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Correlators of circular Wilson loops from holography
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We study the correlators of two circular Wilson loops of different radii at strong coupling. In our setup
one Wilson loop is located inside the other. We use holography to calculate the connected two-point
function. Both an anti-de Sitter background and a confining background are considered. As the
computation for the confining case cannot be carried out analytically, we solve the problem numerically.
In the anti-de Sitter case, our results agree with similar holographic calculations. In the case of a confining
background, we find an asymptotic area law, in agreement with the result of the lattice strong coupling
expansion. We also elaborate on the subtle issue of the interplay between connected and disconnected

string world sheets.
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L. INTRODUCTION

Calculating correlation functions in strongly coupled
gauge theories is a notorious problem. One method for
carrying out such calculations is the lattice strong coupling
expansion. Another method makes use of gauge/gravity
dualities [1,2]. Both tools are, unfortunately, not directly
applicable to real QCD; yet they can be used for other
strongly coupled theories in order to offer guidance as to
what can be expected in a QCD-like field theory.

In this paper we study the two-point function of two
circular Wilson loops of radii a and b (a > b), located
inside each other (W, W}). The setup is depicted in Fig. 1.

The motivation for studying this particular configuration
is as follows. Consider the problem of screening vs con-
finement in SU(N,) QCD with N, massless flavors. The
natural observable to consider is a large Wilson loop. We
choose a Wilson loop of radius a > A(Sé[y It can be shown
[3] that in the large-N,. limit, with fixed Ny, the leading
contributions are given by

NAW)acp = NeWadym + NfZ<WaW(C)>YM- (D
C

Namely, in order to compute the effect of the massless
quarks in QCD, one can instead consider a two-point
function of Wilson loops in pure Yang-Mills theory. The
sum in Eq. (1) is over all sizes and shapes of Wilson
loops. It is expected that the dominant Wilson loop W(C)
will reside close to W,. For this reason we focus on the
calculation of the correlator (W, W} ).

In the framework of the lattice strong-coupling expan-
sion for pure Yang-Mills theory, the result for the
connected piece is given by the shaded area of Fig. 1,

*a.armoni @swansea.ac.uk
"m.piai @swansea.ac.uk
*ilia.teimouri @ gmail.com

1550-7998/2013 /88(6)/066008(9)

066008-1

PACS numbers: 11.25.Tq, 11.15.—q

<WaW1j>conn = eXP[_O'W(az - bz)]’ (2)

where o is the string tension. It is clear, however, that the
above result cannot hold for real Yang-Mills theory. When
a is close to b, namely, a/b = 1 + € (with € < 1), the
two-point function should be given by perturbation theory,
namely, by a one-gluon exchange. We therefore anticipate
that

<WaW;>conn ~ exXp [_S(a; b)]) (3)

with S(a, b) a function that interpolates between a
Coulombic behavior when b is close to a and an area law
when the shaded area is large.

In this paper we calculate S(a, b) by using gauge/gravity
dualities. As we shall recall in Sec. II, in the framework
of holography, S(a, b) is given by the Nambu-Goto action
[4-7] (see also Ref. [8] for examples of other studies that
make use of this prescription):

S(a, b) = Sxg.- “4)

We will consider both a conformal theory and a confining
theory. In this study, we perform all of the main calcula-
tions numerically, irrespectively of the fact that the anti-de
Sitter (AdS) case could be treated analytically [9]. The
numerical treatment of the AdS case is done making use of
the same numerical procedure as the confining case, hence

FIG. 1 (color online). Two circular Wilson loops of different
radii a > b located one inside the other.
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making the comparison between the two cases straightfor-
ward and unambiguous. Also, the fact that our numerics
reproduces the expected results in the AdS case serves as a
cross-check of the numerical procedure itself.

Our results meet the common lore about the behavior of
large-N, gauge theories at short and long distances.

The paper is organized as follows. In Sec. II we discuss
in more detail our setup and the theoretical consideration
behind the holographic calculations. In Sec. III we present
our results for the case of an AdS background. Similarly in
Sec. IV we discuss a confining background. In Sec. V we
summarize our results and critically discuss them.

