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Abstract

Introduction: A geostatistical approach to characterize MS-lesion patterns

based on their geometrical properties is presented. Methods: A dataset of 259

binary MS-lesion masks in MNI space was subjected to directional variography.

A model function was fit to express the observed spatial variability in x, y, z

directions by the geostatistical parameters Range and Sill. Results: Parameters

Range and Sill correlate with MS-lesion pattern surface complexity and total

lesion volume. A scatter plot of ln(Range) versus ln(Sill), classified by pattern

anisotropy, enables a consistent and clearly arranged presentation of MS-lesion

patterns based on geometry: the so-called MS-Lesion Pattern Discrimination

Plot. Conclusions: The geostatistical approach and the graphical representation

of results are considered efficient exploratory data analysis tools for cross-sec-

tional, follow-up, and medication impact analysis.

Introduction

Multiple sclerosis (MS) is an inflammatory demyelinating

disease of the central nervous system with neurodegenerative

processes in the later course. It affects over 2.5 million

people worldwide and is the leading nontraumatic cause

of serious neurologic disability in young adults. MS is

characterized by unpredictable episodes of clinical relapses
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and remissions followed by continuous progression of

disability over time (secondary progressive MS) in most

instances. The course of MS is highly variable – from

benign to disastrous (Compston and Coles 2008). While

some patients may acquire severe and irreversible disabil-

ity within a few years, others may run a benign course

with little or no disability even after decades. The hall-

mark of MS is sclerotic lesions within cerebral white mat-

ter, which are hyperintense on T2-weighted brain MRI

sequences. These lesions present rather heterogeneously

across patients not only with regard to the number and

overall volume but also with regard to spatial pattern,

predilection sites, and shape of single lesions (Filippi and

Rocca 2011). Researching the geometrical configurations

of white matter MS-lesions from MRI investigation is

considered an opportunity for greater understanding of

the relationship between MS clinics and neuroradiological

findings (Pham et al. 2010; Marschallinger et al. 2014;

Taschler et al. 2014). Until now, the heterogeneity of

MRI findings could not be related fully to the heterogene-

ity of the disease course. This may be achieved by the

application of mathematical tools, which are not well

established in neuroimaging. Here, we aim to characterize

white matter lesions in MS using measures from geo-

statistics. With the advent of brain geometry normaliza-

tion (Penny et al. 2007) and automatic MS-lesion

segmentation (Garcia-Lorenzo et al. 2012), large numbers

of classified images can be made available for continued

evaluation.

For this study, we define a MS-lesion pattern as the

ensemble of MS-lesions identified in a specific MRI exam-

ination of a single patient. In a pilot evaluation of the

approach followed here (Marschallinger et al. 2014), a

small yet representative dataset of three synthetic and

three manually segmented real-world MS-lesion patterns

was used to show the potential of geostatistics to yield

key geometrical information on MS-lesion patterns. This

study applies the geostatistical approach to 259 automati-

cally segmented binary MS-lesion patterns that are repre-

sentative of probable MS-lesion pattern geometries.

Materials and Methods

The dataset

We analyzed lesion maps of 259 patients. The median

score on the Expanded Disability Status Scale (EDSS) was

1.3 (standard deviation, 1.0; median, 1.5; range, 0–6.0),
median age was 37 years (standard deviation 10; median,

36; range 19–70), and mean disease duration was

3.1 years (standard deviation, 2.3; median, 2.7; range,

0.1–10). Forty-four patients had experienced one

(clinically isolated syndrome) and 215 more than one

demyelinating attack (relapsing-remitting MS). The

female/male ratio was 175/84.

The dataset consists of 259 binary MS-lesion patterns pro-

jected to the MNI space. Dimensions of the voxel arrays are

(x*y*z) 121*145*121 voxels, with 1.5*1.5*1.5 mm3 per

voxel, with the MS-lesion voxels assigned to gray level 1, and

the remaining (void) voxels to gray level 0. For the remain-

der of this study, we refer to this binary, normalized dataset

as the “MS-259 dataset”. The histograms in Figure 1(A and

(A) (B)

Figure 1. (A) Number of lesions (min = 1, max = 86, mode = 10). (B) Total lesion volume mm3 (min = 54, max = 102,583, mode = class 0–1000).
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B) show the number of lesions and total lesion volume

across this MS-259 dataset. Both distributions are approxi-

mately log-normally skewed. The number of lesions in each

image pattern varies between 1 and 86 lesions, with a mode

of 12 lesions. The total lesion volume varies between 54 and

102,583 mm3, with the most frequent class between 0 and

1000 mm3.

