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Abstract 

 

We choose the Andersen et al. (2007) and Lee and Mykland (2008) jump detection 

tests to detect intraday price jumps for ten foreign exchange rates and cojumps for six 

groups of two dollar exchange rates and one cross exchange rate at the one-minute 

frequency for five years from 2007 to 2011. We reject the null hypothesis that jumps 

are independent across rates as there are far more cojumps than predicted by 

independence for all rate combinations. We find that one dollar rate and the cross rate 

combination almost always has more cojumps than the two dollar rates combination. 

We also find some clustering of jumps and cojumps can be related to the 

macroeconomic news announcements affecting the exchange rates. The two selected 

jump detection tests find a similar number of jumps for ten foreign exchange rates. 

 

We compare density forecasts for the prices of Dow Jones 30 stocks, obtained from 

5-minute high-frequency returns and daily option prices for four horizons ranging 

from one day, one week, two weeks to one month. We use the Heston model which 

incorporates stochastic volatility to extract risk-neutral densities from option prices. 



iii 
 

From historical high-frequency returns, we use the HAR-RV model to calculate 

realised variances and lognormal price densities. We use a nonparametric 

transformation to transform risk-neutral densities into real-world densities and make 

comparisons based on log-likelihoods. For the sixty-eight combinations from 

seventeen stocks for four horizons, the transformed lognormal Black-Scholes model 

gives the highest log-likelihoods for fifty-nine combinations. The HAR-RV model and 

the Heston model have similar forecast accuracy for different horizons, either before 

or after applying a transformation which enhances the densities. The transformed 

real-world densities almost always pass the Kolmogorov-Smirnov and Berkowitz tests, 

while the untransformed risk-neutral densities almost always fail the diagnostic tests. 
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1. Introduction 

 

The availability of high-frequency price data since the mid-1990s, typically recorded 

at least once every five minutes, has triggered many developments in financial 

econometrics during the last twenty years. This results from the additional 

information it contains relative to lower frequency, e.g. daily data. Subsequently, 

many studies focus on using this additional information. One example is 

nonparametric volatility modelling, or more specifically, the realised variance, which 

gives an accurate estimate of the quadratic variation of the underlying price process. 

There is a long-running debate whether continuous time processes for asset prices 

contain a jump component generated by a compound Poisson process besides a 

diffusion component driven by a Brownian motion process. A significant amount of 

literature, including Duffie et al. (2000), Pan (2002), Eraker et al. (2003) and Eraker 

(2004), has argued from low-frequency evidence that the jump component should be 

included. 

 

Following this, many nonparametric tests have been proposed to detect the occurrence 

of jumps using high-frequency data. Barndorff-Nielsen and Shephard (2004a, 2006) 

initiated a method which separates the realised variance measure into a continuous 

component and a jump component. Subsequently, many other nonparametric tests 

have been proposed, which includes Jiang and Oomen (2008), Corsi et al. (2010), 

Podolskij and Ziggel (2010) and Andersen et al. (2012). However, all these tests only 

tell us on which day the jumps occur, but cannot detect the exact timing of the jumps. 

Andersen et al. (2007) and Lee and Mykland (2008) develop tests, on the other hand, 

which can detect the occurrence of jumps at the intraday level. However, 
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nonparametric jump tests can only detect large jumps, small jumps cannot be detected 

and the average size of jumps is overestimated. 

 

Many studies document the existence of jumps in high-frequency prices, typically 

recorded at least once every five minutes, which includes Huang and Tauchen (2005), 

Andersen et al. (2007), Lee and Mykland (2008), Lee and Hannig (2010) and Evans 

(2011). These papers have studied the equity market and all authors identify some 

returns which are too large to be explained by a diffusion process; the typical 

frequency of these large returns is one every two weeks. Lahaye et al. (2011), Dungey 

et al. (2009) and Dungey and Hvozdyk (2012) further present some evidence of the 

occurrence of jumps in foreign exchange and Treasury bond markets. 

 

On the other hand, not so many researchers have investigated cojumps, which are 

simultaneous jumps in the prices of two or more assets. Dungey et al. (2009) and 

Dungey and Hvozdyk (2011) explore the U.S. Treasury market, Lahaye et al. (2011) 

investigate the U.S. equity indices, U.S. Treasury bond index and the dollar exchange 

rates, while Gilder et al. (2014) study the S&P 500 index and 60 of its constituent 

stocks. All these studies examine the timing of cojumps relative to macroeconomic 

news announcements, while similar macro investigations for jumps are detailed in 

Andersen et al. (2003, 2007). 

 

We employ the non-parametric tests of Andersen et al. (2007) and Lee and Mykland 

(2008) to extract jumps and cojumps from foreign exchange rates in this thesis. In the 

proposed implementation, the tests compare one-minute returns with critical values 

dependent on a significance level, daily measures of price variation calculated from 
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bipower and estimates of the intraday volatility pattern described in Taylor (2005). As 

dollar rates move together, and since cross rates are constrained by no-arbitrage 

equations, we expect that when one rate jumps many others will also jump. We will 

examine the number, sign and size of foreign exchange rate jumps, and will compare 

the number of cojumps with expectations derived from no-arbitrage principles. 

 

This thesis also contains new results about density forecasts for asset prices. Density 

forecasts are of importance to central bankers, risk managers and other decision takers 

for activities such as policy-making, risk management and derivatives pricing. They 

can also be used to assess market beliefs about economic and political events when 

derived from option prices. 

 

Volatility forecasts produce forward-looking information about the volatility of the 

asset price in the future, while density forecasts are more sophisticated, as they 

provide information about the whole distribution of the asset’s future price. Since 

option prices reflect both historical and forward-looking information, volatility 

forecasters might rationally prefer implied volatilities from option prices to realised 

variance calculated from historical time series. We anticipate a similar preference 

could apply to density forecasts. There is a considerable literature comparing 

volatility forecasts obtained from option prices with volatility forecasts obtained from 

the history of asset prices. Blair et al. (2001), Jiang and Tian (2005), Giot and Laurent 

(2007) and Busch et al. (2011) state that option forecasts are more informative and 

accurate than historical forecasts of index volatility even when the historical 

information set includes high-frequency returns.1 Few studies, however, make similar 

                                                              
1 Further comparisons are in Poon and Granger (2003), Martens and Zein (2004) and Taylor et al. (2010). 
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comparisons for density forecasts. Liu et al. (2007), Shackleton et al. (2010) and Yun 

(2014) provide comparisons for UK and US stock indices, Hog and Tsiaras (2010) 

focus on crude oil prices, Ivanova and Gutierrez (2014) look at interest rates, and 

Trujillo-Barrera et al. (2012) investigate lean hog futures prices. These studies show 

option-based density forecasts outperform historical forecasts for a one-month 

horizon. There are no known previous results for individual stocks, so a major 

contribution of this thesis is to provide the first comparison for density forecasts 

obtained from option prices and historical intraday returns for individual stocks. 

 

Many methods have been proposed to obtain risk-neutral densities from option prices. 

Parametric methods include a lognormal mixture (Ritchey, 1990; Jondeau and 

Rockinger, 2000), a generalised beta distribution (Anagnou-Basioudis et al., 2005; 

Liu et al., 2007), and a lognormal-polynomial (Madan and Milne, 1994; Jondeau and 

Rockinger, 2000). Other approaches include discrete probabilities (Jackwerth and 

Rubinstein, 1996), a nonparametric kernel regression (Ait-Sahalia and Lo, 1998; 

Bates, 2000), and densities obtained from implied volatility splines (Bliss and 

Panigirtzoglou, 2002). All these methods, however, only provide densities for 

horizons which match option expiry dates. We instead fit a stochastic process, to 

obtain densities for all horizons, following the innovative methodology of Shackleton 

et al. (2010). 

 

As the implied volatility smile effect indicates that risk-neutral densities are not 

lognormal and volatility is not constant, some studies use a stochastic process to 

model volatility. Heston (1993) assumes the volatility follows a mean-reverting 

square-root process and gives a closed form solution for option prices. We use 
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Heston’s model in this thesis as its parameters can be calibrated from daily option 

records and it also has a tractable density formula based on inverting characteristic 

functions. Extensions of the Heston (1993) model are in Bates (1996) who also 

incorporates jumps, and in Duffie et al. (2000), Eraker (2004), Eraker et al. (2003) 

and Pan (2002) who include a jump process in both price and volatility components. 

However, we do not evaluate a jump component because Bakshi et al. (2003) and 

Shackleton et al. (2010) both find that adding jumps does not improve their empirical 

results much. Furthermore, our nonparametric transformations can systematically 

improve mis-specified risk-neutral densities. 

 

We compare density forecasts derived from option prices using the Heston (1993) 

model and forecasts obtained from historical time series using the Corsi (2009) 

Heterogeneous Autoregressive model of Realised Variance (HAR-RV). However, the 

risk-neutral density is a suboptimal forecast of the future distribution of the asset price 

as there is no risk premium in the risk neutral world, while in reality investors are 

risk-averse. Hence we need to use economic models and/or econometric methods to 

transform risk-neutral densities into real-world 2  densities. Pricing kernel 

transformations include power and/or exponential utility functions (Bakshi et al., 2003; 

Bliss and Panigirtzoglou, 2004; Liu et al., 2007), and the hyperbolic absolute risk 

aversion (HARA) function (Kang and Kim, 2006). Liu et al. (2007) use both utility 

and statistical calibration transformations, and they show that statistical calibration 

gives a higher log-likelihood than a utility transformation. Shackleton et al. (2010) 

compare parametric and nonparametric transformations, obtaining good results for the 

                                                              
2 Similar to Liu et al. (2007) and Shackleton et al. (2010), we use “real-world” rather than other alternative 
adjectives, such as “risk-adjusted”, “statistical”, “empirical”, “physical”, “true”, “subjective” and “objective”, etc., 
which are all used in the literature to indicate that the price distributions incorporate risk preferences. 
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latter. Hence we also transform the risk-neutral densities into real-world densities 

using a nonparametric transformation. 

 

Early studies including Bakshi et al. (2003), Bliss and Panigirtzoglou (2004) and 

Anagnou-Basioudis et al. (2005) use the full dataset to make risk-transformations. 

The real-world densities obtained are then ex post because each forecast is made 

using some information from later asset prices. However it is best to apply ex ante 

transformations as in Shackleton et al. (2010). Thus we only use past and present asset 

and option prices to construct real-world densities. We investigate seventeen stocks 

from the Dow Jones 30 Index for four horizons ranging from one day to one month 

for the period from 2003 to 2012. 

 

The rest of the thesis is structured as follows. Chapter 2 reviews the related literature 

on high-frequency price dynamics. It discusses variation measures, market 

microstructure noise, daily and intraday nonparametric jump tests, cojump tests, 

macroeconomic news announcements and some empirical evidence. 

 

Chapter 3 uses the ABD and the LM jump detection tests to detect intraday price 

jumps for ten foreign exchange rates and cojumps for six groups of two dollar rates 

and one cross rate at the one-minute frequency for five years from 2007 to 2011. The 

null hypothesis that jumps are independent across rates is rejected as there are far 

more cojumps than predicted by independence for all rate combinations. Some 

clustering of jumps and cojumps are also detected and can be related to the 

macroeconomic news announcements affecting the exchange rates. The selected ABD 

and LM jump detection tests detect a similar number of jumps for ten foreign 
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exchange rates. 

 

Chapter 4 reviews the relevant literature on volatility and density forecasts, which 

includes high-frequency data, options information in volatility forecasts, methods to 

extract risk-neutral densities from option prices, transformations from risk-neutral 

densities into real-world densities, applications of density forecasts to estimate the 

risk aversion of investors, infer probabilities of future market changes and manage 

risk, and the methods to evaluate density forecasts. 

 

Chapter 5 compares density forecasts for the prices of Dow Jones 30 stocks, obtained 

from 5-minute high-frequency returns and daily option prices. We use the Heston 

model which incorporates stochastic volatility to extract risk-neutral densities from 

option prices. From historical high-frequency returns, we use the HAR-RV model to 

calculate realised variances and lognormal price densities. We use a nonparametric 

transformation to transform risk-neutral densities into real-world densities and make 

comparisons based on log-likelihoods for four horizons ranging from one day to one 

month. For the sixty-eight combinations from seventeen stocks for four horizons, the 

transformed lognormal Black-Scholes model gives the highest log-likelihoods for 

fifty-nine combinations. The HAR-RV model and the Heston model have similar 

forecast accuracy for different horizons, either before or after applying a 

transformation which enhances the densities. 

 

Finally, Chapter 6 summarises the thesis and draws some conclusions. It also points 

out possible directions of future research. 
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2. High frequency price dynamics literature 

 

2.1 Introduction 

 

High-frequency data research has prospered in the last 20 years after several studies 

were presented at the Olsen & Associates conference in 1995. New ideas have been 

generated as fast as data availability and computational power, which permitted the 

focus to shift from daily frequency to very high-frequency intraday data. 

 

Financial markets are now known to possess significant price discontinuities, called 

jumps, in financial time series data. Many recent theoretical and empirical studies 

have confirmed the existence of jumps and their substantial influence on hedging risks 

and exposure to derivatives using underlying assets under certain circumstances. 

Faced with unpredictable jumps, there are some risks which we can no longer hedge 

and researchers find that jumps are empirically difficult to detect as only discrete data 

are available from continuous-time models. 

 

This chapter reviewing high-frequency literature is organized as follows. Section 2.2 

looks at various variation measures including realised variance (RV), bipower 

variation (BV), quadratic variation (QV) and integrated variance (IV). Section 2.3 

investigates microstructure noise and the optimal sampling frequency. Section 2.4 

explores a range of jump detection test methods and their empirical implications. 

