
Robust Flows with Losses and Improvability in

Evacuation Planning ∗

Marc Goerigk†1 and Ismaila Abderhamane Ndiaye2

1Department of Management Science, Lancaster University, United Kingdom
2Université François-Rabelais de Tours, LI EA 6300, OC ERL CNRS 6305, Tours,

France

Abstract

We consider a network flow problem, where the outgoing flow is re-
duced by a certain percentage in each node. Given a maximum amount
of flow that can leave the source node, the aim is to find a solution that
maximizes the amount of flow which arrives at the sink.

Starting from this basic model, we include two new, additional aspects:
On the one hand, we are able to reduce the loss at some of the nodes; on
the other hand, the exact loss values are not known, but may come from
a discrete uncertainty set of exponential size.

Applications for problems of this type can be found in evacuation
planning, where one would like to improve the safety of nodes such that
the number of evacuees reaching safety is maximized.

We formulate the resulting robust flow problem with losses and im-
provability as a two-stage mixed-integer program with uncertain recourse
for finitely many scenarios, and present an iterative scenario-generation
procedure that avoids the inclusion of all scenarios from the beginning as
well as several heuristic solution methods. In a computational study using
both randomly generated instances and realistic data based on the city of
Nice, France, we compare our solution algorithms.

Keywords: network flow; flow with losses; robust optimization; adjustable
robustness; random recourse; network design

1 Introduction

Network flow with losses (and also gains) is a well-known and fruitful object of
study, see, e.g., [Old01, Rad98, Way99]. Applications can typically be found,
e.g., in telecommunication networks, electrical networks, exchange markets, ma-
chine loading, lot-sizing or the Boolean satisfiability problem.

Also the field of evacuation planning has seen rising interest in the appli-
cation of operations research models to help the decision maker assessing a

∗Partially supported within the project DSS Evac Logistic, by the Federal Ministry of
Education and Research Germany as FKZ 13N12229, and by the French National Research
Agency as ANR-11-SECU-002-01 (CSOSG 2011).
†Corresponding author. Email: m.goerigk@lancaster.ac.uk

1



critical situation, and making the right choices to potentially safe lives, see,
e.g., [OMH09, LKN11]. For general overviews, we refer to [HT01, AG06].
Also, network flows are a standard modeling technique in the field, see, e.g.,
[CFS82, Yam96, CHT88].

In this paper, we extend the concept of flows with losses to also include
improvability (i.e., the amount of loss can be reduced at a limited number of
nodes) as well as robustness (i.e., the exact amount of loss is not known exactly).
Both model extensions are motivated by applications in evacuation planning.

As an example, we consider the situation that several evacuees need to leave
an endangered region on foot (e.g., after an earthquake or a flooding strikes an
urban area). Depending on the path they choose, they face different estimated
degrees of dangerousness, which lead to the potential death of evacuees. Such
a situation can be captured as a network flow with losses, where the number of
evacuees reaching safety is to be maximized (see [NNL+14]).

From a short-term perspective, security forces can be used to reduce the
risk in the network (e.g., by extinguishing fires with the help of airplanes, or
by removing debris) during an evacuation. From a long-term perspective, the
structural safety of an endangered area can be improved (e.g., by stabilizing
buildings with a relatively high probability of collapse during an earthquake),
which will also result in a reduced risk value during an emergency.

Furthermore, as risk values are only an estimation, they are considered as
being uncertain. We present a robust optimization approach with network im-
provability to include both these points.

In the following, we present some further literature in which related aspects
are analyzed.

The basic idea of the well-known “Contraflow”-setting is to make better use
of the given infrastructure in the case of an evacuation. As an example, if a
highway has two lanes entering the endangered area, and two lanes leaving the
endangered area, it makes sense to reverse at least one of the two entering lanes
to facilitate the outgoing flow. The contraflow problem has been considered by
[XLW10, XT11] and many others. Similar to our setting, the lane reversal may
be interpreted as the distribution of improvements in the network, where the
number of such improvements is bounded. However, in our setting, improve-
ments are not on arc capacities, but on vertex safety instead.

There are several papers considering network improvement problems (such
as [SK98, KMN+98, DNW04, OZ07, DLG11, LM13, CLZ06]). However, the
problem of improving vertex safety has not been considered yet.

Regarding the field of robust optimization in general as a means to handle
optimization problems affected by uncertainty, we refer to the surveys [KY97,
ABV09, BS04, BS03, BTGN09] and [GS15]. In our setting, we follow a two-stage
adjustable robust approach (see [BTGGN04]). As the resulting optimization
problem is too large to be solved directly, we employ an iterative scenario-
generation method (see also [ACF+13, BCP14, GLMR14, ZZ13]).

Contributions and overview. In Section 2, we introduce the nominal
(i.e., non-uncertain) max flow problem with losses and improvements, which
we use to model pedestrian movements during an evacuation. This model is
extended to include uncertainty in Section 3, where we also present an iterative
solution algorithm. As already the nominal problem is NP-hard, we also consider
heuristic solution approaches in Section 4, and compare these algorithms in a
computational study in Section 5. Section 6 concludes the paper and points out

2



further research directions.

2 Flow with Losses and Improvability

2.1 Flow with Losses

Let a directed graph G = (V,A) be given. We start with considering the max-
imum flow problem, where in each vertex i ∈ V , the flow leaving node i is
multiplied with a fixed factor pi ∈ [0, 1]. Given a bound on the value of outflow
of a source, the flow with losses (FL) problem is to find the largest possible
amount of flow entering a sink. The restriction to a single sink and a single
source is without loss of generality, as multiple sources and sinks can be col-
lected to a super-source and -sink, respectively.

The problem can be easily modeled as a linear program using the variables
fij to denote the flow along arc (i, j) ∈ A. Let s ∈ V denote the source node, and
t ∈ V the sink node. We write V ′ := V \{s, t}. Furthermore, let S ∈ R+ denote
the maximum amount of flow leaving the source node, and let the capacity of
each arc (i, j) ∈ A be denoted as uij ∈ R+.

The flow with losses problem can then be formulated as:

(FL) max
∑

(i,t)∈A

fit (1)

s.t.
∑

(s,i)∈A

fsi ≤ S (2)

pj
∑

(i,j)∈A

fij =
∑

(j,q)∈A

fjq ∀j ∈ V ′ (3)

0 ≤ fij ≤ uij ∀(i, j) ∈ A (4)

The objective function (1) is to maximize the amount of flow entering the sink
t. Constraint (2) ensures that at most S evacuees leave the source s, while
Constraints (3) are a modification of the usual flow constraints, capturing the
relative loss of flow in each node. Finally, Constraints (4) ensure that arc ca-
pacities uij are respected.

In evacuation planning, the model can be used to calculate the percentage of
pedestrian evacuees that could reach safe places, starting from an endangered
region. Nodes can correspond to street crossings or important points along a
street, and arcs to streets or street sections connecting these points. Note that
this model follows a macroscopic point of view, i.e., individual or selfish behavior
of evacuees is ignored. Thus, a resulting optimal solution may be considered
as an upper bound on the actual percentage of evacuees reaching safe places,
which is only attainable if every evacuee acted according to the system optimum.
Typically, macroscopic optimization results are complemented with microscopic
simulation results to give a more realistic description of an emergency situation
(see [HHK+11]).

2.2 Flow with Losses and Improvability

We now extend the simple model FL to include possible improvements on the
vertices. We assume that along with the loss pi at every node i ∈ V ′, we are

3



also given an amount of possible improvement p̂i, where pi + p̂i ≤ 1. The
improvement of any node i has costs ci, and there is a budget B on the total
possible improvement costs. We denote the problem as FLI (flow with losses
and improvements).

To model FLI as a mathematical program, we start with the following non-
linear model:

max
∑

(i,t)∈A

fit (5)

s.t.
∑

(s,i)∈A

fsi ≤ S (6)

∑
j∈V ′

cjzj ≤ B (7)

(pj + p̂jzj)
∑

(i,j)∈A

fij =
∑

(j,q)∈A

fjq ∀j ∈ V ′ (8)

0 ≤ fij ≤ uij ∀(i, j) ∈ A (9)

zj ∈ {0, 1} ∀j ∈ V ′ (10)

As before, the objective function (5) models the number of evacuees entering
the safety node, while Constraint (6) bounds the number of evacuees leaving the
start node. We use new binary variables zi to model if node i ∈ V ′ is improved
or not. Thus, Constraint (7) is a knapsack-constraint on the spendable budget.
Finally, Constraints (8) model the loss of flow along the nodes, where the loss
factor is pi + p̂i, if i is improved, and pi otherwise.