Work flow and software

LST: MS-lesion segmentation

Lesions were segmented by an automated tool, the lesion

segmentation tool (LST), which is freely available

(www.applied-statistics.de/lst.html). It is an extension of

the voxel-based morphometry toolbox (www.neuro.uni-

jena.de/vbm8/) of the software package Statistical Para-

metric Mapping (SPM) 8 (www.fil.ion.ucl.ac.uk/spm/).

The algorithm requires a three-dimensional (3D) gradient

echo (GRE) T1-weighted and a FLAIR image at 3 Tesla

(T). It determines the three tissue classes of gray matter

(GM) and WM as well as cerebrospinal fluid (CSF) from

the T1-weighted image, and, then, the FLAIR intensity

distribution of each tissue class in order to detect outliers,

which are interpreted as lesion beliefs. Next, a conserva-

tive lesion belief is expanded toward a liberal lesion belief.

To this end, neighboring voxels are analyzed and assigned

to lesions under certain conditions. This is done itera-

tively until no further voxels are assigned to lesions. Here,

the likelihood of belonging to WM or GM is weighted

against the likelihood of belonging to lesions (Schmidt

et al. 2012). Finally, 3D binary lesion maps in MNI space

are generated, which were used here.

The workflow followed in this study is depicted in

Figure 2: Per pattern (MS-lesion mask), three directional

empirical variograms are estimated at orthogonal orienta-

tions in 3D. Per empirical variogram, a variogram model

function is fitted that provides a summary description of

the pattern by means of two parameters: Range (a) and

Sill (c). Parameters a and c are expressed in classified

scatterplots to provide a straightforward presentation of

the geometrical summary characteristics of MS-lesion

patterns.

Empirical variograms

Geostatistics provides algorithms for characterizing, mod-

eling, and simulating multidimensional data in a variety

of disciplines (Conan et al. 1992; Christakos 2000; Kour-

gli et al. 2004; Blewett and Kildluff 2006; Caers 2010).

The variogram, a measure of spatial correlation, is a cen-

tral tool in geostatistics and can be used for exploratory

data analysis (EDA) (Gringarten and Deutsch 1999).

Applied to binary MS-lesion patterns from MRI, variogra-

phy enables characterization and quantification of the

geometrical properties of MS-lesion patterns (Marschal-

linger et al. 2009). When MS-lesion patterns are normal-

ized to MNI space, variography enables single patient

follow-up analysis, and intra or intergroup analysis

(Marschallinger et al. 2014). The empirical variogram c
(h) is calculated using (eq. 1):

cðhÞ ¼ 1

2nðhÞ �
Xn
i¼1

ðzðxiÞ � zðxi þ hÞð Þ2 (1)

z(x) value of variable at some 3D location x, here: voxel with

z = binary variable (0 or 1); h lag vector of separation between

observed data (units: mm); n(h) number of data pairs [z(x),

z(x+h)] at lag h; c(h) empirical variogram value for lag h.

The c(h) of a binary MS-lesion pattern is estimated by

comparing the binary values (0 or 1) of all voxel pairs

within a specified lag h according to equation 1. Calculat-

ing c(h) for increasing lag distances |h|, the empirical var-

iogram plot (“the variogram”) is derived (Fig. 3C, F, I).

Computing variograms for specific lag orientations yields

directional variograms that quantify spatial anisotropies

in the data. Variograms of MS-lesion patterns generally

start with small values of c at small |h|, reflecting the

large correlation of adjacent voxel pairs (neighboring

voxels tend to have the same binary value). After an ini-

tial increase with lag away from the origin, with further

increases in |h| the correlation decreases, and eventually

Figure 2. Workflow for characterizing MS-lesion patterns by means

of geostatistics. See text for details.
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Figure 3. Relation of MS-lesion pattern geometry, empirical variograms, and fitted variogram models and their estimated parameters. Projections

of three MS-lesion patterns (magenta) to (left image) axial and (middle image) sagittal planes, white matter outlines (light gray), and axis tripod

