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Load Oriented Order Release (LOOR) Revisited: 

Bringing it back to the State of the Art 

 

 

Abstract 

In the Workload Control (WLC) literature, the Load Oriented Order Release (LOOR) approach has been 

neglected since its robustness was questioned at the end of the 1990s. This paper revisits LOOR and evaluates 

whether its performance can be improved in two ways. First, an intermediate pull release mechanism is added 

to avoid starvation between periodic release events. This mechanism was recently shown to be effective at 

improving the performance of a state-of-the-art release method known as LUMS COR. Second, an integer 

linear programming model is used to manage the trade-off between the timing and load balancing functions of 

order release. The two refinements are assessed using simulations of different shop configurations, which 

allow us to evaluate robustness. Results demonstrate that the refinements contribute to improving the 

performance of LOOR such that it can even outperform LUMS COR. Perhaps counter-intuitively, putting 

more emphasis on load balancing than on the urgency of individual orders is shown to lead to a lower 

percentage of tardy orders. Overall, the improvements mean that concerns about LOOR’s robustness are no 

longer valid – it now appears suitable for a wide range of shops found in practice. 

 

Keywords: Workload control (WLC); Intermediate pull release; Load balancing; Job shop; 

Simulation. 
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1. Introduction 

Workload Control (WLC) is a production planning & control concept of particular relevance to 

high-variety make-to-order shops (e.g. Stevenson et al., 2005). A key feature of WLC is the use of a 

pre-shop pool and order release mechanism. Orders are held back from the shop floor in a pool and 

released in time to meet due dates while limiting work-in-process on the shop floor. There are three 

broad sets of release methods in the WLC literature (see Land & Gaalman, 1996; Thürer et al., 2011) 

that originate from research conducted at the University of Hannover (e.g. Bechte, 1988), Lancaster 

University (e.g. Tatsiopoulos & Kingsman, 1983), and the Eindhoven University of Technology (e.g. 

Bertrand & Wortmann, 1981). Most recent attention has been on variants of the methods from 

Lancaster and Eindhoven, including the studies by Thürer et al. (2012, 2014). In contrast, the method 

developed at Hannover, known as Load Oriented Order Release (LOOR), has been largely neglected 

since its robustness was criticised. In particular, Land & Gaalman (1998) and Oosterman et al. (2000) 

questioned the effectiveness of LOOR in shops with a dominant flow direction and when combined 

with a due date oriented dispatching rule. LOOR does however have some advantages over other 

WLC release methods as it has a more advanced approach to load balancing that looks at how orders 

move through the shop over time. Yet, the procedure it applies for selecting orders for release is still 

considered to be myopic – it does not look ahead to slightly less urgent orders that would better 

balance the load (Land & Gaalman, 1996). In this respect, it does not optimise the trade-off between 

the timing and load balancing functions of order release. Optimisation is in general a neglected 

approach in the WLC literature since the seminal work of Irastorza & Deane (1974). In this study, we 

combine the two neglected areas (of LOOR and optimisation) together. We revisit and improve 

LOOR, including through the use of optimisation in the form of an integer linear programming 

model. 

 As recent research has ignored LOOR, this method – which only releases orders periodically – 

has not taken advantage of some of the latest developments in the WLC literature that have 

culminated in the LUMS COR (Lancaster University Management School Corrected Order Release) 

method presented by Thürer et al. (2012). The authors’ results for LUMS COR show that combining 

periodic with continuous order release in the form of an intermediate pull release mechanism is 
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particularly important as it avoids premature work centre idleness before the next release 

opportunity. 

LOOR has been a key release method in the WLC literature, and it has been incorporated in 

many Enterprise Resource Planning (ERP) systems (Breithaupt et al., 2002). Thus it is important to 

consider whether its performance can be improved. In light of the above, two possible search 

directions for improving the performance of LOOR are explored in this paper using simulation. First, 

we evaluate the performance effect of adding an intermediate pull release mechanism. Second, we 

evaluate a new integer linear programming model that overcomes the myopic nature of the order 

selection procedure at release, which should allow for an improved trade-off between timing and 

load balancing. We therefore start with the following two research questions: 

1. Can adding an intermediate pull release mechanism to LOOR improve its performance? 

2. Can the performance of LOOR be enhanced by improving the trade-off between the timing and 

load balancing functions of order release?  

Performance will be compared throughout the paper with both the original LOOR approach and with 

LUMS COR. 

The remainder of this paper is organised as follows. Section 2 provides the theoretical 

background to the study, including an overview of LOOR and the refinements being made to the 

approach. Section 3 then presents the experimental design before the results are presented in Section 

4. Section 5 provides an analysis of the results before a conclusion is provided in Section 6, which 

includes implications for practice and future research. 

 

2. Theoretical Background 

Section 2.1 provides a brief history of the theory behind LOOR before Section 2.2 presents a simple 

improvement to LOOR that was suggested in the literature but has not previously been evaluated. 

Section 2.3 then reviews recent developments in the WLC literature; analyses the strengths of LUMS 

COR; and proposes the first refinement to LOOR (referred to as LOOR+). Finally, Section 2.4 

analyses two basic functions of WLC release methods – timing and load balancing – before 
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proposing the second refinement to LOOR based on integer linear programming (ILOOR). We also 

combine the two refinements to form ILOOR+.  

 

2.1 Load Oriented Order Release (LOOR)  

Load Oriented Manufacturing Control was developed as an integrated production control approach at 

the University of Hannover in the 1980s and 1990s (e.g. Bechte, 1988; Wiendahl et al., 1992; Bechte, 

1994; Wiendahl, 1995). The integrated approach has three control levels: Load Oriented Order Entry, 

Load Oriented Order Release (LOOR), and shop floor dispatching. LOOR, which is our focus, is at 

the heart of Load Oriented Manufacturing Control and regulates the release of orders to the shop 

floor.  