We linearize the products zjfij to gain a mixed-integer linear program. To
this end, we introduce additional variables hj :=

∑
(i,j)∈A zjfij . The resulting

model is then the following:

(FLI) max
∑

(i,t)∈A

fit (11)

∑
(s,i)∈A

fsi ≤ S (12)

∑
j∈V ′

cjzj ≤ B (13)

hj ≤Mzj ∀j ∈ V ′ (14)

hj ≤
∑

(i,j)∈A

fij ∀j ∈ V ′ (15)

pj
∑

(i,j)∈A

fij + p̂jhj =
∑

(j,q)∈A

fjq ∀j ∈ V ′ (16)

0 ≤ fij ≤ uij ∀(i, j) ∈ A (17)

zj ∈ {0, 1} ∀j ∈ V ′ (18)

hj ≥ 0 ∀j ∈ V ′ (19)

The new Constraints (14) and (15) model that hj =
∑

(i,j)∈A fij if and only if

zj = 1. To this end, M must be a large enough constant (when solving this

4



problem, one would choose different constants Mj = min{S,
∑

(i,j)∈A uij} per

constraint).
Note that due to Constraint (13), one can easily show weak NP-completeness

of FLI by a reduction from the one-dimensional knapsack problem, where we use
one node for each item. Each node has pi = 0 and p̂i equal to the profit of that
item. Each node has also a size ci and the overall size of the knapsack is equal
to B. However, we can even show strong NP-completeness via the 3-partition
problem. A proof is given in Appendix A.

Theorem 1. The decision problem of FLI is strongly NP-complete.

3 Robust Flows

We now extend the FLI problem to include uncertainty in the loss values p. The
motivation is to better model that these values can only be estimates, and will
never reflect the actual risk on a vertex. Instead, we assume to know only an
uncertainty set U ⊆ R|V | that contains all possible realizations of p.

We have to decide where to put our improvement resources before we know
the realization of p. Then, the actual scenario becomes revealed and the evacuees
take the best possible route with respect to our improvements, and the scenario.
Following a worst-case approach, the question is: Where should we put the
improvements, so that the evacuee flow is maximal in the worst case that may
happen?

This approach follows the idea of adjustable robustness (see [BTGGN04]), by
assuming that variables z are here-and-now (i.e., need to be decided in advance),
and variables f, h are wait-and-see (i.e., can be decided later, when the scenario
is known). A similar two-stage approach can also be found in [LLMS09], where
the authors allow the first-stage solution to change once the scenario is known.

3.1 Finite Uncertainty Sets

We first consider the case of a finite set of scenarios Uf = {p1, . . . , pN}, and
write N := {1, . . . , N}. We assume that pki + p̂i ≤ 1 for all i ∈ V , k ∈ N . The
resulting robust two-stage problem can be modeled in the following way:

(RFLI) max min
k∈N

∑
(i,t)∈A

fkit (20)

∑
(s,i)∈A

fksi ≤ S ∀k ∈ N (21)

∑
j∈V ′

cjzj ≤ B (22)

hkj ≤Mzj ∀j ∈ V ′, k ∈ N (23)

hkj ≤
∑

(i,j)∈A

fkij ∀j ∈ V ′, k ∈ N (24)

pkj
∑

(i,j)∈A

fkij + p̂jh
k
j =

∑
(j,q)∈A

fkjq ∀j ∈ V ′, k ∈ N (25)

0 ≤ fkij ≤ uij ∀(i, j) ∈ A, k ∈ N (26)

5



zj ∈ {0, 1} ∀j ∈ V ′ (27)

hkj ≥ 0 ∀j ∈ V ′, k ∈ N (28)

We shall also write RFLI(Uf ) when the uncertainty set underlying this formu-
lation needs to be specified.

For every scenario k ∈ N , we introduce a new set of flows fk, hk, which
depend on the risk of the respective scenario. The minimum in the objective
function can be removed by writing

max α

α ≤
∑

(i,t)∈A

fkit ∀k ∈ N

(21–28)

instead. Note that we may consider only the variables z (i.e., the improvements)
as decision variables; then, to evaluate the objective of z, one needs to solve a
nominal FLI problem for every scenario to determine the resulting worst-case.

3.2 Bounded Uncertainty Sets

3.2.1 Model

We now extend the previous model by considering more complex uncertainty
sets. For every loss value pi, two possible outcomes {p

i
, pi} are given. However,

as it would be too pessimistic to assume that the worst-case p
i

happens at all
nodes simultaneously, we follow the spirit of [BS04] and bound the number of
vertices that may deviate from their best-case pi. We model this as the following
uncertainty set:

U = U(K) =
{
p ∈ R|V | : pi ∈ {pi, pi} ∀i ∈ V, |{i ∈ V : pi < pi}| ≤ K

}
As before, we assume pi + p̂i ≤ 1. Here, K ∈ N is a parameter that can be used
to control the degree of conservatism of a solution. For K = |V |, the uncertainty
set U becomes a Cartesian product, resulting in a large possible set of outcomes.
A resulting robust solution will have a relatively small nominal objective value,
but a high degree of robustness. For K = 0 on the other hand, the uncertainty
set U becomes a best-case singleton, meaning that uncertainty is ignored and a
nominal FLI problem needs to be solved. It is in the hands of the practitioner
to find a value for K that suits the application, and the outcomes of multiple
alternatives may be compared.

This uncertainty set is similar to the one proposed in [BS04], but only uses
its extreme points for better tractability. Other robust optimization problems
have used similar sets, see, e.g., [BKK11].

Note that one could write RFLI(U) directly as a mixed-integer program
like (20–28), as U(K) is also a finite uncertainty set with exponential size.
However, this would ignore the structure of the uncertainty set. In the following,
we consider more efficient approaches that do not require the inclusion of all
scenarios upfront.

6



3.2.2 Evaluating a solution

We first consider the following subproblem: Given a fixed choice of improve-
ments z, which scenario p ∈ U is responsible for the worst output flow? We may
model this question as an optimization problem over the losses p.

WC(z) := min f∗(p)

pi = pi + (p
i
− pi)wi + p̂izi ∀i ∈ V ′∑

i∈V ′

wi ≤ K

wi ∈ {0, 1} ∀i ∈ V ′

pi ≥ 0 ∀i ∈ V ′

We decide for each node i if it is “bad” with the help of the binary variable
wi. We would like to make a choice in a way that f∗(p) is as small as possible,
where f∗(p) denotes the optimal outflow under scenario p. This is itself simply
a flow with losses problem.

f∗(p) := max
∑

(i,t)∈A

fit (29)

∑
(s,i)∈A

fsi ≤ S (30)

pj
∑

(i,j)∈A

fij ≥
∑

(j,q)∈A

fjq ∀j ∈ V ′ (31)

0 ≤ fij ≤ uij ∀(i, j) ∈ A (32)

Note that using “≥” in Constraint (31) instead of “=“ does not change the
optimal solution of the flow with losses problem. To integrate the computation
of f∗(p) into WC(z), we dualize the problem and get:

min
∑

(i,j)∈A

uijαij + Sβ

αij + γi − pjγj + χs(i)β ≥ χt(j) ∀(i, j) ∈ A
αij ≥ 0 ∀(i, j) ∈ A
β ≥ 0

γi ≥ 0 ∀i ∈ V ′

γs = γt = 0

where

χi(j) =

{
1 if j = i

0 else

We now use this dual formulation to rewrite WC(z).

min
∑

(i,j)∈A

uijαij + Sβ

∑
i∈V ′

wi ≤ K

7



αij + γi − (pj + (p
j
− pj)wj + p̂jzj)γj + χs(i)β ≥ χt(j) ∀(i, j) ∈ A

αij ≥ 0 ∀(i, j) ∈ A
β ≥ 0

γi ≥ 0 ∀i ∈ V ′

γs = γt = 0

wi ∈ {0, 1} ∀i ∈ V ′

Due to the product wjγj , this is a non-linear program (note that z is fixed, and
the product zjγj is linear here). Substituting γ′i = wiγi yields

min
∑

(i,j)∈A

uijαij + Sβ (33)

∑
i∈V

wi ≤ K (34)

αij + γi − (pj + p̂jzj)γj + (pj − pj)γ
′
j + χs(i)β ≥ χt(j) ∀(i, j) ∈ A (35)

γ′i ≤ γi ∀i ∈ V ′ (36)

γ′i ≤Mwi ∀i ∈ V ′ (37)

αij ≥ 0 ∀(i, j) ∈ A (38)

β ≥ 0 (39)

γi, γ
′
i ≥ 0 ∀i ∈ V ′ (40)

γs = γt = 0 (41)

wi ∈ {0, 1} ∀i ∈ V ′ (42)

where M is a constant large enough (M ≥ |V | suffices).
Note that this solves the separation problem of a two-stage problem without

fixed recourse (see, e.g., [AP15], for recent general results on this topic).