(directions) for reference. (A, B) Case wbles_274, pattern with dominantly geometrically isotropic MS-lesions, total lesion load = 2666 mm3. (D, E)

Case wbles_212, pattern with dominantly geometrically anisotropic MS-lesions, total lesion load = 2943 mm3. (G, H) case wbles_133, pattern

with dominantly geometrically anisotropic MS-lesions, total lesion load = 6571 mm3. (C, F, I) Associated directional empirical variograms, fitted

exponential variogram models, estimated a and c parameters and quality of model fitting (R2). Color coding of directional empirical variograms

and variogram models: Red X, green: Y, blue: Z. See text for details.
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the variogram begins to level off. As a rule of thumb, the

flatter the variogram near the origin, the more

pronounced is the spatial correlation (i.e., the larger the

lesions will be). As pointed out in (Marschallinger et al.

2014), variograms of binary MS-lesion patterns should be

confined to distances from 0 to 15 mm, because this area

holds most of the relevant correlation information and a

variogram model can be fitted straightforwardly; a more

detailed introduction to using variography with MRI

datasets is given there.

Since the LST algorithm provides binary MS-lesion pat-

terns in MNI space, LST results can be interpreted

directly using variography. For each member of the MS-

259 dataset directional empirical variograms were esti-

mated in the three main orthogonal orientations X, Y, Z

(dextral-sinistral, caudal-rostral, dorsal-ventral orienta-

tions), within distances between 0 and 15 mm.

Figure 3 shows the sensitivity of the directional vari-

ograms (Deutsch and Journel 1997) to MS-lesion pattern

geometry. It contrasts three MS-lesions patterns and the

associated variograms. Case Wbles_274 has dominantly

isotropic (spherical) lesions. Accordingly the variograms

for X, Y, Z directions show approximately the same

shape, indicating similar spatial correlation in all direc-

tions. Most MS-lesions in wbles_212 are anisotropic; they

are stretched in the Y and Z directions. Here, the vari-

ograms for the Y and Z directions exhibit a shallower

slope near the origin than for the X direction, indicating

greater spatial continuity in the Y and Z than X direc-

tions. In wbles_133 the majority of the MS-lesions are

stretched in the Z direction; as a consequence, the vari-

ogram for the Z direction has the shallowest slope near

the origin.

Variogram models

Empirical variograms are graphical representations of spa-

tial correlation, primarily intended for visual analysis. Sev-

eral permissible variogram model functions exist for

quantification (Cressie 1993): After being fitted to an

empirical variogram, these model functions express a vari-

ogram’s shape by the model type (e.g., exponential, spheri-

cal) and commonly two parameters: the variogram range a,

and the variogram sill c. Among the available and permissi-

ble variogram model functions, the exponential variogram

model (eq. 2) was found to be the most suitable for quanti-

fying the MS-lesion patterns (Marschallinger et al. 2014).

cðhÞ ¼ c � 1� eð�3�jhjÞ

a

� �
(2)

c Sill; a Range; h lag vector of separation; c(h) model variogram

value for lag h.

Figure 3(C, F, I) illustrate the process of variogram

model fitting. They combine directional empirical vari-

ograms (symbols: red square = X, green triangle = Y, blue

diamond = Z direction), the fitted exponential variogram

model functions (lines: red continuous = X, green

dash = Y, blue dash-dot = Z direction), the estimated a

and c parameters and the goodness-of-fit (R2). Model fit-

ting and parameter estimation were computed with the

software R (R Development Core Team, 2008): the range

a is roughly the same in the X, Y, Z directions for

wbles_274, indicating a nearly isotropic pattern. In con-

trast, for wbles_212 the range a in the X direction is just

about half of a in the Y and Z directions, indicating

greater spatial correlation in the Y and Z directions. This

is confirmed by Figure 3(D and E) where the majority of

the MS-lesions are stretched in the Y and Z directions.

The dominant stretching of MS-lesions in the Z direction

in pattern wbles_133 is expressed by a larger range in the

Z direction. The sill c increases in the order wbles_212,

wbles_274, wbles_133, but is similar per pattern.