LOOR is arguably more straightforward than other load-based order release methods in that it 

focuses on controlling the direct load – measured by the sum of processing times – that is available 

for processing at each work centre. Orders are released at regular, periodic intervals, referred to as 

the release period (Oosterman et al., 2000). At each release event (or periodic interval), a rough 

estimation is made of the input that can be expected at a work centre from work that is: (i) newly 

released; and, (ii) currently still upstream. Land & Gaalman (1996) showed how norm setting for 

LOOR is based on a balance equation – see Equation (1) below – that holds for each release period 

and each work centre w. 

 w
E
ww

B
w ODID +=+  (1) 

with B
wD : the direct load of w at the beginning of the release period, after the release decision 

 wI : the input to the direct load of w during the release period 

 E
wD : the direct load of w at the end of the release period, before the next release decision 

 wO :  the output of w during the release period. 

A target workload norm level wλ  is specified for the right-hand side of Equation (1), which consists 

of two components: (i) a desired remaining direct load buffer before the next release decision, 

specified by the direct load norm wδ ,; and, (ii) the planned output level, specified as ww . The 
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periodic release decision should then bring the left-hand side of Equation (1), i.e. the direct load B
wD  

plus the input wI  towards the norm level wλ . A load conversion algorithm is used in LOOR to make 

a rough estimate of the inputs based on the assumption that a fraction ww / wλ will, on average, proceed 

to the next work centre during the release period (Breithaupt et al., 2002). As such, for every order j 

that will be released or that is still upstream of work centre w, a contribution wjx to the estimated 

inputs is specified by Equation (2a). 

 ∏
∈

=
wjUi i

i
wjwj px

λ
w  for all w to be visited after the next operation of order j (2a) 

with wjp : the processing time of order j at work centre w 

 wjU : the set of upstream work centres that order j has to pass before arriving at w 

If w is the imminent work centre in the routing of the order, the contribution relates to the direct load 

B
wD . In that case, the contribution wjx to the load is equal to its full operation processing time wjp , as 

given by Equation (2b). 

 wjwj px =  for the imminent work centre w in the routing of order j (2b) 

 

The release procedure considers the orders j for release in sequence according to the earliest 

planned release date R
jτ . All orders with a planned release date that falls within a specified time limit 

ϑ are candidates for release. An order is only released if its contributions wjx will not cause B
wD  plus 

the estimated value of the future inputs wI  to exceed the workload norm wλ  of any work centre w in 

its routing. Otherwise, it has to wait in the order pool until at least the next release decision and the 

order with the next planned release date will be considered. Although the LOOR approach originally 

allowed one order to be released that would take a norm above its maximum level – otherwise a 

norm may never be completely filled – this has since been shown to be detrimental to performance 

(Oosterman et al., 2000). The planned release date R
jτ  of an order j is determined according to 
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Equation (3) by backward scheduling from its due date *
jτ , allowing for a planned lead time wγ for 

each work centre w in the routing jR  of the order.  

 ∑
∈

−=
jRw

wj
R
j γττ *  (3) 

 

Using the time limit ϑ would restrict the set of orders that can be selected for release, reducing the 

potential for load balancing. Therefore, Land (2006) proposed the use of an infinite time limit unless 

there are specific circumstances that prohibit this, e.g. high early completion costs. 

After release, order progress on the shop floor is controlled by a priority dispatching rule. Bechte 

(1988) suggested combining LOOR with a simple first-come-first-served (FCFS) rule. But it was 

acknowledged that under certain conditions, like machine breakdowns or rush orders, due date 

oriented dispatching rules can also be applied. Land (2004) however found that even due date 

oriented dispatching rules will lead to the best performance of LOOR being at infinite workload 

norms – which is undesirable from the perspective of workload control – while recent empirical 

evidence calls for the use of more powerful priority dispatching rules than FCFS in practice (e.g. 

Soepenberg et al., 2012). Thürer et al. (2012) showed that other improved release methods can 

achieve their best performance with restricted workloads, including when combined with the PST 

(Planned operation Start Time) dispatching rule. In this paper, we will therefore examine the 

performance of LOOR and its variants with the PST rule to see if it too can achieve its best 

performance at lower (restricted) workload levels. 

 

2.2 Ensuring Robustness using a Look-Ahead Limit in Load Calculations 

Simulation results have shown that LOOR performs particularly well in a job shop environment (e.g. 

Land & Gaalman, 1998; Cigolini & Portioli-Staudacher, 2002). But when the flow is directed, such 

as in the general or pure flow shop, Oosterman et al. (2000) found that LOOR is outperformed by 

aggregate load methods and concluded that this was because focusing on the direct load can create 

undesirable (cyclic) effects when a shop has typical upstream and downstream work centres. 

Breithaupt et al. (2002) later suggested these effects can be avoided in practice by only including the 
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next four routing steps in LOOR’s load calculations, i.e. Equation (2a). However, the influence on 

robustness of limiting how far LOOR looks ahead (a look-ahead limit) has not been evaluated. This 

study will be the first to incorporate and evaluate this simple solution in a simulation study (for 

LOOR and the refined versions of LOOR we present below). 

 

2.3 Improving LOOR via Intermediate Pull Release (LOOR+) 

One of the dimensions used by Bergamaschi et al. (1997) to classify WLC order release methods was 

according to when the release decision takes place: periodically or continuously. Periodic release 

methods, including LOOR, release orders at fixed, regular intervals. Meanwhile, continuous release 

methods lead to releases occurring at any time, usually triggered by an event like the workload 

falling to a certain level. Periodic release methods have received much more research attention than 

continuous release methods and are more straightforward to implement in practice. For example, 

they do not rely on a continuous flow of information on order progress back from the shop floor 

(Bergamaschi et al., 1997; Thürer et al., 2012). But periodic release methods can result in premature 

idleness or starvation (Land & Gaalman, 1998); and simulations have found that some continuous 

release methods can outperform pure periodic release methods (Thürer et al., 2012).  