II. SETUP AND THEORETICAL
CONSIDERATIONS

In order to compute the Wilson-loop correlator in a
holographic setup, we propose that the shaded area in
Fig. 1 be replaced by the proper area of an open string
that terminates on the Wilson loop, as depicted in Fig. 2.
Namely, the proposed prescription is to use the Nambu-
Goto action to calculate the connected two-point function

1

SnG. = 5 [ dza\/detaaX”agX”G,w. (5)

A closely related calculation of circular Wilson loop
correlators has been carried out in Ref. [9]. The precise
boundary conditions are that the string should terminate at
r = a and at r = b on the boundary of the space, where the
field theory lives.

Let us focus on the case of N = 4 Super Yang Mills
(SYM). The theory is dual to type IIB string theory on
AdSs X S° background.

The AdS metric (with curvature R) can be written as
follows:

R2
dsids = Z—z(dz2 +di* + drt + r2dQ%), (6)

where z is the radial direction of the AdS space, ¢ is time,
r is the radial direction in the 3-dimensional space,
dQ2% = do* + sin%0d¢?, and where we use Euclidean
signature for convenience. The UV boundary of the space,
where the field theory lives, is at z = 0. We place the string

FIG. 2 (color online). The holographic setup. The connected
correlator of two Wilson loops is given by the world sheet of an
open string that terminates on the Wilson loops themselves.
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at r = b and r = a and at a certain UV cutoff z = z,. Itis
necessary to introduce a UV cutoff due to singularities
associated with the boundary, z = 0. We parametrize
(locally) the world sheet as follows:

0 — g 6 =0, %

t=0, dt =0, (8)
b= d¢ = dT, )
7=o0, dz = do, (10)

d
dr="daz;=rdz (1)

r=r(o) = r(z), Z

For obvious symmetry reasons, the result does not depend
on the angle ¢, and hence we can integrate over it. Finally,
we arrive at

S(a, b) = Sng = VA f PRACK (ﬂf, (12)

72 dz

with VA = \/g%MN = J4mg N = ’;—f = ’f—; From now on,

we set for convenience R = a/ = A = 1, with the under-
standing that the results we obtain for S (and for the string
tension o) are always in units of JA.

Notice an important subtlety: this parametrization does
not provide a good set of global coordinates for the world
sheet of the string we are interested in, as can be easily seen
from Fig. 2. We will need two different such sets of
coordinates, which differ by the choices of boundary con-
ditions for the string. We introduce here the pair (z1g, 71r)
describing the turning point of the string in the bulk of the
geometry. A first set of coordinates will describe the string
hanging from (z = z,, r = b) and reaching to the turning
point at (z = z, r = rr). We define the turning point by
the requirement that /(zjg) = +00. A second set of coor-
dinates, locally identical, describes the string hanging from
(z = zp, r = a) and reaching down to the turning point at
(z = zr, ¥ = rr), in such a way that in this case r'(zjg) =
—oo. In this way, the two portions of the world sheet join
smoothly at (z = zjr, ¥ = rr) and together describe the
minimal surface of interest, provided the configurations
chosen minimize (locally) the classical Nambu-Goto
action. This is illustrated in Fig. 3.

One might wonder why we decided to parametrize the
action as z = o, since this needs to use two sets of coor-
dinates in order to describe the whole world sheet. One
might (incorrectly) think that it would be simpler to
parametrize the world sheet as r = o and z = z(r), hence
avoiding such a problem. The reason for this is that, as
we will see explicitly, not all the solutions for r(z) are
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FIG. 3 (color online). The (r, z) plane. The string is hung from
(r=0>,7=2z,) and (r = a, z = z,). The tip of the string is at
(r=rg, 2= zR)

monotonic, while for all the solutions, the very setup we
use ensures the presence of one (and only one) turning
point for the string in the bulk.

The total action is given by integrating the Nambu-Goto
action over the classic configuration. We need to subtract
from the action a contribution (a + b)/z, in order to be
able to take the (continuum) limit z, — O.

When a/b — 1 we expect a behavior similar to the
rectangular Wilson loop [5],

47 T
Spe = — 2 13
rec F[1/4]4 L ( )
with the replacement T —1(a + b)2w, L—a —b,
namely,

473 <a/b + 1). (14)

fimSta. b = = v \a/p =1
As we shall see, our numerical analysis agrees with
Eq. (14).

