c06° ‘¢¢8°) (099 ‘0z ‘6£9°) (sez ‘00¢" ‘122) (901" ‘502" ‘980°) SSH XeIy
(gL ‘98L" ‘91%) (20" ‘20" ‘7E0°) (67 ‘F8L ‘L6L") (0FF ‘119" ‘2LS) (162 ‘60¢" ‘68€°) (011" “0FT" ‘28T") (670" ‘TS0 ‘L¥0°) SSH PO
(991" ‘TTE" “c8e) (#00" 200" ‘S10°) (181" ‘z1T ‘68¢°) (£€0" ‘920" “22T) (120 ‘€g0 ‘180°) (910" ‘620" ‘2¥0°) (e10" ‘STO" ‘020°) SSH Uy
(76 ‘976" ‘206) (68¢" ‘08¥" ‘9L¢) (g6 ‘296 ‘eS6') (ze6" ‘626" ‘006°) (818" ‘098 ‘708’) (1€9° ‘789" ‘28¢") (119 ‘pLG ‘SL¥) 0 XBI]
(798 ‘L¥8" ‘0.8) (62T ‘86T ‘062°) (168" ‘706" ‘806°) (969" ‘8L ‘PIL") (009" ‘€19 ‘1.9°) (SFF" “LLT 70G) (L8 ‘9Le ‘e8¢’) 0 Pajy
(87" ‘gev ‘99¢) (020" ‘20" ‘190°) (289" ‘119" ‘L1L) (g82" ‘681" ‘9¥T") (Fe1 ‘LeT" ‘80T) (¢L0" ‘060" ‘6€T") (eTT ‘680" ‘29T°) 0 Uy
g6 =01d0
(01=9¢1T=40) (00T =9¢'1T=40) (1=¢1=9) (i1=¢‘¢=,9) (01=9¢1T=40) (01=¢‘¢0=¢2) (01=¢1=;9) 001 =p
(0622% ‘0L0€T ‘08¢€T) (GPTT ‘TA1T ‘00FT)  (gSPec ‘zeves ‘cosee)  (gvere ‘6gLgc)  (L69LT ¢ ‘LETLT) (LL69 ‘9269 ‘F6TG) (a6¥T ‘GS0¢ ‘8807) | SSH “XeIN [Py
(296LT ‘T0E6T ‘TPELT) (12 ‘289 ‘e8¢) (€261 ‘FCv6T ‘cc16T)  (0S€2T ¢ ‘o1621)  (L998 ¢ ‘6€9L) (89.€ ‘zETE ‘6167) (6V€T ‘TLIT ‘L¥el) | SSH ‘PN “[pV
(987L ‘F16¥ ‘L18L) (821 ‘622 ‘SLT) (1988 ‘1569 ‘¢69071) (9861 ¢ ‘G897) (gp11 ¢ ‘LGLT) (078 ‘pST ‘68L) (698 Fe¢ ¥18) | SSH Wiy “fpy
(968 ‘906" ‘926°) (¢70" ‘9%0" ‘6S0°) (126" ‘126 ‘c26°) (978 ‘768" ‘e68") (669" ‘07 ‘6L9") (FLe ‘TLT T0T) (860" ‘0zT" ‘280°) SSH XeIy
(c0L" ‘88L" ‘189°) (820" ‘220" ‘€20°) (1eL ‘P9L ‘18L7) (e8%" ‘267" 209°) (ove" ‘982" ‘00€") (871" ‘g1 ‘L1T°) (€20" ‘9¥0" ‘6%0°) SSH PO
(762" ‘€61" L0E") (200" ‘600" £00°) (8ve" ‘eLT ‘0TF) (820" ‘160" ‘P8T") (570" ‘290" ‘690°) (80" ‘010" ‘1€0°) (70" ‘120" ‘2€0°) SSH "ury
(Fe6" ‘6£6° ‘186) (Tee" ‘ g6¢" ‘29¢") (796" ‘g6 ‘eS6") (Lg6 ‘726 ‘eg6') (098" ‘999 ‘L€8’) (579" ‘979" ‘609°) (0zg ‘8LS ‘687") 0 XeI]
(LG8 ‘cL8" ‘OF8) (842 ‘€9z ‘9¢T") (068 ‘106" ‘L68°) (‘opL ‘61L ‘ggl’) (7€9" 219 ‘L09°) (087" ‘e8¥" ‘a¢¥) (z6g ‘08g” ‘96€°) 0 pay
(c09" ‘26€" ‘919°) (170" ‘280" ‘7£0°) (L1 ‘6L9° ‘L9L7) (0Tg ‘167" ‘18€) (801" ‘807" ‘88T") (20T ‘980" “¢80°) (802 ‘560" ‘9£T’) 0 Uy
1€=0d0
(01=¢'T=,9) (001 =¢'T=,0) (1=017=;9) (01=9¢‘¢c=,9) (01=¢'T=,9) (01=9¢‘c0= 79 (01=9¢1=,9) 67 =P
(0¥16S ‘806.S ‘15.8S) (62St ‘688t ‘cele)  ( ‘OPT6S ‘L689S) (98986 ‘6TTCS ‘LGT9S)  (£8LTF ‘G99SE ‘TLFGE)  (ETHET ‘GRIET ‘PLLTI) (€00L ‘8167 ‘L81S) | SSH “xeN [Py
(L2816 ‘7638Y ‘16109) (98971 ‘05LT ‘Feeg)  ( ‘LLSTS ‘LLV6Y)  (LSLFE ‘GE6L€ ‘Ta96E)  (LL1GT ‘L¥PPe ‘z8eve) (6898 ‘GOV6 ‘TS00T) (L¥0€ ‘$0Tz ‘6922) | SSA "POIN “IPY
(69212 ‘20092 ‘86197) (822 ‘81¢ ‘0881)  ( ‘TLL7T ‘pS09¢)  (TEEPT ‘Ov08 ‘29102)  (£20TT ‘29TL ‘FT98) (0£09 ‘€2LT ‘T199) (zeTt ‘9681 ‘19¢1) | SSH Wiy “fpy
(c16° ‘€68" ‘906°) (650" 60" ‘2¥0") (¢e6" ‘216" ‘298°) (506" ‘098" ‘998") (699" ‘098G ‘L¥S") (207" ‘112" “L6T) (801" ‘e¥0" ‘080°) SSH XeIy
(008" ‘FCL ‘PLL) (920" ‘220" ‘950°) (002" ‘008" ‘€9L") (9gc" ‘89" ‘1T9°) (cve ‘LLE ‘9LE) (Fe1 ‘ep1 ‘eer) (L¥0" ‘pE0" ‘c€0’) SSH PO
(8z¢" ‘107" ‘70¥") (210" ‘800" “620°) (625" ‘z8¢" ‘99¢°) (Tee ‘ver ‘11¢) (0L1 ‘21T ‘geT’) (€60 ‘2F0" ‘¢80°) (610" ‘020" ‘120°) SSH W
(9%6" ‘176" ‘2¥6') (67€°0 ‘88¢" ‘0L€") (196 ‘€56 ‘6€6°) (976" ‘916" ‘726°) (578" ‘608" ‘6LL) (969" ‘969" ‘GLG") (cgg ‘ovv ‘129) © XeJy
(88" ‘788" ‘788°) (L2 ‘6LT ‘¥6T) (7.8 ‘616" ‘€06°) (FLL “L8L" “06L7) (919" ‘299" ‘1.9°) (827" ‘967" ‘029") (68" ‘LLE" ‘98€") 0 poIy
(£19° ‘9L9" ‘6L9°) (980" ‘650" ‘86T") (012 ‘g1l ‘ces) (1¥g ‘068" ‘7£9°) (e1¥" ‘95z ‘61%") (168 ‘61" ‘11¢) 70z ‘6T ‘18T°) 0 Uiy
¢L=0dD
(o1=9¢" [=c v (001 =9°T = ;0 (I=91=;9) (0r=9¢‘c=,9) (01=9T=,9) (0T=¢‘c0=,0) (0r=9‘1=,9) gg=p
(001)80[ = (o1)80 = g (1)801 = i

"90u9810AU0D Y10ddns j0u S00p 9503 G-I :INo[od AdI1r) {(O0T ‘6¥ ‘Gg} = p suorsuowIp
10] GG pelsnlpe pue awily ) J)) d98eIoAr ‘SQH dAIjeR[al ‘() sejel soue)dede WNWIXRW PUR URIPIW ‘WNUWIUIN STHIN-[) WYIIOS[Y :1'¢'F 9[qRl,