4 Solution Algorithms

4.1 Scenario Generation

Using formulation (33–42) for WC(z), we can evaluate the objective value for
a choice of improvements z and also produce a scenario w where this objective
value is attained. In the following, this is used as part of a solution algorithm.

We start with any finite scenario set U0 ⊆ U , e.g., U0 = ∅ or U0 = {p}.
Solving RFLI(U0) yields some solution for the improvements z0 and an objective
value OBJ0. Solving WC(z0) determines a new scenario given by w0 and an
objective value WC0. Setting U1 := U0∪{w0} gives a new scenario set that can
be used to determine the next choice of improvements, which is then iteratively
repeated.

The algorithm stops with an improvement zk, when the objective value of
the worst-case problem WC(zk) equals the objective value of RFLI(Uk). As
each problem RFLI(Uk) for a scenario set Uk ⊆ U is a relaxation of the problem
RFLI(U), the optimal objective value of each solution zk is an upper bound
on the optimal objective value of problem RFLI(U). Therefore, optimality is
proved when the worst-case objective equals the estimated upper bound.

8



Algorithm 1 (Exact Algorithm for RFLI(U))

Require: An instance of RFLI(U).
1: k ← 0
2: U0 ← {p}
3: Solve RFLI(Uk). Let zk be the resulting solution for the improvements, and
OBJk the resulting objective value.

4: Solve WC(zk). Let pk be the resulting scenario, and WCk the resulting
objective value.

5: if OBJk = WCk then
6: return Optimal improvements zk and objective value OBJk.
7: else
8: Uk+1 ← Uk ∪ {pk}
9: k ← k + 1

10: Goto 3
11: end if

The algorithm is summarized as Algorithm 1.
Note that the values OBJk are monotonically decreasing, being the optimal

objective values to problems that have increasingly more constraints and vari-
ables. However, their actual objective values WCk are not necessarily monoton-
ically increasing. Figure 1 provides an example for a typical run of Algorithm 1.
Encircled are solutions which are better than solutions from previous iterations.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  2  4  6  8  10  12  14

O
b
je

c
ti
v
e

Iteration

OBJ
WC

Best

Figure 1: Example run of Algorithm 1. Optimality is reached when OBJk and
WCk coincide.

4.2 Artificial Scenarios

As the nominal problem FLI is already NP-hard and the robust version fur-
ther increases its computational difficulty, we now introduce heuristic solution
approaches.

Here we aim at the solution of one FLI problem with a single scenario p ∈
R|V | that “represents” the whole uncertainty set U appropriately. It is not

9



necessary that p is an actually possible scenario, i.e., p /∈ U is possible. While
this problem can be solved comparatively fast, its quality depends on how p is
determined.

We consider the following cases, setting n := |V |.

1. We set p = λp + (1 − λ)p for some constant λ ∈ [0, 1]. This includes the
best-case scenario p = p, and the worst-case scenario p = p.

2. As a special case of this convex combination, we use a value for λ that
depends on K and n. If one expects “bad” nodes to be randomly uniformly
distributed, then the expected loss is given as p = λp + (1 − λ)p with
λ = K/n.

3. Finally, assumption that “bad” nodes are uniformly distributed may be
too optimistic, given that only nodes are relevant which actually carry
some flow. Estimating that in a graph with n nodes, only

√
n nodes

have a flow which is larger than zero, we get the more pessimistic value
λ = min{1,K/

√
n}. If the graph class is known, such an estimate may be

further refined.

Any of the above approaches yield a heuristic set of improvements z. To
evaluate these solutions, a problem WC(z) still needs to be solved. For large
instances, this evaluation may take more computation time than for finding the
improvements.

4.3 Rollout and Local Search

As the artificial scenarios approach from Section 4.2 is a one-shot heuristic (i.e.,
a single solution is constructed), we discuss two ways to use such a solution
as a starting point to two different, iterative heuristic methods. Note that to
evaluate a choice of improvements z, the mixed-integer program WC(z) needs
to be solved. This creates computational difficulties for heuristic procedures
which rely on the evaluation of many solutions.

The first approach we describe is a rollout heuristic (see [BTW97] for a
general discussion of this method). The idea of this method is to use the method
from Section 4.2 as a look-ahead to fix variables heuristically. Rollout heuristics
can be seen as a simplification of branch-and-bound algorithms, where only one
branch of the tree is considered in depth.

Let us assume that the nodes j = 1, . . . , n are sorted in some order of
importance (e.g., sorted in decreasing order of improvement per cost p̂j/cj).
We begin with heuristically solving two subproblems: We fix z1 = 1, and we fix
z1 = 0, i.e., we enforce the improvement of the first node, and we enforce that
the first node must not be improved. Both subproblems are solved using the
artificial scenario approach.

We then check which solution yields the better objective value and keep the
respective variable fixing constraint on z1. We then proceed to the second node,
and so on: Having considered node j, we proceed to node j + 1 and repeat the
same process.

As there is a budget constraint on the number of improvements, we first
check if the remaining improvement budget allows both possibilities, whenever
we fix variables in this way. The rollout heuristic ends if either the complete

10



list of nodes is exhausted (which means that linearly many subproblems were
solved using the artificial scenario approach), or a timelimit is reached. The
best solution we encountered is returned.

Note that even after the first iteration, this approach is at least as good as
using the one-shot heuristic (the reason being that the one-shot heuristic does
or does not improve the first node). The rollout heuristic uses the one-shot
heuristic to explore a larger set of candidate solution using variable branching.

As a second solution approach, we consider a local search on the improve-
ments z. Using the artificial scenario approach to generate a feasible starting
solution, we compile a list of feasible neighborhood moves, where a move is to
either remove the improvement of a node and add the improvement of a differ-
ent node, or to add a new improvement without removing an already existing
improvement (in both cases, given that the budget suffices). The number of
moves is thus bounded by O(n2).

We consider the feasible neighborhood moves in random order. To evaluate
any move, a MIP needs to be solved, as described in Section 3.2.2. If the
evaluation of a move results in an improvement in the objective value, the move
is accepted, the current solution updated, and a new list of feasible neighborhood
moves is generated. This is repeated until either no improving move is found
within the list (i.e., a local optimum is reached), or the timelimit is reached.

Note that this algorithm could also be extended by meta-heuristics such as
simulated annealing or tabu search. However, as evaluating a move is com-
putationally expensive, such approaches do not seem promising based on our
experimental experience.

As noted above, both the rollout heuristic and the local search need to
evaluate several candidate solutions by solving a MIP, which may take too long
on large-sized instances for our heuristics to be efficient. Therefore, we consider
two additional, heuristic ways to evaluate a solution. The first heuristic solution
evaluation simply uses a fixed timelimit on the solution of (33–42) to ensure
that a sufficient number of solutions can be evaluated. Our second heuristic
evaluation uses a local search on the w variables to determine the objective
value of a candidate z solution. Note that this local search is different to the
local search on the z variables described above. As a neighborhood move, we
chose two variables wi = 0 and wj = 1, and set wi = 1 and wj = 0. Each move
is then evaluated by solving a flow with losses problem of type (29–32). Because
this evaluation is comparatively fast, we first sample a set of random candidate
scenarios to warmstart the search.

4.4 Affine Adjustable Counterpart

We now consider a heuristic approach to solve RFLI based on limiting the
degree of freedom for the adjustable variables f and h (as first proposed in
[BTGGN04]). If we consider f and h as functions on the scenario set, i.e.,
f : U → R|A| and h : U → R|V |, then problem RFLI does not impose any
restrictions on the form these functions may take. For the heuristic affine ad-
justable counterpart, we demand that both f and h are affine linear functions,
i.e.,

fij(p) = φij +
∑
`∈V

Φij`p` hj(p) = ηj +
∑
`∈V

Hj`p`

11



As we restrict the variables space to affine linear functions, we may not find an
optimal solution to RFLI; instead, we solve a conservative approximation.