The variogram measures spatial continuity (or disconti-

nuity), which in the case of 3D structures can be inter-

preted as surface complexity (Kourgli et al. 2004;

Trevisani et al. 2009). The surface complexity of biologi-

cal structures is often expressed as the ratio of surface

area and volume (Schmidt-Nielson 1984). To cross-check

the correlation between the a and c parameters and lesion

pattern surface complexity, the total lesion volume

(mm3), and total lesion surface area (mm2) were calcu-

lated for each pattern of the MS-259 dataset. Correlating

parameters a and c with total lesion surface area and total

lesion volume (Vtot) reveals an almost perfect linear cor-

relation (R2 = 0.997) between c (sill) and Vtot. Further-

more, there is a significant log correlation (R2 = 0.935) of

a with the ratio of the total lesion volume/total lesion

surface area. In other words: in binary MS-lesion patterns,

the variogram model sill c is a substitute for total lesion

load (Fig. 4A) and the model range a is a proxy of MS-

lesion pattern surface complexity (Fig. 4B). The greater c,

the greater is the total lesion volume. The greater a, the

greater is the overall spatial correlation and the smoother

(i.e., the less complex) is the pattern’s surface.

a-c plot

In geostatistics, the fitted variogram model range a and

sill c are used to convey information for use in geostatisti-

cal operations such as spatial prediction and simulation

(Isaaks and Srivastava 1989). In the current context, a

and c are used to characterize MS-lesion pattern geometry

by three value pairs: a[X],c[X]; a[Y],c[Y]; a[Z],c[Z]; (with a[x],

c[X]; . . . values of a, c in direction x, etc.). When lesion

patterns are geometrically normalized, their geometry can
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be conveniently portrayed and compared in a diagram of

a versus c (ac-plot (Marschallinger et al. 2014)).

Figure 5 is a plot of a (abscissa) versus c (ordinate) for

the MS-259 dataset. The plot shows dense clustering near

the origin that obscures detail, and a possible bifurcation

at medium to large a-c values. To overcome the cluster-

ing, natural log scaling was applied to both the a and c

axes in Figure 6.

(A) (B)

Figure 4. Correlations of geostatistical parameters a and c with total volume and total surface area of MS-lesion patterns in the MS-259 dataset.

(A) Correlation of total lesion volume with c (R2 = 0.997). (B) Correlation of (total lesion volume/total lesion surface) with a (R2 = 0.941).

Figure 5. Scatterplot a[X],c[X]; a[Y],c[Y]; a[Z],

c[Z] for the MS-259 dataset as a whole.

Each of the 259 MS-lesion patterns is

represented by three symbols: X-direction –

red squares, Y-direction – green triangles,

Z-direction – blue diamonds. See text for

details.
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Figure 6 provides a clearer synopsis: visually, the

densely clustered points at small a,c values are stretched

while large a,c values are compressed. For the MS-259

dataset, ln(a[X,Y,Z]) is between 0.20 and 2.80, and ln(c[X,Y,

Z]) is between �11.47 and �4.08. Since the MS-259 data-

set comprises a broad range of very mild to extremely

severe cases, we consider that the majority of possible

MS-lesion patterns will plot within the axis limits of ln

(a) = [0.3] and ln(c) = [�12,�3]. In Figure 6, the MS-

259 dataset forms a loose, elliptic cloud with the long axis

running about diagonal. Within the cloud, the X, Y, and

Z directional components also form elliptic, overlapping

areas. The visually discernible shift towards larger ln(a),

with a[X] <a[Y] <a[Z] is confirmed by the respective mean

centers (mean center definition see below). At the indi-

vidual level, the vast majority of the MS-259 dataset

lesion patterns show varying a [X,Y,Z], but similar c[X,Y,Z]
values (the so-called “geometric anisotropy”).

Figure 7 compares an isotropic and two anisotropic

MS-lesion patterns in the a-c plot (patterns in Figure 3):

the X, Y, Z symbols of the isotropic wbles_274 pattern

plot closely together. The symbols of the anisotropic pat-

tern wbles_212 clearly indicate a smaller a for X than for

the Y and Z directions (lesion elongation in the Y and Z

directions), whereas the anisotropy of wbles_133 is

expressed by a larger a for Z than for the X and Y

directions (lesion elongation in the Z direction). This is

in accordance with the observed lesion pattern geometries

in Figure 3. As such, the a-c plot straightforwardly com-

municates geometric anisotropy of MS-lesion patterns.