When a > b, the classical supergravity approximation
should no longer be valid [10,11] due to the Gross-Ooguri
phase transition. The two-point function should instead be
calculated by an exchange of light supergravity modes.
Thus, we expect a breakdown of our numerical calcula-
tions above a certain critical ratio a/b. The reason for this
is related to the fact that, given the two circular Wilson
loops as in Fig. 1, there exists another possible configura-
tion for the strings, with two disconnected world sheets
covering the two loops. While naively this is a discon-
nected configuration, the exchange of supergravity modes
provides a correction beyond the leading classical super-
gravity which connects the two world sheets, hence making
this second configuration of the same order as the one we
are studying in this paper. Remarkably, we will see explic-
itly this second configuration starting to emerge in the
numerics in the subsequent sections.

The first exercise we did, in which the background is
AdSs, is a warm up for the more interesting case of a
confining theory. Unfortunately, at present there is no
known example of a background which is asymptotically
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AdS and for which the geometry in the IR closes smoothly
at some value of the radial direction z; in such a way as to
describe confinement. Instead we consider the near
extremal D3-brane background, in which the AdS solution
is modified by compactifying one of the spatial directions
on a circle, along the suggestion of Ref. [12] (this is
referred to as QCD; in Ref. [2]).

In this case the dual field theory interpolates between
N =4 SYM in the UV and a confining 3-dimensional
theory in the IR. The metric is given by

ds? — Z_lz( Q2 + fR)dE2 + di* + Pd02),  (15)

with f(z) = 1 — % The IR end of space z; is interpreted as
the confinement scale of the dual 3-dimensional theory
(notice that in the case of Lorentz signature, one can
exchange, via a double-Wick rotation, this modelling of
confinement with a finite-temperature 4-dimensional field
theory, in which case z; has the interpretation of a horizon
in the AdS black hole background). Notice also that for
Zg — 00, one recovers the AdS case.

We want to study four theoretical features, by making
use of the same configuration discussed in the AdSs case,
but now in this new background: the near-conformal
behavior in the far UV, the subtraction procedure needed
to obtain finite results for the correlation functions, the
existence of a regime in which confinement manifests as an
area law for the Wilson loop, and the manifestation of the
breakdown of classical supergravity at large a/b.

The Nambu-Goto action takes now the form

Sne = fdzy\/l_il(;)4 + (j—;)z (16)

The behavior of the two-point function in the UV regime,
namely, when a/b — 1, is recovered in the case where the
strings explore only values of z < z; and is hence going to
reproduce the previous results. In particular, we will have
to perform the same subtraction on the action. For configu-
rations that probe the deep IR of the bulk geometry, we
expect to see evidence of confinement with a nonvanishing
string tension. Indeed, for a large shaded area, the string
will drop to z = z; and will stay there, as depicted in Fig. 4,
such that

7=0 r=b r=a  AdS boundary

- - UV cut—off

FIG. 4 (color online). The (r, z) plane. The confining string
“rests” in close proximity of z = z,.
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S(a,b)=SN_G_—>'[d@ﬂ——[ rdr, (17)

namely, S(a, b) — om(b*> — a = 2711'z2

see, our numerical analysis confirms this expectation,
although one has to be somewhat careful; the same tech-
nical problem emerging in the AdS case, namely, the fact
that at some point the classical supergravity approximation
breaks down, is going to appear also in this case, and hence
this result will emerge only provided we choose a and b
(as a function of z,) in such a way as to ensure that the
supergravity limit is reliable.

III. AdSs BACKGROUND

We start the presentation of our numerical results
from the AdS; case. Given the Nambu-Goto action, written
with the choice of parametrization we made, we proceed
to study the behavior of the solutions to the classical
equations

0= Q2r(2)'(2) + (2> + 1) = zr(D)r"(2), (18)

which must satisfy the boundary conditions

rzr) = 1R (19)

rl(ZIR) = *o00. (20)

The numerical strategy we follow is that we fix the AdS
background according to the conventions illustrated in
Sec. II and then scan numerically the space of all possible
turning points (zg, rr)- For each such choice, we find the
two solutions to the classical equations with r/(zjg) = *o0
and follow these two branches of the solution up to z = z,,
hence associating to the pair (zir, 7r) the values of the radii
a and b. We then plot explicitly the shape of the resulting
string. We also evaluate the contribution of such a configu-
ration to the action by replacing the classical solutions into
the Nambu-Goto action and summing over the two
branches.