134



( ‘ ‘9087) (667 ‘0L€ ‘L2€) (L98T ‘68T ‘878T) ( ‘68.C ‘T1LT) ( ‘96T¢ ‘FT0T) (L8 ‘e¥6 ‘LE8) (1¢ ‘2.9 ‘g6€) SSH xely [Py
( ‘ ‘8147) (12 ‘€8T ‘89%) (L6€T ‘g€t ‘T6€T) ( ‘86T ‘688T) ( ‘eTPT ‘162T) (€19 ‘e89 ‘8€9) (61 ‘80€ ‘eqz) SSH ‘PN [Py
( ‘898 ‘7951) (6ST ‘PLT ‘06T) (TL0T ‘88G ‘676) (6¢¢ ‘186 ‘9.8) (cpe ‘P1C ‘6€F) (79¢ ‘11€ ‘80%) (6T ‘peT ‘STT) SsH Wy fpy
(606" ‘916" ‘206°) (960" ‘6TT" ‘C0T") (126" ‘216" ‘C16°) (363 ‘068" ‘1.8°) (1297 ‘904" ‘L¥9°) (08z‘c0e” ‘69%°) (61 ‘91T ‘LTT") SSH Xey
(€92 ‘8LL" 608°) (690" ‘160" ‘980°) (0LL" “0GL" “69L") (695 ‘029" “L09°) (107 ‘757" ‘20¥") (161088 ‘S0T") (160" ‘660" ‘280") SSH PeIN
(926 ‘6.2 ‘907") (160" 950" ‘€90°) (e ‘681" ‘c0¢’) (€L1°LLT ‘GST) (cL1 ‘991" ‘TFT") (L1T° ‘00T ‘T1€T") ( .Qo. 1%0°) SSH uIy
(756" ‘996" ‘196°) (€08 ‘e28" ‘028’) (826" ‘956" ‘926°) (76" ‘ve6" ‘Tv6’) (168" ‘226 ‘068") (cpg ‘ch8’ ‘8¥8°) (728 ‘0g8" ‘1€87) 0 XeJ
(806" ‘€16 ‘€26°) (T8 ‘P9L" ‘€9L) (L16° ‘916" ‘5T6°) (208 ‘6L8" ‘TL8") (612 ‘268 ‘618°) (e8L ‘18L ‘18L7) (€927 ‘894 ‘T9L") 0 PO\
(7127899 ‘6€L°) (319" ‘979" ‘869°) (9L ‘789" ‘01L") (co¢ ‘g6S” ‘119°) (7ee ‘629" ‘0897) (28" ‘709" ‘079’) (569" ‘679" ‘gL9°) 0 Uy

182 =0d0
(01=¢1T=;0) (001 =91 =;0) (1=9¢'1=;9) (01=9¢‘c=;0) (01=9¢‘1T=;0) (01=9¢‘c0=z0) (01=9¢'1T= ;9 00T =P
(212 ‘928L F0EL) (092 ‘8¥8 ‘8.) (z18L ‘FOEL ‘TIEL) ( ‘882 ‘0F0L) (00%¢ ‘882¢ ‘0008)  (2€TT ‘¥eTe ‘910z) (968 ‘82ST ‘296) | SSH "Xy ‘[py
(%929 ‘7019 ‘8029) (zg9 ‘999 ‘76¢) (9€69 ‘2164 ‘0009) ( ‘896F ‘809F) (08z€ ‘08%¢ ‘0068)  (8F9T ‘89ST ‘F¥ST) (969 ‘GL9 ‘279) | SSH ‘PPN [PV
(cL9€ ‘zees ‘TrLE) (087 ‘96¥ ‘077) (0z€T ‘T8TE ‘STIT) ( ‘9.1 ‘SOFT) (z6eT ‘82T ‘TEPT) (896 ‘918 ‘2L0T) (SFF ‘0¥ ‘ss7) Ssd wy “fpy
(768 ‘226 ‘€16°) (860" ‘901" ‘160°) (686" ‘€16 ‘716°) (898" ‘116" ‘088°) (6L9° ‘199" ‘cz9’) (62 ‘84T ‘TST") (211 ‘16T ‘121°) SSH xely
(€8L ‘€9L" ‘9LL") (640" ‘280" ‘7L0°) (cvL ‘6gL 08L") (909" ‘129" ‘9.8°) (01¥" ‘sev” ‘00%") (902" ‘96T" ‘¢6T") (480" ‘%80" ‘180") SSH PO
(67" ‘6TF" ‘89F") (090" ‘290" “.c0°) (062" ‘76€" ‘90¢") (¢6T" ‘122" ‘OLT") (PLT ‘T6T" ‘6LT") (Te1 ‘zor ‘veT) (920" ‘650" ‘190") SSH Iy
(£96° ‘886" ‘96°) (ST8" ‘e18" ‘11%) (926" ‘956" ‘¥S6°) (26" ‘196" “L¥6°) (868 ‘68" ‘L68°) (878 ‘Le8" ‘e¥8) (918" ‘028" ‘078") 0 XeJy
(16" ‘706" ‘T16°) (gL ‘6wl ‘TrL) (026" ‘216" ‘€16°) (198" ‘cL8" ‘c¥8’) (veg ‘se8” ‘es’) (88L" ‘G8L" ‘6LL") (LL‘eoL” ‘arL) © Pa\
(99L" ‘sTL ‘z8L’) (799" ‘609" ‘¢L9°) (1gL ‘gLl ‘eeL’) (009" ‘129" ‘z8%") (gLg ‘sg9” ‘2s9) (889" ‘209" ‘109°) (089" ‘689" ‘229") 0 Uy

00T = Nd.D
(01=9¢1=,0) (00T =9 ‘T = z9) (1=¢T=79) (or=9¢‘c=,0) (01=91=,9) (01=9c0=¢9) (01=97=,9) 67 =p

(1€291 ‘TT881) (LSET ‘TL9T 996T)  (L6F9T ‘T0LIT ‘CTPST)  (8L19T ‘02GST ‘1S6¥T)  (£692T ‘6786) (0967 ‘F¥¥¥ ‘6957) (11€2 ‘L¥ST ‘290T) | SSH Xel “fpy
(9¢8eT ‘20€8T) (€417 ‘zzvbT ‘082T)  (€T0€T ‘TTCET ‘600FT)  (¥268 ‘T6L0T ‘869TT) (096 ¢ ‘8678)  (9£2€ ‘T0SE ‘69.€) (F80T ‘P¥el ‘201T) | SSH ‘PPN '[PV

(e18 ¢ $956) (826 ‘SETT ‘FSOT) (7299 ‘TS ‘6786) (182¥ ‘188 ‘0216) (Loge ¢ ‘$899)  (€L6T ‘68FC ‘TT1E) (LvL ‘6701 ‘28L) | SSH Wiy “(py
(616" ‘168" 068°) (8L0° ‘760" ‘880°) (826" ‘LT6™ L98°) (016" ‘€L8 ‘T¥8") (P12 26¢ P8C) (6Lz ‘05T ‘LST) (0€1" “L80° ‘OTT") SSH xely
(goL ‘809 ‘1987) (990" ‘080" ‘¢L0") (zeL “09L" ‘88L’) (¢og" ‘209" ‘889") (v ‘o8¢ ‘8LF) (281" “L6T" ‘21T") (190" ‘040" ‘290°) SSH PO
(Lep ‘9e¢ ‘8eg) (g50" ‘790" ‘190°) (L9€" ‘6T ‘PSS) (8ez ‘11T ‘€19) (981" ‘0cz ‘9L¢") (TTT ‘OFT" ‘GLT") (¢v0 ‘650" ‘7¥0°) SSH Wy
(96" ‘676" ‘286°) (181 ‘T6L “L8L) (28 ‘196" ‘876°) (cc6™ ‘O76" ‘7E6°) (906 ‘889 ‘788°) (7eg ‘118" ‘1€8°) (008 ‘z6L ‘T6L’) © Xe]
(g68" ‘116" ‘0¥6") (LeL ‘epL LvL) (€9L" ‘616" ‘€€6°) (e¥8" ‘€L8" ‘868") (508" ‘108" ‘7¥87) (L9L" ‘SL ‘T6L") (8zL ‘08L ‘FFL) 0 Py
(194" ‘608" ‘L08°) (099" ‘879" ‘¢69°) (c69" ‘e1L" ‘848°) (879 ‘209" ‘T18") (079" ‘799" ‘g9L") (729" ‘zes” ‘epl’) (965" ‘169" ‘769°) 0 Uy

§v = NdD
anf v (00T =9 ‘T = z9) (1=¢T=79) (or=9¢‘c=,0) (01=91=,9) (01=9‘c0=¢9) (01=971=,9) c=p

(001)801 = (o1)8o01 = 11 (1)801 = ‘1

"90u810AU0D 110ddns j0u Se0p 9501 G-I :Inojod Ao1r) {00T ‘6% ‘Sg} =P

suotsuUaWIp I0J §QH pojsnlpe pue aw) ) J)) oSeles ‘SQH oANR[RI ‘() sejel 9our)dedde WNWIXRW pPUR URIPAIW ‘WnWIUIN ‘Dd-) :¢'&€F °lqRL