The reason for using affine linear functions is two-fold. On the one hand, the
second-stage variables of many optimization problems show an affine linear be-
havior (see [BTGGN04]). On the other hand, and in this case more importantly,
an advantage of this approach is that the resulting model can be reformulated
to a more compact, better tractable form. As an example, we consider the
objective function

max min
p∈U

∑
(i,t)∈A

fit(p).

Substituting f as above, we consider the approximate objective function

max min
p∈U

∑
(i,t)∈A

(
φit +

∑
`∈V

Φit`p`

)

instead. Using the previously used duality technique, we rewrite this objective
as

max
∑

(i,t)∈A

(
φit +

∑
`∈V

Φit`p`

)
−Kπ0 −

∑
`∈V

ν0`∑
(i,t)∈A

Φit`(p` − p`) ≤ π
0 + ν0` ∀` ∈ V

π0, ν0 ≥ 0

with additional variables π0, ν0.
Following similar techniques for the constraints of RFLI, the affine adjustable

counterpart (AARC) of FLI is given by the following MIP:

max
∑

(i,t)∈A

(
φit +

∑
`∈V

Φit`p`

)
−Kπ0 −

∑
`∈V

ν0` (43)

∑
(i,t)∈A

Φit`(p` − p`) ≤ π
0 + ν0` ∀` ∈ V

(44)∑
(s,i)∈A

∑
`∈V

Φsi`p` +
∑

(s,i)∈A

φsi ≤ S (45)

∑
j∈V ′

cjzj ≤ B (46)

ηj +
∑
`∈V

Hj`p` ≤Mzj ∀j ∈ V ′

(47)

ηj +
∑
`∈V

Hj`p` +Kπ1
j +

∑
`∈V

ν1j` ≤
∑

(i,j)∈A

φij +
∑
`∈V

∑
(i,j)∈A

Φij`p` ∀j ∈ V

(48)

Kπ1
j + ν1j` ≥ (p` − p`)

 ∑
(i,j)∈A

Φij`

−Hj`

 ∀j, ` ∈ V

(49)

12



p
j

∑
(i,j)∈A

φij +
∑
`∈V

∑
(i,j)∈A

Φij`p
j
p` + p̂jηj +

∑
`∈V

Hj`p̂jp`

≥
∑

(j,q)∈A

φjq +
∑
`∈V

∑
(j,q)∈A

Φjq`p` + (K − 1)π2
j +

∑
`∈V

ν2j` ∀j ∈ V

(50)

π2
j + ν2j` ≥ (p` − p`)

 ∑
(i,j)∈A

Φij`

 p
j
−

 ∑
(j,q)∈A

Φjq`

+Hj`p̂j

 ∀j, ` ∈ V

(51)

pj
∑

(i,j)∈A

φij +
∑
`∈V

∑
(i,j)∈A

Φij`pjp` + p̂jηj +
∑
`∈V

Hj`p̂jp`

≥
∑

(j,q)∈A

φjq +
∑
`∈V

∑
(j,q)∈A

Φjq`p` +Kπ3
j +

∑
`∈V

ν3j` ∀j ∈ V

(52)

π3
j + ν3j` ≥ (p` − p`)

 ∑
(i,j)∈A

Φij`

 pj −

 ∑
(j,q)∈A

Φjq`

+Hj`p̂j

 ∀j, ` ∈ V

(53)

φij +
∑
`∈V

Φij`p` ≤ uij ∀(i, j) ∈ A

(54)

0 ≤ φij ∀(i, j) ∈ A
(55)

0 ≤ Φij` ∀(i, j) ∈ A, ` ∈ V
(56)

0 ≤ ηj ∀j ∈ V
(57)

0 ≤ Hj` ∀j, ` ∈ V
(58)

zj ∈ {0, 1} ∀j ∈ V ′
(59)

πi, νi ≥ 0 ∀i = 0, 1, 2, 3
(60)

The details on the derivation of AARC are shown in Appendix B.

5 Experiments

We present two sets of experiments. In the first one, we use randomly generated
grid graphs to evaluate the algorithms presented in this paper. In the second
experiment, we use realistic data based on the city of Nice, France, to compare
our heuristic approaches.

All experiments were conducted on a computer with 96GB RAM and a
16-core Intel Xeon E5-2670 processor, running at 2.60 GHz with 20MB cache,
and Ubuntu 12.04. Mixed-integer programs were solved using Cplex v. 12.6.
and C++ programs compiled with gcc v. 4.5.4. and flag -O3. For the first
experiment, one core was used per algorithm. For the second experiment, all 16

13



cores were used.

5.1 Random Instances

Instances. We created 15 sets I`, ` = 4, . . . , 18 of random instances to com-
pare our solution algorithms for the RFLI problem. Each graph is a grid of size
`× `, where evacuees start in the lower left corner and need to reach the upper
right corner. S is always equal to 100, and B is chosen uniformly randomly
from {1, . . . , `}. We set K to be either 2, 8, or 16 (controlling the degrees of
freedom of the uncertainty set). Arc capacities are generated in {1, . . . , 100},
and we generate losses p

i
∈ [0.001, 0.999], pi ∈ [p

i
, 1], and p̂i ∈ [0, 1 − pi] (in

this order). Improvement costs ci are chosen randomly from [0.5, 1.5]. For each
` = 4, . . . , 18, we generated 20 such instances (i.e., a total of 15 · 20 · 3 = 900
instances).

Setting. Every instance is solved using the iterative Algorithm 1 (which is
denoted as EX). Note that Algorithm 1 is not a branch-and-cut algorithm,
where scenarios are generated on-the-fly. Instead, problem RFLI is solved to
optimality before the worst-case problem WC is used to generate a new scenario.

So we additionally compare this exact solution approach to a lazy constraint
generation approach, where we solve a single master RFLI problem, and ad-
ditional scenarios are generated on-the-fly within the same branch-and-bound
tree. We did not implement a branch-and-cut algorithm from scratch, but used
the Cplex framework for this purpose. Using Cplex callbacks, it is possible to
add cuts during the optimization process. Whenever such a callback routine
is called, the worst-case problem WC is solved to optimality to generate the
current worst-case scenario. This solution approach is denoted as EX-L.

As two further variants of this lazy constraint method, we analyze the im-
pact of solving the scenario generation problem heuristically using the same
evaluation methods described in Section 4.3, i.e., a Cplex callback to generate
new cuts will either impose a timelimit on the WC problem, or run the same
local search algorithm on w as used for the heuristics in Section 4.3 to find a
heuristic cut. When using a timelimit on the evaluation, we refer to the result-
ing solution as EX-L-TL; when using a local search, we refer to the solution as
EX-L-LOC.

Furthermore, we determine heuristic solutions using artificial scenarios as
described in Section 4.2 with λ ∈ {0.00, 0.50, 1.00,K/n,K/

√
n}. We refer to

these solutions as W(λ). We additionally use the rollout and local search meth-
ods described in Section 4.3, and refer to these solutions as ROLL-EX (rollout
with exact evaluation), ROLL-TL (rollout with a timelimit on the evaluation),
ROLL-LOC (rollout with local search for the evaluation), and analogously for
LOC-EX, LOC-TL, LOC-LOC. The evaluation timelimit is 10 seconds for in-
stances with ` ≥ 10, and 5 seconds for smaller instances. For rollout and local
search, we use W(K/

√
n) as the underlying heuristic.

Finally, we also solve the affine adjustable robust counterpart, which is de-
noted as AFF.

We record the objective values of these algorithms using a timelimit of two
minutes each. To determine the objective value, we give another two minutes
time to solve the evaluation problem.

14



Results. We summarize our results in Tables 1–4.
The average relative objective value is compared in Tables 1–3. We normal-

ized values using the objective value of the best solution found per instance;
e.g., the value 0.73 in the bottom left corner of Table 1 means that that on
average, the best objective per instance divided by the objective value of the
solution produced with Algorithm 1 equals 73% percent. The best performance
in each row is highlighted in bold.

For K = 2, the exact, iterative approach from Algorithm 1 shows clearly the
best performance of all solution methods. Using lazy constraints performs well
for smaller instances, but is not competitive anymore for ` ≥ 13 on. A possible
reason for this behavior is the computational costliness to solve the separation
problem. The heuristics from Table 2 show better performance, with no clear
winner over the different variants. The one-shot heuristics from Table 3 show
mixed performance, with the more conservative approaches failing to produce
good results due to the small value of K. The AARC is computationally difficult
to solve and only competitive for small instances.