LUMS COR uniquely combines periodic with continuous release. It uses the corrected aggregate 

load approach (e.g. Oosterman et al., 2000) for periodic releases and a lower workload bound to pull 

orders onto the shop in-between periodic release decisions if a work centre is starving. More 

specifically, if there are no orders currently queuing or being processed at a work centre then all 

remaining orders in the pre-shop pool with this work centre as the first in their routing are considered 

for release. From this set, the order with the earliest planned release date is selected for release 

regardless of its load contribution. Although the periodic selection procedure is similar to the 

procedure of LOOR, load calculations in LUMS COR differ from those in LOOR. If w is the v-th 

work centre in the routing of order j, then the contribution wjx of j to the load of w under LUMS 

COR is given by Equation (4). 

v
p

x wj
wj =   (4) 
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This contribution will remain the same from the release of the order until the operation at work 

centre w has been completed, while the load contributions in LOOR change as an order moves 

through the shop towards work centre w.  

The performance results for LUMS COR presented in Thürer et al. (2012) showed that 

combining periodic release with an intermediate (continuous) pull release mechanism can lead to 

substantial performance improvements as it can avoid premature idleness in the context of a 

(corrected) aggregate load order release method. The intermediate pull release mechanism has been 

shown to be effective not only in balanced but also in unbalanced shops (Fernandes et al., 2014).This 

mechanism may also enhance the performance of LOOR. Thus, the first way that we will attempt to 

improve LOOR is by including the same intermediate pull release mechanism – this approach is 

referred to as LOOR+. 

 

2.4 Improving LOOR via Load Balancing using Integer Linear Programming Model (ILOOR) 

 

2.4.1 Background: The Trade-off between Timing and Load Balancing 

Land (2004) argued that WLC release methods should serve two functions: (i) to balance the 

workload by maintaining a constant direct load level at each work centre; and, (ii) to allow for timely 

release such that each order can meet its due date and expected flow time. On the one hand, load 

balancing may support the timing function – as it can reduce lead time variation, which means that 

the planned release dates of orders can be determined more accurately. On the other hand, the two 

functions can conflict, e.g. if non-urgent jobs that balance the load are selected ahead of more urgent 

jobs that do not balance the load (and have to wait in the pool). Below, we will seek to improve the 

order release selection procedure of LOOR while bearing in mind these two, potentially conflicting 

functions. Analytical research by Wein (1990) and Wein & Chevalier (1992) underlined the 

importance of giving careful consideration to these two functions of order release and advised, for 

example, that order release should give priority to improving load balancing when there are only 

small differences between the urgency of jobs in the pool. However, the current LOOR procedure 
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considers orders according to their urgency based on planned release dates; it does not consider how 

the degree of urgency differs between jobs. 

 

2.4.2 Improving LOOR’s Order Release Selection Procedure 

LOOR’s timing function depends principally on selecting orders for release in planned release date 

sequence, while its load balancing function depends on filling up the workload norms in this fixed 

sequence. Once an order fits within the norms, its release is not re-evaluated. This can be considered 

a greedy algorithm. As a result, the workload of some work centres could be far below their norm 

level because another work centre’s workload has reached its limit, even though the planned release 

dates of selected orders may hardly differ from those of some non-selected orders. As an example, 

Figure 1a shows the workload of 3 work centres (A, B, and C); and Figure 1b the workload 

contributions of 3 orders (1, 2, and 3) in the pool. Assume that Order 1’s planned release date is 

slightly earlier than that of orders 2 and 3. According to LOOR’s release procedure, Order 1 should 

be considered for release first; and since no norms are exceeded, it is released and its workload 

contributes to the relevant work centres. Work Centre A then refuses to accept any further orders. 

Therefore, orders 2 and 3 cannot be released as they both contribute to Work Centre A. Consequently, 

work centres B and C are left far below their norm level (Figure 1c) and two orders are delayed. 

Figure 1d shows an alternative where orders 2 and 3 are released and Order 1 is retained in the pool. 

A better overall workload balance is achieved and only one order is delayed, but this solution would 

not be found using LOOR’s current procedure. This is exactly why the procedure was considered 

myopic by Land & Gaalman (1996). 
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Figure 1: Example Workload Implications of Selecting Different Orders for Release 

   

  From the above, it follows that there are opportunities to improve the order release procedure of 

LOOR and improve the trade-off decision between load balancing and timing. It is argued that the 

order selection procedure should consider the timing and load balancing functions simultaneously. 

One feasible way of achieving this is using an integer linear programming model to select orders. 

Irastorza & Deane (1974) introduced the use of linear programming to the order release literature, 

but the approach has received little attention since their contribution. Lödding (2013) recently 

suggested this may have been because linear programming models were difficult to solve with the 

computational power of the 1970s – clearly this is no longer the case. 

  Irastorza & Deane (1974) approached order release as an order selection problem where the 

objective function contained two parts: one to control deviations between the total planned and actual 

A      B       C A      B       C 
(b) Workload contribution of 

orders in the pool 

Order 2 

Order 3 

Workload norm level 

(a) Workload of work centres 

Order 1 

A      B       C A      B       C 
(c) Workload of work centres if 

order 1 is released 
(d) Workload of work centres if 

orders 2 and 3 are released 

Workload norm level Workload norm level 
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work-in-process on the shop floor, which represents the load balancing function; and the other to 

control the early release of orders, which represents the timing function. We will adopt a similar 

approach to Irastorza & Deane (1974) – but designed for the specific control target of LOOR – as 

described below (see Subsection 2.4.3). 

 

2.4.3 The Integer Linear Programming Model (used in ILOOR and ILOOR+) 

We will use a simple integer linear programming model to solve LOOR’s order selection problem; 

the model is given by equations (5) and (6) below.   