135



(6092 ‘8€97 ‘86¢2) (8L€ ‘o¥ ‘0TF) (6792 ‘819Z ‘F¥92) (9892 ‘7842 ‘005T) (€961 ‘€50T ‘T98T) (688 ‘976 ‘0F8) (967 ‘P1L ‘9%) | SSH Xely ‘[pY
(6612 ‘zree ‘0zeT) (o€ ‘29¢ ‘9gg) (9122 ‘291¢ ‘8022) (6791 ‘G6LT ‘67LT) (P81T ‘9geT ‘1021) (79 ‘1L ‘G99) (0L€ ‘¥8¢ ‘8e8) | SSH PO [PV
(g60T ‘76 ‘7SIT) (L¥T ‘99 ‘18¢) (966 ‘9¢G ‘998) (97¢ ‘829 ‘659) (€S ‘82S ‘LTF) (10% ‘19¢€ ‘THF) (gt ‘882 ‘veT) SsH Wy lpy
(016" ‘026" ‘906°) (ge1 ‘ST ‘evT) (ve6™ ‘e16° ‘2T6') (206" ‘106" ‘TL8") (189" “91L° ‘6¥9’) (01¢" ‘08¢ ‘e6T) (eL1" ‘6%C ‘6ST) SSH Xey
(L9L" ‘8L ‘608°) (901" ‘821" ‘¥2T’) (€22 ‘PGL ‘0LL) (eLg ‘9z9" ‘019°) (€1% ‘99" ‘61F") (Tee ‘8ve" ‘zeT) (62T ‘PET" ‘81T") SSH POIN
(z8¢" “LLT ‘€T¥) (980" ‘260" ‘860°) (L¥e ‘76T ‘z0g’) (08T ‘FST" ‘¢6T") (98T ‘P8T" ‘6¥T") (07T ‘921" ‘%ST) (880" “€80° ‘820°) SSH Uy
(7S6™ ‘656° ‘186°) (€08 ‘g8 ‘028") (886" ‘996" ‘956°) (296" ‘cs6™ ‘c6’) (L68 ‘€6 ‘068°) (cP8 ‘c78 ‘678") (gz8 ‘188" ‘1€8") 0 X
(806" ‘€16° ‘€26°) (182" ‘P9L" ‘TOL’) (816" ‘916" ‘cT6') (zes ‘6.8 ‘cL8) (0z8 ‘288 ‘618") (98L" ‘881" “28L") (€9 ‘89L" ‘09L") 0 pa
(P14 ‘899" ‘geL") (e19" ‘ep9" ‘669°) (9zL ‘289" ‘01L) (799" ‘169" ‘919°) (9g ‘289" ‘289) (786" ‘709" ‘179°) (169 ‘O¥9° ‘7L9") 0 Uy
6.2 = nd0
(01=9‘1=,0) (001 =¢‘T=,0) (1=9¢'T= 29 (01=9¢‘¢=,9) (01=¢1=,9) (01=¢‘c0=z0) (01=¢1=,9) 00T =p
(#1979 7999 ‘1299) (TLTT ‘P12T ‘62TT) (7199 ‘6.59 ‘T.99) (2529 ¢ ‘91€9) (e78F ‘06LF ‘Te9%)  (09TT F1TT ‘LSTT) (eveT ‘6TLT ‘98¢T) | SSH Xel '[Py
(009¢ ‘206G ‘eFSS) (00T ‘980T ‘6.6) (1288 ‘6288 ‘9889) (00F¥ ¢ ‘TLID) (001¢ ‘6L2€ F108) (18T ‘6L ‘LOLT) (L50T ‘60T ‘9€0T) | SSH PN “fpV
(79z¢ ‘9€0€ ‘L0VE) (208 ‘028 ‘628) (L80 ‘9€87 ‘1.2T) (orT ¢ ‘ereT) (0GeT ‘20ST ‘00¥T) (60T ‘0S0T $921) (0SL ‘128 ‘9¢8) SsH wy fpy
(868" ‘616" ‘€16°) (791" “‘0LT" ‘8ST") (926" ‘126" ‘0T6") (948" ‘906" ‘¥88") (829" ‘129" “279') (e1¢" ‘18 ‘208") (FLT ‘T ‘08T") SSH Xy
(P8L “TLL ‘9LLY) (91" ‘epT" “L€T") (572 ‘opL ‘FaL) (919" ‘829" ‘¥8S") (Fev ‘697" ‘zTv’) (ccg ‘Tve ‘6€T) (SFT" ‘18T ‘¥ T’) SSH PN
(o7 ‘gey LLY) (€11 ‘611" ‘OTT) (882" ‘L6€" ‘81¢") (g0 ‘ez ‘88T) (681" ‘T1Z" ‘96T°) (TeT “L¥T" “LLTY) (S0T" ‘eIT" “21T") SSH Wy
(696" ‘896" ‘96°) (718" ‘e18" ‘118°) (996" ‘996" ‘cS6°) (6" ‘196" ‘L¥6°) (868" ‘268" ‘L68°) (L¥8 ‘68" ‘T¥8) (978 ‘618" ‘0C8’) 0 XeN
(e16° ‘706" ‘T16°) (T6L ‘8pL" ‘epL’) (026" ‘216" ‘€16°) (198" ‘618" ‘O78°) (geg ‘188 ‘eT8’) (88L ‘¥8L" “18L") (8L ‘29l “L¥L7) 0 paN
(99" ‘91L" ‘z8L") (799" ‘209" ‘2L9") (1g ;Nt. ‘eel’) (109" ‘2¢9" ‘p89") (gLg ‘cz9” ‘zeq) (829 ‘809" ‘709°) (182" ‘829" ‘z29’) 0 Uy
g1 = AdD
(01=¢1=,9) (001 =¢'T = ,0) (1=9¢7=79) (01=¢‘c=,9) (01=¢1=;9) (01=¢‘c0=z9) (01=¢1=,9) 67 =P
(68671 ‘T8FFT ‘T697T) (ecoe ‘eeze ‘TeTE ) (86TST ‘GETST ‘692pT)  (ZOTST ‘692¥T ‘THOFT) ‘GEE0T ‘8696)  (LT6S ‘eSFS ‘20SS) (£75¢ ‘126 ‘9688) | SSH el ‘[py
(9612T ‘TTELT ‘0TTFT) (6822 ‘906T ‘9062)  (9T0TT ‘90STT ‘1€62T)  (PThS F0TOT ‘TSTTT) ( ‘6669 ‘7628)  (961F ‘LTEV ‘918P) (9652 ‘T6LT ‘LeLT) | SSH PO lpV
(8L¥L ‘6206 ‘S¥06) (91¥¢ ‘6¥FC ‘9652) (L809 ‘G98% ‘F226) (6707 ‘ge.L€ ‘zEgs) ( ‘9057 ‘'94L9) (8867 ‘L9TE ‘T8OV) (¢21% ‘629z ‘91%2) | SSA Wiy “[py
(616" ‘288" “006°) (L8T" ‘86T ‘€6T") (86" “LT6° ‘TLY) (626" ‘7L8" ‘098°) (672 ‘e€9” F69°) (e9¢" ‘pee ‘Leg7) (L12 ‘28T ‘80T") SSH XeIN
(LpL ‘O18" ‘1L8°) (691" ‘8LT" ‘8LT") (982 ‘99L" ‘z6L’) (919" ‘529" ‘€89°) (8.6 ‘ez¥ ‘8097) (LeT ‘997" ‘e67") (69T ‘TLT “29T") SSH PN
(8¢7" ‘eeq” ‘eg’) (871" “0ST" ‘6ST") (128 ‘86" ‘¢99") (8vz ‘08T ‘2es’) (zzz ‘9Lz ‘e1¥") (£81" ‘¥6T" ‘05T") (0T ‘19T ‘87T") SSH Wy
(996" ‘676" ‘¢26°) (88L" ‘z6L" ‘88L") (696" “L96° ‘8¥6°) (286 ‘OF6" ‘7€6°) (906" ‘888" ‘z88") (7e8” ‘818" ‘zes’) (008" ‘z6L° ‘TI6L") 0 XeN
(g68° ‘L16° ‘0V6°) (8gL ‘epL” ‘8pL’) (0z6™ ‘616" ‘z86') (978" ‘zL8" ‘668°) (908" ‘008" ‘F¥8°) (89L" ‘9pL" ‘e6L") (T8 ‘18L ‘epl) 0 paN
(09L" ‘608" ‘2L08°) (199" ‘879" ‘€69°) (692 ‘TIL ‘L8%) (679" ‘809" ‘118") (079" ‘289" ‘z9L’) (cg9" ‘ggs” ‘epl) (962" ‘869" ‘269°) 0 Uy
67 = NdD
§|§| v (00T =¢‘T = ;9) (1=0¢7=;9) (01 =¢‘c=¢9) (0T=¢T=¢9) (0T =¢‘c0= 7o) (0T=¢T=¢9) G =p
(001)801 = (01)801 = g (1)80] = s

"90ue310AT0D J10ddns j0u SP0Op 1899 QI ALIN) 00T ‘67 ‘G =P
suoISUSWIp I0] G§H polsnlpe pue awil) N J)) #8rIaAR ‘GG oAIIR[AI (1) sejel sduR)de0de WNUIIXRW PUR URIPaW ‘wnwIulN ‘INMY-Dd €€ ¥ °21qRL

