Rapid assessment of annual deforestation in the Brazilian Amazon using MODIS data

Morton, Douglas C. and Defries, Ruth S. and Shimabukuro, Yosio E. and Anderson, Liana O. and Espírito-Santo, Fernando Del Bon and Hansen, Matthew and Carroll, Mark (2005) Rapid assessment of annual deforestation in the Brazilian Amazon using MODIS data. Earth Interactions, 9 (8). pp. 1-22.

[img]
Preview
PDF (ei139%2E1)
ei139_2E1.pdf - Published Version
Available under License Creative Commons Attribution.

Download (333kB)

Abstract

The Brazilian government annually assesses the extent of deforestation in the Legal Amazon for a variety of scientific and policy applications. Currently, the assessment requires the processing and storing of large volumes of Landsat satellite data. The potential for efficient, accurate, and less data-intensive assessment of annual deforestation using data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) at 250-m resolution is evaluated. Landsat-derived deforestation estimates are compared to MODIS-derived estimates for six Landsat scenes with five change-detection algorithms and a variety of input data—Surface Reflectance (MOD09), Vegetation Indices (MOD13), fraction images derived from a linear mixing model, Vegetation Cover Conversion (MOD44A), and percent tree cover from the Vegetation Continuous Fields (MOD44B) product. Several algorithms generated consistently low commission errors (positive predictive value near 90 and identified more than 80% of deforestation polygons larger than 3 ha. All methods accurately identified polygons larger than 20 ha. However, no method consistently detected a high percent of Landsat-derived deforestation area across all six scenes. Field validation in central Mato Grosso confirmed that all MODIS-derived deforestation clusters larger than three 250-m pixels were true deforestation. Application of this field-validated method to the state of Mato Grosso for 2001–04 highlighted a change in deforestation dynamics; the number of large clusters (>10 MODIS pixels) that were detected doubled, from 750 between August 2001 and August 2002 to over 1500 between August 2003 and August 2004. These analyses demonstrate that MODIS data are appropriate for rapid identification of the location of deforestation areas and trends in deforestation dynamics with greatly reduced storage and processing requirements compared to Landsat-derived assessments. However, the MODIS-based analyses evaluated in this study are not a replacement for high-resolution analyses that estimate the total area of deforestation and identify small clearings.

Item Type:
Journal Article
Journal or Publication Title:
Earth Interactions
Additional Information:
© Copyright [date of publication] American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (https://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyrights@ametsoc.org.
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1900
Subjects:
ID Code:
79212
Deposited By:
Deposited On:
25 Apr 2016 10:04
Refereed?:
Yes
Published?:
Published
Last Modified:
24 Oct 2020 04:07