If we increase K, this overall picture becomes quite different. For larger
values of K, Algorithm 1 cannot perform a sufficient number of iterations within
the timelimit, and the heuristic approaches becomes more relevant. In particular
the rollout heuristic with a fixed timelimit on the evaluation time shows good
performance, and also the more conservative one-shot heuristics.

We analyze the performance of EX in more detail in Table 4, where we
present the average time spent solving the lower bound problem (33–42), the
average number how often this problem is solved, and the same for the corre-
sponding upper bound problems. In the last column, the number of instances
is shown where EX succeeded in proving optimality of the produced solution
(a value of 20 meaning that all instances of this size could be solved to proven
optimality).

These results confirm the strong connection between the size of the uncer-
tainty set, and the efficiency of EX. While for K = 2, most of the time is spent
in the upper bound problems (which become increasingly hard to solve with
every iteration), the lower bound problem consumes most of the computation
time for K = 8 and K = 16.

To summarize these findings, we found that for small values of K, the exact,
iterative approach produces high-quality solutions, which are often shown to be
optimal. For larger values of K, our heuristic approaches are the better choice;
in particular those that bound the computation time spent in solving the lower
bound problem.

Regarding computation times of the other algorithms, EX-L and EX-L-TL
usually require more time than EX, as is reflected in the resulting objective
values. Local search and rollout algorithms use as much computation time as
allowed by construction, while the W(λ) algorithms only use the full timelimit
for I18, and be generally well below it. AFF requires even more computation
time than the exact algorithms for most of the instances.

5.2 Realistic Instances

Instances. We now consider problem instances which are based on real-world
data modeling the city of Nice, France. The city is situated in a seismically active
region, and has encountered several earthquakes and tsunamis in its history.

15



K Instance EX EX-L EX-L-TL EX-L-LOC

2

I4 1.00 1.00 1.00 1.00
I5 1.00 0.99 1.00 0.99
I6 1.00 0.99 0.99 1.00
I7 1.00 1.00 0.99 0.99
I8 1.00 0.99 1.00 0.98
I9 0.99 0.99 0.98 0.98
I10 0.99 0.97 0.98 0.97
I11 0.98 0.96 0.96 0.96
I12 0.94 0.96 0.95 0.91
I13 0.94 0.78 0.88 0.75
I14 0.94 0.75 0.86 0.78
I15 0.98 0.65 0.80 0.70
I16 0.96 0.51 0.58 0.40
I17 0.93 0.29 0.55 0.33
I18 0.95 0.14 0.20 0.26

All 0.97 0.80 0.85 0.80

8

I4 1.00 1.00 1.00 1.00
I5 0.99 0.99 0.99 0.99
I6 1.00 0.99 0.99 0.98
I7 0.98 0.93 0.98 0.96
I8 0.94 0.72 0.88 0.97
I9 0.93 0.59 0.80 0.90
I10 0.87 0.54 0.67 0.82
I11 0.79 0.46 0.57 0.82
I12 0.82 0.22 0.45 0.60
I13 0.81 0.23 0.59 0.53
I14 0.77 0.27 0.56 0.59
I15 0.87 0.21 0.61 0.49
I16 0.79 0.20 0.49 0.41
I17 0.71 0.12 0.21 0.33
I18 0.84 0.15 0.27 0.22

All 0.87 0.51 0.67 0.71

16

I4 1.00 1.00 1.00 1.00
I5 1.00 1.00 1.00 1.00
I6 0.98 0.97 0.99 0.99
I7 0.98 0.88 0.87 0.93
I8 0.93 0.61 0.68 0.82
I9 0.80 0.47 0.65 0.74
I10 0.73 0.48 0.41 0.58
I11 0.67 0.40 0.27 0.52
I12 0.75 0.18 0.32 0.46
I13 0.70 0.19 0.38 0.45
I14 0.71 0.25 0.45 0.59
I15 0.74 0.18 0.37 0.44
I16 0.67 0.21 0.39 0.34
I17 0.58 0.11 0.13 0.25
I18 0.73 0.16 0.19 0.20

All 0.80 0.47 0.54 0.62

Table 1: Average normalized objective values for exact solution approaches.

16



K Instance LOC-EX LOC-TL LOC-LOC ROLL-EX ROLL-TL ROLL-LOC

2

I4 0.99 0.99 0.99 0.99 0.99 0.99
I5 0.98 0.99 0.98 0.98 0.98 0.97
I6 0.98 0.98 0.97 0.96 0.96 0.95
I7 0.92 0.95 0.90 0.92 0.92 0.90
I8 0.93 0.96 0.87 0.94 0.94 0.88
I9 0.86 0.89 0.77 0.90 0.90 0.86
I10 0.91 0.93 0.82 0.96 0.95 0.91
I11 0.90 0.92 0.86 0.94 0.95 0.92
I12 0.83 0.87 0.80 0.87 0.91 0.84
I13 0.82 0.86 0.80 0.87 0.91 0.83
I14 0.80 0.83 0.80 0.84 0.87 0.82
I15 0.80 0.82 0.78 0.82 0.84 0.81
I16 0.80 0.80 0.78 0.85 0.85 0.80
I17 0.78 0.80 0.76 0.81 0.82 0.79
I18 0.82 0.81 0.77 0.81 0.83 0.81

All 0.88 0.89 0.84 0.90 0.91 0.87

8

I4 1.00 1.00 0.99 1.00 1.00 1.00
I5 0.99 0.99 0.96 0.98 0.98 0.97
I6 0.98 0.98 0.93 0.95 0.95 0.94
I7 0.93 0.92 0.86 0.96 0.96 0.91
I8 0.85 0.85 0.79 0.90 0.93 0.89
I9 0.86 0.87 0.84 0.91 0.92 0.87
I10 0.81 0.83 0.78 0.76 0.88 0.85
I11 0.84 0.86 0.82 0.82 0.92 0.91
I12 0.79 0.79 0.74 0.71 0.87 0.86
I13 0.82 0.82 0.80 0.72 0.84 0.83
I14 0.88 0.85 0.86 0.88 0.90 0.90
I15 0.84 0.81 0.79 0.84 0.87 0.85
I16 0.81 0.79 0.77 0.81 0.87 0.81
I17 0.84 0.84 0.78 0.84 0.84 0.84
I18 0.86 0.83 0.82 0.86 0.81 0.81

All 0.87 0.87 0.84 0.86 0.90 0.88

16

I4 1.00 1.00 1.00 1.00 1.00 1.00
I5 1.00 1.00 1.00 1.00 1.00 1.00
I6 0.99 0.99 0.98 0.99 0.99 0.98
I7 0.95 0.96 0.90 0.97 0.98 0.95
I8 0.89 0.92 0.82 0.92 0.97 0.94
I9 0.91 0.92 0.85 0.96 0.98 0.91
I10 0.89 0.89 0.84 0.80 0.93 0.93
I11 0.90 0.91 0.88 0.90 0.94 0.92
I12 0.87 0.88 0.81 0.83 0.91 0.90
I13 0.88 0.85 0.84 0.88 0.90 0.89
I14 0.89 0.82 0.84 0.85 0.93 0.86
I15 0.91 0.86 0.87 0.90 0.94 0.92
I16 0.87 0.84 0.79 0.87 0.93 0.89
I17 0.90 0.84 0.79 0.90 0.93 0.91
I18 0.80 0.78 0.75 0.81 0.82 0.80

All 0.91 0.90 0.86 0.91 0.94 0.92

Table 2: Average normalized objective value for rollout and local search.