136



(0T¥¢ ‘26£T ‘F9€2) (668 ‘216 ‘€L8) (¥¥¥z ‘12¥T ‘0177) (80%¢ ‘19€T ‘¥1€0) (86T ‘LL6T ‘6281) (9STT ‘PLIT ‘SgIT) (678 ‘8101 ‘2e6) | SSH Xe "[py
(9202 ‘290z ‘€S17) (T1L ‘cvL ‘OvL) (707 ‘86T ‘9202) (TGQT ‘8L9T ‘099T) (6721 ‘geeT ‘e8eT) (906 ‘€¥6 ‘06) (e ‘qvL 90L) | SSH PO TPV
(1201 ‘258 ‘FIIT) (0vS ‘648 ‘7¥9) (876 ‘ahg ‘ves) (T0G ‘SFG ‘LLS) (€09 ‘769 ‘76¥) (809 ‘F9G ‘L89) (009 ‘919 ‘065) Ssd Wiy Py
(826" ‘126" ‘016") (gze ‘188" ‘9¢¢") (196" ‘86" ‘8T6°) (g6 ‘c06" ‘168") (9% ‘T9L" F0L) (sF9 ‘2o ‘cer’) (Lee ‘z6e ‘ege’) SSH Xely
(08L" ‘6L ‘6T8) (pLT ‘18T ‘e8T") (€81 ‘q9L" ‘08L") (L6 ‘9%9" ‘6€9°) (187" ‘128" ‘F6V) (6v€" ‘e9e” ‘gee’) (z8z ‘182 ‘1LT) SSH POV
(e6€" ‘0gg” ‘6T¥) (802" ‘e2e” ‘8¥T) (c9¢ ‘012 ‘1C¢E)) (¢61" ‘112 ‘2CT’) (zez ‘L9z ‘06T") (vez ‘L12 ‘e5T) (182" ‘L8T ‘L0T) SSH Uiy
(76" ‘896" ‘166°) (208 ‘728" ‘618) (896" ‘996" ‘9¢6") (296" ‘vS6° ‘€¥6") (968" ‘226" ‘068") (cp8" ‘cp8” ‘8¥8)) (cz8 ‘188" ‘0€8") 0 X[
(806" ‘¢16° ‘cT6') (0L ‘e9L" ‘€9L") (L16° ‘916" ‘cT6') (198" ‘6.8" ‘7L8") (028" ‘Le8" ‘618") (c8L ‘88L" “18L7) (292 ‘89L" ‘T9L’) © Pa\
(611 ‘699" ‘88L7) (519 ‘9%9" ‘869°) (czL ‘ve9 ‘01L7) (g9¢" ‘e6S" ‘219") (g ‘889" ‘089)) (8¢ ‘209" ‘6€9’) (969" ‘979" ‘7L9°) 0 U
L0€=NdD
(01=¢‘1=;9) (001 =¢'T=40) (T=9¢17=20) (01=9¢'c=9) (01=¢1=;9) (01=9¢'¢0=42) (01=¢1=79) 00T =p
(6L£9 ‘089 ‘0L¥9) (86LT ‘8897 ‘099z)  (£2L9 ‘9TS9 ‘€9¥9) ( ‘96%9 ‘z.£9) (€9z¢ ‘110G ‘L£19) (162€ ‘87TE ‘6L1€) (799% ‘c9LT ‘9692) | SSA "xelN ‘[py
(zL8¢ ‘91CC ‘L09G) (L¥12 ‘o11g ‘T602)  (L09S ‘0£SS ‘869%) ( ‘9¥9¥ ‘OVeT) (0ege ‘eese ‘oege) (0992 ‘819T ‘894T) (LL0T ‘681T ‘F802) | SSH PPN '[PV
(9zeg ‘oe1e ‘6L8¢E) (88T ‘2291 %6L1)  (91€T ‘820T ‘812C) (FT9T°96LT ‘209T) (8291 ‘0981 ‘6z81) (1291 ‘LPLT ‘0€61) (G671 ‘€6ST ‘2091) | SSA "WIN [PV
(606" ‘L26™ ‘TT6°) (g6¢ ‘e8¢ ‘6L¢7) (896" ‘086" ‘126°) (806" ‘0a6° ‘806°) (06L" ‘PTL ‘TELT) (697" ‘097" ‘cS¥") (F9¢" F6¢° ‘0L8") SSH XeN
(¥6L ‘98L° ‘66L") (90¢" ‘108" ‘867°) (66L ‘88L° ‘T18) (‘859" ‘299" ‘c09") (e0g ‘zeg ‘e09’) (6L€" ‘eLe ‘99¢") (962" ‘T1€ ‘16T°) SSH POV
(TLy ‘9FF ‘0197) (892" ‘682" ‘09T") (0gg ‘682 ‘91¢") (0¢z ‘95z ‘68T) (zez ‘99z ‘09T") (182 ‘672 ‘eLT’) (e12 ‘22T ‘6TT) SSH Uiy
(96" ‘296" 9S67) (718 ‘718" ‘118) (696" ‘996" ‘FS6") (216 ‘196" “L767) (868" ‘268" ‘L68") (78 ‘Le8" ‘TPY) (918" ‘028" ‘128") 0 X[
(c1 FS@. ‘216°) el ‘SvL ‘erl’) (616" ‘68 ‘L16°) (798" ‘9.8 ‘9¥8") (ces” ‘8¢9 ‘cT8) (88L° “a8L" ‘08L") (87L" ‘2oL “L7L) 0 pay
(99L" ‘91L ‘18L7) (869" L1 ‘€L9") (ceL ‘669 ‘s0L’) (109 ‘199" ‘z8¢°) (9.8 ‘729" ‘189") (095" ‘209" ‘009°) (e8¢ ‘889" ‘cg9’) 0 uIp
P11 = AdD
(01=97T=,9) (00T =01 = ,0) (1=9¢'T=29) (01=9‘¢=,9) (01=9T =79 (01=9‘c0=¢9) (01=9T=,9) 67 =P
(LOTCT ‘6E6VT ‘THSFT) (c€€9 ‘z0€9 ‘T0£9)  (9TTST ‘690ST ‘OLLFT)  (P6PST ‘6GLFT ‘CPOFPT)  (9T8TT ‘LTSTT ‘0680T) (1928 ‘809. ‘€£08) (1709 ‘£€9 ‘6€19) | SSA "Xely [py
(06721 ‘LOSET ‘OTFIT) (619 ‘vO¥PS ‘299¢)  (G90ZT ‘6T8ET ‘0Z¥ET) (€968 ‘GG60T ‘TLLIT) (9108 ‘8162 ‘0626) (0609 ‘768¢ ‘T789) (7167 ‘125 ‘6E€S) | SSH PPN [PV
(08292 ‘6€€6 ‘TTE6) (6807 ‘860% ‘9T0F)  (€99¥% ‘PIG ‘9LLOT) (1927 ‘762F ‘T0.L8) (989% ‘210G ‘1662)  (LGP¥ ‘280F ‘€9L8) (T61¢ ‘96TF ‘€9T%) | SSA "WIN “[pY
(626" ‘216" ‘606°) (88¢" ‘98¢" ‘98¢") (ze6™ ‘cT6™ ‘c06') (676" ‘706" ‘L68°) (e84 ‘904 ‘299°) (905" ‘997" ‘z67") (0L€ ‘88¢" ‘9L¢") SSH Xe
(6oL ‘188" ‘e88°) (81¢" ‘18E" “T9€") (6eL “L¥8" ‘TT8’) (6¥S" ‘129 ‘TEL’) (167" ‘e8%" ‘695°) (eLe ‘19¢" ‘61¥") (T0g" ‘62¢" ‘LTE) SSH PoIN
(047 ‘zLe ‘1LC) (Lvz ‘19T ‘9¥T) (<82 ‘66" ‘099°) (192 ‘¢92" ‘e€9’) (18T ‘L0g" “L87") (€22 ‘092" ‘gc€’) (€61 ‘192" ‘ccT’) SSA Wy
(L86° ‘676" ‘156') (8L ‘T6L ‘98L") (196" ‘796" ‘TP6") (796 ‘L¥6" ‘FE67) (506 ‘888" ‘z88") (c28 ‘818" ‘1€9") (108" ‘g6L" ‘z6L") 0 Xe\
(c68 ‘816" ‘076°) (8gL ‘epL ‘8vL)) (606" ‘cT6 ‘TE6°) (978" ‘L8 ‘868°) (908" ‘208" ‘¥8°) (L9L ‘el ‘e6L’) (6TL ‘08L" ‘apL’) 0 paIy
(09" ‘018" ‘208°) (199" ‘8¥9° ‘€69°) (869" ‘29L° ‘6L8") (679" ‘209" ‘18) (689" ‘e99" ‘e9.") (929" ‘gge ‘opL’) (365" ‘869" ‘269°) RN
0S=NdD
ST@T V (001 =¢'T=,9) (I=9¢1=1202) STQT v (01=¢1= ;9 (0T =9¢‘¢0=40) (01=¢1=,9) eg=p
(00t1)301 = (o1)S01 = (1)801 = i

"90u9810AU0D 110ddns j0u Se0p 9501 G-I :Inojod Ao1r) {00T ‘6% ‘Sg} =P

suorsuawIp I10j S pajsnlpe pue sy ) ) 95eIeA® ‘SGH dAlYR[al ‘(D) sajel soue)dende WNWIXRW PUR URIPSW ‘WNWIUIN "VIVIN-Od 7€ °1qRL