We show in Fig. 5 a few examples of classical solutions.
For illustration purposes, we show a section of the whole
configuration, where we define x = rcos¢ and y =
rsin ¢, and plot the (x, z) place. Notice that for choices
in which rg is large and zj is small, the configuration has
the expected shape, similar to that obtained for rectangular
Wilson loops. However, by increasing zpr or taking smaller
values of rr, a peculiar deformation of the configuration
takes place. At first, the internal branch of the classical
solution 7(z) becomes nonmonotonic. For larger zjz the
world sheet keeps deforming, until it morphs into a shape
that is close to the second configuration described earlier
on, effectively consisting of two separate cups hanging
from the two circles at the UV boundary, connected in
the middle by a narrow throat. This can be seen in Fig. 6, a
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FIG. 5 (color online). Various solutions of the classical
equations in the AdS background in the (x, z) place. We defined
the Minkowski variable x = rcos ¢ and show here a section of
the world sheet of the strings.

three-dimensional rendering of two of the configurations in
Fig. 5.

We compute the action of such configurations and
subtract the divergence:

a+b
ZA '

S = SNG - (21)

We show the result in Fig. 7. In the figure we also show the
result of the similar calculation involving two disconnected
circular Wilson loops of radii a and b,

Sq= 2, (22)

in which we subtracted a divergent (a + b)/z, contribu-
tion, together with the approximation, valid only for
a/b =1, in Eq. (14).

Let us comment on the meaning of the figures. By
looking at the dependence of S on a/b, one sees three
interesting facts. First of all, for a/b = 1 the approximation
in Eq. (14) works very well, confirming that we are repro-
ducing the result of the rectangular Wilson loop in the
conformal case. This is not surprising; in the limit in which
a/b = 1, effectively the two circles are so close to each
other that the approximation in which they are replaced by
parallel lines is capturing correctly the main physical
effects. Notice that we checked numerically that by chang-
ing z,, after the subtraction has been performed, the results
are indeed independent of z,, at least provided z, << 10™*
is very small.

The second interesting thing is the fact that S is not a
monotonic function of a/b. It is actually not a function at
all, since it is multivalued. In particular, there exists a
maximum value allowed for a/b < 2.7, beyond which
there are no classical configurations of the type we are
interested in.

The third fact is that the function S(a/b) intersects the
result of Eq. (22) at a value of a/b somewhere in between
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FIG. 6 (color online).

Three-dimensional rendering of two of the world sheets obtained numerically in the AdS background. On the

left, a leading contribution to the connected correlation function. On the right, a configuration for which the choices of rr and zjg
make it resemble the disconnected diagram, in which the two hemispheres are connected by a narrow throat near the origin.

the value of the maximum of a/b and the choice of a/b at
which § starts to deviate visibly from Eq. (14). Not only
that, but asymptotically the numerical results converge
toward a/b — 1 and S — —2.

Let us provide a clear interpretation for these results. We
already commented on the a/b =1 case. When a/b be-
comes large, the type of configuration we are looking at is
not the dominant one. At the same order, there is a world
sheet in which the two circles support two independent

F T T T T T T I

4+

-20

L : ]
20+ : g
.

72_2"‘“1““1"“‘1““1““
10 15 20 25 3.0

35 a/b

FIG. 7 (color online). The (subtracted) Nambu-Goto action
S of a set of configurations with rig = 0.55, o’ = 1, for 0.01 <
7zir <2 and z, = 107> computed numerically as a function of
the ratio of the radii a/b (dots). By comparison, we show
also the approximation in Eq. (14) (dashed line) and the result
of the disconnected circular Wilson loops in Eq. (22)
(continuum line).

world sheets, connected in the middle by the exchange of
massless supergravity modes. Neglecting this exchange
(which is what we are effectively doing by using the
Nambu-Goto classical action), this second configuration
yields a contribution to the action given by Eq. (22). This is
the actual configuration that dominates the saddle-point
approximation for a/b very large.