17



K Instance W(0) W(0.50) W(1.00) W(K/n) W(K/
√
n) AFF

2

I4 0.90 0.93 0.91 0.92 0.93 0.90
I5 0.90 0.89 0.88 0.89 0.90 0.87
I6 0.83 0.85 0.84 0.86 0.88 0.84
I7 0.80 0.77 0.78 0.80 0.80 0.78
I8 0.85 0.78 0.73 0.86 0.83 0.74
I9 0.81 0.79 0.77 0.80 0.76 0.71
I10 0.80 0.73 0.69 0.79 0.78 0.58
I11 0.84 0.74 0.71 0.84 0.84 0.47
I12 0.82 0.69 0.65 0.82 0.78 0.43
I13 0.84 0.64 0.59 0.83 0.80 0.35
I14 0.82 0.73 0.64 0.82 0.79 0.27
I15 0.85 0.70 0.62 0.85 0.80 0.18
I16 0.79 0.67 0.59 0.80 0.78 0.17
I17 0.79 0.73 0.62 0.78 0.77 0.11
I18 0.83 0.65 0.54 0.83 0.81 0.13

All 0.83 0.75 0.70 0.83 0.82 0.50

8

I4 0.90 0.94 0.98 0.94 0.98 0.98
I5 0.83 0.88 0.92 0.88 0.92 0.91
I6 0.76 0.87 0.90 0.80 0.90 0.89
I7 0.68 0.76 0.84 0.70 0.84 0.82
I8 0.69 0.75 0.79 0.71 0.79 0.77
I9 0.67 0.77 0.82 0.67 0.82 0.77
I10 0.71 0.77 0.80 0.69 0.80 0.64
I11 0.74 0.81 0.82 0.77 0.84 0.66
I12 0.83 0.78 0.82 0.84 0.79 0.58
I13 0.80 0.78 0.80 0.78 0.81 0.42
I14 0.75 0.86 0.80 0.72 0.88 0.27
I15 0.87 0.83 0.86 0.88 0.84 0.21
I16 0.78 0.81 0.82 0.77 0.81 0.20
I17 0.71 0.84 0.87 0.75 0.83 0.12
I18 0.84 0.84 0.80 0.82 0.86 0.15

All 0.77 0.82 0.84 0.78 0.85 0.56

16

I4 0.91 0.95 1.00 1.00 1.00 1.00
I5 0.85 0.93 1.00 0.96 1.00 0.99
I6 0.74 0.93 0.98 0.93 0.98 0.98
I7 0.63 0.82 0.91 0.76 0.91 0.91
I8 0.64 0.80 0.88 0.73 0.88 0.86
I9 0.57 0.79 0.90 0.65 0.90 0.84
I10 0.64 0.78 0.88 0.65 0.88 0.77
I11 0.65 0.81 0.90 0.70 0.90 0.75
I12 0.74 0.76 0.87 0.75 0.87 0.66
I13 0.69 0.80 0.88 0.73 0.88 0.49
I14 0.69 0.87 0.89 0.70 0.89 0.22
I15 0.75 0.82 0.90 0.76 0.91 0.18
I16 0.68 0.80 0.86 0.69 0.86 0.21
I17 0.57 0.79 0.91 0.60 0.90 0.10
I18 0.72 0.82 0.82 0.73 0.80 0.16

All 0.70 0.83 0.91 0.76 0.90 0.61

Table 3: Average normalized objective values for one-shot heuristics and the
AARC.

18



K Instance Time LB Number LB Time UB Number UB Optimal

2

I4 0.11 1.9 0.04 2.4 20
I5 0.27 2.5 0.15 3.0 20
I6 0.64 3.5 1.01 3.8 20
I7 1.45 4.0 1.95 4.3 20
I8 1.76 3.8 4.15 4.3 20
I9 2.76 4.0 20.71 4.3 19
I10 4.86 4.4 35.50 5.0 15
I11 6.44 4.2 56.48 4.9 12
I12 8.59 4.1 77.14 4.7 8
I13 11.87 3.8 87.53 4.6 5
I14 13.56 3.0 93.06 3.9 3
I15 19.26 3.1 83.18 3.8 6
I16 14.11 2.5 100.75 3.4 1
I17 16.36 2.0 103.63 3.0 0
I18 33.23 1.9 86.78 2.8 0

8

I4 0.06 2.1 0.04 2.7 20
I5 0.41 3.6 0.39 4.2 20
I6 3.65 6.2 5.61 6.8 20
I7 23.53 7.4 20.12 8.0 17
I8 58.03 6.3 34.33 6.8 9
I9 80.27 4.0 18.67 4.5 5
I10 111.34 2.8 6.14 2.9 1
I11 117.23 1.4 2.79 1.4 0
I12 116.38 1.3 3.63 1.4 0
I13 117.84 1.1 2.18 1.1 0
I14 115.56 1.1 4.46 1.1 0
I15 116.39 1.0 3.62 1.0 0
I16 113.63 1.1 6.38 1.1 0
I17 112.79 1.0 7.23 1.0 0
I18 105.37 1.0 14.64 1.0 0

16

I4 < 0.01 1.7 0.02 2.0 20
I5 0.10 2.9 0.17 3.4 20
I6 3.23 6.0 7.93 6.8 19
I7 22.63 8.9 35.75 9.6 16
I8 57.48 6.3 46.72 6.7 5
I9 93.79 4.1 17.90 4.4 3
I10 118.50 1.5 1.55 1.5 0
I11 119.28 1.2 0.77 1.2 0
I12 118.94 1.1 1.10 1.1 0
I13 117.98 1.0 2.06 1.0 0
I14 117.06 1.0 2.97 1.0 0
I15 116.41 1.0 3.61 1.0 0
I16 114.23 1.0 5.79 1.0 2
I17 112.74 1.0 7.28 1.0 0
I18 105.97 1.0 14.04 1.0 0

Table 4: Detailed results for EX.

19



Figure 2 shows the underlying graph, which is generated from OpenStreetMap
data. We used 500 nodes and 1124 edges.

To generate loss values, we used seismic simulation data from [L+14] that
simulates an earthquake with similar characteristics as the Ligure earthquake
of 1887 with a magnitude of approximately 6.9MW . Based on these simulation
results, loss values were estimated corresponding to the expected damage to
infrastructure. Figure 3 shows the level of damages considering the Ligure
earthquake scenario.

The population data come from the French National Institute for Statistics
and Economic Studies (INSEE) who estimate the population of each city includ-
ing Nice and the repartition of the population over the area. Their estimation
also takes into account foreigners during holidays.

In order to know the population impacted by the earthquake scenario, the
population repartition given for the city of Nice by INSEE in 2011 is mapped
with the Ligure damages scenario, i.e., Figure 3 in order to know the number of
persons that have to be evacuated. We consider a set of 17 starting points from
where evacuees get information about their affectation shelters and the safest
way to reach them.

The shelter locations are outside the endangered area (i.e., the area in red).
In this case study, we consider 7 of them near the living places that have to be
evacuated and each of them has a capacity.

No data regarding the costs to improve the safety of locations was available.
We therefore generated random values from [0.5, 1.5] per node corresponding to
“unit improvement costs”, e.g., 10,000 Euros. Such improvements correspond
to seismic retrofitting measures, such as the construction of stabilizing trusses
on endangered buildings.

Figure 2: Graph for Nice.

20



Figure 3: Ligure damages scenario for Nice

Setting. We consider the two scenario sets U(10) (i.e., only 2% of all nodes
may have their worst-case loss value) and the more conservative set U(50) (i.e.,
10% of nodes). We solved these instances heuristically using λ ∈ {0.00, 0.50, 1.00,
K/n,K/

√
n} for varying improvement budget B ∈ [10, 30]. To limit computa-

tion times, we imposed a timelimit of 120 seconds for each lower bound problem.

Results. We compare the heuristic objective values for K = 10 and K = 50
in Figures 4(a) and 4(b), respectively. While the more optimistic estimates
λ = 0.00 and λ = K/n outperform the others for K = 10, this is turned around
for K = 50. Overall, the value λ = K/

√
n provides a good compromise choice

for both settings. Computation times for the upper bound problems were in the
order of a few seconds, while the lower bound problems always required the full
120 seconds available.

Using computational results as presented in Figure 4, the planner is pro-
vided a helpful tool to decide two questions: Firstly, how many evacuees can be
estimated to reach shelter locations under different degrees of damage severe-
ness? Using our population data, estimates lie between ∼ 2500 and ∼ 4200
evacuees. Secondly, what is the safety gain by increasing the spending on se-
curity measures? These results indicate between 8 evacuees per improvement
unit for the heavy-damage case, and around 15 evacuees per improvement for
the light-damage case. These results may serve as indicators to better prepare
for an emergency situation.

Using the affine adjustable heuristic on these instances, no other than the
trivial zero-solution could be found within the timelimit.

21



 3800

 3850

 3900

 3950

 4000

 4050

 4100

 4150

 4200

 4250

 10  15  20  25  30

O
b
je

c
ti
v
e

B

W(0.00)
W(0.50)
W(1.00)
W(K/n)

W(K/sqrtn)

(a) K = 10

 2580

 2600

 2620

 2640

 2660

 2680

 2700

 2720

 2740

 2760

 2780

 10  15  20  25  30

O
b
je

c
ti
v
e

B

W(0.00)
W(0.50)
W(1.00)
W(K/n)

W(K/sqrtn)

(b) K = 50

Figure 4: Heuristic objective values for varying improvement budget B.