While the geometrical characteristics of single patterns

can be represented conveniently by separate X, Y, Z sym-

bols per pattern, this can be confusing for larger datasets.

When presenting many MS-lesion patterns in the a-c plot,

it makes sense to identify each pattern with only one

point and to express the magnitude of anisotropy by sym-

bol classes. The mean center (eq. 3a,b) is widespread for

representing average location, in the current context:

�a ¼
Pn

i¼1 ai
n

(3a)

�c ¼
Pn

i¼1 ci
n

(3b)

�a mean a (average geostatistical range); �c mean c (average geo-

statistical sill); n number of data, here: 3 (x, y, z).

Analogous to the standard deviation in univariate

statistics, the standard distance (“SD”, eq. 4) indicates

deviation from the spatial mean (De Smith et al. 2007).

Figure 6. a-c plot involving ln(a[X,Y,Z])

versus ln(c[X,Y,Z]) for the MS-259 dataset.

Directional components: X – red squares, Y

– green triangles, Z – blue diamonds. Large

symbols are the spatial means. See text for

details.
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The more the SD deviates from 0 (the isotropic case), the

more anisotropic a lesion pattern is. In the MS-259 data-

set, the SD in the a-c plot varies between 0.001 and 0.473.

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðai � �aÞ2
n

þ
Pn

i¼1ðci � �cÞ2
n

s
(4)

�a mean a (average geostatistical range); �c mean c (average geo-

statistical sill); n number of data, here: 3 (x, y, z).

Mean center and standard distance are used here to

express average location and spatial spread in a-c space

because both marginal distributions can be considered

normal: both ln (a) and ln (c) of the a-c plot are almost

perfect normal distributions for all (x, y, z) directional

variograms. This is confirmed by Figure 8 which gives the

relevant box-plots.

MS-lesion pattern discrimination plot

Combining the mean center and standard distance (SD)

in a single plot, a compact representation of the spatial

characteristics of MS-lesion patterns is achieved. We term

this plot the Lesion Pattern Discrimination Plot (Fig. 9,

“LDP”). The LDP also indicates total lesion load, derived

from the correlation in Figure 4(A).

Regarding spatial dispersion, the MS-259 dataset shows

isotropic and anisotropic patterns scattered over the point

cloud except a concentration of extremely anisotropic

patterns at very small total lesion loads which is attribu-

ted to aliasing in the representation of very small lesions

by small numbers of voxels. Comparing the visualization

of the MS-259 dataset in the a-c plot (Fig. 6) and in the

Figure 7. a-c plot for distinguishing

spatially isotropic lesion patterns (case

wbles_274: continuous line) from spatially

anisotropic lesion patterns (case

wbles_212: dashed line, case wbles_133:

dotted line). Symbols for directional

components are the same as in Figure 6.

Light-gray backdrop is MS-259 dataset for

reference.

Figure 8. Box-plots of Figure 6 marginal distributions: ln(xa), ln(ya),

ln(za), ln(xc), ln(yc), ln(zc)). Box is bounded by first and third quartile,

line in box is median. Whiskers indicate minimum and maximum. See

text for details.
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LDP (Fig. 9), the LDP is more easily understood. The loss

of information on X, Y, Z anisotropy indicated by indi-

vidual symbols is counterbalanced by the introduction of

standard distance symbols.

MS-lesion pattern geometry and location in the
LDP

Figure 10 is a synopsis of MS-lesion pattern geometries

(10a) and the corresponding positions in the LDP (10b).

From the MS-259 dataset, 18 patterns were selected that

cover a large part of the populated area in the LDP. To

ensure representativeness, six volume classes with a large

spread (amax-amin) were chosen at iso-volumes of 200,

1300, 2000, 9000, 22,000, 55,000 mm3. From each volume

class three patterns were selected that represent the mini-

mum, average, and maximum a (class volume � 15%).