137



(geg ‘e6¢ ‘0ge) (F¥¢ ‘ogg ‘L2E) (8L ‘929 ‘T¥¥) (197 ‘6¢p ‘L€S) (96€ ‘01F ‘TLY) (g9¢ ‘6L€ ‘L9¢) (9L¢ ‘cLe ‘o1F) | SSA "xely “[py
(062 ‘.87 ‘062) (662 ‘662 ‘962) (012 ‘202 ‘L2T) (LT ‘8T ‘192) (182 ‘182 ‘9L2) (962 ‘€67 ‘962) (€62 ‘06z ‘062) | SSA PoN [Py
(%97 ‘ccz ‘eLT) (05z ‘85z ‘797) (L8T ‘181 ‘707) (991 ‘F8T ‘102) (107 ‘peT ‘¢12) (0€z ‘8¢z ‘L¥T) (v81 ‘8¢z 207) | SSH "wiN ‘[py
(91T ‘LeT" ‘q1T') (0z1 ‘211 F1T7) (292 ‘812 ‘FST)  (LGT° ‘eqT  ‘L8T°)  (8€T° ‘epT1° ‘eo1’)  (L2T" ‘Tl ‘SeT’) (€1 ‘081" ‘FT) SSH "Xy
(101" ‘001" ‘10T") (FOT 70T ‘€0T°)  (€20° ‘2L0° ‘6L0°) (980" ‘060" ‘160°) (860" ‘860" ‘960°)  (£0T" ‘ZOT" ‘€0T’) (zo1" ‘10T ‘10T SSH PO
(260" ‘680" ‘560 (180" ‘060" ‘260) (990" ‘g90" ‘TL07) (850" ‘790" ‘0207) (00" ‘8L0° ‘5L0) (080" ‘€80° ‘980°) (790" ‘e80" ‘L0 SSH W
6.2 = NdD
00T =P
(P71 ‘€102 ‘GT9T) | (2TLT ‘TOLT '8¢9T)  (LT6T ‘G282 ‘0T16) (0667 ‘8LLT ‘TS6T) (€832 ‘001G ‘680¢)  (86LT ‘€981 ‘6L8T) | (VOTC T8ST ‘7881) | SSH Xely ‘[py
(PGPT ‘FPT FOPT) | (98FT '6FT ‘6LPT)  (€9TT ‘LLOT ‘FSTT)  (6FGT '00CT ‘T82T)  (OTPT ‘68€T 8LET)  (L6FT ‘POFT ‘GLPT) | (GEFT ‘GLFT ‘FSFT) | SSH PO [PV
(LSET 26TT 8L€T) (SE6T P8TT 562T)  (LL0T 86 ¢501) (706 926 770T)  (€20T 860T L8OT)  (2GTT 60TT ¥81T) (266 706 926) | SSA WV [Py
(GeT "18T" ‘06T (66T '8¢ ‘yeT)  (8LI" ‘297 '961°)  (eez ‘ez ‘Y8I)  (21e ‘6L ‘¥6L) (9T ‘EAL ‘pAT) (T0g" ‘GLT" ‘SLT) SSH "Xep
(GeT" ‘g€t ‘9¢eT) (861 ‘6ET “L€T) (80T '001" OTT) (911" ‘21" '611) (161" ‘621" '8¢1) (€1 ‘981" "LET) (€eT" “L€T ‘GeT) SSH PO
(921" ‘021" ‘8e1) (re1 ‘011" ‘0z1) (00T ‘880" ‘8607) (80" ‘980° ‘4607) (960 ‘201" ‘T0T) (201" ‘€0T" ‘01T (80" ‘780" ‘980°) SCEAY
vL=0Nd0
6F =p
(0699 ‘0679 ‘9599) (zzzl ‘sobL ‘ezq9)  (PS6L ‘TPEPT ‘0699)  (GGLL ‘9868 ‘0679)  (1TLL ‘TTLL ‘6869)  (SSEL ‘950 ‘€T99) (126L ‘7e8L ‘1898) | SSH “XelN “[py
(166¢ ‘LS09 ‘LG6S) (1609 ‘1609 ‘2619)  (9z.L¥ ‘LzTh ‘cz0c)  (8e¥e ‘cres ‘cz9e)  (vess ‘Gres ‘2¢6¢) (V219 ‘726¢ Fe19) (v219 ‘169¢ 'L969) | SSH PO [PV
(169¢ ‘889¢ ‘86.S) (216 ‘261G ‘268S)  (L2O¥ ‘T9LE ‘699%)  (€6SF ‘L20¥ ‘e69%)  (£69% ‘€6SY ‘629%)  (698% ‘929% ‘T60C) (Lz8e ‘LT8¢ ‘766¢) | SSH WIN “fpy
(102" ‘61" ‘002°) (L12 ‘vz ‘9617)  (6ez ‘1e¥ ‘1077) (g€ ‘0Lz ‘68T ) (zew ‘zer ‘o1T)  (gTT ‘TiT ‘6617) (8€7" ‘987" ‘8¢2) SSH "xe[y
(08T" ‘Z8T" ‘6LT") (81" ‘e8T" ‘e8T°)  (2pT° ‘Le1 ‘18T7)  (POT° ‘09T ‘691°)  (GLT ‘09T ‘6L1°)  (P8T" ‘SLI" ‘F8T’) (¥81° ‘891" ‘6L1) SSH PN
(11 ‘0LT ‘eLT) (pST° ‘08T ‘291)  (1er ‘err ‘opr)  (8er ‘ter ‘mpr)  (1pT‘ser ‘opr) (9T ‘6€T ‘gST) (11 ‘e11” ‘081) SSH U
ve=0dD
§|§| V (001 =9T=,9) (1=91=79) (01=9¢¢c=70 (01=0T=,9) (01=9¢0=,9) (01=9¢T=29 @C=p
(00T)S0r = (ot)801 = 11 (1)301 = i

046G — %G sorel aouridesoe pasdIyDOR 1 JRY) OS PauN) sem
unpyuiose oL, {001 ‘6¥ ‘G¢} = p suolsuawIp 10§ SSH pajsnlpe pue owry ) J)) dfetonr ‘SSH 2ATVE[RY “(900g) T8 10 USSUISLIYY) WILIOSY ¢ ¢ 9[qRL,

138



(029 ‘€29 ‘609) (S6T ‘L6T ‘T6T) (7£9 ‘919 ‘L19) (L29 ‘T19‘649)  (7¥S ‘c6v ‘eq) (0T ‘T0€ ‘6LT) (v0T ‘L12 ‘S0 SSd xely “fpy
(6eS ‘eeg ‘zee) (gL ‘011 PLY) (60 § ‘0g¢) (617 ‘o1 ‘9e¥)  (61¢ ‘81¢ ‘7¥€) (08T ‘02T ‘7€) (0LT ‘0LT ‘9L1) Ssd pey “[py
(vez ‘972 ‘8L2) (81 ‘s¢e1 ‘zeT) (181 ‘161 ‘¢12) (61 ‘LP1'96T) (LT ‘8¥T ‘6S1) (8071 ‘c€1 ‘091) (€T ‘11T ‘071 SSH wy “fpy
(96" ‘0v6" “616°) (767 ‘862" ‘6877) (896" ‘0¢6 ‘ze6)  (L¥6 ‘ea6 ‘L) (1a8 ‘SBLL89) (0% Be¥ ‘1¢H) (80¢ ‘Lzg ‘01¢") SSH Xy
(P18 ‘508" ‘€08") (65z" ‘18T ‘29T") aﬁ; ‘008) (€€ ‘829 ‘659')  (18F ‘08F" ‘61¢)  (zee ‘zeg ‘0ge) (95z" ‘9¢z" 99z°) SSH PO
(vee ‘L ‘ozv) (807" ‘80z ‘00z7)  (plz ‘so1 ‘zee) (981 ‘zee ‘eer’)  (zee oo ‘ove) (€91 ‘10T ‘THT) (10z" ‘891" ‘122’) SSH uIy
(696" ‘266" ‘956°) (078 ‘czs ‘128) (096" ‘1¢6°‘86) (696" ‘TS6 ‘TP6’) (926 ‘€16 ‘0067)  (LES" ‘€S8 ‘€G8’) (928" ‘ce8 ‘L28") 0 X[\
(226" ‘026" ‘026°) (694 ‘89L‘0LL7) (P16 ‘006 ‘zz6) (698 ‘L8 ‘6L87) (88 ‘zes ‘O¥8) (6L ‘T6L TOS) (0LL ‘0LL “9LL) 0 Py
(189 ‘6L9" ‘s¥L’) (279 ‘cr9 ‘989") (P89 ‘120 ‘cgl) (99 ‘€49 ‘9197)  (L9¢ ‘08S" ‘T19)  (LLF ‘PLSG ‘169 (799" ‘ze¢ ‘299°) 0wy
8021 = NdD VIVIN-Od
(01=9¢T=¢9) (0r=01=70) (1=90T=¢0) (01=90¢=0) (01=0T=,9 (0I1=0'¢0=,9) (01=9¢7T=79) 961 =P
(L'LL ‘618 ‘greL) (269 ‘z69 ‘T’69) (GTTT‘S0PT ‘978) (0 °‘ezer ‘L0z) (€68 ‘T66 ‘T6L) (86l ‘€L ‘T€L) (€728 ‘1T'¢8 ‘6°9L) Ssd xepy “(py
(z'6¢ ‘T65 ‘T'6S) (809 ‘909 L'09)  (T'9F ‘8'¢F ‘L°LG) (0‘TectTor)  (L28L28°009) (0009 009 ‘0°09) (2'62 ‘0°09 ‘z'6S) SSH PO [Py
(T°6¢ ‘8'€¢ ‘9F¢) (G16°e16'07e) (L2198 '7ee)  (0F7ge‘ecTr)  (R€F Ter ‘6'9F)  (679F ‘C'8F ‘T6F) (976 ‘L€ 16°T) SSH Wy “fpy
(101" ‘901" ‘860 (060" ‘060" ‘060)  (gpT" ‘€8T ‘01T)  (0°64T 'Lg0)  (TTT" ‘62T ‘€0T) (960" V60" ‘%60') (20T *80T" “00T') SSd xe\
(LL0" ‘2207 “LL0°) (620" ‘60" ‘620") (090" ‘260" ‘c20’) (0690 ‘T20)  (GL0" ‘GL0 ‘8L0°7) (807 ‘8L0° ‘8L0") (LL0" ‘8LO" “LL0") SSA PN
(690" ‘0L0" ‘TL0") (290" ‘290" ‘120") (670" ‘L0 ‘9507) (0 ‘9p0° ‘c10) (280" ‘960 ‘190) (190" ‘690" ‘790°) (cv0" ‘670" ‘50°) SSH Wy
0701 = Ad,D SUD