( ) ∑∑
==

− 







+











⋅
=

W

w w

w
n

j
jS

j

Ly
s

z
j

11 95.01.0,max
1max

λ
a  (5) 

s.t.  wwL λ≤  Ww ..1:=∀  (6) 

The notation used in the model is as follows: 

j : index of the orders considered for release j:=1..J 

i : index of the orders on the shop floor i:=1..I 

w : index of the work centres w:=1..W 

js  : slack of order j at time t of the release decision, i.e. ts R
jj −=τ:  

jy : decision variable indicating whether order j is selected for release )1( =jy or not )0( =jy   

wL  : load resulting after the release decision, i.e. ∑∑ +=
J

j
wjj

I

i
wiw xyxL : , 

 with x-values calculated by load conversion, as specified in Equations (2a) and (2b)  

wλ  : the workload norm level (see Section 2.1) 

α  : relative weight given to the load balancing function 

 

The first part of the objective function in Equation (5) represents the timing function, which 

gives priority to orders based on slack sj with respect to the planned release date R
jτ . To give priority 

to orders with small slack values, orders are selected to maximize the sum of 1/sj values. The 
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max-function is inserted to handle slacks approaching zero and negative slacks. It creates priorities 

that continue to increase moderately when the slack finally goes down to zero and becomes negative. 

This function has been adapted from Shafaei & Brunn (2000) and its parameters have been pre-tested 

to ensure that it results in the desired slack-based behaviour. The second part of the objective 

function helps to balance the load. The closer the calculated workload wL is to its norm level wλ the 

higher its contribution to the maximization objective. This balancing part of the model is weighted 

by a factor a compared to the timing part. In Section 5.1, we will explore how the value of α 

impacts performance, thereby providing an insight into how α should be set. The constraints in the 

model are given by Equation (6) and ensure that the workloads of work centres do not exceed their 

norm levels. 

 Solving the above model will generate the set of orders for release. This model can replace 

LOOR’s original order selection procedure – and it becomes the second way in which we will 

attempt to improve LOOR, referred to as ILOOR (integer linear programming model based LOOR). 

We will also combine the two improvement approaches, i.e. intermediate (continuous) pull release 

and integer linear programming, to create ILOOR+. The simulation model used to evaluate the 

refinements is outlined next in Section 3 before the results are presented in Section 4. 

 

3. Simulation Model 

3.1 Shop and Job Characteristics 

A simulation model has been developed using Arena 8.0. The model represents a shop with six work 

centres, where each is a single and unique capacity resource. Capacity is equal for all work centres 

and remains constant. Two shop configurations have been modelled: the pure job shop of Melnyk et 

al. (1989) and the general flow shop of Oosterman et al. (2000). Under both configurations, an order 

does not visit the same work centre twice and all work centres have an equal probability of being 

visited. Hence, the maximum number of operations per order is 6. Each operation requires one 

specific work centre and both routing and operation processing time characteristics are known upon 

order entry. The routing length is determined by drawing from a discrete uniform distribution [1, 6]. 

The routing sequence is completely random in the pure job shop. In the general flow shop, the set of 
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work centres is random but the sequence is in order of increasing work centre index (i.e. from 1 

through to 6). 

To aid comparison, order characteristics are as in Thürer et al. (2012). Thus, processing times 

wjp follow a truncated 2-Erlang distribution with a non-truncated mean of 1 time unit and a 

maximum of 4 time units for every work centre w. Orders arrive according to a Poisson process, with 

the arrival rate such that the utilisation level is 90%. To set order due dates *
jτ , a random allowance 

uniformly distributed between 0 and 30, and a minimum value covering a minimum shop floor 

throughput time, are added to the order entry time. The minimum value corresponds to the maximum 

processing time (4 time units) for the maximum number of possible operations (6) plus another 4 

time units to allow for some waiting time. 

 

3.2 Order Release Methods 

Six release methods are simulated: LOOR, the three refined variants of LOOR (i.e. LOOR+, ILOOR, 

ILOOR+), and two reference methods (LUMS COR and immediate release, IMM where no order 

release control is applied). The procedures and calculations for LOOR, its variants and LUMS COR 

are implemented as specified in Section 2. Under IMM, orders are released as soon as they arrive at 

the shop. 

To aid comparison, the same parameters are used for LOOR and each of its variants wherever 

possible. As in Land (2006), the release period is set to 5 days and, based on the arguments presented 

in Section 2.1, an infinite time limit ϑ is used, which means that all orders in the pool are considered 

for release. A planned work centre lead time γ of 4 days is used in all experiments, which is 

consistent with the average realised work centre lead time across the most relevant range of workload 

norm levels considered (see Section 3.4 below). As suggested in Land (2006), we use a constant 

planned lead time γ when calculating planned release dates R
jτ  (see Equation (3)) as performance is 

not very sensitive to this parameter. As in previous LOOR studies (e.g. Bechte, 1988; Oosterman et 

al., 2000), orders in the pool are sequenced according to their planned release dates. 



17 
 

Instead of applying a load-oriented order selection procedure, ILOOR and ILOOR+ release 

orders according to the solution proposed by the integer linear programming model. The model is 

solved at each periodic release event using CPLEX software embedded in the simulation model. The 

relative weight of α in the objective function of the model is 1,000 in the main experiments described 

in Section 4. Later, in Section 5.1, we will evaluate the sensitivity of performance to the value of α. 

 

3.3 Shop Floor Dispatching Rules 

Dispatching follows the PST (Planned operation Start Time) rule, as used in recent WLC studies, 

including Thürer et al. (2012). The planned start time S
wjτ of the operation performed by work centre 

w is given by Equation (7). wjR is the set of remaining operations when order j has arrived at work 

centre w, and k is an allowance for the waiting time per operation; all other variables were defined in 

Section 2.1. 

 

( )∑
∈

+−=
wjRi

ijj
S
wj kp*ττ  (7) 

These PST calculations reflect backward scheduling from the order due date and allow for both the 

processing time and a waiting time k at each remaining operation. The waiting time allowance k is 

set to 2 time units, as in Thürer et al. (2012). All experiments were also conducted with 

First-Come-First-Served (FCFS) dispatching, as used in many early studies on WLC. As the choice 

of dispatching rule between PST and FCFS did not affect the relative differences between the release 

methods, and the use of FCFS generally weakened performance overall, only the results with PST 

dispatching are presented. 