The classical calculation we are performing appears to
remember this fact. Indeed, when we look at configura-
tions with a/b large, we see (in Fig. 5) that the shape of
the string starts to deform itself. Insisting on going to
larger and larger zjg yields the strange result that a/b
decreases again, as is visible both in Fig. 5 and in Fig. 7.
Not only that, but S keeps growing, becoming multival-
ued. These configurations are unphysical because they are
classically unstable. The instability has a simple origin at
the classical level: because S(a/b) is multivalued, there
exist two different classical solutions that share the same
values of a and b. The latter being the control parameters
in the dual field theory, this means that only the configu-
ration with lowest energy is actually physical, the other
one being an extremum of the action corresponding to a
local maximum.

It is clear that the second configuration, in which super-
gravity modes are exchanged, is the physical one for
a/b = 2.7, while the configuration we are computing in
this paper is the physical one for a/b =~ 1. We can estimate
the value of a/b at which the two configurations exchange
their role by looking at the intersection between S as
calculated here and in Eq. (22). It happens to be somewhere
in between the breakdown of the UV approximation and
the actual maximum of a/b. Moreover, the actual configu-
ration we are looking at ultimately degenerates into two
ordinary circular Wilson loops with @ = b. In this sense
the result of our numerics is continuously connected with
the second configuration described earlier on.

In practical terms, we have an approximation of the
complete amplitude, in which we use Eq. (22) for large
a/b and our numerical results at smaller values of a/b.
The separation is being given by the intersection of the two
lines. Similar considerations were also developed in
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Ref. [13]. The fact that by doing so we end up with a result
for S(a/b), which is not smooth, is an artifact of having
neglected the exchange of supergravity modes, which
would turn the phase transition into a crossover [9].
What is remarkable is that the classical configuration we
are looking at tries to deform itself in the second, lower-
energy one, but because this is a leading-order supergravity
calculation, and because our configuration is connected,
the best the classical dynamics can do is to approximate the
latter with the emergence of a throat in place of the
exchange of light supergravity modes. For similar configu-
rations and discussions, see also Fig. 5 in Ref. [10]. More
involved configurations were discussed in Ref. [14].

IV. NEAR EXTREMAL D3-BRANE BACKGROUND

In this section we show our numerical results for the case
in which the dual theory in the deep IR is a confining
3-dimensional field theory. For convenience, we set
Zo = 1 in the following. In this case, the bulk equation
obtained from the Nambu-Goto action reads

(z = 2)r'(2?* + r(@(z(* = Dr'(z)
+2(* = D2 ()P + 27 () +z=0. (23)

Guided by what happens in the conformal case, we find
it useful to first redo the exercise of looking at the case in
which there is only one circular Wilson loop. This can be
studied by imposing the boundary conditions

r(zir) =0, (24)

r'(zir) = +oo. (25)

We also subtract the same divergence from the action and
define

S = Sxa -2, (26)

<A

where b is the radius of the loop. The results of the
numerical study are illustrated in Fig. 8. In the figure
we show also the approximations valid for small b and
asymptotically large b. For small values of b, we recover
the S(b) = —1 result of the conformal case, while we find
the anticipated area law S(b) =~ b?/2 for b > 1, which
corresponds to o = % Notice, however, that the conver-
gence to the asymptotic behavior is somewhat slow, a fact
that one has to keep in account. What is going to be most
important is the fact that the result is a monotonic S(b),
interpolating between these two regimes.

We now turn to the configuration directly of interest in
this paper, in which two circular Wilson loops are one
inside the other, with radii @ > b, and are connected by a
minimal surface. The boundary conditions for the two
branches of the solution are the same as for the AdS
case, while the bulk equation is the same as for the case
of one circular loop in the confining background.

PHYSICAL REVIEW D 88, 066008 (2013)
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FIG. 8 (color online). The result of the single circular Wilson
loop. In the top panel, we show the shape of the configurations in
the (x, z) place. In the bottom panel, we show the subtracted
action S obtained numerically, as a function of the radius b of the
loop (squares), together with the approximation valid in the case
of AdS background (continuum line) and an approximation of
the asymptotic behavior at large-b, in which the string tension is
o = 5~ (dashed line).