§|f| 0) (0r=01=,0) (1=9¢7=40) (01=9¢‘c=40) (01=0T=,0 (01=0'¢0=,9) §|f| 0) 961 =D
(0or)3or = "l (o1)8o01 = i (1)801 = A

*90ua810A100 310ddNs 10U S0P 3893 QY A9IY) "QGT = P UOISUIWIP 10 SQF pojsnipe pue awir} N JD

o3rIare ‘GG eAIIR[AI ‘() sejel soue)dende WNUWIIXRW PUR URIPAW ‘WNWIUIN "V IVIN-Dd PUR (900g) ‘T8 10 UsSUaISLIY) JO WISy :9°¢§ d[qR],

139



(2'86 ‘L6 ‘L°L6) (6°06 ‘STS ‘7'97)  (1°26 ‘426 ‘8°L6) (086 ‘8°L6 ‘6'06)  (1°66 296 ‘0°¢6) (989 ‘9°9L ‘€'99) (119 ‘T LL ‘9°€S) SSH xey [py
(v'e6 ‘8°¢6 ‘T76) (917 ‘807 ‘0'TF) (826 ‘726 ‘2’e6) (668 ‘6'€8 T0%)  (6TL €Tl eel) (67 ‘TeS ‘ges) (917 ‘L'8¢ ‘L'Th) SSd Pl [py
(L9 ‘c'8p ‘L9¢) (8ee ‘L1e ‘9%8)  (99e‘L8e ‘TTr) (6728967 ‘7 0c) (868 ‘8'8T ‘L08)  (6T€ ‘LTE ‘T'TE) (Log ‘118 ‘eze) SSH Wy [py
(80¢" ‘c0g" ‘G0¢) (€92 ‘897" ‘0vz) (209 ‘G0g" ‘90¢)  (L0g" ‘90¢ ‘10¢)  (26F ‘00¢ ‘I8F)  (g9E ‘968" ‘eve’) (91¢" ‘66¢" ‘LLT") SSH Xe[y
(€87 ‘a8¥ ‘L8 (c1z ‘11z ‘e1eh)  (08F" ‘SL¥ ‘z8F)  (bev ‘ve¥ ‘Lvv) (L€ PLE ‘6LE) (W8T LT ‘8LT) (12" ‘002" ‘128") SSH PoIN
(¢67" ‘162 ‘€62 (GLT ‘79T ‘08T) (68T ‘00" ‘e1z’) (0L ‘eer “2817)  (90¢" ‘6%1° ‘6ST°)  (OLT" ‘P91 ‘991) (6ST ‘T9T" ‘897T") SSH uI
(096" ‘196 ‘096) (ves ‘ces ‘928) (096" ‘656" ‘1967) (896" ‘196 ‘cco’) (166 ‘S€6™ ‘166  (F98' ‘698" ‘F¥8’) (628 ‘878" ‘0¢8’) 0 XBJ\
(L16" ‘026" ‘€26 (6LL ‘9LL ‘cLL) (016 ‘016" ‘OT67) (898 ‘L8 ‘cev’)  (Fes™ ‘zh8 ‘b)) (W08 ‘208" ‘L6L°) (8L ‘GLL ‘T8L") 0 PO\
(zL9 ‘929" ‘29’ (19" ‘099" ‘279) (129 ‘169" ‘689)  (69¢" ‘epe ‘0.¢)  (zle ‘86 ‘L6F)  (S€S ‘T0S" ‘09¢") (759" 729" ‘299’) o Uy
LETY = Nd D VTVIN-Od
(01=9¢T=;9) (01=9¢T=20) (1=0T=,0) (01=0¢=,9) (1=0T=70) (I=0¢C0=¢2) (01=9¢T=;9) 007 =p
(911 ‘92T ‘9°11) (C11 ‘211 ‘211) (9712 ‘7og ‘g'ee) (12191 ‘9L1)  (v'e1 ‘o¢l ‘7v1)  (I'21 ‘02T ‘7'2T) (Tet1 ‘821 ‘621) SSd xey [py
(96 ‘C'6 ‘G6) (L'6°L6°L6) (0L‘T2'0L) (7’8 ‘'8 ‘7'8) (26 ‘26 ‘C6) (L6 L6 ‘L6) (6 ‘L6 ‘¢6) SSd peIN [py
(98 ‘7’8 ‘7'8) (78 ‘78 ‘¢'8) (8¢ ‘09 ‘09) (LG ‘€9 ‘e9) (69 ‘TL TL) (6L 7L 8L) (€9 °L¢ge) SSd wiy [py
(2L ‘820" ‘20" (120" ‘690" ‘6907)  (€eT" ‘0zT" ‘L¥T)) (90T ‘20T ‘60T°)  (£80° ‘F80" ‘680°)  (GL0™ ‘FL0" ‘LL0’) (180" 620" ‘080") SSH Xepy
(620" ‘650" ‘650 (090" ‘090" ‘090°)  (€¥0" ‘FHO" ‘ev0)  (2S0" ‘€q0" ‘2g07)  (LG0° ‘280" ‘L¢0) (090" ‘090" ‘090°) (650" ‘090" ‘650°) SSH PeIN
(620" ‘190" ‘2S0") (260 ‘780" ‘1¢07) (980" ‘260" ‘L€0))  (c€0” ‘620" ‘6€0")  (0FO" FFO' ‘FRO) (630" ‘9F0° ‘S¥0’) (620" ‘5£0" ‘920°) SSH wiy
6767 = NdD SHUD
§|f| v (or=01=70) (1=901=,0) (01=0¢¢c= v 01=90T=20) (01=90¢0=;9) §|f| 0) 007 =p
(00T)301 = (01)801 = (1)801 =

*90UOBIOAT0D ﬁommsm 10U S9OP 1893 QY :AdIX) "(Qf = P UOISUSWIp I0J SQH pojsinlpe pue swiry N JD
o3rIare ‘GG eAlIR[AI (0) sejel sour)dende WNUWIIXRW PUR URIPAW ‘WNWIUIN "V IVIN-DOd PUR (900g) ‘T8 10 UsSUaISLIY) JO WIILIOS[Y :L'¢F 9[qR],

140



{ooT 0T 1} = @ Sy 03 Yor1 ~{00¥ ‘961 ‘00T ‘67 ‘Gg} = p:uroyjogf 0y o, "¢ = ¥ YIm AIure] wIpiRy O SUISTL PAIONIISUOD ST 3 XLIYUL UOTYR[DII00
otxd oy, "syuouodwod redmourid jo y IdquNU oYY jsureSe (our] pI[os 3e[q) 4o pue (aul] paysep soe[q) ,a ‘(oul] pros £oI5) ,a Jo $10[J :9F oIS

00+30°0

7’0 00

80

ST00'0 00000

00+30°0

GT00'0 00000

80 v'0 00

00000

80 ¥0 00

00+30°'0 90-80'¢c 00+30°0 90-30°¢

80 ¥'0 00

0c00'0 0000°'0 0c00°0

00+30°0 90-95°¢
00

00000

9'0

90-30'¢
G200'0

141



123 45678 10 12 15 20 24

I

-4

log[Min. Relative ESS]
-6

-8

35 810 13 2 25 30 35 10 548

711 20 27 35 45 65 85 95

Figure 4.7: Algorithm PC-MALA. Logarithm of minimum relative ESS against different
values of k. Top to bottom: Dimension, d = {25,49,100}. The correlation matrix R is
constructed using the Matern family with x = 1.5.
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4.4 Discussion

In this Chapter we have presented three MCMC schemes, U-PC, PC-RWM, PC-MALA,
for sampling from the posterior distribution of the latent process conditional on the pa-
rameters. All three algorithms update each component of the process separately using
as the proposal distribution an approximation to the true conditional Gibbs sampler
proposal 7(s;|s_;,y). This approximation 7(s;|p,y) instead of conditioning on (d — 1)
components of S, conditions on a small number, k, of principal components p. Addi-
tionally, the algorithms PC-RWM and PC-MALA subsequenlty update p using either a
RWM or MALA update. We have also provided a sufficient diagnostic for choosing the

optimal number, k, of principal componnets on which to condition.

We saw, that by only updating the components of S conditionally on the few princi-
pal components was not sufficient and the U-PC algorithm performed poorly. However,
the additional update of the principal components, schemes PC-RWM and PC-MALA,
considerably improved the mixing of the algorithm with PC-MALA being the best per-
forming algorithm. In summary, in the case of the exponential correlation function,
PC-MALA has always provided both better ESS and adjusted ESS than the algorithm
of Christensen et al. (2006) whereas in the case of the Matérn correlation function of
order kK = 1.5 it always performs better in terms of ESS. In terms of minimum adjusted
ESS it performs similarly to the algorihtm of Christensen et al. (2006) up to dimension

d = 196 but performs better when d = 400.