 

3.4 Experimental Design and Performance Measures 

We compare the order release methods at eight different levels of norm tightness. As LOOR and its 

variants use different workload aggregations to LUMS COR, we use the average shop floor 

throughput time as an intermediate variable to compare the release methods at different tightness 

levels, as in Oosterman et al. (2000), Land (2004), and Thürer et al. (2012). For LOOR and its 
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variants, we use the following 8 direct load norm levels, wδ := 2.5, 3, 4, 5, 6, 8, 10 and 20 time units. 

The planned output component ww  of the workload norm is 4.5 in all experiments based on a 90% 

utilisation level and a release period of 5 time units. For LUMS COR, we set the following 8 

workload norm levels: 4, 5, 6, 7, 8.5, 10.5, 12.5, and 24.5 time units. As shown by equations (2) and 

(4) above, load calculations differ between LOOR and LUMS COR. But these norm levels generate 

roughly similar flow times on the shop floor, which aids comparison. To facilitate full comparability, 

norm tightness will be indicated by the mean realised flow time of orders, i.e. the mean time that 

orders spend on the shop floor after release. Hence, we will refer to equal norm tightness when two 

methods result in the same mean flow time. The key performance measures, as listed below, will be 

shown graphically (set against the mean flow time): 

• The mean lead time, which sums the time in the order pool waiting for release and the flow time; 

• The standard deviation of lateness; and,  

• The percentage of orders delivered tardy.  

An improved focus on load balancing will be reflected in a decreasing mean lead time, as better 

balancing speeds up orders on average. An improved focus on the timing function of order release 

will normally be reflected in a lower standard deviation of lateness. Finally, improving the trade-off 

between balancing and timing – combining a short mean lead time and a small standard deviation of 

lateness – should reduce the percentage of orders that are delivered tardy. 

Each experiment consists of 50 runs and results are collected over 10,000 time units during each 

run. The warm-up period is set to 3,000 time units to avoid start-up effects. These parameters are in 

line with previous studies that applied similar job shop and general flow shop models (e.g. 

Oosterman et al., 2000; Land, 2004, 2006; Thürer et al., 2012). Further, to reduce variance, we have 

used the common random numbers technique. To comply with variance reduction, significance can 

be proven based on a paired t-test whenever we present differences between two experiments. 
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4. Results 

The main simulation results are presented in the following three subsections. First, the effect of 

adding an intermediate pull release mechanism is evaluated in Section 4.1. The use of an integer 

linear programming approach to adjust the weight given to load balancing and timing within the 

order release selection procedure is then assessed in Section 4.2. Finally, we evaluate the 

performance of the two refinements combined in Section 4.3.  

 

4.1 Adding an Intermediate Pull Release Mechanism: LOOR+   

The results for LOOR, LOOR+, LUMS COR and IMM in the pure job shop and general flow shop 

are illustrated in Figure 2. Figure 2a shows the lead time performance of each release method plotted 

against the mean flow time. A curve is constructed for each release method except IMM, which is 

represented by a single point. Each point on a curve is the result of simulating a release method at a 

specific norm level; hence, each curve contains 8 points. From Figure 2a, we can see that the curves 

for LOOR+ and LUMS COR almost converge at the furthest right-hand point as the two approaches 

will perform similarly if release is not restricted by a workload norm. At the highest workload norm 

level, LOOR is located to the upper right of LOOR+. This is because the intermediate pull release 

element in LOOR+ means orders do not have to wait until the next release period for release to an 

idle work centre. In contrast, the purely periodic nature of LOOR restricts its performance. As the 

norms get tighter, i.e. moving from right to left along the curves, the mean lead time of LOOR 

increases, which is a major drawback of LOOR that has previously been highlighted in the literature. 

For LOOR+ and LUMS COR, the mean lead time first decreases and then increases, which shows 

this drawback can in fact be overcome. These two curves are close to one another, and they are 

located far below the curve for LOOR. Both are superior to LOOR in terms of mean lead time 

performance, but LUMS COR performs slightly better than LOOR+. The single result for IMM is 

located to the lower right of LOOR and to the upper right of both LOOR+ and LUMS COR. This 

demonstrates that LOOR reduces the flow time on the shop floor compared to IMM but at the cost of 

an increase in the mean lead time. In contrast, LOOR+ and LUMS COR reduce the flow time and 

lead time simultaneously when compared to IMM. 
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Figure 2: Simulation Results for LOOR+ vs. LOOR, LUMS COR and IMM  

(a) Lead Time Performance in the Pure Job Shop (d) Lead Time Performance in the General Flow Shop 

(b) σ of Lateness Performance in the Pure Job Shop (e) σ of Lateness Performance in the General Flow Shop 

(c) Percentage Tardy Performance in the Pure Job Shop (f) Percentage Tardy Performance in the General Flow Shop 
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While a shorter mean lead time indicates that LOOR+ and LUMS COR improve load balancing, 

or more specifically avoid premature idleness (Thürer et al., 2012), the standard deviation of lateness 

results in Figure 2b will indicate whether this has been achieved at the expense of the performance of 

the timing function. Figure 2b shows that, in general, timing worsens as the norms are tightened, i.e. 

when we move to markers at the left-hand side of the curves. However, LOOR+ and LUMS COR 

show improved timing when compared to LOOR at tight norm levels. 

Figure 2c presents the final consequences for delivery performance in terms of the percentage 

tardy. The relative positioning of the curves is the same as in Figure 2a; hence, LUMS COR 

performs slightly better than LOOR+ in terms of the percentage tardy, but both perform better than 

LOOR. The LOOR curve continues to slope downwards while the curves for LOOR+ and LUMS 

COR achieve a minimum percentage tardy before the highest workload norm level is reached. All 

three methods outperform IMM on delivery performance. 

Finally, performance in the general flow shop is depicted in Figures 2d-f. The LOOR curves 

have the same shapes as in the pure job shop (Figures 2a-c). In earlier studies (e.g. Oosterman et al., 

2000), the performance of LOOR deteriorated much more in the general flow shop – and this 

difference in performance confirms that using the adaptation proposed by Breithaupt et al. (2002), 

whereby the load calculation only considers the next 4 operations, is effective. Compared to the pure 

job shop results, the standard deviation of lateness (Figure 2e) across the three methods is more equal. 