Section 2.5 looks into a different area of research of cojumps and Section 2.6 studies 

the effects between macroeconomic news announcements and jumps. Section 2.7 

summarizes and concludes. 
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2.2 Variation measures 

 

A general jump diffusion process has price dynamics given as 

݀ ௧ܲ ൌ ݐ௧݀ߤ	 ൅	ߪ௧݀ ௧ܹ ൅ ௧݀ߢ ௧ܰ                  (2.1) 

where ௧ܲ is the logarithmic price of the asset, ߤ௧ is the drift of the logarithmic asset 

price, ߪ௧ is the volatility process and can be stochastic, ߢ௧ is the size of any jump in 

௧ܲ at time t, ௧ܹ is a standard Wiener process and ௧ܰ is a Poisson process counting 

the number of jumps from time 0 to t inclusive. Various variation measures are 

explored to better capture the dynamic properties of the high-frequency price data. 

 

2.2.1 Integrated variance 

 

The integrated variance IVt for day t is the quantity stated in (2.2) 

ܫ ௧ܸ ൌ 	 න ݏሻ݀ݏଶሺߪ

௧

௧ିଵ

.																																																				ሺ2.2ሻ 

IVt equals the variation of the continuous component. The notation is for one interval 

of time from t-1 to t and conceptually the total continuous variation of a day can be 

summed up by integrating the variance through the day and is a random quantity. 

 

2.2.2 Quadratic variation 

 

The quadratic variation QVt for day t includes the variation of the jump component. It 

is characterised as the summation of the integrated variance and the squared jumps as 

in (2.3) 
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ܳ ௧ܸ ൌ 	 ܫ ௧ܸ ൅ 	 ෍ ሺ2.3ሻ																																													ሻݏଶሺߢ
௧ିଵஸ௦ஸ௧

 

QVt is a measure of the total variation during the day. Prices move for one of the two 

reasons, either due to diffusion or owing to jump. Movements caused by diffusion are 

reflected in the first term IVt, while movements as a result of jumps are captured in the 

second term of squared jumps. The difference between QVt and IVt isolates the jump 

contribution to price variation. 

 

2.2.3 Realised variance and realised range-based variance 

 

Realised variance measures how much the prices move over periods of time. Suppose 

each daily return ݎ௧ is the sum of ܰ intraday returns, where ܰ is a positive integer. 

Hence the day is subdivided into ܰ parts and in each part there is an intraday return 

which is usually small. Changing the number ܰ will change the values of intraday 

returns. The representation is given as: 

,	௧,௝,ேݎ ݆ ൌ 1, 2, … ,ܰ 

where t denotes the day, j indicates the intraday period and ܰ counts the number of 

intraday periods. Andersen and Bollerslev (1998), Andersen et al. (2001) and 

Andersen et al. (2003) propose the realised variance RVt(N) for day t in (2.4) 

ܴ ௧ܸሺܰሻ ൌ ො௧,ேߪ
ଶ ൌ 	෍ݎ௧,௝,ே

ଶ

ே

௝ୀଵ

																																											ሺ2.4ሻ 

 

Christensen and Podolskij (2007) suggest the intraday realised range-based variance 

(RRV). This estimator differs from RV, which sums squared returns over intraday 

periods, but instead uses the difference between the highest and the lowest price 
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during the period. It is defined as 

ܴܴ ௧ܸሺܰሻ ൌ
1
ଶ,ேߣ

෍ݏ௧,௝,ே
ଶ

ே

௝ୀଵ

																																											ሺ2.5ሻ 

where ൛ݏ௧,௝,ேൟ௜ୀଵ,…,ே are the observed ranges of the intraday intervals of the log 

prices, and ߣଶ,ே is a normalizing constant. This daily range measure is preferred 

because it provides a more efficient estimator of daily variance than squared daily 

returns. Martens and van Dijk (2007) also show empirically that the realised range has 

a lower mean squared error than the realised variance by using S&P 500 futures and 

S&P 100 constituent stocks. 

 

2.2.4 Bipower variation and other variance estimators 

 

Barndorff-Nielsen and Shephard (2004a) show that a quantity called bipower 

variation is to some degree robust to rare jumps in the log-price process. They also 

provide the first robust method which splits quadratic variation into its continuous and 

jump components, without making strong parametric assumptions, and this stimulated 

significant discussions about bipower variation consequently. The term BVt(N) for day 

t is defined in (2.6) as 

ܤ ௧ܸሺܰሻ ൌ 	
ܰߨ

2ሺܰ െ 1ሻ
	෍ 	หݎ௧,௝ିଵ,ேห

ே

௝ୀଶ

หݎ௧,௝,ேห																														ሺ2.6ሻ 

 

where 2 ⁄ߨ  comes from a standard normal variable z, for which ܧሾ|ݖ|ሿ ൌ 	ඥ2 ⁄ߨ ; the 

multiplier N / (N - 1) is used to ensure an unbiased estimate. If a jump occurs in either 

one of successive absolute returns in (2.6) but not both, then a big return is multiplied 

by a small return and this results in a small number. Hence a jump will not have big 
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effect on BVt(N) but will have a much larger impact on RVt(N), and the difference 

between the two helps to identify the jump component. 

 

Though Barndorff-Nielsen and Shephard (2004a, 2006) show that the bipower 

variation BVt(N) converges to the true underlying quantity of integrated variance IVt 

and the realised variance RVt(N) converges to the quadratic variation QVt, as the 

sampling frequency N approaches to infinity, when microstructure noise is ignored as 

in (2.1). However, we need to choose N to simultaneously avoid bias from 

microstructure effects and measurement errors in BVt(N) and RVt(N). 

 

Motivated by the idea of bipower variation and transformed power functions, Mancini 

(2004, 2009) and Jacod (2008) propose a jump-robust variance estimator, the 

threshold realised variance (TRV), which is given as 

ܴܶ ேܸ ൌ෍หݎ௧,௝ห
ଶ
1൛ห௥೟,ೕหழ௖ேషഘഥ ൟ

ே

௝ୀଵ

,			for	 ഥ߱ 	 ∈ ሺ0, 1 2⁄ ሻ.																					ሺ2.7ሻ 

 

The choices ഥ߱ ൌ 0.47  and ܿ ൌ ܸܫ√6 , and IV is estimated using BV, as 

recommended by Ait-Sahalia and Jacod (2009). Lowering the value of c could 

introduce a downward bias but will also give more robustness to jumps. 

 

Though BV is an efficient estimator of IV asymptotically, Andersen et al. (2012) 

argue that the BV estimator is not robust to jumps and may cause an upward bias. 

They suggest the MinRV and MedRV estimators of integrated variance in (2.8) 

ܴ݊݅ܯ ேܸ ൌ
ߨ

ߨ െ 2
ሺ

ܰ
ܰ െ 1

ሻ෍݉݅݊	ሺหݎ௧,௝ห, หݎ௧,௝ାଵหሻଶ
ேିଵ

௝ୀଵ

 



13 
 

ܴ݀݁ܯ ேܸ ൌ
ߨ

6 െ 4√3 ൅ ߨ
൬

ܰ
ܰ െ 2

൰෍݉݁݀൫หݎ௧,௝ିଵห, หݎ௧,௝ห, หݎ௧,௝ାଵห൯
ଶ

ேିଵ

௝ୀଶ

	ሺ2.8ሻ 

 

When a large jump occurs in one of the consecutive returns, the MinRV or the 

MedRV estimators will simply square the minimum or the median of the adjacent 

diffusive term. 

 

Christensen et al. (2010) introduce the quantile-based variance (QRV) estimator, 

which is efficient, and robust to jumps and outliers. Their modified form estimator is 

also immune to microstructure noise and hence can be applied on high-frequency data. 

QRV is similar to RRV and we replace intraday ranges with intraday quantiles. The 

detected jumps may affect the extreme quantiles, but the impact can be ignored if the 

quantiles are not used in estimation. More than one quantile can be used in estimation 

to improve efficiency. Simulation results show that QRV is more robust than BV in 

finite samples. 

 

2.3 Market microstructure noise 

 

Microstructure noise results from many sources and can be categorised into two 

groups according to Hansen and Lunde (2006) and Ait-Sahalia et al. (2011). The 

discrete microstructure noise refers to the tick size, which is the minimum allowed 

asset price change, and the positive bid ask spread. The residual microstructure noise 

focuses on the trading environment and includes effects from order flow, block trades 

and asymmetry information. Diebold and Strasser (2013) investigate microstructure 

noise from an economic perspective. 
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If there are no microstructure effects, the realised variance is a fairly accurate measure 

of the price variation, and it becomes more accurate as the sampling frequency 

increases. But the presence of the microstructure noise creates the problem of 

choosing the appropriate sampling frequency when we study high-frequency data. 

Consequently many studies investigate how to correct microstructure bias when 

estimating the RV. 

 

2.3.1 Volatility signature plot and choosing the appropriate frequency 

 

Some studies investigate the volatility signature plot. The volatility signature plot 

shows the average realised variance, which is an average measure of variance across 

time, i.e. 

ேܸ ൌ
1
ܯ
෍ߪො௧,ே

ଶ

ெ

௧ୀଵ

 

The length of the return interval is 1 ܰ⁄  and the database covers ܯ days. If there 

was no microstructure noise, the number ேܸ  would be approximately constant 

irrespective of the number ܯ. Appropriate values of N should be found for which ௡ܸ 

is approximately the same for 1 ൑ ݊ ൑ ܰ , consequently ߪො௧,ே
ଶ  is free from 

microstructure bias. 

 

The volatility signature plots of forty U.S. equities from a working paper version 

(dated 29th May 2007) of Bollerslev et al. (2008) present some examples. A typical 

U-shaped signature plot of Exxon Mobil starts high, comes down, and then becomes 

flat. The microstructure noise gives no extra variation when the length of the return 
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interval exceeds twenty minutes. Bollerslev et al. (2008) state that 17.5-minute is an 

appropriate time between prices for large American firms. 

 

Other researchers also use volatility signature plots to choose the optimal sampling 

frequency to minimize the bias from microstructure noise. Hansen and Lunde (2006) 

perform empirical analysis of Dow Jones Industrial Average 30 stocks and indicate 

that the microstructure noise can be neglected when intraday returns are sampled at 

lower frequencies, such as 20-minute interval. Bandi and Russell (2006) investigate 

S&P 100 constituent stocks and state that the 5 minute sampling frequency is optimal 

to maximize the accuracy of variance estimates and minimize the noise from 

microstructure effects. Andersen et al. (2007) indicate that two-minute is an 

appropriate frequency for the S&P 500 index which is a popular U.S. index. The 

two-minute frequency contains a lot of information and is a very high frequency. 

 

2.3.2 Kernel-based estimators 

 

Zhou (1996) is one of the first to suggest kernel-based estimators to correct the bias 

resulting from autocorrelation induced by microstructure noise. Kernel-based 

estimators correct the bias by including auto-covariance terms in the estimators. 

Hansen and Lunde (2006) also apply the kernel-based estimators and claim that the 

microstructure noise correlates with the price and is time-dependent. 

 

2.3.3 Subsampled estimators 

 

Zhang et al. (2005) introduce a new two-scale realised variance (TSRV), and they 
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claim that it is unbiased and more efficient than the RV estimator. Zhang (2006) 

further improves the TSRV and proposes the multi-scale realised variance (MSRV). 

Ait-Sahalia et al. (2011) extend the TSRV and the MSRV under more general 

assumptions. 

 

2.3.4 Pre-averaging estimators 

 

Podolskij and Vetter (2009a, b) and Jacod et al. (2009) introduce the idea of 

pre-averaging, where the variance estimators are obtained from price averages over 

short time intervals and can reduce microstructure noise. Simulation results show that 

pre-averaging variance estimators have lower variance and are less biased. 

 

2.4 Jump detection test methods 

 

There are in general two large groups of nonparametric jump detection tests. The first 

category can examine the exact timing of the occurrence of the jumps, while the 

second group only investigates if a jump occurs or not, but cannot give the exact 

timing of the jump arrival. The first category can be further subdivided into daily and 

intraday jump tests, where the former looks at the day when the jump is present and 

the latter focuses on the intraday intervals. Some empirical evidence regarding jump 

tests in different asset markets is also presented in their detection. 

 

2.4.1 Daily nonparametric jump tests 

 

Barndorff-Nielsen and Shephard (2004a, 2006) (BNS) propose a daily jump detection 
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test method based on comparing the statistical difference between the two variation 

measures, RV and BV, and the null hypothesis states that there is no jump on the day. 

 

Huang and Tauchen (2005) expand the set of plausible test statistics. They study the 

fractional difference between the two measures of variation relative to the total, which 

is the relative proportion of variation attributed to jumps. They suggest comparing the 

relative jump measure 

௧ܬܴ ൌ 	
ܴ ௧ܸ െ	ܤ ௧ܸ

ܤ ௧ܸ
																																																									ሺ2.9ሻ 

 

with a consistent estimate of the standard error. The test statistic is 

௧ݖ ൌ 	
௧ܬܴ
ඥ ௧ܻ

	 , with 

௧ܻ ൌ ܿܰିଵ max ቆ1,
ܶ ௧ܲ

ܤ ௧ܸ
ଶቇ	, ܿ ≅ 0.609 

ܶ ௧ܲ ൌ 	
݀ܰଶ

ܰ െ 2
	෍หݎ௧,௝ିଶ,ேห

ସ/ଷ
หݎ௧,௝ିଵ,ேห

ସ/ଷ
หݎ௧,௝,ேห

ସ/ଷ
ே

௝ୀଷ

, ݀ ≅ 0.831ିଷ 

 

and ඥ ௧ܻ	is the standard error. Barndorff-Nielsen and Shephard (2004a) states that 

ܶ ௧ܲ is the tripower quarticity which estimates the integrated fourth power of volatility. 

The test statistic is compared with the standard normal distribution. As N increases, 

the null distribution of ݖ௧ converges to the standard normal when microstructure 

effects are ignored. The jump is detected when the value of |ݖ௧| is very large. 