6 Conclusion

In this paper we contributed to the current literature on network flow evacuation
planning models, by introducing a new evacuation model that includes losses
along nodes, improvability, and uncertainty. As the scenario set and thus the
model is of exponential size, it cannot be solved directly using a mixed-integer
programming solver. We therefore developed an algorithm that iteratively in-
creases the problem size by finding the worst-case scenario for the current (par-
tial) solution along with several heuristic methods to construct feasible solutions
and to evaluate them.

In computational experiments we compared the performance of these solu-
tion approaches using both randomly generated and realistic instances based on
the city of Nice, France. Our results show the superior performance of heuristic
approaches for instances with large number of nodes and large uncertainty sets.
Using the models and methods presented in this paper, a planner is given a tool
to estimate the impact of a catastrophe under different spending budgets.

Acknowledgement

We thank the anonymous referees for their helpful comments that helped shap-
ing this paper.

References

[ABV09] H. Aissi, C. Bazgan, and D. Vanderpooten. Minmax and minmax
regret versions of combinatorial optimization problems: A survey.
European Journal of Operational Research, 197(2):427 – 438, 2009.

[ACF+13] A. Agra, M. Christiansen, R. Figueiredo, L. M. Hvattum, M. Poss,
and C. Requejo. The robust vehicle routing problem with time win-
dows. Computers & Operations Research, 40(3):856 – 866, 2013.

22



[AG06] N. Altay and W. G. Green III. OR/MS research in disaster op-
erations management. European Journal of Operational Research,
175(1):475 – 493, 2006.

[AP15] J. Ayoub and M. Poss. Decomposition for ad-
justable robust linear optimization subject to un-
certainty polytope, 2015. Available online under
http://www.optimization-online.org/DB HTML/2015/11/5207.html.

[BCP14] A. Billionnet, M.-C. Costa, and P.-L. Poirion. 2-stage robust MILP
with continuous recourse variables. Discrete Applied Mathematics,
170(0):21 – 32, 2014.

[BKK11] C. Büsing, A. M. C. A. Koster, and M. Kutschka. Recoverable
robust knapsacks: γ-scenarios. In Network Optimization, pages
583–588. Springer, 2011.

[BS03] D. Bertsimas and M. Sim. Robust discrete optimization and net-
work flows. Mathematical Programming Series B, 98:2003, 2003.

[BS04] D. Bertsimas and M. Sim. The price of robustness. Operations
Research, 52(1):35–53, 2004.

[BTGGN04] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Ad-
justable robust solutions of uncertain linear programs. Mathemat-
ical Programming, 99(2):351–376, 2004.

[BTGN09] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimiza-
tion. Princeton University Press, Princeton and Oxford, 2009.

[BTW97] D. P. Bertsekas, J. N. Tsitsiklis, and C. Wu. Rollout algorithms for
combinatorial optimization. Journal of Heuristics, 3(3):245–262,
1997.

[CFS82] L.G. Chalmet, R.L. Francis, and P.B. Saunders. Network models
for building evacuation. Fire Technology, 18(1):90–113, 1982.

[CHT88] W. Choi, H.W. Hamacher, and S. Tufekci. Modeling of building
evacuation problems by network flows with side constraints. Eu-
ropean Journal of Operational Research, 35(1):98 – 110, 1988.

[CLZ06] A. M. Campbell, T. J. Lowe, and L. Zhang. Upgrading arcs to min-
imize the maximum travel time in a network. Networks, 47(2):72–
80, 2006.

[DLG11] B. Dilkina, K. J. Lai, and C. P. Gomes. Upgrading shortest paths
in networks. In T. Achterberg and J. C. Beck, editors, Integration
of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems, volume 6697 of Lecture Notes in
Computer Science, pages 76–91. Springer Berlin Heidelberg, 2011.

[DNW04] I. Demgensky, H. Noltemeier, and H.-C. Wirth. Optimizing cost
flows by edge cost and capacity upgrade. Journal of Discrete Al-
gorithms, 2(4):407 – 423, 2004. The 26th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG 2000).

23



[GLMR14] V. Gabrel, M. Lacroix, C. Murat, and N. Remli. Robust loca-
tion transportation problems under uncertain demands. Discrete
Applied Mathematics, 164, Part 1(0):100 – 111, 2014.

[GS15] M. Goerigk and A. Schöbel. Algorithm engineering in robust op-
timization. LNCS State-of-the-Art Surveys Springer, 2015. To
appear.

[HHK+11] H.W. Hamacher, S. Heller, W. Klein, G. Köster, and S. Ruzika.
A sandwich approach for evacuation time bounds. In R. D. Pea-
cock, E. D. Kuligowski, and J. D. Averill, editors, Pedestrian and
Evacuation Dynamics, pages 503–513. Springer US, 2011.

[HT01] H. W. Hamacher and S. A. Tjandra. Mathematical modeling
of evacuation problems: A state of the art. In Pedestrian and
Evacuation Dynamics (Schreckenberg, M. and Sharma, S. D. eds),
1964:227–266, 2001.

[KMN+98] S. O. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, and S.S.
Ravi. Network improvement problems. Network Design: Con-
nectivity and Facilities Location, AMSDIMACS Volume Series in
Discrete Mathematics and Theoretical Computer Science, 40:247–
268, 1998.

[KY97] P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Ap-
plications. Kluwer Academic Publishers, 1997.

[L+14] A. Lemoine et al. Pligurian earthquake: Seismic and tsunami
scenario modeling, from hazard to risk assessment towards evacu-
ations planning. In Proceedings of the Second European Conference
on Earthquake Engineering and Seismology, 2014.

[LKN11] G. Lämmel, H. Klüpfel, and K. Nagel. Risk minimizing evacuation
strategies under uncertainty. In R. D. Peacock, E. D. Kuligowski,
and J. D. Averill, editors, Pedestrian and Evacuation Dynamics,
pages 287–296. Springer US, 2011.

[LLMS09] C. Liebchen, M. Lübbecke, R. H. Möhring, and S. Stiller. The
concept of recoverable robustness, linear programming recovery,
and railway applications. In R. K. Ahuja, R.H. Möhring, and
C.D. Zaroliagis, editors, Robust and online large-scale optimiza-
tion, volume 5868 of Lecture Note on Computer Science, pages
1–27. Springer, 2009.

[LM13] Y. Lin and K. Mouratidis. Best upgrade plans for large road
networks. In M. A. Nascimento, T. Sellis, R. Cheng, J. Sander,
Y. Zheng, H.-P. Kriegel, M. Renz, and C. Sengstock, editors, Ad-
vances in Spatial and Temporal Databases, volume 8098 of Lecture
Notes in Computer Science, pages 223–240. Springer Berlin Hei-
delberg, 2013.

[NNL+14] I. A. Ndiaye, E. Neron, A. Linot, N. Monmarche, and M. Goerigk.
A new model for macroscopic pedestrian evacuation planning with

24



safety and duration criteria. Transportation Research Procedia,
2(0):486 – 494, 2014. The Conference on Pedestrian and Evacua-
tion Dynamics 2014 (PED 2014), 22-24 October 2014, Delft, The
Netherlands.

[Old01] J. D. Oldham. Combinatorial approximation algorithms for gen-
eralized flow problems. Journal of Algorithms, 38(1):135 – 169,
2001.

[OMH09] S. Opasanon and E. Miller-Hooks. The safest escape problem.
Journal of the Operational Research Society, 60:1749–1758, 2009.

[OZ07] F. Ordez and J. Zhao. Robust capacity expansion of network flows.
Networks, 50(2):136–145, 2007.

[Rad98] T. Radzik. Faster algorithms for the generalized network flow
problem. Mathematics of Operations Research, 23(1):69–100, 1998.

[SK98] S. Schwarz and S.O. Krumke. On budget-constrained flow im-
provement. Information Processing Letters, 66(6):291 – 297, 1998.

[Way99] K. D. Wayne. Generalized Maximum Flow Algorithms. PhD The-
sis. Cornell University, New York, United States, 1999.

[XLW10] C. Xie, D.-Y. Lin, and S. T. Waller. A dynamic evacuation network
optimization problem with lane reversal and crossing elimination
strategies. Transportation Research Part E: Logistics and Trans-
portation Review, 46(3):295 – 316, 2010.