The patterns and positions can be identified by numbers

in Figure 10(A and B). Recalling the volume – surface

considerations above, the LDP represents MS-lesion pat-

tern surface smoothness versus total lesion load. Working

through Figure 10 reveals that complex patterns with

many lesions or a “rough”/“complex” surface generally

are positioned at the left fringe of the point cloud while

patterns with few, big, and “smooth” lesions are placed

toward the right border. Patterns around the long axis of

Figure 9. MS-Lesion Pattern Discrimination Plot (LDP) combining the mean center (MC) positions and standard distance (SD) class symbols.

Second y axis (nomogram) indicates total lesion load (TLL, mm3). Arrow indicates increasing pattern surface smoothness.
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the elliptic cloud mediate between rough and smooth

extremes. This also holds quantitatively. For example,

consider volume class 2000 mm3 in Table 1: proceeding

from pattern wbles_207 via wbles_070 to wbles_221, the

number of lesions decreases, surface area decreases, and

volume per lesion, surface per lesion and the ratio of vol-

ume/surface area increases.

Table 1 expresses the quantitative geometry behind Fig-

ure 10: groups are defined by their average total lesion vol-

ume (� 15%). Within each group the following holds: a

increases top down and with increasing a, the number of

lesions decreases, total surface area decreases, volume per

lesion increases, surface per lesion increases, and the ratio

of total volume/total surface area increases. In other words,

at constant volume, with increasing a, pattern surface

smoothness increases and surface complexity decreases.

Follow-up examination expressed in the LDP

The LDP is a versatile framework to portray lesion pat-

tern evolution in follow-up exams because it combines

total volume, lesion pattern surface complexity and geo-

metrical anisotropy information in a single, well-

arranged plot. Major changes as well as subtle fluctua-

tions in MS-lesion pattern geometry can be explored

straightforwardly. As an example, the follow-up exams of

six MS-cases (f1–f6) were documented in the LDP. The

six cases differ with respect to lesion loads, lesion num-

bers, lesion pattern geometry, and lesion pattern evolu-

tion. Total investigation epochs range from 7 to

33 months and comprise three to five follow-up exams

of irregular duration. Figure 11(A) shows the follow-up

lesion patterns of cases f1,f2,f3,f4,f5,f6 in projections to

the axial plane; Figure 11(B) gives the respective LDP

entries (see also Table 2).

In the follow-up examination of case f1, major geomet-

ric features remain constant, but minor fluctuations in

smaller lesions show up (Fig. 11A); accordingly, in the

LDP f1-symbols plot closely together, but minor changes

in anisotropy are indicated. Case f2 shows increasing total

lesion load (TLL) over time, but the evolution path in the

LDP indicates an approximately constant surface

(A)

(B)

Figure 10. Comparison of projections of MS-lesions to the axial plane with associated locations in the LDP. 18 MS-lesion patterns are shown

from the MS-259 dataset. WM outline is shown for reference. See text for details.
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Table 1. Geometric characteristics of MS-lesion pattern groups from the MS-259 dataset. Groups represent similar total lesion load (“TLL”). See

text for discussion.

ID nLesions Volume Surface Vol/Lesion Surf/Lesion Vol/Surf

Group wbles_216 62 52,164 n.a. 841.35 n.a. n.a.

wbles_208 29 59,427 n.a. 2049.21 n.a. n.a.

wbles_251 8 52,373 23,645 6546.66 2955.63 2.21

Group wbles_226 86 22,100 20,513 256.97 238.52 1.08

wbles_009 33 23,031 15,922 697.91 482.48 1.45

wbles_083 14 20,628 11,037 1473.43 788.36 1.87

Group wbles_089 73 9470 10,389 129.73 142.32 0.91

wbles_252 22 8657 6357 393.49 288.95 1.36

wbles_087 12 8643 5142 720.28 428.50 1.68

Group wbles_207 31 2187 2727 70.55 87.97 0.80

wbles_070 14 2089 1867 149.22 133.36 1.12

wbles_221 5 1941 1457 388.13 291.40 1.33

Group wbles_115 23 1458 1987 63.39 86.39 0.73

wbles_108 6 1293 1228 215.44 204.67 1.05

wbles_084 4 1215 931 303.75 232.75 1.31

Group wbles_040 13 219 403 16.88 31.00 0.54

wbles_175 5 186 276 37.13 55.20 0.67

wbles_241 4 172 245 43.03 61.25 0.70

(A)

(B)