 

Christensen and Podolskij (2007) implement a jump test similar to the BNS test, but 

the test is based on the statistical difference between RRV and range-based BV, and 
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the simulations indicate that the test has better power but worse size compared to the 

BNS test. Podolskij and Vetter (2009b) again propose a method similar to the BNS 

test, but using pre-averaging variance estimators. Jiang and Oomen (2008) also 

introduce a BNS-type jump test which is based on variance swaps. 

 

2.4.2 Intraday nonparametric jump tests 

 

Andersen, Bollerslev and Dobrev (2007) (ABD) apply an alternative test that 

determines which returns exhibit significant evidence of a jump. The idea is to inspect 

the total variation when the null hypothesis asserts that the price process is a diffusion. 

If the null is correct, BV can estimate the total variation. The total variation ܤ ௧ܸሺܰሻ 

for day t is then divided equally into N parts for each part of the day. After taking the 

square root, we multiply the standard deviation by some constant ܿே  which is 

determined by the significance level of the hypothesis test and the cumulative 

distribution function (c.d.f.) of the standard normal distribution. A jump is detected 

from a return whenever 

หݎ௧,௝,ேห ൐ 	 ܿே	ඥܰିଵܤ ௧ܸሺܰሻ.																																												ሺ2.10ሻ 

 

If (2.10) holds, the absolute return is large relative to what is expected over a short 

interval of time. The multiplier ܿே also needs to be considered to determine if the 

returns are large or not, which is the critical value from the standard normal 

distribution and is determined by the daily significance level. 10-5 and 10-3  are two 

commonly chosen daily significance levels, because such small significance levels 

can help to protect against inaccurate bipower estimation, and the variation of the 

volatility during the trading day itself. Thus choosing small significance levels can 
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make the results more certain by avoiding random variation and inappropriate 

assumptions. For example, as in ABD, if the daily significance level is 10-5 and N = 

195 for 2-minute returns, then each return is tested under a level equal to 10-5/195 and 

ܿே ൌ 5.45. The reason for such a large number is due to the small daily significance 

level 10-5. A number in the region of 5x10-8 is produced when it is divided by the 

number of intervals in a day, and this is an extremely small probability. 

 

Lee and Mykland (2008) (LM) propose a new intraday jump detection test using 

high-frequency data. Unlike ABD, the test does not use BV, but refers to the 

distribution of the maximum values of the test statistic under the null hypothesis of a 

diffusion process. The choice of significance levels may ensure that only large jumps 

are being detected. Their Monte Carlo simulation results also show that the test has 

better size and power than the BNS test, where size is the probability of falsely 

rejecting the true null hypothesis, and is also referred as the probability of making a 

Type I error. While a Type II error is the failure to reject a false null hypothesis. 

 

Lee and Hannig (2010) extend the LM test and employ a combination of the QQ test 

and a belief measure to identify the presence of small jumps besides large jumps in 

financial markets. However, similar to the LM test, no adjustment is made for the 

intraday volatility pattern. 

 

Fan and Wang (2007) propose a wavelet method which removes the jumps and can 

estimate integrated volatility more accurately. Simulation results show that the 

wavelet test method has better size than the BNS test under the null hypothesis of no 

jumps. 
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2.4.3 Other nonparametric jump tests 

 

Ait-Sahalia and Jacod (2009) suggest a new test to detect jumps by considering power 

variation. The estimator is given as 

෠ܤ ൬݌,
1
ܰ
൰ ൌ෍หݎ௧,௝,ேห

௣
ே

௝ୀଵ

																																																	ሺ2.11ሻ 

where ݌ ൒ 2 and 
ଵ

ே
 is the interval during which the prices are observed and goes 

towards zero. They then compare the measure over two different time scales, and the 

jump test statistic is the ratio of the two 

መܵ ൬݌, ݇,
1
ܰ
൰ ൌ

෠ܤ ቀ݌, ݇ܰቁ

෠ܤ ቀ݌, 1ܰቁ
																																												ሺ2.12ሻ 

This test statistic converges to 1 or 2, respectively in the presence or absence of jumps, 

when ݌ ൌ 4 and ݇ ൌ 2 as suggested by Ait-Sahalia and Jacod (2009). 

 

Podolskij and Ziggel (2010) introduce a new jump detection test by comparing the 

difference between the realised power variation and a modified measure equivalent to 

the TRV in Mancini (2004, 2009). The estimator contains an indicator function equal 

to 1 when the threshold is satisfied and 0 otherwise. Their test uses the pre-averaging 

technique to minimize the bias attributable to microstructure effects. 

 

Corsi et al. (2010) employ a local variance based threshold estimator to detect jumps, 

and the test can identify spurious jumps which are large returns and reduce the bias. 

Specifically, they propose the threshold bipower variation by combining the bipower 

variation and threshold estimation. Empirically, they investigate S&P 500 index, US 
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individual stocks and bond yields, and show that their method can improve the 

forecasts of future volatility, particularly for periods after the occurrence of a jump. 

 

2.4.4 Empirical evidence 

 

ABD investigate two-minute returns from the S&P 500 futures contracts for the 17 

years between 1988 and 2004, and they find 382 detected jumps in 4126 days (so less 

than one in ten days) when the daily significance level is 10-5. The average bipower 

variation equals 95.6% of the average realised variance. 

 

Huang and Tauchen (2005) explore the S&P 500 index between 1997 and 2002. 

Between 15% and 28% of the days have significant values of z at the 5% significance 

level; hence the fraction of the days identified with jumps is much higher than the 

significance level. If the significance level is pushed down to 0.1%, still a large 

number of days are detected as having evidence of jump effects. 

 

Bollerslev et al. (2008) in their Figure 3 display test values of the firm Procter and 

Gamble (PG), of which 17 days have significant values of z at the significance level 

of 0.1%, from a dataset of 1246 days. Given the Type I error rate is approximately one 

out of a thousand for one day, there is evidence of significant jump effects. In terms of 

Type II errors, it is unknown how many jumps are undetected, but the jump detection 

tests may only find big jumps but fail to find small jumps. This can happen in a 

jump-diffusion model when the return is not big and the diffusion part dominates. 

 

Lee and Mykland (2008) perform an empirical study of U.S. equity markets and 
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collect high-frequency returns for three firms and the S&P 500 index, for a short 

period from 1st September to 30th November 2005. For individual stocks, jumps are 

related to firm-specific news releases such as scheduled earnings announcements, and 

other unscheduled news. For the index, jumps are associated with overall market news 

announcements including Federal Open Market Committee (FOMC) meetings and 

macroeconomic reports. 

 

2.5 Cojumps 

 

The previous section focuses on jumps in a univariate price process, and a natural 

extension is to consider the multivariate case. Few studies, however, investigate 

cojumps, which are simultaneous jumps in individual stocks, the index and other asset 

classes. 

 

2.5.1 Cojump tests 

 

Barndorff-Nielsen and Shephard (2004b) extend their univariate bipower approach to 

a multivariate case to identify cojumps between a pair of returns, but their theory is 

difficult to implement empirically. Gobbi and Mancini (2007) extend the TRV in 

Mancini (2004, 2009) to a bivariate setting. A cojump occurs if the threshold jump test 

identifies jumps simultaneously in both series. But they do not implement the test 

empirically. Jacod and Todorov (2009) extend the test in Ait-Sahalia and Jacod (2009) 

to a bivariate case. Two null hypotheses are tested on the days detected with jumps: 

the null hypothesis of common jumps must not be rejected, while the null of disjoint 

jumps must be rejected. 
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Bollerslev et al. (2008) conduct an empirical investigation based on high-frequency 

intraday returns for a sample of 40 large U.S. equities and the corresponding index of 

the same stocks over the sample period from 2001 to 2005. The index has fewer 

jumps than the individual stocks due to diversification of idiosyncratic jumps. They 

propose the mean cross-product (mcp) statistic given by the normalised sum of the 

intraday high-frequency returns as 

௧,௝݌ܿ݉ ൌ
2

݊ሺ݊ െ 1ሻ
෍ ෍ ௞,௧,௝ݎ௜,௧,௝ݎ

௡

௞ୀ௜ାଵ

௡ିଵ

௜ୀଵ

, for	݆ ൌ 1, 2, …  ,ܯ,

 

when there are M intraday returns for each of n assets. The test statistic is then 

studentised using daily means and standard deviations as 

௠௖௣,௧,௝ݖ ൌ
௧,௝݌ܿ݉ െ തതതതതത௧݌ܿ݉

௠௖௣,௧ݏ
, for	݆ ൌ 1, 2, …  ሺ2.13ሻ															,ܯ,

where 

തതതതതത௧݌ܿ݉ ൌ
1
ܯ
௧݌ܿ݉ ൌ

1
ܯ
෍݉ܿ݌௧,௝

ெ

௝ୀଵ

 

and 

௠௖௣,௧ݏ ൌ ඩ
1

ܯ െ 1
෍ሺ݉ܿ݌௧,௝ െ തതതതതത௧ሻଶ݌ܿ݉
ெ

௝ୀଵ

. 

 

Bollerslev et al. (2008) do not identify an asymptotic distribution for this statistic but 

use a bootstrap to get the distribution under the null hypothesis of no jumps. 

 

Caporin et al. (2014) introduce a novel nonparametric test for economically and 
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statistically significant multivariate jumps for an arbitrary number of stocks. The test 

compares two smoothed power variations, and high values of the test statistics 

indicate a multi-jump among the stocks. 

 

2.5.2 Empirical evidence 

 

Dungey et al. (2009) implement the BNS test on 2, 5, 10 and 30-year bond prices, a 

cojump occurs when more than one bond price jumps on the day. The occurrence of 

cojumps is related to scheduled macroeconomic news announcements. Dungey and 

Hvozdyk (2011) employ the Jacod and Todorov (2009) cojump test on spot and 

futures U.S. Treasury contracts and they find that cojumps occur more frequently 

when the bond contracts have shorter maturities. 

 

Lahaye et al. (2011) employ both ABD and LM tests to detect jumps and cojumps 

from three asset classes including stock index futures, US Treasury bond futures, and 

four foreign exchange rates and link them to U.S. macroeconomic news releases. 

They find that exchange rates and equities have frequent but small jumps, while bond 

prices have relatively large jumps. 

 

Gnabo et al. (2014) extend both the LM jump test and the mcp statistic of Bollerslev 

et al. (2008) to a bivariate setting, and implement on S&P 500 futures, 30-year US 

Treasury bond futures and USD/JPY exchange rate to identify cojumps between bond 

and index futures, and between bond and F/X rate. In contrast to previous research, 

they find a positive correlation between stocks and bonds as the majority of cojumps 

occur for returns with the same sign. The frequency of cojumps is relatively stable but 
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increases during the crisis period. 

 

Gilder et al. (2014) use BNS, ABD and LM tests to detect jumps from 60 liquid US 

stocks and the Spyder ETF (SPY), and then use a coexceedance criterion to detect 

cojumps. They argue that this method has similar power to the mcp statistic in 

Bollerslev et al. (2008), but it cannot detect all cojumps. They also find the 

coexceedance based detection methods can detect systematic cojumps in the index 

and the underlying individual stocks. They also present evidence for an association 

between the systematic cojumps and the Federal Funds Target Rate announcements. 

 

2.6 Macroeconomic news announcements 

 

Intraday volatility and the occurrence of jumps tend to be related to macroeconomic 

news announcements. The average level of volatility is not constant but depends on 

the time of the day and has a significant intraday variation. The U-shaped curve starts 

high, comes down in the middle of the day and then goes up again as the day ends. 

Volatility also increases substantially around the times of important scheduled 

macroeconomic news announcements. 

 

Evans (2011) investigates the statistically significant intraday jumps in S&P500 

E-Mini, 10-Year US Treasury Bond and EUR/USD futures markets and their relation 

to US macroeconomic news announcements. Evans and Speight (2011) explore the 

association between 5-minute EUR/USD, EUR/GBP and EUR/JPY exchange rates 

and the scheduled macroeconomic news releases in US, UK, Japan and Eurozone. 
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2.7 Summary of nonparametric jump evidence 

 

With the help of various variation measures, a range of jump detection test methods 

have been proposed. However, many jump identification techniques only find jumps 

during a minority of days. There is also a possibility that a lot of small jumps in asset 

prices are not detected as quite a number of methods may only have power to find 

large jumps. The methods have been utilised on the index as well as the individual 

firms, leading to the research into cojumps. Macroeconomic news announcements 

also have an influence on the occurrence and size of the jumps. 
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3. Price jumps and cojumps in the foreign exchange market 

 

3.1 Introduction 

 

This chapter will detect jumps in foreign exchange rates and search for jumps which 

appear simultaneously in many rates. Explanations for jumps, such as macroeconomic 

news announcements, will be explored. A deeper understanding of jumps has 

practical implications for high-frequency traders, designers of trading systems and 

risk managers. Although there are now many results for U.S. equity indices, there are 

few results so far for foreign exchange data. 

 

There is a long-running debate whether continuous time processes for asset prices 

contain a jump component generated by a compound Poisson process besides a 

diffusion component driven by a Brownian motion process. A significant amount of 

literature, including Duffie et al. (2000), Pan (2002), Eraker et al. (2003) and Eraker 

(2004), has argued from low-frequency evidence that the jump component should be 

included. 

 

Following this, many nonparametric tests have been proposed to detect the occurrence 

of jumps using high-frequency data. The breakthrough work of Barndorff-Nielsen and 

Shephard (2004a, 2006) employed a method which separates the realised variance 

measure into a continuous component and a jump component. Subsequently, many 

other nonparametric tests have been proposed, which includes Jiang and Oomen 

(2008), Corsi et al. (2010), Podolskij and Ziggel (2010) and Andersen et al. (2012). 

However, all these tests only detect on which day the jumps occur, but cannot tell the 
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exact timing of the presence of the jumps. Andersen et al. (2007) and Lee and 

Mykland (2008) develop tests, on the other hand, which can detect the occurrence of 

jumps at the intraday level. 