As far as the update of the principal components is concerned, someone could use a
MALA proposal with an adaptive tuning as we did in PC-RWM. When we actually used
a MALA proposal with adaptive tuning, in order to assess the effect of k on the per-

formance of PC-MALA (Figures 4.3-4.5 and Figure 4.7), we found that for the chosen
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optimal number of principal components the ESS obtained from the adaptive and non
adaptive MALA proposal were similar. However, the use of an adaptive proposal elimi-
nates the need of careful tuning by trial and error. We also tried the use of a truncated
MALA proposal (Roberts & Tweedie (1996)) when updating the principal components.
However, in our examples it seems that it was not essential since the results obtained

were very similar to those presented in Section 4.3.2.

4.5 Appendix

4.5.1 Analytic form of v}

In the following we derive the exact form of v,

N

o = var (18- £ [517))

= Var (E[Si|S_,]) + Var (E [SinD — 2C0v <IE 1S:1S_] ,E [SinD

Let S ~ MVN (0, R). Denote by R_; the matrix R reduced by the i—th row and column

and 7; the i—th column with the i—th element removed. Then the following hold,

E[Si|S_;] = mRI!S_;

3 —1

Var (E[S;|S=i]) = (T;Rj) R (T{R_l)/

= rR’lr;. (4.5.1)
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Let P be the first & principal components of S. Then,

E[s|P] = L P

Var (B [Si|P|) = L Var |P| Ly |

Finally, consider that since P=LS,

Cov(E[SZ-]S_i],E[Si]PD - Cov(r;RjS_i, i[i,}P)
= (riR})Cov(5,8) (Ly L)

= (r;R:D R | (i’[iv ]i/>/

I

(4.5.2)

(4.5.3)

Therefore combining the expressions (4.5.1) — (4.5.3) we obtain the exact form of v.

4.5.2 Proof of Proposition 4.2.1

Proof. Let,

A=E[Si|S_]~E[s)P],

and consider

Var [A] = E (Var [A|S_,]) + Var (E[4]S_]).

(4.5.4)

(4.5.5)

If £ = d then, A = E[S;|S_;] — S; and therefore, E[A|S_;] = 0, Var (E[A|S_;]]) = 0.

Hence,

Var [A] = E (Var [A|S_;]) = E (Var [S;|S_;]) = Var [S;|S_],

where the last equation holds because Var [S;|S_;] does not depend on S_;.
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4.5.3 Assessment of convergence for the U-PC algorithm

We choose at random three of the rejected scenarios, one from each dimension, and
investigate whether there exists any striking feature that leads to such rejections. The
chosen scenarios are (d = 25, p, = log(10),0% = 1,¢ = 10, dataset b), (d = 49,
p,, = 10g(10), 0% = 3,¢ = 10, dataset ¢) and (d = 100, p, = log(100),0% = 1,¢ = 10,

dataset a).

For each scenario we found that some of the observed marginal KS statistics exceed the
95% quantile of their marginal distribution giving rise to a large value for our observed
statistic K := Zle K S;. In Figures 4.8-4.10 we see that for the first scenario there are
3, for the second scenario 5 and finally for the third scenario 7 such cases. For the first
and second scenario, eliminating from the chains the components that contribute more
to our statistic K, i.e., components 123 and 149 respectively, leads to failure of rejecting
the null hypothesis whereas for the third scenario more than one components should be

eliminated for convergence to be rejected.

: 1 1
1 1 1
1 1 1
o ' ° \ o .
=h ! 27 { =h !
1 1 1
o | . o | \ o | .
bw 1 aw 1 bw 1
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© © ©
o . o \ o .
o | ! o | ! o | !
< ' < I 5 '
1 1 1
< . 9 . < .
o4 - ! — [ - ! — (= . —
000 001 002 003 004 000 001 002 003 004 000 001 002 003 004

Figure 4.8: Density plots of KSjg, KS11, K So3 (left to right). The red lines indicate
the 95% quantile and the black dashed line the observed value of the statistic. Scenario
(d = 25, u,) = log(10), 0? =1,¢ = 10, dataset b).

In Figure 4.11 we display the posterior means and variances of the chains obtained from

U-PC and the algorithm of Christensen et al. (2006) and illustrate with green colour the

mean and variances of the components with high K.S;. From these plots, there does not
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Figure 4.9: Density plots of K.S7, KS12, K Sy, KSys, K Sy9 (left to right). The red lines
indicate the 95% quantile and the black dashed line the observed value of the statistic.
Scenario (d = 49, u,, = log(10), 0? = 3,¢ = 10, dataset c).
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Figure 4.10: Density plots of KSs, KSs, KSs3, KS41, KS71, KSo, KSo3(left to right
and top to bottom). The red lines indicate the 95% quantile and the black dashed line
the observed value of the statistic. Scenario (d = 100, p,, = log(100),02 = 1,¢ = 10,
dataset a).
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appear to be a problem with estimation of the posterior mean and variance between the
two algorithms. In the following, we investigate why, according to the KS tests, the two
algorithms result in different marginal distributions for those components. We choose
the QQ-plot as a graphical method for comparing the marginal distributions from the
two algorithms and these are displayed in Figures 4.12-4.14. As we see there are cases
where one of the two algorithms might explore better either one or both tails of the
distribution. However, we can not find a systematic pattern appearing in every QQ-plot.
In some of the plots though we see that U-PC explores the right tail of the distribution
at least as well as the algorithm of Christensen et al. (2006) but sometimes might fail to

go further out in the left tail.

Figures 4.15-4.17 show the traceplots of the chains obtained from the two algorithms.
From the traceplots we would expect to identify any existing trend and generally differ-
ences in the mixing between the two algorithms. In Figure 4.15 we see that the traceplots
of U-PC for the components 719 and 717 exhibit an increasing trend in the last 1000 it-
erations. A similar pattern can be seen in Figure 4.16 for component 77. Finally, looking
at the traceplot of ngy in Figure 4.17 we notice that there is more variability in the
traceplot of Christensen et al. (2006) than in that of U-PC. We finally examine whether
the rejection is due to different levels of correlation within the two samples. Figures
4.18-4.20 show the autocorrelation plots of the chains for those rejected scenarios along
with 95% confidence intervals. For both chains the autocorrelation mainly lies within the
95% confidence interval showing that they have been appropriately thinned in order to
be considered a white noise. Moreover, exceedences of the bands happen equally often
for both algorithms. The only exception seems to be component 7;5 in Figure 4.19 where

for some lags the autocorrelation for U-PC falls outside the 95% interval whereas that
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of Christensen et al. (2006) always lies within the bands.
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Figure 4.11: Plots of posterior means (left) and variances (right) of 1. x-axis: Christensen
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Figure 4.15: Traceplots for 119, m11, 723 (top to bottom) obtained from algorithm of
Christensen et al. (2006) (left) and U-PC algorithm (right). Scenario (d = 25, u,
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confidence interval. Scenario (d = 25, p,, = log(10), 0? =1,¢ = 10, dataset b)

156




< < <
o 4 o 4 o 4
3 3 3
L o L o L o
Q< O S R
I © I o I o
< < <
o o o
o S =
| | |
0 20 40 60 80 100
lag
< <
o 4 o 4
3 3
LL o L o
O < SR=)
I © I o
< <
o o
S S
| |
0 20 40 60 80 100 0 20 40 60 80 100
lag lag

Figure 4.19: Autocorrelation plots of 77, 112, 720, 48, N49 (left to right and top to bottom).
The black line corresponds to the ACF for the algorithm of Christensen et al. (2006)
and the red line to U-PC. The dashed lines indicate the upper and lower bounds of a
95% confidence interval. Scenario (d = 49, u, = log(10), 0% =3,¢ = 10, dataset c)

< < <
S 4 S 4 S 4
o o o
L o L o L o
Q 2 Q 2 A Q 2 A
< © < © < ©°
< < <
S | S | o |
o o o
| | [
< < <
o 4 o 4 o 4
S S o
L o L o W o
Q 2 Q 2 A Q QA
< © ©e < ©°
< < <
< | < | < |
o o o
| | [
0 20 40 60 80 100 0 20 40 60 80 100
lag lag
<
o
o
L o
[ON=]
<L ©
<
< |
g
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CHAPTER b

Discussion

The scope of the present Thesis has been to construct new MCMC samplers for infer-
ence in the case of the generalised linear spatial model (GLSM). In particular, our focus
has been placed on developing an efficient proposal distribution for updating the latent
process of the model conditional on the model parameters. Under the framework of the
GLSM the latent process is modelled as a Gaussian process and this has motivated of
our approach throughout this Thesis. Throughout this study, our approach has been
motivated by the simple fact that the latent process of the model is assumed to be
Gaussian. Therefore, our strategy for constructing such proposals has been based on the
creation of Gaussian approximations of the posterior distribution of the latent process
given the model parameters. The performance of all the constructed samplers was as-
sessed in terms of the ESS scaled by the CPU time required and compared against the
simplified MMALA of Girolami & Calderhead (2011) and the algorithm suggested by

Christensen et al. (2006) through extensive simulation studies.
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Our initial approach, in Chapter 3, has been to employ a transformation of the data
in order to obtain a single Gaussian approximation of the likelihood and consequently
of the target distribution. In turn, a heavy tailed version of this approximation was
used as the proposal distribution in an Independence sampler that attempted to update
the latent process in a single block. Our finding was that in the vast majority of the
cases that were studied such an approach has not been successful since the target is
far from Gaussian and therefore a single global Gaussian approximation cannot capture
its shape. As the dimension of the latent process increases this problem becomes more
prominent and in combination with the choice of the specific updating mechanism, the
Independence sampler, led to poorly performing MCMC schemes. The performance of
the constructed samplers depends heavily on the values of the model parameters and the
informativeness of the data since these two factors determine the posterior correlation
of the latent process and therefore the shape of the target distribution. For instance,
our simplest algorithm L1, where the link function is used to transform the data, can
perform sufficiently well the data is very informative, i.e., when the prior mean p, is
large, provided that o2 is small. Therefore an observed sample of high measurements, vy,
could provide an indication that L1 could be preferred over the more complicated and

computationally costly alternatives.