Figure 11. (A) Longitudinal studies f11–5, f21–5, f31–4, f41–4, f51–3, f61–3 (line-oriented, order of follow ups from left to right). MS-lesion patterns

in projections to axial plane. See text for discussion. (B) LDP used to portray the evolution of MS-lesion patterns f11–5, f21–5, f31–4, f41–4, f51–3,

f61–3. Arrows indicate MS-lesion pattern evolution paths. Color coding: f1 – red; f2 – gold; f3 – green; f4 – cyan; f5 – blue; f6 – magenta. See

text for details.
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roughness: despite fluctuations, the evolution path runs

approximately parallel to the volume axis. Case f3 has

decreasing TLL from exams 1–3, but a small TLL increase

in exam 4. The path connecting exams 1-4 first runs

towards the origin of the LDP but then points upwards

in the last step. As TLL decreases, surface roughness

increases due to the decomposition of large confluent

lesion aggregates into smaller, mostly spherical ones. This

is why lesion pattern anisotropy concurrently decreases.

Case f4 is dominated by large, spherical lesions. A num-

ber of small elongated lesions accounts for a pronounced

anisotropy. TLL decreases in all exams, but the last one.

In the LDP, the pattern evolution path points towards the

LDP origin except for step 4. Pattern surface roughness

increases due to the decay of the large spherical lesions;

there are major fluctuations in pattern anisotropy. Case

f5 has a progressive trend with respect to TLL. Lesion

pattern surface roughness decreases due to the confluence

of several small lesions. The LDP evolution path points

diagonally upwards. Case f6 shows decreasing TLL. Pat-

tern surface complexity remains about constant between

exams 1 and 2, but then increases due to concurrent for-

mation of new lesions. In the LDP, the evolution path

first runs approximately parallel with the ordinate and

then takes a sharp bend to continue about perpendicular

to increasing surface complexity at approximately equal

TLL.

Discussion

The geostatistical approach to MS-lesion pattern charac-

terization proposed and explored here is founded on the

Theory of Regionalised Variables (ReV) in which a spa-

tially continuous property is represented stochastically as

a Random Function (RF). A RF is a stochastic generating

mechanism which could have produced the data (repre-

sented as a random draw or ReV from the RF). Given

second-order stationarity (the parameters of the RF are

spatially invariant), the variogram parameters, together

with the mean, then characterize the RF, in particular

capturing its spatial correlation properties. The MNI

brain creates a Euclidean space which is then dissected

into voxels of constant size spatially. The binary outcome

of the MRI scanning process, expressed in this MNI

space, is readily represented using the RF formalism, and

the constant nature of its extent and support (voxel) from

image-to-image facilitates excellent opportunities for sen-

sitive comparison across members and through time.

Indeed, in geostatistics, this situation is relatively rare.

Therefore, we were able to interpret very small differences

between images, and it was possible to place expectations,

including minima and maxima, for each parameter esti-

mated. For example, the MNI space also means that

parameter values have clear interpretations in terms of

volume and surface area relations.

The variogram represents a so called “two-point statis-

tic” in that the semivariance is calculated between two

points (the present location and another at a given lag

vector away; compare equation 1). Two-point statistics

have only limited capabilities to describe the potentially

complex spatial structures exhibited by MS-lesion pat-

terns. There is, thus, some trade-off between the sensitiv-

ity afforded by application of the RF formalism to the

standardized MNI space and the limited spatial represen-

tation afforded by the variogram. Moreover, empirical

variograms of MS-lesion patterns have to be limited to

distances of 15 mm to enable meaningful variogram

model fitting (Marschallinger et al. 2014). In making this

restriction, some information on pattern granularity like

repetitions (the so-called hole effect) is lost. Moreover,

the variogram is not sensitive to the absolute position of

objects within a defined space.

Recently, much attention in geostatistics has been paid

to multiple-point geostatistics (MPG) (Strebelle 2000;

Remy et al. 2009). The MPG formalism captures a much

richer information set than can be obtained from two-point

statistics. For example, MPG has been used to represent

properties such as hydraulic connectivity in sedimentary

rocks, allowing modeling of properties such as permeabil-

ity. Two-point statistics are incapable of capturing and rep-

resenting such properties. Thus, there is scope for

Table 2. Longitudinal data for cases f11–5, f21–5, f31–4, f41–4, f51–3,

f61–3.