 

The Andersen et al. (2007) jump test can identify the exact timing of intraday jumps, 

hence it is particularly helpful for investigating the effects of macroeconomic news 

announcements on jumps and cojumps. The Lee and Mykland (2008) jump detection 

technique possesses a similar property and is thus employed here and the number and 

timing of jumps detected under the two methods are compared. Scheduled 

macroeconomic news announcements are among the most important factors that may 

cause foreign exchange rate jumps. 

 

The existence of jumps in high-frequency prices, typically recorded at least once 

every five minutes, has been established in several recent papers, including Huang 

and Tauchen (2005), Andersen et al. (2007), Lee and Mykland (2008), Lee and 

Hannig (2010) and Evans (2011). These papers have studied the equity market and all 

authors identify some returns which are too large to be explained by a diffusion 

process; the typical frequency of these large returns is one every two weeks. Lahaye 

et al. (2011), Dungey et al. (2009) and Dungey and Hvozdyk (2012) further present 

some evidence of the occurrence of jumps in foreign exchange and Treasury bond 

markets. 

 

However, not so many papers have investigated cojumps, which are simultaneous 

jumps in the prices of two or more assets. Dungey et al. (2009) and Dungey and 

Hvozdyk (2012) explore the U.S. Treasury market, Lahaye et al. (2011) investigate 
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the U.S. equity indices, U.S. Treasury bond index and the dollar exchange rates, while 

Gilder et al. (2014) study the S&P 500 index and 60 of its constituent firms. All these 

studies explore the timing of cojumps relative to macroeconomic news 

announcements, while similar macro investigations for jumps can be found in 

Andersen et al. (2003, 2007). 

 

In this study, the non-parametric ABD and LM tests are employed to extract jumps 

and cojumps from foreign exchange rates. In our proposed implementation, the tests 

compare one-minute returns with critical values dependent on a significance level, 

daily measures of price variation calculated from bipower and estimates of the 

intraday volatility pattern described in Taylor (2005). As dollar rates move together, 

and since cross rates are constrained by no-arbitrage equations, we anticipate that 

when one rate jumps many others will also jump. We will document the number, sign 

and size of foreign exchange jumps, and will compare the number of cojumps with 

expectations derived from no-arbitrage principles. 

 

The chapter is organised as follows. Section 3.2 lays the theoretical foundation 

regarding the ABD and LM jump detection test methods which are employed 

subsequently. Section 3.3 describes the data. Section 3.4 presents empirical analysis 

of ten foreign exchange rates. Section 3.5 summarises the findings and concludes. 
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3.2 Methods 

 

3.2.1 Variation measures 

 

A general jump diffusion process has price dynamics similar to that of equation (2.1) 

in Chapter 2. Similar definitions also apply to integrated variance IVt, quadratic 

variation QVt, realised variance RVt(N) and bipower variation BVt(N) in equations (2.2) 

to (2.4) and (2.6) in Chapter 2. 

 

3.2.2 ABD jump detection test 

 

Andersen et al. (2007) have developed the test method that identifies which return 

displays significant evidence that there is a jump. The ABD test uses the bipower 

variation to estimate daily volatility under the null hypothesis of a diffusion process. 

We use a modified jump detection test which takes account of the intraday volatility 

pattern to count the number of detected jumps. A jump is detected if  

หݎ௧,௝,ேห 	൐ 	 ܿே	ටݏ௝,ே
ଶ ܤ ௧ܸሺܰሻ,																																																	ሺ3.1ሻ 

 

with ܿே determined by the significance level of the hypothesis test. Hence we do not 

allocate the total variation BVt(N) of one day t equally to every short period of time, 

but allocate more total variation to those parts of the day with high volatility, where 

௝,ேݏ
ଶ  is the average fraction of the sample variation of all returns in period j divided by 

the sample variance of all intraday returns. If the variation is relatively high during 

some part of the day, then ݏ௝,ே
ଶ  is greater than one, and we will get a large number on 



31 
 

the right hand side of the equation and it may be harder to find evidence of a jump. 

 

3.2.3 LM jump detection test 

 

The LM test first defines the statistic ܮ௧,௜, which equals the return on day t during the 

intraday period i. The quantity ܮ௧,௜  scaled by an estimate of volatility for one 

intraday period in time increment i is given as 

௧,௜ܮ ൌ
௧,௜ݎ

ො௅ெ,௧,௜ߪ
																																																													ሺ3.2ሻ 

where ݎ௧,௜ is the intraday return on day t in increment i, and the variation σෝ௅ெ,௧,௜
ଶ  is 

defined as 

σෝ௅ெ,௧,௜
ଶ ൌ

1
ܭ െ 2

෍ หݎ௧,௝ห

௜ିଵ

௝ୀ௜ି௄ାଶ

หݎ௧,௝ିଵห																																			ሺ3.3ሻ 

 

for some window size K. Since the variation σෝ௅ெ,௧,௜
ଶ  is used for the instantaneous 

volatility estimate in the denominator of the test statistic, the method employed is thus 

robust to the occurrence of jumps in prior intraday periods. We neglect the drift part 

as we use the high-frequency data in our study, and the drift part is mathematically 

negligible relative to the diffusion and the jump component. The window size K is 

determined in a way that the jumps have no effect on the volatility estimation. Lee 

and Mykland (2008) suggest that ܭ ൌ ܯ√ ൈ 252 , where M is the number of 

increments per day and 252M is the number of observations in one year. 

 

We next focus on the selection of the rejection region. The test statistics will present 

different behaviour depending on the presence of jumps during the testing time. On 



32 
 

the one hand, if there is no jump from the test, the test statistics may follow an 

approximate normal distribution. On the other hand, if there are jumps, the test 

statistic will be very large, and the sample maximum converges to a Gumbel 

distribution. Although it is abnormal that we compare test statistics with critical 

values whose distribution is not normal, we simply follow Lee and Mykland (2008). 

We then need to decide how large the test statistic could be when there is no jump. An 

investigation of the asymptotic distribution of maximums of the test statistics with no 

jumps in increment i shows that a jump is detected if 

หܮ௧,௜ห ൐
ɛ

ܿ√2lnܯ
൅
√2lnܯ
ܿ

െ
ሺln4ߨ ൅ lnሺlnܯሻሻ

2ܿ√2lnܯ
																							ሺ3.4ሻ 

 

where ܿ ൌ ඥ2 ⁄ߨ , ɛ ൌ െln	ሺെ lnሺ1 െ  ሻሻ, and α represents the daily significanceߙ

level. In other words, the criterion to choose a rejection region is that if the test 

statistics are not in the usual region of maximums for a set of M intraday returns, it is 

unlikely that the return comes from the diffusion part of the jump diffusion model. 

 

3.3 Data 

 

High-frequency exchange rates data are obtained from forex tester website.3 We 

acquire the foreign exchange rates at the one-minute frequency for ten currency pairs, 

four of which are dollar rates for Euro, Pound, Yen and Swiss Franc while the other 

six are cross-rates. The data covers the time period from January 2007 to December 

2011. 

 

                                                              
3 www.forextester.com 
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Our time stamps are all for London time, which is Greenwich Mean Time (GMT) in 

the winter and British Summer Time (BST) in the summer. Throughout this chapter 

all times are for London. GMT is the local time from 1st January to the morning of 

the last Sunday of March, and then from the last Sunday of October to 31st December, 

while BST lasts from the last Sunday of March to the morning of the last Sunday of 

October. Foreign exchange rates operate in a 24-hour market. Our datasets contain 

records from 23:00 on Sunday until 21:00 on Friday, while there are no records from 

21:00 on Friday, the whole of Saturday and until 23:00 on Sunday, which is also 

consistent with the definition of weekends in Andersen and Bollerslev (1997) and 

Taylor (2005). Hence we define the time period from 23:00 on Sunday to 23:00 on 

Monday as our ‘Monday’. Similar time slot arrangements also apply for Tuesday, 

Wednesday and Thursday. We will then define the time from 23:00 on Thursday to 

21:00 on Friday as our ‘Friday’.  

 

We delete all price records on a day when there are more than 20 missing consecutive 

prices, and we fill up the missing minute’s price as the previous minute’s price if there 

are fewer than 20 missing records in a day. This is a standard method and we assume 

no price changes and zero returns when there are missing data, because usually this 

happens when there is no trading. Consequently there are 1278 days in our dataset, of 

which 1020 days are days from Monday to Thursday, and 258 days are Fridays. The 

detailed list of the days that are eliminated from 2007-2011 are displayed in Table 3.1. 

The days deleted are usually close to holidays such as New Year’s Day, Easter, 

Independence Day, Thanksgiving Day and Christmas. We notice that year 2010 has 

many more deleted days than others, which is probably due to the quality of the data 

(i.e., people did not record data properly). We calculate the return as the change in log 
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Table 3.1 

List of eliminated days from 2007 to 2011. 

2007 

24th December 31st December 

2008 

24th December 31st December 

2009 

24th December 31st December 

2010 

21st September 4th October 5th October 6th October 7th October 

21st October 25th November 30th November 27th December 28th December

29th December 30th December 

2011 

3rd July 11th September 
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prices, hence we have 1440 intraday returns from Monday to Thursday when there are 

24 trading hours per day (note there are no overnight returns as the foreign exchange 

market trades continuously 24 hours a day) and 1320 returns on Friday when we have 

22 trading hours on Friday. Finally we also calculate the variance proportions 

separately for Monday to Thursday and Friday as there are different numbers of 

intraday returns for the two categories. 

 

3.4 Empirical analysis 

 

3.4.1 Empirical properties of returns 

 

The mean, standard deviation, number and proportion of zero returns of the ten 

foreign exchange rates from 2007 to 2011 are presented in Table 3.2. In terms of 

returns, EUR/JPY and GBP/JPY exchange rates have relatively larger average 

magnitude of returns compared to the remaining eight foreign exchange rates, while 

EUR/GBP, EUR/USD and USD/CHF have the smallest mean returns of the ten 

foreign exchange rates data series. Only EUR/GBP has positive mean return over the 

sample period, whereas all the remaining nine foreign exchange rates have negative 

average return over the same period. In terms of standard deviation, EUR/JPY, 

GBP/JPY and CHF/JPY have comparatively larger standard deviation than the 

remaining seven foreign exchange rates, while EUR/GBP, EUR/USD, GBP/USD and 

EUR/CHF have the lowest standard deviation across all the foreign exchange rates 

data series. EUR/GBP has the largest number and proportion of zero returns, followed 

by USD/JPY, USD/CHF and EUR/CHF, which have more than 30% zero returns. All 

the remaining six foreign exchange rates have around 18% to 29% zero returns. 
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Table 3.2 

Statistical properties of the exchange rate returns from 2007 to 2011. 

2007 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 

Mean 1.97E-07 2.35E-07 3.99E-08 1.76E-07 -2.06E-08 -6.11E-08 6.84E-08 1.03E-07 -1.31E-07 -9.10E-08 

Standard deviation 0.000115 0.000108 0.000114 0.000173 0.000186 0.000166 0.000178 0.000091 0.000130 0.000123 

No. 0 returns 219648 165726 136356 94014 68031 141405 128400 137966 161927 84828 

% 0 returns 60.37% 45.55% 37.48% 25.84% 18.70% 38.86% 35.29% 37.92% 44.51% 23.31% 

2008 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 

Mean 6.83E-07 -1.69E-07 -8.49E-07 -6.22E-07 -1.31E-06 -4.55E-07 -4.02E-07 -2.20E-07 -5.28E-08 -9.04E-07 

Standard deviation 0.000226 0.000232 0.000245 0.000355 0.000381 0.000290 0.000333 0.000175 0.000249 0.000263 

No. 0 returns 138005 95158 92626 60031 46342 98772 85594 94217 108014 56125 

% 0 returns 37.92% 26.15% 25.45% 16.49% 12.73% 27.14% 23.52% 25.89% 29.68% 15.42% 

2009 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 

Mean -2.96E-07 2.93E-08 3.25E-07 1.17E-07 4.14E-07 8.98E-08 1.21E-07 -9.18E-09 -2.88E-08 2.97E-07 

Standard deviation 0.000222 0.000220 0.000263 0.000305 0.000352 0.000240 0.000304 0.000143 0.000229 0.000246 

No. 0 returns 118871 82916 76825 58829 50457 109078 85471 114110 103825 63304 

% 0 returns 32.66% 22.78% 21.11% 16.16% 13.86% 29.97% 23.48% 31.35% 28.53% 17.39% 
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2010 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 

Mean -3.08E-07 -3.96E-07 -8.97E-08 -7.14E-07 -4.24E-07 -3.16E-07 -2.17E-07 -4.94E-07 -9.68E-08 -1.85E-07 

Standard deviation 0.000179 0.000199 0.000195 0.000275 0.000278 0.000199 0.000272 0.000166 0.000209 0.000210 

No. 0 returns 131233 90350 88697 72895 65238 130913 95523 104433 110614 67593 

% 0 returns 37.40% 25.75% 25.28% 20.77% 18.59% 37.31% 27.22% 29.76% 31.52% 19.26% 

2011 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 

Mean -7.69E-08 -3.22E-08 4.34E-08 -1.97E-07 -1.18E-07 -1.69E-07 -1.37E-07 -6.10E-08 -3.06E-08 1.82E-08 

Standard deviation 0.000169 0.000201 0.000162 0.000244 0.000222 0.000179 0.000267 0.000250 0.000254 0.000254 

No. 0 returns 139305 88142 99959 87180 86805 174169 103058 93547 123935 76064 

% 0 returns 37.99% 24.04% 27.26% 23.77% 23.67% 47.49% 28.10% 25.51% 33.80% 20.74% 

Across 5 years EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 

Mean 3.97E-08 -6.65E-08 -1.06E-07 -2.48E-07 -2.91E-07 -1.82E-07 -1.14E-07 -1.36E-07 -6.80E-08 -1.73E-07 

Standard deviation 0.000182 0.000192 0.000196 0.000271 0.000284 0.000215 0.000271 0.000165 0.000214 0.000219 

No. 0 returns 747062 522292 494463 372949 316873 654337 498046 544273 608315 347914 

% 0 returns 41.27% 28.85% 27.31% 20.61% 17.51% 36.16% 27.52% 30.09% 33.61% 19.23% 
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One possible explanation for this might be that the tick sizes of foreign exchange rates 

are typically small but are large relative to one-minute standard deviations. There may 

be a large number of zero returns in the foreign exchange rates data series even when 

trades do occur in almost all minutes. 