The relative positioning of the LOOR+ curves for the lead time (Figure 2d) and the percentage tardy 

(Figure 2f) are comparable to those in the pure job shop, suggesting that these results are robust to a 

change in shop configuration.  

Overall, we can conclude that adding an intermediate pull release element leads to an 

improvement in the performance of LOOR. 

 

4.2 Integer Linear Programming to Improve the Timing/Load Balancing Trade-off: ILOOR  

The results for LOOR, ILOOR, LUMS COR and IMM in the pure job shop and general flow shop 

are illustrated in Figure 3. Figure 3a presents the lead time performance in the pure job shop. Here, 
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the ILOOR curve lies below the LOOR curve but above the LUMS COR curve, which shows 

ILOOR is an improvement over LOOR but is inferior to LUMS COR on mean lead time 

performance. As we would expect, the performance of ILOOR converges on that achieved by LOOR 

at the highest workload norm level, i.e. to the far right of the figure. Here, the influence of the 

workload norm is almost zero and the order release selection procedure has no influence as all orders 

are likely to be released to the shop floor. As the norm level is gradually tightened, ILOOR’s mean 

lead time first decreases and then begins to increase, which shows ILOOR also overcomes the 

drawback with LOOR in this respect.  

The performance of the timing function of ILOOR is rather similar to that of LOOR at the 

current parameter setting. This is reflected in the comparable levels of the standard deviation of 

lateness in Figure 3b. LUMS COR however performs better in terms of the standard deviation of 

lateness at the tight norm levels to the left of the curve. The influence of the weighting given to 

parameter α on the load balancing and timing objectives in ILOOR will be explored further in 

Section 5.  

In Figure 3c, we see that the shape of the ILOOR curve for the percentage tardy is rather similar 

to that of the mean lead time in Figure 3a. In addition, the curve is very close to that of LUMS COR, 

which suggests ILOOR performs well in terms of the percentage tardy but does not quite achieve the 

performance level of LUMS COR at tight norm levels. 

The improvement achieved by ILOOR over LOOR is also robust to a change in shop 

configuration, as demonstrated by the general flow shop results presented in Figures 3d-f. Overall, 

we can conclude that the improved trade-off between load balancing and timing through the use of 

integer linear programming leads to an improvement in the performance of LOOR. However, this 

trade-off depends on the role of α which deserves further analysis in Section 5. 
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Figure 3: Simulation Results for ILOOR vs. LOOR, LUMS COR and IMM  

(a) Lead Time Performance in the Pure Job Shop (d) Lead Time Performance in the General Flow Shop 

(b) σ of Lateness Performance in the Pure Job Shop (e) σ of Lateness Performance in the General Flow Shop 

(c) Percentage Tardy Performance in the Pure Job Shop (f) Percentage Tardy Performance in the General Flow Shop 
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4.3 Combining the Two Refinements: ILOOR+  

Figure 4 compares the performance of ILOOR+, which combines the above two refinements, with 

LOOR, LOOR+, ILOOR, LUMS COR and IMM. Figure 4a depicts the mean lead time performance 

in the pure job shop. As expected, we see that LOOR+, ILOOR+ and LUMS COR converge at the 

highest workload norm level. We also see that the three curves are very close to one another across a 

large range of flow times. Hence, the three methods that incorporate intermediate pull release result 

in similar performance. However, by combining the two refinements, ILOOR+ seems to perform 

slightly better than LOOR+ and LUMS COR in terms of the mean lead time (Figure 4a). However, 

the dispersion of lateness among jobs is slightly higher for ILOOR+, as indicated by the higher 

standard deviation of lateness for ILOOR+ in Figure 4b. As a consequence, the final influence of 

ILOOR+ on the percentage tardy (Figure 4c) is rather similar to that of LOOR+ and ILOOR+. The 

curves in Figure 4c cross each other, which implies that the best-performing approach depends on the 

workload norm level applied, as reflected in the mean flow time on the shop floor. This performance 

is also sustained in the general flow shop (Figures 4d-f). 

Overall, we can conclude that combining the two refinements leads to a marginal performance 

improvement, although ILOOR+ can slightly outperform LUMS COR at certain workload levels. 

The next section will seek to obtain a better understanding of the underlying mechanisms that lead to 

the performance results described. Section 5.1 analyses how the relative weights given to load 

balancing and timing impact the performance of ILOOR and ILOOR+ before Section 5.2 focuses on 

how adding an intermediate pull release mechanism improves the performance of periodic release 

methods.  
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Figure 4: Simulation Results for ILOOR+ vs. All Other Release Methods  

(a) Lead Time Performance in the Pure Job Shop (d) Lead Time Performance in the General Flow Shop 

(b) σ of Lateness Performance in the Pure Job Shop (e) σ of Lateness Performance in the General Flow Shop 

(c) Percentage Tardy Performance in the Pure Job Shop (f) Percentage Tardy Performance in the General Flow Shop 
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5. Analysis of Results  

5.1 Sensitivity to the Weight Given to Load Balancing and Timing in ILOOR and ILOOR+ 

The performance of ILOOR and ILOOR+ will be affected by the relative weight given to load 

balancing and timing within the objective function of the integer linear programming model, which is 

represented by the value of α. We have therefore conducted a sensitivity analysis to establish how the 

value of α, which was set to 1,000 (103) in the main experiments in Section 4, affects performance. 

First, we set the value of α at two extremes, i.e. α=10-6 and α=106. The former gives full priority to 

the timing function while the latter gives full priority to load balancing. Finite and non-zero values of 

α are preferred to handle ties in the decision concerning which order to select when only one function 

is considered. 

The simulation results in the pure job shop and the general flow shop for ILOOR and ILOOR+ 

are shown in Figure 5 together with the results for α=103 (as used in Section 4). For reference, we 

also present the curves for LOOR and LUMS COR. 