[XT11] C. Xie and M. A. Turnquist. Lane-based evacuation network op-
timization: An integrated lagrangian relaxation and tabu search
approach. Transportation Research Part C: Emerging Technolo-
gies, 19(1):40 – 63, 2011.

[Yam96] T. Yamada. A network flow approach to a city emergency
evacuation planning. International Journal of Systems Science,
27(10):931–936, 1996.

[ZZ13] B. Zeng and L. Zhao. Solving two-stage robust optimization prob-
lems using a column-and-constraint generation method. Opera-
tions Research Letters, 41(5):457 – 461, 2013.

A Proof of Theorem 1

Theorem 2. FLI is strongly NP-complete, even if ci = 1 for all i ∈ V ′.

Proof. Given a decision instance of FLI, it requires a polynomial number of
operations to verify each constraint in order to answer Yes or No. Therefore,
FLI is in NP.

To show NP-hardness, we consider the 3-partition problem, which is known
as strongly NP-hard: Given a (multi)set M of 3N natural numbers ai with

B/4 < ai < B/2 for all i = 1, . . . , 3N , where B := 1/N
∑3N

i=1 ai. Find a

25



partition of M into N sets M1, . . . ,MN such that the sum of numbers ai in
each set is equal to B.

Given an instance of 3-partition, we create an instance of FLI in the following
way:

There is a source node s where NB evacuees start. Additionally, there is
one node vi for each i = 1, . . . , 3N , one node v′k for each k = 1, . . . , N , nodes
v′′ik for each i = 1, . . . , 3N and k = 1, . . . , N , and one sink node t.

We have pi = 1 and p̂i = 0 for all nodes vi and v′i; and pik = 0, p̂ik = 1 for
all nodes v′′ik.

Furthermore, there are arcs from s to vi for all i = 1, . . . , 3N with capacity
ai; arcs from vi to v′′ik and from v′′ik to v′k with capacity ai for all i = 1, . . . , 3N
and k = 1, . . . , N ; and arcs from v′k to t with capacity B for all k = 1, . . . , N .
An example is presented in Figure 5.

Figure 5: FLI problem built from 3-partition instance.

The improvement costs ci are equal to 1 for all nodes, and the improvement
budget equals N . We have that there exists a 3-partition if and only if the FLI
problem has a solution with objective value NB.

To see this, let a 3-partition be given. If value ai is in set Mk, then we
improve node v′′ik, meaning the ai units of flow can go from vi to v′k. As we have
a 3-partition, there is exactly one possible path between every pair of nodes vi
and v′k, and the total inflow in the nodes v′k equals B. Thus, we have a choice
of improvements that yields a flow with value NB.

On the other hand, let an optimal solution to the FLI instance with value
NB be given. As NB units of flow start from s, there is no loss in the network.
This means that for every node vi, i = 1, . . . , 3N , there is exactly one improved
node v′′ik (as there needs to be at least one such node to prevent loss, and
the improvement budget enforces that not more than one such node can be
improved). The node improvements can thus be considered as a partitioning of
the elements a1, . . . , a3N into N sets. As each node v′k has B units of outgoing
flow, this partition is a 3-partition with equal sums.

26



B Derivation of AARC

In this section we describe the construction of problem formulation AARC from
Section 4.4 in more detail. To this end, we take the RFLI problem with uncer-
tainty set U(K) and substitute

fij(p) = φij +
∑
`∈V

Φij`p` hj(p) = ηj +
∑
`∈V

Hj`p`.

Using this parameterization of f and h, problem RFLI becomes:

max min
p∈U

∑
(i,t)∈A

(
φit +

∑
`∈V

Φit`p`

)
(61)

∑
(s,i)∈A

(
φsi +

∑
`∈V

Φsi`p`

)
≤ S ∀p ∈ U (62)

∑
j∈V ′

cjzj ≤ B (63)

ηj +
∑
`∈V

Hj`p` ≤Mzj ∀j ∈ V ′, p ∈ U (64)

ηj +
∑
`∈V

Hj`p` ≤
∑

(i,j)∈A

(
φij +

∑
`∈V

Φij`p`

)
∀j ∈ V ′, p ∈ U (65)

pj
∑

(i,j)∈A

(
φij +

∑
`∈V

Φij`p`

)
+ p̂j

(
ηj +

∑
`∈V

Hj`p`

)

≥
∑

(j,q)∈A

(
φjq +

∑
`∈V

Φjq`p`

)
∀j ∈ V ′, p ∈ U (66)

φij +
∑
`∈V

Φij`p` ≤ uij ∀(i, j) ∈ A, p ∈ U (67)

0 ≤ φij ∀(i, j) ∈ A (68)

0 ≤ Φij` ∀(i, j) ∈ A, ` ∈ V (69)

0 ≤ ηj ∀j ∈ V (70)

0 ≤ Hj` ∀j, ` ∈ V (71)

zj ∈ {0, 1} ∀j ∈ V ′ (72)

The structure of problem (61-72) is that of a strictly robust problem, i.e., there
are no more adjustable variables present. Note that the recourse matrix of
RFLI is affected by uncertainty (i.e., adjustable variables are multiplied with
uncertain parameters, see Constraint (25) and the affine adjustable version (66).
Hence, the rich theory on fixed-recourse problems (see [BTGGN04]) cannot be
applied directly.

In the following, we reformulate the constraints that hold for all p ∈ U to
compact counterparts.

Using the previously used duality technique, we rewrite the objective

max min
p∈U

∑
(i,t)∈A

(
φit +

∑
`∈V

Φit`p`

)

27



as

max
∑

(i,t)∈A

(
φit +

∑
`∈V

Φit`p`

)
−Kπ0 −

∑
`∈V

ν0`∑
(i,t)∈A

Φit`(p` − p`) ≤ π
0 + ν0` ∀` ∈ V

π0, ν0 ≥ 0

with additional variables π0, ν0.
For Constraints (62), (64) and (67), the worst-case scenario is given by p,

and no additional constraints or variables are required.
The Constraints (65)

ηj +
∑
`∈V

Hj`p` ≤
∑

(i,j)∈A

(
φij +

∑
`∈V

Φij`p`

)
∀p ∈ U

have the robust counterpart

ηj +
∑
`∈V

Hj` −
∑

(i,j)∈A

Φij`

 p` +Kπ1
j +

∑
`∈V

ν1j` ≤
∑

(i,j)∈A

φij ∀j ∈ V

Kπ1
j + ν1j` ≥

Hj` −

 ∑
(i,j)∈A

Φij`

 (p
`
− p`) ∀j, ` ∈ V

π1, ν1 ≥ 0

Finally, we consider Constraints (65), which are quadratic in the uncertainty
p:

pj
∑

(i,j)∈A

(
φij +

∑
`∈V

Φij`p`

)
+ p̂j

(
ηj +

∑
`∈V

Hj`p`

)

≥
∑

(j,q)∈A

(
φjq +

∑
`∈V

Φjq`p`

)
∀j ∈ V ′, p ∈ U

As the loss pj is either p
j

or pj , we use a case distinction to arrive at two sets

of robust constraints. For p
j
, we have the compact formulation

p
j

∑
(i,j)∈A

φij + p̂jηj

≥
∑

(j,q)∈A

φjq +
∑
`∈V

 ∑
(j,q)∈A

Φjq`

−
 ∑

(i,j)∈A

Φij`

 p
j
−Hj`p̂j

 p`

+ (K − 1)π2
j +

∑
`∈V

ν2j` ∀j ∈ V

π2
j + ν2j` ≥

 ∑
(j,q)∈A

Φjq`

−
 ∑

(i,j)∈A

Φij`

 p
j
−Hj`p̂j

 (p
`
− p`) ∀j, ` ∈ V

28



π2, ν2 ≥ 0

while for pj = pj , we use

pj
∑

(i,j)∈A

φij + p̂jηj

≥
∑

(j,q)∈A

φjq +
∑
`∈V

 ∑
(j,q)∈A

Φjq`

−
 ∑

(i,j)∈A

Φij`

 pj −Hj`p̂j

 p`

+Kπ3
j +

∑
`∈V

ν3j` ∀j ∈ V

π3
j + ν3j` ≥

 ∑
(j,q)∈A

Φjq`

−
 ∑

(i,j)∈A

Φij`

 pj −Hj`p̂j

 (p
`
− p`) ∀j, ` ∈ V

π3, ν3 ≥ 0

29