 

In terms of individual years between 2007 and 2011, GBP/USD and GBP/CHF have 

relatively small average magnitude of returns in 2007, 2010 and 2011, but big average 

magnitude of returns in 2008 and 2009. GBP/JPY has comparatively large mean 

returns from 2008 to 2011, while small average returns in 2007. On the contrary, 

USD/CHF has relatively small average returns from 2008 to 2011, but large mean 

returns in 2007. Only EUR/GBP has positive returns in 2008 and all foreign exchange 

rates have negative returns in 2010. Regarding standard deviation, GBP/JPY has the 

largest standard deviation between 2007 and 2010 and CHF/JPY has the largest 

standard deviation in 2011, while EUR/CHF has the smallest standard deviation from 

2007 to 2010 and GBP/USD has the smallest standard deviation in 2011. EUR/GBP 

has the largest number and proportion of zero returns from 2007 to 2010 and 

USD/JPY has the largest number and proportion of zero returns in 2011, while 

GBP/JPY has the smallest number and proportion of zero returns between 2007 and 

2010 and GBP/CHF has the smallest number and proportion of zero returns in 2011. 

 

If we look across different years, years 2008 and 2009 have more volatile returns and 

larger standard deviation in general, while the year 2007 is the least volatile and has 

the smallest standard deviation. This corresponds to the world financial crisis which 

happened from 2008 to 2009. Years 2007 and 2011 have a larger number and 

proportion of zero returns. 
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3.4.2 Detection of jumps 

 

Table 3.3 presents the number of jumps detected by the ABD test under the two 

significance levels 10-5 and 10-3 between 2007 and 2011. These are daily significance 

levels and equal the expected Type I errors in one day from testing all the one-minute 

returns. For the total number of jumps across five years, inevitably more jumps are 

detected under the 10-3 significance level than under the 10-5 significance level for all 

ten foreign exchange rates. The number of jumps found under the 10-3 level is 

between 2.1 and 2.3 times those identified under the 10-5 level for each foreign 

exchange rate. The EUR/GBP exchange rate has the smallest number of jumps 

detected under the 10-5 significance level while CHF/JPY has the least number of 

jumps detected under the 10-3 level. The USD/JPY rate has the largest number of 

jumps detected under both significance levels. The four Swiss Franc exchange rates 

CHF/JPY, EUR/CHF, USD/CHF and GBP/CHF have quite large numbers of jumps 

identified under both significance levels in 2011 compared to the remaining six 

foreign exchange rates. One possible reason for this will be discussed in section 3.4.5. 

 

Figure 3.1 shows that for the period from 2007 to 2011, GBP/USD, USD/JPY and 

USD/CHF have comparatively larger number of jumps detected, while EUR/GBP and 

CHF/JPY have relatively smaller number of jumps detected. If we look in terms of 

years, we detect the largest number of jumps in 2011 while the smallest number of 

jumps is in 2009. The average jump detection rate, across all currency pairs and all 

years, is between one and two jumps per day for the 10-5 significance level and three 

jumps per day for the 10-3 level. 
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Table 3.3 

Number of jumps detected from the ABD test under two significance levels between 2007 and 2011. 

2007 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 
10^(-5) 249 511 683 296 325 391 218 222 494 272 
10^(-3) 658 1086 1379 675 697 885 517 484 1016 611 

2008 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 
10^(-5) 253 395 476 310 286 359 210 301 349 258 
10^(-3) 599 859 1077 638 658 784 496 683 758 557 

2009 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 
10^(-5) 271 299 365 199 249 361 186 301 393 305 
10^(-3) 613 669 827 458 533 770 448 667 819 681 

2010 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 
10^(-5) 255 330 302 268 249 430 250 371 378 280 
10^(-3) 544 688 666 585 534 891 565 838 782 621 

2011 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 
10^(-5) 254 378 329 339 306 763 419 683 655 485 
10^(-3) 569 747 710 664 702 1583 884 1382 1301 1022 

All years EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 
10^(-5) 1282 1913 2155 1412 1415 2304 1283 1878 2269 1600 
10^(-3) 2983 4049 4659 3020 3124 4913 2910 4054 4676 3492 
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Figure 3.1 Number of jumps detected from the ABD test under the 10-5 significance level from 2007 to 2011. 
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3.4.3 Statistical properties of the detected jumps 

 

Table 3.4 details the statistical properties of the detected jumps from the ABD test for 

ten foreign exchange rates under the 10-5 significance level from 2007 to 2011. All ten 

foreign exchange rates have similar average magnitudes for negative and positive 

jumps. EUR/CHF has the smallest magnitude of mean for both negative and positive 

jumps (-0.000946 and 0.000934 respectively), while CHF/JPY has the largest average 

magnitude for negative and positive jumps (-0.001691 and 0.001640 respectively). 

EUR/GBP, EUR/USD and GBP/USD also have relatively smaller magnitude of 

average positive and negative jumps, while EUR/JPY and GBP/JPY have 

comparatively larger average magnitude of positive and negative jumps. This may 

imply that the US dollar, British pound, euro and Swiss Franc are in general more 

stable than the Japanese yen. GBP/USD has the smallest magnitude of the minimum 

negative jump (-0.008506), while CHF/JPY has the abnormal largest magnitude of 

minimum negative jump (-0.028183). GBP/USD has the smallest magnitude of 

maximum positive jump (0.007709), while EUR/USD, EUR/JPY, CHF/JPY and 

USD/CHF all have abnormally large magnitude of maximum jumps (0.016717, 

0.017403, 0.017510 and 0.013088 respectively). 

 

In terms of individual years from 2007 to 2011, nine and eight foreign exchange rates 

have slightly more negative jumps than positive jumps in 2008 and 2010, which might 

be related to the occurrence and aftermath effect of the world financial crisis. The 

years 2008, 2009 and 2011 have more large jumps with absolute value greater than 

0.01 (EUR/JPY -0.010748, GBP/JPY -0.011301, EUR/JPY 0.011424 and CHF/JPY 

0.010632 in 2008, USD/JPY -0.015189, USD/CHF -0.016422, GBP/CHF -0.010249, 
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Table 3.4 

Statistical properties of jumps detected from the ABD test under the 10-5 significance level from 2007 to 2011. 

2007 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 

Total no.  249 511 683 296 325 391 218 222 494 272 

No. -ve 123 235 333 147 167 209 110 101 228 130 

Minimum -0.005249 -0.002721 -0.002412 -0.003902 -0.003848 -0.003736 -0.003807 -0.001623 -0.002787 -0.003204 

Mean -ve -0.000680 -0.000608 -0.000585 -0.000951 -0.001048 -0.000895 -0.001082 -0.000621 -0.000678 -0.000786 

No. +ve 126 276 350 149 158 182 108 121 266 142 

Maximum 0.003449 0.003153 0.006788 0.003652 0.005982 0.004209 0.002535 0.001360 0.002184 0.005489 

Mean +ve 0.000737 0.000606 0.000579 0.000910 0.001066 0.000914 0.001102 0.000573 0.000691 0.000733 

2008 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 

Total no.  253 395 476 310 286 359 210 301 349 258 

No. -ve 127 228 254 167 165 188 108 167 172 136 

Minimum -0.006592 -0.004342 -0.005534 -0.010748 -0.011301 -0.007105 -0.008828 -0.003562 -0.004910 -0.005068 

Mean -ve -0.001236 -0.001168 -0.000955 -0.001470 -0.001653 -0.001367 -0.001532 -0.000953 -0.001410 -0.001357 

No. +ve 126 167 222 143 121 171 102 134 177 122 

Maximum 0.004955 0.005779 0.005563 0.011424 0.009503 0.005818 0.010632 0.002565 0.005317 0.004926 

Mean +ve 0.001225 0.001183 0.000942 0.001505 0.001749 0.001488 0.001611 0.000907 0.001338 0.001395 
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2009 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 

Total no.  271 299 365 199 249 361 186 301 393 305 

No. -ve 135 142 188 116 137 198 102 163 189 152 

Minimum -0.004529 -0.005041 -0.006771 -0.007344 -0.008869 -0.015189 -0.006928 -0.004345 -0.016422 -0.010249 

Mean -ve -0.001208 -0.001302 -0.001394 -0.001973 -0.002350 -0.001703 -0.002248 -0.000938 -0.001364 -0.001570 

No. +ve 136 157 177 83 112 163 84 138 204 153 

Maximum 0.010276 0.016717 0.007709 0.007069 0.006812 0.005962 0.006312 0.006150 0.007818 0.006290 

Mean +ve 0.001513 0.001273 0.001331 0.001882 0.001943 0.001449 0.001930 0.000998 0.001444 0.001499 

2010 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 

Total no.  255 330 302 268 249 430 250 371 378 280 

No. -ve 120 175 151 154 125 228 129 186 193 153 

Minimum -0.009664 -0.009585 -0.005461 -0.016712 -0.006969 -0.007148 -0.009911 -0.006962 -0.004744 -0.004926 

Mean -ve -0.001254 -0.001395 -0.001339 -0.001654 -0.001804 -0.001271 -0.001732 -0.001072 -0.001371 -0.001327 

No. +ve 135 155 151 114 124 202 121 185 185 127 

Maximum 0.004055 0.009152 0.005086 0.006110 0.006162 0.008057 0.004875 0.008546 0.008730 0.008909 

Mean +ve 0.001264 0.001369 0.001146 0.001685 0.001783 0.001296 0.001768 0.001107 0.001475 0.001542 
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2011 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 

Total no.  254 378 329 339 306 763 419 683 655 485 

No. -ve 120 174 157 153 148 393 171 384 359 256 

Minimum -0.003941 -0.004667 -0.008506 -0.005004 -0.008558 -0.007394 -0.028183 -0.017507 -0.010195 -0.010149 

Mean -ve -0.001113 -0.001207 -0.000921 -0.001500 -0.001388 -0.000940 -0.001863 -0.001148 -0.001427 -0.001468 

No. +ve 134 204 172 186 158 370 248 299 296 229 

Maximum 0.008538 0.008963 0.005200 0.017403 0.006306 0.007108 0.017510 0.011319 0.013088 0.006091 

Mean +ve 0.001258 0.001298 0.000909 0.001767 0.001621 0.001032 0.001790 0.001083 0.001306 0.001328 

Across 5 years EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 

Total no.  1282 1913 2155 1412 1415 2304 1283 1878 2269 1600 

No. -ve 625 954 1083 737 742 1216 620 1001 1141 827 

Minimum -0.009664 -0.009585 -0.008506 -0.016712 -0.011301 -0.015189 -0.028183 -0.017507 -0.016422 -0.010249 

Mean -ve -0.001098 -0.001136 -0.001039 -0.001510 -0.001648 -0.001235 -0.001691 -0.000946 -0.001250 -0.001302 

No. +ve 657 959 1072 675 673 1088 663 877 1128 773 

Maximum 0.010276 0.016717 0.007709 0.017403 0.009503 0.008057 0.017510 0.011319 0.013088 0.008909 

Mean +ve 0.001199 0.001146 0.000982 0.001550 0.001633 0.001236 0.001640 0.000934 0.001251 0.001299 
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EUR/GBP 0.010276, EUR/USD 0.016717 in 2009, CHF/JPY -0.028183, EUR/CHF 

-0.017507, USD/CHF -0.010195, GBP/CHF -0.010149, EUR/JPY 0.017403, 

CHF/JPY 0.017510, EUR/CHF 0.011319, USD/CHF 0.013088 in 2011) than year 

2010 (EUR/JPY -0.016712), while the size of the jumps in 2007 is more stable. Again 

this may indicate that the foreign exchange rates fluctuate more in 2008 and 2009 

when the financial tsunami occurred, while the market is more stable in 2007 and 

2010. 

 

3.4.4 Cojumps between the dollar rates and the corresponding cross rate 

 

We consider it as a cojump when there are two or three corresponding jumps at the 

same time among the two dollar exchange rates and the parallel cross rate. Table 3.5 

details the number, percentage and conditional probabilities of cojumps among the 

two dollar exchange rates EUR/USD, GBP/USD, and the corresponding cross rate 

EUR/GBP under the 10-5 significance level in 2011, detected from the ABD test. We 

consider the null hypothesis which states that the jumps are independent. If the null 

hypothesis is true, the probability of cojumps should be very near zero as it is just the 

product of the probability of jumps for the two dollar rates and/or the parallel cross 

rate. These individual probabilities are close to zero from previous discussions. The 

results in Table 3.5 lead us to reject the null hypothesis that jumps are independent, as 

the counts of cojumps are positive for all combinations. 

 

We investigate the conditional probabilities of cojumps given the occurrence of jumps 

in either the dollar rate or the corresponding cross rate to examine the jump 

dependence. The dollar rate EUR/USD and the corresponding cross rate EUR/GBP 
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Table 3.5 

Descriptive statistics of counts of EUR/GBP, EUR/USD and GBP/USD cojumps from 2007 to 2011, found using the ABD test with significance 

level 10-5.	Pሺcoj|jumpሻ is defined as follows, for example, PሺEUR/GBP െ EUR/USD	cojump|EUR/GBP	jumpሻ=counts of EUR/GBP and 

EUR/USD cojumps/counts of EUR/GBP jumps=387/1282=30.19%. 