In Chapter 4 we took a different approach and placed our focus on creating an effi-
cient MCMC scheme that performs individual updates on each component of the latent
process. The motivation behind the developed MCMC scheme was to mimic a Gibbs
sampler in terms of acceptance rates while overcoming its mixing problems in the case
of correlated multi-dimensional targets. This was achieved by making use of the principal

components obtained from the prior correlation matrix of the latent process. The key
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finding for the development of this approach was that for a given correlation function
we could define a number, k << d, of principal components, p, for which the Gaussian
distribution of S;|p could be used to approximate that of S;|S_;. This was subsequently
combined with the Poisson likelihood and the Laplace approximation of the distribution
of S;|p,y was derived using its mode and curvature at the mode. This was used as the
proposal distribution in a MCMC scheme that within an iteration updated each s; con-
ditionally on the current value of p. Although the update of a single s; also caused an
update of p this was not enough in order to obtain a well mixing chain. The addition of
a single block update of p through a MALA update significantly improved the mixing of
the chain and gave rise to, PC-MALA, our final MCMC scheme. Our simulation stud-
ies showed that PC-MALA had a robust efficient performance across many scenarios
of parameter values and dimensions and that always performed at least as well as the
algorithm of Christensen et al. (2006). We have also provided with a simple diagnostic
that aids to define the number k of principal components that should be conditioned on
and have also shown empirically, through simulation studies, that such a choice appears
to be close to optimal irrespective of the dimension and parameter values. Under the
framework of fixed parameter values, We have provided with ways to reduce the com-
putational cost of the iterative part of the algorithm from O(d®) to O(d?) but we still
have to deal with a O(d®) cost from the spectral decomposition of the prior correlation

matrix R.

Throughout the Thesis, we have made certain assumptions in order to simplify the work-
ing setting. For instance, in reality all model parameters would be unknown and therefore
a full MCMC scheme would be used in order to draw inferences. As already discussed,

such schemes would usually alternate between updates of the model parameters given
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the latent process and updates of the latent process given the current values of the pa-
rameters. Since our focus has been placed on the development of efficient proposals for
the later we have assumed that the model parameters are fixed in our simulation studies.
Additionally, all of the MCMC schemes proposed in this Thesis can accommodate the
presence of the nugget effect. In what presented however, for ease of illustration, we have
clearly assumed that the nugget effect is equal to zero which in many cases might not
realistic. Even if the measurement process was extremely accurate so as to provide us
with zero measurement error the nugget effect would still illustrate micro-scale variation,

i.e., variation in distances finner than the minimum sampling distance.

As far as the Independence Sampler, L1, of Chapter 3 is concerned in the case of a full
MCMC scheme where all parameters get updated at each iteration, both the mean and
the variance-covariance matrix of the proposal distribution would have to be calculated.
Since the calculation of both these expressions involve the the mean of the process
and the inversion of the d-dimensional matrix [0?(FEgF* + R) + X*| the additional
computational cost will be of order O(d?). In the case of the algorithms presented in
Chapter 4 and especially the PC-RWM and PC-MALA the main computational burden
is the spectral decomposition that has to take place before the update of the components
of the latent process. In particular, in order to calculate the principal components we
have to obtain the eigenvectors and eigenvalues of the prior correlation matrix R. Since
it is the correlation matrix that we are dealing with, and not the covariance, any update
of o2 would not have any effect on it since the eigenvectors and eigenvalues of R would be
unchanged. In general, the update of parameters 8 and o2 does not have a considerable
effect on the computational cost of the algorithm. For instance, both parameters are

involved in the calculation of the bounds required for the mode of our proposal. However,
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these already have to be calculated at each iteration since they are conditional on the
principal components. They are also needed for the calculation of target in the acceptance
probability which will have to be computed either way though. It is mainly the update of
parameter ¢ that increases the computational cost of our approach through the spectral
decomposition. To overcome this issue there are two straightforward alternatives that
could be adopted. One solution would be to update ¢ only once every O(d) iterations
reducing the average computational cost of each iteration to O(d?). Alternatively, a
discrete prior for ¢ could be adopted so that for example, the prior covariance matrix,
the spectral decomposition and any associated quantities can be computed and stored in
advance. However, each of these options entails different issues that should be considered.
For instance, the former could lead to a slowly mixing chain whereas the later would
require a considerable amount of storage. If a nugget effect, 72, was also to be included
in the model the extra computational cost induced would be negligible compared to
that induced by the update of ¢ since the spectral decomposition would not have to be
conducted every time. To see this, first of all consider the, scaled, reparametrised prior
covariance matrix C = (R + vI) where v = 72/0% and assume that ¢ and v (or 72)
are updated sequentially. Suppose that we are at the i-th iteration of the algorithm and
currently have the eigenvalues and the matrix of eigenvectors of R and are denoted by
( gi), v )\g)) and L respectively. Then the eigenvectors of C' are also L but its eigenvalues
are ()\gi) +0v@ /\g) + ). Consider now that ¢ is updated to ¢(*1) so that LU+ and
(Agﬂrl) +0@ )\gﬂ) + u(i)) are obtained. If now v is updated to v(“t1) we only have to
increment the eigenvalues by vt e (Ag”l) + ) )\gﬂ) + I/(H_l)). Therefore,
the need to spectrally decompose R every time that the nugget effect gets updated is
overcome. Finally, the alternative would be to assign a joint discrete prior to (¢, v) (or

(¢, 7)) and precompute the spectral decomposition for the possible pairs of (¢,7) in
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advance.

The immediate next step would be to assess the performance of our approach in the case
of a full MCMC and for dimensions higher than d = 400. Moreover, we may have con-
strained ourselves to the case of the Poisson GLSM but the motivating ideas illustrated
in this study can be extended to any GLSM. For instance, it would be interesting to
assess the performance of the suggested algorithms in the case of the widely used logistic
GLSM where the response variable follows the binomial distribution. The algorithm L1
from Chapter 3 is already generalised for any link function therefore its implementation
would be straightforward. For the algorithm, PC-MALA the exact form of our approxi-
mation 7(7;|y;) will now be different, due to the binomial likelihood, therefore the exact
form of the mode will also differ. Hence, some further work should be carried out in order
to define bounds for the maximisation of 7(n;|y;), if possible. Moreover similar shortcuts
for the calculation of the acceptance probability could also be obtained as in the case of

the Poisson GLSM.

In the following, we discuss some additional directions of further work that should be fol-
lowed and mainly focus on the approaches of Chapter 4 and especially the PC-MALA.
We have mainly assessed our algorithms under the use of the exponential correlation
function and also the case of the Matérn with x = 1.5. Our finding was that as k in-
creases the number of principal components on wich we should condition also increases.
As discussed in the previous Chapter, we believe that this is related to the differentia-
bility of the correlation function at the origin. With increasing x the underlying process
becomes smoother and the dependence remains at very high levels for longer distances.
A first attempt to empirically study the relationship between k and k in the case of the

Matérn family with x up to Kk = 5.5 was not successful. The correlation matrix R was
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nearly singular and our derived diagnostic of Section 4.2.3, for the choice of k, could
not be reproduced due to precision instabilities. Therefore, further research should be
conducted to properly understand how the smoothness of the underlying process could
be exploited in order to define the optimal number of principal components that should
be conditioned on. Such a study could of course extend outside the Matérn family of

correlation functions.

Some preliminary investigations were conducted to assess the applicability of our di-
agnostics and the performance of PC-MALA in the case of an irregular grid where
the sampling locations were sampled uniformly in the square {1, 2, ..., \/&}2, for d =
{25,49,100}. Under the use of the exponential correlation function and the same sce-
narios of parameter values as used in the presented simulation studies our findings were
encouraging. First of all, we found that a fixed number of principal components k could
still be defined as a function of d, using the diagnostic provided in Section 4.2.3. Also,
the algorithm PC-MALA was found to perform at least as well as that of Christensen
et al. (2006) in terms of minimum ESS. Further such explorations should of course be
carried out under both different correlation functions and different sampling designs as
we expect that the distribution of the sampling locations over the grid would impact the

number of principal components that should be chosen.

From what discussed so far, there is definitely room for improvement and further work to
be carried out in order for the suggested approach of Chapter 4 to be directly applicable
under a general framework. However, we believe that the combination of the suggested
approach and the reparametrisation of by Christensen et al. (2006) can give rise to an

efficient and robust MCMC for inference in geostatistical problems.
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