From Figure 5a, we can observe that the mean lead time of ILOOR (solid triangular markers) in 

the pure job shop is sensitive to α while the performance of ILOOR+ (open triangular markers) is 

less sensitive. This conclusion also holds for the general flow shop (Figure 5d). We can see in 

Figures 5a and 5d that the curves for ILOOR and ILOOR+ with α=106 (dotted curves) are just 

slightly below those with α=103 (solid curves), which shows that giving further emphasis to load 

balancing leads to only a marginal improvement in lead time performance. When priority is given to 

the timing function (α=10-6, dashed curves), we see that the mean lead time of ILOOR and ILOOR+ 

deteriorates, but both still outperform LOOR (solid curve with square markers). Figures 5b and 5e 

show that a strong emphasis on load balancing by using α=106 (dotted curves) increases the standard 

deviation of lateness slightly, while a strong emphasis on timing by using α=10-6 (dashed curves) 

creates a weak advantage in the standard deviation of lateness. As the latter influences are relatively 

small, the percentage tardy (Figure 5c and 5f) is mainly affected by the changes in lead time 

performance (figures 5a and 5d) that are due to improved load balancing. 
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Figure 5: Sensitivity Analysis for the Relative Weight of α in the Pure Job Shop and General Flow Shop

(a) Lead Time Performance in the Pure Job Shop (d) Lead Time Performance in the General Flow Shop 

(b) σ of Lateness Performance in the Pure Job Shop (e) σ of Lateness Performance in the General Flow Shop 

(c) Percentage Tardy Performance in the Pure Job Shop (f) Percentage Tardy Performance in the General Flow Shop 
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The results for the percentage tardy may suggest that a complete focus on load balancing by 

setting α=106 is more appropriate than setting α=103, but this might cause a small number of orders 

to suffer from extreme lateness given the increasing standard deviation of lateness. To help in 

selecting a suitable value for α, we conducted additional simulation experiments where we fixed the 

direct load norm wδ  of ILOOR and varied the value of α stepwise from 10-6 to 106. We set the direct 

load norm wδ =4 because ILOOR performs well at this norm level (see Figures 3a-c, third marker on 

the curves). The results of these additional simulations are presented in Figure 6 for the pure job shop 

and general flow shop, with the pattern of results being roughly similar across the two shop 

configurations. Figure 6a and Figure 6b use a logarithmic scale by setting the value of log10(α) on the 

horizontal axis. Moving from left to right in each of the graphs demonstrates how shifting the focus 

of the release selection procedure from timing to load balancing improves both lead time and 

percentage tardy performance. Below a value of α=10-1, the focus on timing results in a stable but 

poor performance level. Above α=10-1, there is a sharp improvement in performance – both the lead 

time and percentage tardy move to much lower values, which then more or less stabilize above α=103. 

Figure 6c presents the standard deviation of lateness results in the pure job shop and general flow 

shop. The increasing standard deviation at high values of α indicates that some individual orders may 

become very late when there is an extreme focus on load balancing, i.e. when the timing function is 

neglected. This effect starts for α>102. To take advantage of improved load balancing, our main 

experiments used α=103, where the side-effect is still limited. It is remarkable that similar patterns 

can be observed for the two shop configurations, with changes in performance even occurring at very 

similar values of α. This suggests that the findings should be relevant to a wide range of shops found 

in practice. 
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(a) Impact on the Mean Lead Time (b) Impact on the Percentage Tardy (c) Impact on the Standard Deviation of Lateness 

Figure 6: The Impact of the Relative Weight of α on the Performance of ILOOR 
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Overall, Figure 6 highlights the trade-off involved when setting the value of α between 

delivering the maximum number of orders on time and minimising the number of orders that suffer 

from extreme lateness. Perhaps counter-intuitively, increasing the focus on load balancing – and not 

on timing – actually appears to improve delivery performance in terms of the percentage tardy. But 

giving extreme emphasis to load balancing only leads to a marginal further improvement in the 

overall percentage tardy and causes more severe delays for individual jobs. The relative weight given 

to load balancing may therefore differ from one context to another depending on the performance 

measures that are most important to a particular shop. 

 

5.2 Analysis of the Improvements Resulting from Intermediate Pull Release 

Using an intermediate pull release mechanism helps to prevent work centre idleness – it can be 

considered to be a special kind of load balancing that supplements periodic release. To demonstrate 

this, we recorded the percentage of orders triggered by the intermediate pull release mechanism at 

direct load norm levels wδ  of 3, 4, 5 and 6 time units for LOOR+ and ILOOR+; and with a workload 

norm of 4, 5, 6 and 7 time units for LUMS COR. These ranges cover the norm levels at which the 

methods appear to perform the best. 

The results of these experiments are presented in Figure 7, where the dashed lines refer to the 

general flow shop and the full lines refer to the pure job shop. The figure shows that more orders are 

released by the intermediate pull release mechanism in the general flow shop than in the pure job 

shop, which is consistent with the findings for LUMS COR in Thürer et al. (2012). All of the curves 

in Figure 7 are downward sloping from left to right. In other words, as the norm level is tightened, 

more and more orders are released by the intermediate pull release mechanism. This is because low 

workload norm levels increase the risk of starvation in-between periodic releases. 
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Figure 7: The Percentage of Orders Triggered by the Intermediate Pull Release Mechanism for 

LOOR+, ILOOR+, and LUMS COR in the Pure Job Shop and General Flow Shop 

 

The most important observation from Figure 7 is that the number of orders released by the 

intermediate pull release mechanism is always lower for ILOOR+ than for LOOR+ or LUMS COR. 

This can be attributed to the integer linear programming model incorporated in ILOOR+, which 

should allow for better load balancing than under LOOR or LUMS COR. This reduces the risk of 

needless starvation. More generally, this suggests once more that there is high potential for 

improving the original myopic order release selection procedure that is still incorporated in the 

periodic release mechanism of most WLC methods, including LUMS COR. 