The calculation of the action requires us to subtract a
divergence (a + b)/z,.

In general, the physical problem at hand is characterized
by three scales: the confinement scale z; (or equivalently
the string tension) and the radii a and b of the two loops in
the dual theory. We can identify three possibilities. When
a, b X gz, effectively the system is the same as in the
previous section, because the strings probe only a region of
the bulk geometry that is very far from the end of space. In
this case, nothing new is happening.

The second regime is the physically most interesting
one—we will refer back to it in the concluding section—
and is the one in which the two loops are both very big:
a, b> z,. In this case, for a = b we find again the
Coulombic-potential behavior

g 473 (a/b-l—]) 27)

CT[1/4F \a/b — 1

while for a/b large, one finds the area law expected in a
confining theory:
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FIG. 9 (color online). The subtracted action S in of the strings
probing the confining background, as a function of a®> — b?
(dots). The slope is the linear behavior with o = 1. The

2wk
plot has been obtained with the numerical choices zo = 1.5,
'R = 75 and N = 1076.

S=oma®—b>)+---, (28)

with o = ﬁ The result of the numerical calculation of §
interpolates between these two behaviors. We show an
example of the numerical results in Fig. 9. The plot has
been obtained by varying zjg with the choices z5 = 1.5,
rr =75, and z, = 1076,

There exists a third case, in which b < zy < a. This is
a less interesting regime, but we want to discuss it in
details, since a few curious elements emerge in this case.
We find that the connected configuration exists only up to a
minimal value of b, the specific value of which depends on
a. The disconnected configuration is dominant for small b.

In order to illustrate quantitatively these statements, we
show and discuss the results of the calculation performed
in such a way as to keep a =6 fixed, large enough
(in respect to zp) that we expect to see the confining
behavior start to emerge by varying b. At the technical
level, this is achieved by scanning over values of zz in the
bulk, and for each such value, look for a choice of rg >0
such that a = 6. By doing so, we can discuss both the
regimes a, b >> zpand a >> zo >> b. The results are shown
in Fig. 10.

Let us do so on a case-by-case basis. Starting from
strings that have a =~ b >> z; and probe only a small portion
of bulk geometry, we can see that the shape of the string is
the same as in the conformal case (top-right region of the
top panel in Fig. 10). The resulting Coulombic potential can
be seen in the bottom-right region of the second panel in the
figure and is the most important dynamical feature of
relevance to the main arguments of this paper.

We then take smaller values of b, and the system of
probes enters into the confining region. As long as b = z,
the string rests at z = zo = 1 (see again the figure, in
particular configurations where b =2 and b = 3), and
this results in the area law S « a®> — b? illustrated by the
dotted points in the lower panels of Fig. 10).
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FIG. 10 (color online). The result of the two circular Wilson
loops. Top panel shows the shape of the string in the (x, z) plane.
The middle and bottom panels are illustrating the regularized
action S as a function of the smaller radius b (circles). Notice
that all the configurations have @ = 6 and z, = 1. We also show
the result of the disconnected configuration with the same value
for a and b (squares).

We take b even smaller, below the scale of confine-
ment, and we find that the shape of the string starts to
deform itself (see the shape of the string which is closest
to the origin x = 0 in the top panel of Fig. 10). As in the
conformal case, there exists a minimum of b below
which the connected configuration does not exist.
Looking at S, at this point the branch of regular solutions
meets a second branch of classical configurations with
much higher energy, which display a different area-law
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behavior Soa?+ b?. This is the behavior one would expect
from the disconnected configuration. In the middle panel of
Fig. 10, we show explicitly that the value of S of the
configurations on the unstable branch is very close to that
of the disconnected configuration, and they practically
coincide when a and b are both large. Notice the similarity
(at the qualitative level) with what happened in the
conformal case.

Interestingly though, the disconnected configuration has
always action lower than the unstable branch of the con-
nected one. Not only that, but the disconnected configura-
tion takes over from the connected configurations just
before the minimal b for which the latter exists. One hence
finds the peculiar result that for small values of b, the
behavior of the action S changes completely and from
the § o a®> — b? behavior turns into a behavior that inter-
polates between S =« a*> + b? (the confining behavior for
the disconnected configuration) and S = oma® — 1
(the behavior expected from the disconnected configura-
tion in which one of the loops probes the confining regime
and the other the conformal regime), as we discussed in the
case of the single Wilson loop earlier in this section.