No. of obs. No. of coj P(coj)(%) 

Pሺcoj|jumpሻ (%) 

EUR/GBP EUR/USD GBP/USD 

EUR/GBP-EUR/USD 1809360 387 0.0214 30.19 20.23 

EUR/GBP-GBP/USD 1809360 519 0.0287 40.48 24.08 

EUR/USD-GBP/USD 1809360 351 0.0194 18.35 16.29 

EUR/GBP-EUR/USD-GBP/USD 1809360 74 0.0041 5.77 3.87 3.43 
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have the largest number of cojumps (387), which amounts to 0.02% of the 1809360 

total intraday return observations. The other dollar rate GBP/USD and the parallel 

cross rate EUR/GBP, and the two dollar rates EUR/USD and GBP/USD have similar 

number of cojumps (519 and 351 respectively), amounting to 0.03% and 0.02% of the 

total intraday return observations respectively. There are 74 cojumps which occur at 

the same time among the two dollar rates EUR/USD, GBP/USD and the parallel cross 

rate EUR/GBP, which is 0.0041% of the total number of intraday return observations. 

 

The conditional probabilities of a cojump in the two dollar rates or the cross rate given 

there is a jump in another one of these three rates range from 16.29% to 40.48%. The 

probabilities are the highest for the dollar rate GBP/USD and the cross rate EUR/GBP 

combination (40.48% and 24.08%) and the lowest for the two dollar rates EUR/USD 

and GBP/USD combination (18.35% and 16.29%). This may imply that the euro and 

the dollar are more closely related compared to the euro and the pound, as the dollar 

rate GBP/USD and the cross rate EUR/GBP tend to cojump more often than the two 

dollar rates EUR/USD and GBP/USD given there is a jump in the two dollar rates or 

the cross rate. The conditional probabilities of cojumps among the two dollar rates 

EUR/USD, GBP/USD and the cross rate EUR/GBP, given there is a jump in one of 

the two dollar rates or the cross rate is much lower, ranging from 3.43% to 5.77%. 

 

The detailed cojumps in 2011 between (i) the dollar rate EUR/USD and the cross rate 

EUR/GBP, (ii) the dollar rate GBP/USD and the cross rate EUR/GBP, (iii) the two 

dollar rates EUR/USD and GBP/USD, and (iv) simultaneously among the two dollar 

rates and the cross rate have been investigated. The dates and the times that the 

cojumps occur seem to have no particular pattern. The cojumps that occur at the same 



49 
 

time between the dollar rate EUR/USD and the cross rate EUR/GBP always have the 

same sign, and the two dollar rates EUR/USD and GBP/USD combination also have 

the same property that the cojumps are either both positive or both negative. However 

the dollar rate GBP/USD and the cross rate EUR/GBP have many occasions when the 

signs of the cojumps are opposite. For the cojumps among the two dollar rates 

EUR/USD, GBP/USD and the cross rate EUR/GBP, the signs of the three are always 

the same. 

 

One last thing to notice is that the sum of the cross rate EUR/GBP cojump and the 

dollar rate GBP/USD cojump approximately equals the other corresponding dollar 

rate EUR/USD cojump. This is because we measure the return as the change in log 

prices, hence the sum of the cross rate EUR/GBP and the dollar rate GBP/USD log 

returns is equal to the log of the product of the two returns, and we cancel out the 

GBP in the product to have the dollar rate EUR/USD log return, and the equality 

establishes. However it is possible that the cojumps of the dollar rate GBP/USD log 

return and the cross rate EUR/GBP log return have opposite signs, as long as on the 

other side of the equality, the dollar rate EUR/USD log return has the same sign as but 

smaller magnitude than the dollar rate GBP/USD log return, and the equality still 

holds. 

 

Figures 3.2 to 3.7 show the number of cojumps among the two dollar rates and the 

corresponding cross rate for six foreign exchange groups over the five-year period 

from 2007 to 2011 using the ABD test and the daily 10-5 significance level. Across 

five years, the EUR, CHF and USD group has the largest number of cojumps, while 

the USD, CHF and JPY group has the smallest number of cojumps. Between 2007 
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Figure 3.2: Counts of EUR/GBP, EUR/USD and GBP/USD cojumps from 2007 to 

2011, ABD test, daily significance level 10-5. 

 
 

 

Figure 3.3 Counts of EUR/JPY, EUR/USD and USD/JPY cojumps from 2007 to 2011, 

ABD test, daily significance level 10-5. 
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Figure 3.4 Counts of GBP/JPY, GBP/USD and USD/JPY cojumps from 2007 to 2011, 

ABD test, daily significance level 10-5. 

 
 

 

Figure 3.5 Counts of CHF/JPY, USD/JPY and USD/CHF cojumps from 2007 to 2011, 

ABD test, daily significance level 10-5. 
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Figure 3.6 Counts of EUR/CHF, EUR/USD and USD/CHF cojumps from 2007 to 

2011, ABD test, daily significance level 10-5. 

 
 

 

Figure 3.7 Counts of GBP/CHF, GBP/USD and USD/CHF cojumps from 2007 to 

2011, ABD test, daily significance level 10-5. 
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and 2009, the two dollar rates USD/CHF, EUR/USD and the cross rate EUR/CHF 

group almost always has the largest number of cojumps, while the two dollar rates 

USD/CHF, USD/JPY and the cross rate CHF/JPY and the EUR, JPY and USD group 

always have the least number of cojumps. For the period from 2010 to 2011, the EUR, 

CHF and USD group has the largest number of cojumps while the two dollar rates 

GBP/USD, EUR/USD and the cross rate EUR/GBP group and the GBP, USD and 

JPY group have the smallest number of cojumps. 

 

Across five years, one dollar rate and the cross rate combination nearly always has 

more cojumps than the two dollar rates combination; only the EUR, CHF and USD 

group is different, either dollar rate and the cross rate combination always has fewer 

cojumps than the two dollar rates combination. For example, Figure 3.2 shows 277 

cojumps for GBP/USD and EUR/USD, less than 313 for the cross rate and EUR/USD 

and 445 for the cross rate and GBP/USD. Some exceptions happen when we 

investigate each year separately, such as the EUR, GBP and USD group (EUR/GBP 

and EUR/USD has 38 (29) cojumps while EUR/USD and GBP/USD has 80 (58) 

cojumps in 2007 (2009), EUR/GBP and GBP/USD has 44 cojumps while GBP/USD 

and EUR/USD has 48 cojumps in 2011). For the different EUR, CHF and USD group, 

EUR/CHF and USD/CHF (231) has more cojumps than EUR/USD and USD/CHF (79) 

in 2011. If we look across years, year 2011 has comparatively more cojumps than the 

other four years. One possible explanation for this is given in section 3.4.5. 

 

Table 3.6 summarises the times and dates when eight or nine foreign exchange rates 

cojump together from 2007 to 2011. There are eleven times when eight foreign 

exchange rates cojump together and four times when nine rates cojump together 



54 
 

during this time period. We note that on 18th September 2007, eight foreign exchange 

rates cojump at the same time; and on the same day, Federal Reserve lowered target 

on key short-term rate for the first time in four years due to the mortgage crisis. Also 

on 3rd November 2010, nine foreign exchange rates cojump together; and on this day, 

Federal Reserve announced to pump billions of dollars to simulate the economy. 

 

3.4.5 Plot of returns and detected jumps and some extreme returns 

 

Plots of the returns and the detected jumps of the two dollar rates EUR/USD, 

GBP/USD and the cross rate EUR/GBP in 2011 under the 10-5 significance level are 

shown on Figure 3.8 to Figure 3.13. The typical size of a jump is higher towards the 

middle and the end of this year than the early part of the year. Jumps also tend to 

cluster in size through time and particularly in the middle and the end of the year. We 

also notice that some large positive or negative returns in a relative sense are not 

detected as jumps because there is more random variation during that intraday period 

and the period is a highly volatile period. Some detected jumps are small in magnitude 

because volatility is small at that time thus the returns need not be large for the jumps 

to be detected. 

 

Four Japanese yen exchange rates, EUR/JPY, CHF/JPY, USD/JPY and GBP/JPY all 

have a large return on 31st October 2011 (0.017403, 0.017510, 0.020036 and 

0.020213 respectively). The first two returns are detected as jumps while the latter 

two not. This maybe because all the returns for USD/JPY and GBP/JPY exchange 

rates are large on this day, it is hard for a large return to be detected as a jump. An 
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Table 3.6 

Summary of dates and times when eight or nine foreign exchange rates cojump together from 2007 to 2011. 

Date Time No. rates involved List of foreign exchange rates cojump 

18/09/2007 18:16 8 EUR/GBP, EUR/USD, GBP/USD, EUR/JPY, GBP/JPY, EUR/CHF, USD/CHF, GBP/CHF 

22/01/2008 13:21 8 EUR/GBP, EUR/USD, GBP/USD, EUR/JPY, GBP/JPY, USD/JPY, CHF/JPY, USD/CHF 

04/09/2008 21:18 8 EUR/USD, GBP/USD, EUR/JPY, GBP/JPY, USD/JPY, CHF/JPY, EUR/CHF, USD/CHF 

18/07/2008 10:31 8 EUR/GBP, EUR/USD, EUR/JPY, GBP/JPY, USD/JPY, EUR/CHF, USD/CHF, GBP/CHF 

16/12/2009 19:17 8 EUR/USD, GBP/USD, EUR/JPY, USD/JPY, CHF/JPY, EUR/CHF, USD/CHF, GBP/CHF 

27/09/2009 23:05 9 EUR/GBP, EUR/USD, GBP/USD, EUR/JPY, GBP/JPY, USD/JPY, CHF/JPY, USD/CHF, GBP/CHF 

01/03/2010 11:40 8 EUR/GBP, EUR/USD, GBP/USD, EUR/JPY, GBP/JPY, CHF/JPY, USD/CHF, GBP/CHF 

03/05/2010 0:40 8 EUR/GBP, EUR/USD, GBP/USD, EUR/JPY, GBP/JPY, CHF/JPY, USD/CHF, GBP/CHF 

21/06/2010 0:18 8 EUR/GBP, EUR/USD, GBP/JPY, USD/JPY, CHF/JPY, EUR/CHF, USD/CHF, GBP/CHF 

10/08/2010 18:16 8 EUR/GBP, EUR/USD, GBP/USD, GBP/JPY, USD/JPY, CHF/JPY, USD/CHF, GBP/CHF 

30/11/2010 23:01 8 EUR/GBP, EUR/USD, EUR/JPY, GBP/JPY, USD/JPY, CHF/JPY, EUR/CHF, USD/CHF 

09/02/2010 17:42 9 EUR/GBP, EUR/USD, GBP/USD, EUR/JPY, GBP/JPY, USD/JPY, CHF/JPY, EUR/CHF, USD/CHF 

01/11/2010 0:01 9 EUR/GBP, EUR/USD, GBP/USD, EUR/JPY, GBP/JPY, USD/JPY, CHF/JPY, USD/CHF, GBP/CHF 

03/11/2010 18:17 9 EUR/GBP, EUR/USD, GBP/USD, EUR/JPY, GBP/JPY, USD/JPY, CHF/JPY, EUR/CHF, USD/CHF 

15/09/2011 13:01 8 EUR/GBP, EUR/USD, GBP/USD, EUR/JPY, GBP/JPY, USD/JPY, CHF/JPY, USD/CHF 
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Figure 3.8 Intraday EUR/GBP returns over one minute intervals in 2011. 

 

 

 

Figure 3.9 EUR/GBP detected jumps in 2011, using the ABD test and the daily 10-5 

significance level. 
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Figure 3.10 Intraday EUR/USD returns over one minute intervals in 2011. 

 

 

 

Figure 3.11 EUR/USD detected jumps in 2011, using the ABD test and the daily 10-5 

significance level. 
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Figure 3.12 Intraday GBP/USD returns over one minute intervals in 2011. 

 

 

 

Figure 3.13 GBP/USD detected jumps in 2011, using the ABD test and the daily 10-5 

significance level. 
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investigation reveals that this arises from the Japanese government intervention to 

weaken the yen against the dollar rate after it has reached the highest level since 

World War II. The Japanese government fears that the strengthened yen will impact 

the country’s economy as it relies heavily on exports. The country is still slowly 

recovering from the destructive consequences of the 11th March earthquake and 

tsunami so that such appreciation cannot be tolerated. 

 

Four Swiss Franc rates CHF/JPY, EUR/CHF, USD/CHF and GBP/CHF all have an 

unusually large jump on 20th September 2011 (0.010627, -0.017507, -0.010195 and 

-0.010149 respectively). An investigation shows that this is because the Swiss 

National Bank announced to set a minimum level of the Swiss Franc against the Euro. 

The Swiss Franc dropped by 9% against other currencies in fifteen minutes as the 

Swiss National Bank did not allow one Swiss Franc to be worth more than 0.83 Euro. 

The reason for this action is that the investors considered the Swiss Franc a haven in 

the European debt crisis, and the Swiss companies worried that the exporters of the 

country will be less competitive in the market abroad. The action from the Swiss 

National Bank further depreciated the Swiss Franc in subsequent weeks and months 

and investors also tried to look for alternative investments. This incident may also 

help to explain the cluster in the jump size and the frequency of jumps for the three 

Swiss Franc exchange rates towards the end of the year. 

 

3.4.6 Jumps and macroeconomic news announcements 

 

Figures 3.14, 3.16 and 3.18 present the number of jumps against the time of day for 

the two dollar rates EUR/USD, GBP/USD and the cross rate EUR/GBP. We choose 
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Figure 3.14 Counts of EUR/GBP jumps against time, using the ABD test and the 

daily 10-5 significance level. 

 
 

 

 

Figure 3.15 EUR/GBP variance proportion plot from 2007 to 2011. 
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Figure 3.16 Counts of EUR/USD jumps against time, using the ABD test and the 

daily 10-5 significance level. 

 
 

 

 

Figure 3.17 EUR/USD variance proportion plot from 2007 to 2011. 