ID Date Mean (ln(a)) Mean (ln(C)) SD

f1_1 2009-02-17 1.174 �7.920 0.164

f1_2 2009-08-10 1.147 �7.930 0.106

f1_3 2010-02-24 1.174 �7.880 0.118

f1_4 2011-02-08 1.163 �7.985 0.122

f1_5 2011-11-23 1.153 �7.940 0.185

f2_1 2009-04-22 1.718 �6.765 0.156

f2_2 2009-12-08 1.705 �6.546 0.096

f2_3 2010-05-10 1.674 �6.561 0.108

f2_4 2011-06-17 1.694 �6.434 0.089

f2_5 2011-09-26 1.695 �6.411 0.143

f3_1 2010-09-20 2.190 �5.024 0.148

f3_2 2010-11-02 2.153 �5.174 0.135

f3_3 2011-02-18 1.689 �6.288 0.123

f3_4 2011-08-12 1.681 �6.061 0.093

f4_1 2009-10-08 2.582 �6.076 0.122

f4_2 2009-12-21 2.384 �6.439 0.188

f4_3 2010-08-04 2.178 �6.930 0.205

f4_4 2011-08-11 2.096 �6.865 0.157

f5_1 2010-02-05 1.088 �8.761 0.180

f5_2 2010-03-24 1.072 �8.811 0.135

f5_3 2011-09-12 1.664 �7.673 0.135

f6_1 2011-03-02 2.862 �5.418 0.453

f6_2 2011-04-15 2.798 �6.403 0.274

f6_3 2011-10-20 2.401 �6.459 0.199
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exploration of the value of MPG for application to brain

images.

While a natural choice given the fixed MNI space, the

RF formalism is not the most natural interpretation of

lesions. We tend to think of lesions as compact objects

with fuzzy borders within the MNI space and this is par-

ticularly true in the representation afforded to us by the

MRI scans in which lesions appear as having a more or

less compact structure. This leads to alternative data

models to the RF. The object-based model has been

applied widely in handling geographic information with

great utility (Blaschke 2010), for example, in application

to the classification of land cover in remotely sensed

images. Recently, 3D object-based image analysis applica-

tions have emerged in the biological and medical imaging

domains (Schmidt et al. 2007; Marschallinger et al. 2011;

Al Janab et al. 2012). The object-based model has a lot to

offer for the characterization of lesions, including the

ability to handle each lesion separately, to logically link

corresponding lesions in time-series to track their status,

and the ability to characterize the interrelations between

lesions in a single image. Future research will focus on

developing the MPG and object-based models.

A further extension of our approach could be the

inclusion of parameter uncertainty in the calculation of

the mean geostatistical range and sill. By the use of simu-

lations, this uncertainty could be used to identify signifi-

cant changes in lesion volume and surface area relations

between individual scans. This would represent a mean-

ingful advantage of the modeling approach over the

empirical analysis of those values.

Conclusions

An efficient and computationally cheap geostatistics-based

method for characterizing MS-lesion patterns from bina-

rized and normalized MRI images was developed and pre-

sented. This approach enables the expression of key

geometrical aspects of MS-lesion patterns through estima-

tion of the geostatistical range and sill (a,c) parameters

which correlate with lesion pattern surface complexity and

total lesion volume. The MS-lesion pattern discrimination

plot (“LDP”) introduced here and the a-c plot are based on

the above geostatistical parameters. The LDP communi-

cates summary information on surface complexity, total

volume and geometrical anisotropy of MS-lesion patterns.

The a-c plot complements the LDP, informing on the pre-

ferred directional components of MS-lesion patterns. The

major advantage over existing methods is to achieve insight

into the spatial development of whole MS-lesion patterns

(i.e., selective growth/decay in specific directions) without

requiring object-based/per-lesion characterization. The

approach also offers high precision and comparability

between either different brains or the same brain at differ-

ent times. Both the LDP and the a-c plot are considered

EDA tools adding to neurological standard image process-

ing methods by quickly informing on the spatial or the spa-

tiotemporal properties of MS-lesion patterns in the course

of cross-sectional studies, longitudinal studies or the evalu-

ation of medication efficacy.
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