In particular S(b) does not appear to be monotonic.
Nevertheless, S(b) is finite for b — 0, grows only slightly
as long as b is small enough that the disconnected configu-
ration dominates, and then starts decreasing for larger
values of b, going first through the confining regime and
then into the Coulombic regime, where it diverges to —oo.

V. SUMMARY, CONCLUSIONS, AND OUTLOOK

In this paper we considered a numerical calculation
of a two-point function of two circular Wilson loops,
performed by making use of the gravity dual defined by
the near-extremal D3 background. We explained in detail
the interesting subtleties involved in the calculation and
illustrated graphically the final result in Fig. 10.

The first subtlety concerns the regularization and renor-
malzation of Wilson loop correlators. The outcome of our
analysis is that given a UV cutoff z, the proper subtraction
(up to scheme-dependent constants) is (a + b)/z,, where
a and b are the radii or the loop, in agreement with the
literature on related configurations in asymptotically AdS
backgrounds.

The second subtlety concerns the interplay between
connected and disconnected string configurations. As a
matter of principle, since we are interested in the connected
contribution to the Wilson loop correlator, only connected
configurations are relevant [11]. However, the situation is
more involved than this naive assertion. At the string level,
namely, beyond supergravity, there is always a connected
contribution from two world sheets that exchange light
strings. Those contributions can be approximated by
two disconnected world sheets, since the contribution
from the narrow throat is negligible. We therefore argue
that the a sensible estimate of the turnover point from the
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supergravity regime to the stringy regime is when the
classical action of the connected world sheet becomes
equal to the sum of two disconnected world sheets.

Let us now go back to the original motivation of this
study, namely, to the physical content of Eq. (1), which
lead us to compute (W,W}). We are interested in the
dynamics of a QCD-like theory, and hence we only need
the results illustrated by Fig. 10, and in particular in the
regime where the radius a >> z5. The dependence of S
from the radius b clearly shows that the dominant contri-
bution is given by circular loops with b = a: in this case S
diverges to —oo polynomially, as we saw, while S is finite
everywhere else. Hence, the summation on the right-hand
side of Eq. (1) is dominated by configurations C that lie
very close to the original Wilson loop with radius a. The
important fact to highlight here is that, despite of the fact
that in this regime (a, b >> z;)) the single circular Wilson
loops are probing the confining energy regime of the
strongly coupled theory, yet the dominant contribution to
(W,W;) comes from the connected configuration and is
given by the Coulombic potential that one would expect
from short-distance physics. In particular, the two-point
function is controlled by the perimeter of the circle a and
not by its area.

The outcome is that

NeW,)aep = Nee 7 + Ny~ #Cma) - (29)

with o the string tension, and u a dimensionful parameter,
the precise value of which is not crucial (and the calcu-
lation of which would go far beyond the purposes of this
paper). Form Eq. (29) one can see the anticipated interplay
between screening and confinement which exists also in
real-world QCD. As long as Ny = 0 (or, equivalently, in
the case of heavy quarks) the second term in the right-hand
side of Eq. (29) drops, and the theory exhibits confinement.
However, when dynamical light quarks are present, the
second term is always going to dominate at large enough
a. The dynamical quarks manage to screen the sources
by virtue of configurations where b resides close to a,
resulting in a perimeter law.

We carried out our analysis in two toy models: the AdS
background and a simplistic (lower-dimensional) confining
background. It would be interesting to generalize our
analysis to backgrounds that describe confinement in a
different geometric way, such as those related to the coni-
fold [15], in particular in the light of the radically different
UV behavior of such models. It would also be interesting to
see whether the aforementioned features persist also in the
case of the gravity duals of multiscale dynamical models
such as those in Ref. [16]. And finally, it might be interest-
ing to find an approximation, in realistic cases, for the
right-hand side of Eq. (1) to see explicitly the emergence
of Eq. (29), which requires finding a regulator for the
infinite summation over the contours C.
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