 

 

 

 

0

20

40

60

80

100

120

00:40 03:20 06:00 08:40 11:20 14:00 16:40 19:20 22:00

N
u

m
b

er
 o

f 
Ju

m
p

s

Time

0

0.001

0.002

0.003

0.004

0 200 400 600 800 1000 1200 1400

V
ar

ia
n

ce
 P

ro
p

or
ti

on

Intraday Period



62 
 

Figure 3.18 Counts of GBP/USD jumps against time, using the ABD test and the 

daily 10-5 significance level. 

 
 

 

 

Figure 3.19 GBP/USD variance proportion plot from 2007 to 2011. 
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the 40-minute interval, and given the 24-hour foreign exchange market there are 36 

intervals per day. We aggregate all the jumps in the same time interval, but on 

different days from 2007 to 2011, and then try to link them to the time of 

macroeconomic news announcements. A glimpse at the figures indicates that the two 

dollar rates EUR/USD and GBP/USD have a spike around 19:00, which may 

correspond to macroeconomic news announcements in the U.S. afternoon.4 The four 

Japanese yen rates EUR/JPY, GBP/JPY, USD/JPY and CHF/JPY are all detected for a 

large number of jumps around GMT midnight, which may be related to the early 

morning news announcements in Japan and other Asian countries.5 The intraday 

volatility plots for the two dollar rates EUR/USD, GBP/USD and the cross rate 

EUR/GBP are shown alongside the detected jump pattern in Figures 3.15, 3.17 and 

3.19. In general, the intraday volatility is low at the start and the end of the day, but 

high during the middle of the day. There are more jumps detected when the volatility 

is low but fewer jumps detected when the volatility is high. 

 

3.4.7 Cojumps and macroeconomic news announcements 

 

Figures 3.20 to 3.23 plot the number of cojumps against the time between the dollar 

rate EUR/USD and the cross rate EUR/GBP, the dollar rate GBP/USD and the cross 

rate EUR/GBP, two dollar rates EUR/USD and GBP/USD, and among the two dollar 

rates and the cross rate. We choose the 20-minute interval, given the 24-hour foreign 

exchange market, there are 72 intervals per day. We aggregate all the cojumps in the 

same time interval but on different days from 2007 to 2011, and then try to link them 

to the time of macroeconomic news announcements. The spike of cojumps is similar 

                                                              
4 U.S. announces government fiscal surplus or deficit at Eastern Standard Time (EST) 14:00 monthly and federal 
funds target at EST 14:15 every six weeks. 
5 Japan announces macroeconomic news at 8:50 local time. 
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to that of jumps. There are spikes at approximately 19:00 and midnight. The 19:00 

spike may correspond to macroeconomic news announcements in the U.S. afternoon, 

while the midnight clustering of cojumps can be linked to the early morning news 

announcements in Japan and other Asian countries. Similar to jumps, there are more 

cojumps detected when the volatility is low but fewer cojumps detected when the 

volatility is high. 

 

3.4.8 Comparison between ABD and LM jump detection tests 

 

A comparison between the number of jumps detected under the ABD test and the 

number of jumps detected under the LM test is provided in Table 3.7. The LM test 

detects more jumps than the ABD test, and the ratio ranges between 1.26 to 2.01, 

where GBP/USD has the largest ratio and EUR/CHF has the smallest ratio. 

 

3.5 Conclusions 

 

We investigate one-minute returns of ten foreign exchange rates for five years from 

2007 to 2011. We use the ABD and LM jump detection tests to detect intraday price 

jumps for ten rates and cojumps for six groups of two dollar rates and one cross rate. 

We reject the null hypothesis that jumps are independent across rates, as there are far 

more cojumps than predicted by independence for all rate combinations. We also find 

that some clustering of jumps and cojumps can be related to the macroeconomic news 

announcements affecting the exchange rates. The chosen ABD and LM jump 

detection tests find a similar number of jumps for the foreign exchange rates. 

 

 



65 
 

 

Figure 3.20 EUR/GBP and EUR/USD cojumps from 2007 to 2011, using the ABD 

test and the daily 10-5 significance level. 

 
 

 

 

Figure 3.21 EUR/GBP and GBP/USD cojumps from 2007 to 2011, using the ABD 

test and the daily 10-5 significance level. 
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Figure 3.22 EUR/USD and GBP/USD cojumps from 2007 to 2011, using the ABD 

test and the daily 10-5 significance level. 

 
 

 

 

Figure 3.23 EUR/GBP, EUR/USD and GBP/USD cojumps from 2007 to 2011, using 

the ABD test and the daily 10-5 significance level. 
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Table 3.7 

Number of jumps detected from the ABD and the LM tests under the 10-5 level from 2007 to 2011. 

2007 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 
ABD 249 511 683 296 325 391 218 222 494 272 
LM 515 1194 1411 398 498 590 356 408 1170 550 

2008 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 
ABD 253 395 476 310 286 359 210 301 349 258 
LM 456 746 939 326 451 519 242 388 769 489 

2009 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 
ABD 271 299 365 199 249 361 186 301 393 305 
LM 511 464 671 372 442 574 363 368 605 564 

2010 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 
ABD 255 330 302 268 249 430 250 371 378 280 
LM 525 544 640 402 442 582 423 547 655 557 

2011 EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 
ABD 254 378 329 339 306 763 419 683 655 485 
LM 483 575 679 475 517 756 502 647 783 644 

Across 5 years EUR/GBP EUR/USD GBP/USD EUR/JPY GBP/JPY USD/JPY CHF/JPY EUR/CHF USD/CHF GBP/CHF 
ABD 1282 1913 2155 1412 1415 2304 1283 1878 2269 1600 
LM 2490 3523 4340 1973 2350 3021 1886 2358 3982 2804 
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Foreign exchange rates have frequent and relatively small jumps as they are usually 

affected by two sources of news and they have more liquidity shocks during the 

continuously traded 24-hour market. Some groups of foreign exchange rates jump and 

cojump more than other groups, this may either be due to some exchange rates are 

highly correlated, or it is easy to simultaneously trade some exchange rates. For 

example, the U.S. scheduled macroeconomic news announcements may affect all 

dollar exchange rates, and some European news may affect both euro and pound 

exchange rates. 

 

Previous studies including Lahaye et al. (2011) usually only focus on dollar rates, our 

study investigates more currencies by examining six groups of two dollar rates and 

one cross rate at the more frequent and informative one minute level for ten years. We 

find that one dollar rate and the cross rate combination nearly always has more 

cojumps than the two dollar rates combination. 

 

The limitation of this study is that the chosen test methods may only find jumps 

during a minority of days when the daily significance level is low. There are 

possibilities that a lot of small jumps in foreign exchange rates are not detected as the 

nonparametric jump detection tests can only detect large jumps, where a large jump is 

large relative to the volatility of the diffusion component of the asset prices. Also the 

power of these tests in detecting jumps should be compared. 

 

There is always the debate whether continuous time processes for asset prices contain 

a jump component generated by a compound Poisson process besides a diffusion 
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component driven by a Brownian motion process. Recent theoretical and empirical 

evidence have confirmed that jumps exist in financial time series data, and it is 

important to understand their big impact on hedging risks and trading derivatives. For 

instance, the extreme comovements during the recent financial crisis may have caused 

large jumps and cojumps in financial asset prices, while some less extreme news may 

only create small jumps and cojumps. Hence it is important to understand these 

comovements in the financial market and hedge against their risks. Cojumps contain 

useful information to understand asset price dynamics, and can help to model and 

forecast volatility and covariance matrix. Cojumps are also important for risk 

managers and option traders. 
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4. Volatility and density forecasting literature 

 

4.1 Volatility forecasting 

 

4.1.1 High-frequency information 

 

High-frequency data records prices more than once during a day, typically at 

frequency of one or a few minutes. Many research studies have shown that 

high-frequency data provides much more useful information than daily data for 

volatility forecasting. Taylor and Xu (1997) state that five-minute DM/dollar returns 

contain incremental information to option prices when forecasting volatility one hour 

ahead. Andersen and Bollerslev (1998) also find that using high-frequency intraday 

data can improve the foreign currency volatility estimates obtained from GARCH 

models. Blair et al. (2001) confirm this finding for a U.S. equity index. They claim 

that the realised volatility estimates obtained from high-frequency intraday returns are 

superior to one day or multi-day forecasts by using ARCH models. 

 

Andersen, Bollerslev, Diebold and Ebens (2001), and Andersen, Bollerslev, Diebold 

and Labys (2001) find that a long memory process can better model the realised 

volatility. Andersen et al. (2003) also find that the combination of a long memory 

process and the use of high-frequency returns provide better volatility forecasts for 

foreign exchange rates. But Pong et al. (2004) argue that the better accuracy of 

volatility forecasts comes from the use of high-frequency data, not the long memory 

model. They show that the performance of volatility forecasts of foreign exchange 
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rates using a long memory model is similar to using a short memory model for 

different horizons. 

 

4.1.2 Options information 

 

Volatility forecasts provide information about the volatility of the asset price in the 

future, while density forecasts are more complicated, as they produce information 

about the whole distribution of the asset’s future price. Since option prices not only 

reflect historical information, but also contain forward-looking information about the 

future distribution of the asset price, volatility forecasters might rationally prefer 

implied volatilities inferred from option prices to realised variance calculated from 

historical time series. 

 

There is a considerable literature comparing volatility forecasts obtained from option 

prices with volatility forecasts calculated from the history of asset prices. Xu and 

Taylor (1995) find that the historical volatility estimates are superior to implied 

volatility estimates for four foreign exchange rates for the period from 1985 to 1991. 

Blair et al. (2001) compare the information content of intraday returns and implied 

volatilities when forecasting index volatility, and they state that in both in-sample 

estimates and out-of-sample forecasting, implied volatilities estimated by the “old” 

VIX index perform the best. Martens and Zein (2004) state that the volatility 

estimates inferred from options are superior to volatility forecasts calculated from 

historical daily returns for S&P 500 index, YEN/USD exchange rate and light, sweet 

crude oil. They also find that the forecasts can be improved by using high-frequency 

data and a long memory process. Jiang and Tian (2005) extend the model-free implied 
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volatility model proposed by Britten-Jones and Neuberger (2000), and find that the 

model-free implied volatility estimates outperform both the Black-Scholes implied 

volatility and past realised volatility for S&P 500 index. Giot and Laurent (2007) 

further confirm that implied volatility contains incremental information to past 

realised volatility for two stock indices, even when they separate the diffusion and 

jump components. Busch et al. (2011) similarly show that implied volatility is 

superior to realised volatility when forecasting future volatility in foreign exchange, 

stock and bond markets. The past realised volatility is decomposed into continuous 

and jump components and the forecast is made using a vector HAR model. These 

studies all state that option forecasts are more informative and accurate than historical 

forecasts of index volatility even when the historical information set includes 

high-frequency returns. We therefore anticipate a similar preference could apply to 

density forecasts. 

 

However, we must note that some studies compare forecasts obtained from option 

prices and intraday returns and rank intraday index information highly. Bali and 

Weinbaum (2007) use both high-frequency data and implied volatility models to 

estimate S&P 100 index volatility and find that the forecasts obtained using intraday 

returns are superior to the forecasts obtained using daily option data, for one day and 

twenty days forecast horizons. Becker et al. (2007) find that VIX does not contain 

incremental information for forecasting volatility compared to model based forecasts. 

Martin et al. (2009) find that the spot-based volatility forecasts are superior to the 

options-based forecasts for three Dow Jones Industrial Average stocks during the 

period from 2001 to 2006. 
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4.2 Risk-neutral densities 

 

4.2.1 Theoretical setup 

 

Black and Scholes (1973) initiate the approach to price options under a no-arbitrage 

assumption. In the Black-Scholes model, we assume the price of the underlying asset 

follows a stochastic process, geometric Brownian motion 

݀ܵ ܵ⁄ ൌ ݐ݀ߤ ൅  ሺ4.1ሻ																																																				ܹ݀ߪ

where µ is the expected return per annum, and is equal to the risk free rate r minus the 

dividend yield q, and plus the asset’s risk premium. 

 

Under the real world measure P, the distribution of stock price ST is lognormal, then 

the distribution of log(ST) is normal with mean log	ሺܵ଴ሻ ൅ ܶߤ െ ଵ

ଶ
 ଶܶ and varianceߪ

 :ଶܶ, denotedߪ

ܰ~ሺ்ܵሻ݃݋݈ ൬݈݃݋ሺܵ଴ሻ ൅ ܶߤ െ
1
2
,ଶܶߪ  .ଶܶ൰ߪ

 

Under the risk-neutral Q-distribution, the risk-neutrality assumption requires a drift 

rate r-q instead of µ, and there is no risk premium, hence we have 

݀ܵ ܵ⁄ ൌ ሺݎ െ ݐሻ݀ݍ ൅  ሺ4.2ሻ																																																		ܹ݀ߪ

ܰ~ሺ்ܵሻ݃݋݈ ൬݈݃݋ሺܵ଴ሻ ൅ ሺݎ െ ሻܶݍ െ
1
2
,ଶܶߪ  .ଶܶ൰ߪ

 

Let ߰൫ݔหܨ଴,், ,ߪ ܶ൯ be the density for ST given by equation (4.2), with futures price 

்,଴ܨ ൌ ܵ଴݁
ሺ௥ି௤ሻ். Then Black-Scholes call option prices are given by 
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ܿሺݔሻ ൌ ݁ି௥் න ݔሺݔܽ݉ െ ܺ, 0ሻ߰൫ݔหܨ଴,், ,ߪ ܶ൯݀ݔ

∞

଴

																										ሺ4.3ሻ 

 

Breeden and Litzenberger (1978) first obtain a general risk-neutral density (RND) 

from theoretical option prices by taking the second derivative of option prices with 

respect to strike prices. For a general RND ݃ொሺݔሻ, fair call option prices are 

ܿሺܺሻ ൌ ݁ି௥் නሺݔ െ ܺሻ݃ொሺݔሻ݀ݔ

∞

௑

.																																								ሺ4.4ሻ 

The RND is then obtained from option prices as 

݃ொሺܺሻ ൌ ݁௥்
߲ଶܿ
߲ܺଶ

																																																				ሺ4.5ሻ 

 

We use the example of call option, call spread and butterfly spread to illustrate the 

intuition behind. We construct the bull call spread by buying one call option with a 

lower strike price X and selling another call option with a higher strike price X+a as 

shown in Figure 4.1. Since the first derivative of a function f(x) is given as 

݂ᇱሺݔሻ ൌ ݈݅݉
௛→଴

݂ሺݔ ൅ ݄ሻ െ ݂ሺݔሻ
݄

. 