 

6.  Conclusions 

Load Oriented Order Release (LOOR) has been an important release method in the WLC literature, 

and it has been incorporated in many Enterprise Resource Planning (ERP) systems (Breithaupt et al., 

2002). Yet the approach has been largely neglected since its robustness was questioned at the end of 

the 1990s (e.g. Land & Gaalman, 1998; Oosterman et al., 2000). This paper has revisited LOOR in 

the light of the current state of the art. An intermediate pull release mechanism has been added to 

LOOR to prevent premature idleness; and, an integer linear programming model has been applied to 
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LOOR to overcome the myopic nature of LOOR’s order release selection procedure and improve the 

trade-off between timing and load balancing. When the two refinements are combined, the solution 

can match or even marginally outperform LUMS COR, the best-performing order release method 

from contemporary WLC literature. 

In answer to our first research question – concerning whether adding an intermediate pull release 

mechanism can improve LOOR – our results have shown that an intermediate pull release 

mechanism improves both the performance of LOOR (i.e. LOOR+) and the newly developed ILOOR 

method (i.e. ILOOR+). Thus, advances in the WLC literature in the context of LUMS COR (Thürer 

et al., 2012) appear to be transferrable to other WLC order release methods like LOOR. This is an 

important result for LOOR but also has a more general significance. 

In answer to our second research question – concerning the trade-off between load balancing and 

timing – our results have shown that using an integer linear programming model to enhance the load 

balancing capabilities of LOOR’s order release procedure can indeed improve its performance. This 

shifts performance to a new frontier; and it is possible to move along this frontier by adjusting the 

relative weight given to load balancing and timing. Putting strong emphasis on load balancing 

minimises the percentage of tardy orders, but there should be some limit on this to avoid the negative 

side-effect otherwise experienced by some orders that would be delivered extremely tardy. The use 

of integer linear programming however does not lead to substantial performance improvements 

compared to LUMS COR, which underlines the strength of this heuristic. 

Beyond these two research questions, the paper makes a broader contribution as the criticisms 

levelled at LOOR by Land & Gaalman (1998) and Oosterman et al. (2000) have now been overcome. 

First, the authors questioned the effectiveness of LOOR when combined with a due date oriented 

dispatching rule. We have shown that the refinements can overcome the poor performance of LOOR 

with the PST rule, which means that the best results can be realised at lower workload levels. And 

second, the authors questioned the effectiveness of LOOR in the general flow shop. We have adopted 

the previously untested adjustment proposed in Breithaupt et al. (2002) to look only 4 process steps 

ahead in the routing of jobs when making load calculations at release. This adjustment makes LOOR 

and all of its refined variants robust to changes in shop configuration (from the pure job shop to the 
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general flow shop). Overall, the improvements allow LOOR to be used in a wide range of shops 

found in practice. 

 

6.1 Managerial Implications 

The refined versions of LOOR lead to improved performance, addressing the shortcomings 

previously identified. Yet each refined version has its own strengths and weaknesses, which should 

be considered when embarking on an implementation: 

• ILOOR overcomes the myopic nature of LOOR’s selection procedure and only releases orders 

periodically, which means the direct load of work centres does not have to be monitored real-time 

or continuously to trigger the release of orders from the pool. But the integer linear programming 

element adds to the complexity of the method. In addition, the performance improvement gained 

by ILOOR is less than that achieved by LOOR+ or ILOOR+. The improvement does however 

highlight the importance of reconsidering the orders selected by the myopic release procedures 

incorporated in other WLC methods. Sometimes, when loads are not balanced, more appropriate 

order sets can even be found by a planner without the need for advanced models. 

• LOOR+ adds an intermediate pull release mechanism, which is activated when a work centre is 

starving, to the periodic release procedure. LOOR+ leads to a considerable improvement in 

performance over LOOR, with the results approaching those achieved by LUMS COR. This 

means that, for a company that has already implemented LOOR, it can improve its performance 

by adding an intermediate pull release element. Any investment in technology required to support 

the procedure is likely to be repaid over time as the competitiveness and dependability of the 

company will increase. 

• ILOOR+ leads to the greatest improvement in the performance of LOOR. It has the strengths of 

“I” and “+” such as enhanced load balancing and starvation avoidance, which allows it to compete 

on performance with LUMS COR. But the approach also has the drawbacks of “I” and “+” such 

as greater complexity and a reliance on technology & information feedback. LUMS COR also 

needs continuous feedback of information from the shop floor, but it is arguably a much simpler 

method, which should aid its implementation in practice. The fact that ILOOR+, which employs 
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integer linear programming, is not able to greatly outperform LUMS COR demonstrates the 

power and utility of LUMS COR’s relatively straightforward heuristic. When applying ILOOR+ 

(or ILOOR), practitioners should bear in mind that a lower percentage of tardy orders can be 

obtained by focusing strongly on load balancing but that too much focus on load balancing will 

lead to negative side-effects – with a small subset of orders delivered extremely late.     

 

6.2 Future Research Directions 

Finally, the paper has the following implications for future research: 

• Improving other existing order release methods through load balancing: The results for ILOOR 

show that putting more emphasis on load balancing can improve performance. This is a starting 

point for improving other existing WLC release methods, potentially including LUMS COR. 

Moreover, it may be possible to develop other simpler methods to improve load balancing than 

by applying an integer linear programming model. 

• Exploring the prevention of premature idleness using periodic release only: A highly effective 

order release method should combine control of the direct load of work centres at a low level 

with the prevention of premature idleness. We have shown that adding an intermediate pull 

release mechanism is one effective way of preventing premature idleness. However, the low 

percentage of order releases triggered by this mechanism when incorporated in ILOOR+ may 

suggest that better load balancing to avoid premature idleness may also be possible within a 

periodic release method. This possibility warrants further study. 

• Conducting field research to learn from implementations of refined versions of LOOR: Further 

field research is required to validate the effectiveness of the refined versions of LOOR presented 

in this paper in practice. Field researchers could also aid practitioners by developing a roadmap 

for the implementation of LOOR and by supporting cost-benefit analyses of the various order 

release mechanism options. 
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