Then the first difference of the call option is 

,ሺܵܥ ܺ ൅ ܽሻ െ ,ሺܵܥ ܺሻ
ܽ

. 

 

A long butterfly spread position is constructed by buying one call option with a strike 

price of X-a, selling two call options with a strike price of X, and buying one call 

option with a strike price of X+a as shown in Figure 4.2. Since the second derivative 

of a function f(x) is 
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Figure 4.1 Payoff of bull spread using call options. 

 

 

 

Figure 4.2 Payoff of butterfly spread using call options. 
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݂"ሺݔሻ ൌ lim
௛→଴

݂ሺݔ ൅ ݄ሻ െ ݂ሺݔሻ
݄ െ

݂ሺݔሻ െ ݂ሺݔ െ ݄ሻ
݄

݄
 

ൌ lim
௛→଴

݂ሺݔ ൅ ݄ሻ െ 2݂ሺݔሻ ൅ ݂ሺݔ െ ݄ሻ
݄ଶ

. 

Then the second difference of the call option is 

,ሺܵܥ ܺ ൅ ܽሻ െ ,ሺܵܥ2 ܺሻ ൅ ,ሺܵܥ ܺ െ ܽሻ
ܽଶ

. 

 

As a approaches zero, the above function is Dirac and can represent the density. For 

an Arrow Debreu security, it pays one unit of numeraire under a particular state and 

zero under all other states. 

 

4.2.2 Methods to extract risk-neutral densities 

 

The lognormal Black-Scholes model is one of the most common ways to extract a 

risk-neutral density. As the implied volatility smile effect proposed by Rubinstein 

(1994) indicates that risk-neutral densities are not lognormal and volatility is not 

constant, hence some other methods rather than the lognormal Black-Scholes model 

should be employed to model the risk neutral process. Empirically the RND can be 

obtained by fitting the market option prices to the theoretical option prices across 

different strikes. Different methods have been proposed to obtain risk-neutral 

densities from option prices. These methods can be grouped into different categories 

including parametric methods, nonparametric methods, implied volatility spline 

methods and price dynamics related methods. 
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4.2.2.1 Parametric methods 

The lognormal Black-Scholes model contains only one parameter, the implied 

volatility, hence the model is not flexible. In order to obtain a more accurate and 

flexible model, some researchers use a mixture of lognormal densities. Ritchey (1990) 

first introduces the mixture of two lognormal densities, which is a weighted 

combination of two lognormal densities. This model has five parameters, which are 

two implied volatilities, two futures prices, and the weight parameter. Hence the 

model is easy to apply and can always give non-negative risk-neutral densities. 

 

The lognormal mixture has been applied on exchange rates by Jondeau and Rockinger 

(2000), and on equity indices by Bliss and Panigirtzoglou (2002), Anagnou-Basioudis 

et al. (2005) and Liu et al. (2007). Melick and Thomas (1997) extend this model to a 

mixture of three lognormal densities, with eight parameters. They study the 

risk-neutral densities of crude oil during the period of the first Gulf War. 

 

Bookstaber and McDonald (1987) first introduce GB2, the generalised beta 

distribution of the second kind. The GB2 method can always give a non-negative 

risk-neutral density, and can reflect a flexible shape of tails of the distribution. But 

this method does not rely on a strong theoretical foundation. Anagnou-Basioudis et al. 

(2005) apply it to estimate risk-neutral densities for the S&P 500 index and the 

GBP/USD exchange rate, while Liu et al. (2007) use it to extract risk-neutral densities 

for the FTSE 100 index. 

 

The Black-Scholes model assumes a standard normal distribution for the standardized 

returns. Madan and Milne (1994) modify this assumption by proposing the 
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lognormal-polynomial method. They assume that the density of standardized returns 

equals the lognormal density multiplying a polynomial. This method has a sound 

theoretical foundation but may give negative empirical densities. This is because there 

are finite number of strikes which are not continuous. Hence it cannot capture the 

flexible shape of the tail distribution. Madan and Milne (1994) and Jondeau and 

Rockinger (2000) apply the lognormal-polynomial density functions for the S&P 500 

index and exchange rates respectively. 

 

4.2.2.2 Nonparametric methods 

Since the parametric methods in general cannot reflect a very flexible shape of tails of 

the distribution, two main types of nonparametric methods are proposed to capture a 

more flexible distribution, which are flexible discrete distributions and kernel 

regression methods. 

 

For the flexible discrete distributions method, usually the probabilities are obtained by 

minimizing some objective functions, which either measures the match between the 

observed and fitted option prices, or the smoothness of the risk-neutral densities. 

Jackwerth and Rubinstein (1996) examine the fit for S&P 500 index option prices, 

while Jackwerth (2000) investigates the smoothness of the implied volatility function. 

However, this method can give negative probabilities due to the discreteness of the 

dataset. 

 

Ait-Sahalia and Lo (1998, 2000) employ a nonparametric kernel regression method to 

extract risk-neutral densities from S&P 500 option prices. This method does not need 

to presume any dynamics of the distribution of the asset prices, but assumes a 
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non-linear relationship and then regresses the option price or the implied volatility 

against stock and strike prices, time to expiration, dividend yield and risk-free rate. 

The density is then obtained by taking the second differential of the estimated option 

prices. However, this method assumes the option prices and the implied volatilities 

have time-invariant distributions and also requires a large amount of data. 

 

4.2.2.3 Implied volatility method 

While the parametric and nonparametric methods focus on fitting the distribution of 

option prices, another method examines the fit of implied volatilities. The option 

prices are then obtained from converting the estimated implied volatilities, and the 

risk-neutral densities are extracted by taking the second derivative of the option prices 

relative to strike prices. Bates (2000) fits the observed S&P 500 futures option prices, 

while Bliss and Panigirtzoglou (2002) use a cubic smoothing spline and focus on delta, 

rather than the implied volatilities, to extract the risk-neutral densities. This method 

does not require intensive data, but could give negative probabilities. 

 

4.2.2.4 Price dynamics methods 

Apart from the methods focusing on the distribution of the prices and fitting the 

implied volatilities, the last type of method centres on price dynamics. The 

risk-neutral densities can be extracted if the underlying assets are assumed to have 

specific risk-neutral dynamics, such as the geometric Brownian motion for the 

Black-Scholes model which leads to lognormal distributions of the underlying asset 

prices. 
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Option pricing with jump diffusion, stochastic volatility model and stochastic 

volatility model with jump diffusion can be generalised using the affine class of 

option pricing models. The affine jump diffusion process assumes that the drift vector, 

covariance matrix and the jump intensities all have affine dependence on the state 

vector (Duffie et al., 2000). One property of the affine class of option pricing models 

is that the state vector has closed form conditional characteristic function and 

analytically tractable solution, which can be evaluated by the Fourier inversion 

transformation. 

 

The implied volatility smile effect indicates that geometric Brownian motion is not a 

proper asset price process as the risk-neutral densities are not lognormal and volatility 

is not constant. Merton (1976) extends geometric Brownian motion to a jump 

diffusion process. Bates (1991) confirms that an option pricing formula incorporating 

a jump diffusion asset price process fits market prices better. Some studies use a 

stochastic process to model volatility. Hull and White (1987) first propose option 

pricing model with stochastic volatility process. Heston (1993) assumes the volatility 

follows a mean-reverting square-root process and has a closed form solution for 

option prices and densities based on inverting characteristic functions. Hence the 

stochastic volatility process of Heston (1993) is a desirable choice as it considers both 

the volatility smile and the term structure effects. Extensions of the Heston (1993) 

model are in Bates (1996) who also incorporates jumps, and in Duffie et al. (2000), 

Eraker (2004), Eraker et al. (2003) and Pan (2002) who include a jump process in 

both price and volatility components. 
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The use of the Heston (1993) model enables calculation of density forecasts for all 

horizons, which can be a considerable advantage. Many studies can only estimate 

densities for horizons identical to option expiry dates such as Jackwerth and 

Rubinstein (1996), Melick and Thomas (1997) and Bliss and Panigirtzoglou (2002), 

while Shackleton et al. (2010) use the Heston model to compare density forecasts for 

multiple horizons. 

 

4.2.3 Comparisons among estimation methods 

 

Many researchers conduct comparisons among different methods to extract 

risk-neutral densities based on the accuracy of the estimates. Jondeau and Rockinger 

(2000) compare the mixture of lognormal, the Heston stochastic volatility with jumps 

and the lognormal polynomial methods for FF/DM exchange rate. They find that the 

mixture of lognormal is the best for short time-to-expiry options, while the jump 

diffusion model performs the best for longer maturities. Bliss and Panigirtzoglou 

(2002) compare the mixture of lognormal and the smoothed implied volatility spline 

methods to forecast risk-neutral densities on sterling interest futures options and FTSE 

100 index options and find that the smoothed implied volatility smile method 

outperforms the lognormal mixture method. Liu et al. (2007) use parametric methods 

including the lognormal mixture, the smooth spline and the GB2 methods to forecast 

risk-neutral densities for the FTSE 100 index and find that the mixture of lognormal 

and the GB2 methods give higher log-likelihoods than the spline smoothing method. 
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4.3 Transformations from risk-neutral densities into real-world densities 

 

Both Bliss and Panigirtzoglou (2004) and Anagnou-Basioudis et al. (2005) argue that 

the risk-neutral densities are not good forecasts of the future distribution of asset 

prices. The risk-neutral density is a suboptimal forecast of the future distribution of 

the asset price as there is no risk premium in the risk-neutral world, while in reality 

investors are risk-averse. Hence we need to use economic models and/or econometric 

methods to transform risk-neutral densities into real-world densities (RWDs). 

 

4.3.1 Economic models to transform densities 

 

4.3.1.1 Utility method 

Economic models define the pricing kernel, which is the stochastic discount factor 

derived from risk-neutral and real-world densities, respectively ݃ொ  and ݃௉  , as 

follows: 

݉ሺ்ܵሻ ൌ ݁ି௥்
݃ொሺ்ܵሻ
݃௉ሺ்ܵሻ

																																														ሺ4.6ሻ 

The pricing kernel is used to transform the risk-neutral densities into the real-world 

densities, and is proportional to the marginal utility of the representative agent given 

appropriate assumptions, hence the focus is on the choice of utility function in 

݉ሺݔሻ ൌ ߣ
ݑ݀
ݔ݀
																																																										ሺ4.7ሻ 

where u(x) is the utility function and λ is a positive constant. 

 

Many researchers employ power and/or exponential utility functions to transform the 

risk-neutral densities into the real-world densities, and the power utility assumes a 
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constant risk aversion while the exponential specification states that the risk aversion 

is varying. Some studies also examine more general cases by assuming wider classes 

of utility functions. 

 

Anagnou-Basioudis et al. (2005) use the power utility function to transform the 

risk-neutral densities into the real-world densities for sterling exchange rates and the 

S&P 500 index, and state that the null hypothesis that the RWD is an efficient 

estimate of the real densities cannot be rejected. Liu et al. (2007) also employ the 

power utility function to transform the risk-neutral densities into the real-world 

densities for FTSE 100 index and make comparisons based on the log-likelihood 

criterion; they show that the latter outperforms the former. Bliss and Panigirtzoglou 

(2004) use both power and exponential utility functions to transform the RNDs into 

the RWDs for S&P 500 and FTSE 100 indices at different horizons, and state that the 

estimated RWDs are all reasonable. Kang and Kim (2006) extend the analysis to more 

generality by using the hyperbolic absolute risk aversion (HARA) function, the log 

plus power, and the linear plus exponential utility. They examine the FTSE 100 index 

and conclude that the more flexible utility functions provide more forecasting power. 

 

4.3.1.2 Drift correction method 

Drift transformations are possible for specific price dynamics. For example, suppose 

the continuous-time risk-neutral price dynamics for the stock, which incorporate the 

stochastic variance ܸ, follows a square-root process, as follows: 

݀ܵ ܵ⁄ ൌ ሺݎ െ ݐሻ݀ݍ ൅ √ܸ݀ ଵܹ																																													ሺ4.8ሻ 

ܸ݀ ൌ ߠሺߢ െ ܸሻ݀ݐ ൅ ܸ݀√ߪ ଶܹ																																												ሺ4.9ሻ 
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Thus we can include linear risk premium terms in both the price and the volatility 

components to define an affine real-world diffusion process 

݀ܵ ܵ⁄ ൌ ሺܸܽ ൅ ݎ െ ݐሻ݀ݍ ൅ √ܸ݀ ଵܹ																																					ሺ4.10ሻ 

ܸ݀ ൌ ሾܾܸ ൅ ߠሺߢ െ ܸሻሿ݀ݐ ൅ ܸ݀√ߪ ଶܹ																																		ሺ4.11ሻ 

 

The drift adjustment terms are here assumed to be linear in V, the property of the 

affine class of option pricing models ensures that an analytical solution can be 

obtained for the real-world characteristic functions. The real-world densities are then 

given by equation (5.14) and depend on the drift rates a and b. 

 

4.3.2 Econometric methods to transform densities 

 

The econometric approach is based on Rosenblatt (1952), which states that, if the 

forecasted density is correct, then the forecasted cumulative probability is uniform 

i.i.d.. 

 

We can use a parametric method to transform the RNDs into the RWDs. At time 0, we 

let ݃ொ,்ሺݔሻ  and ܩொ,்ሺݔሻ  define the risk-neutral density and the cumulative 

distribution function (c.d.f.) of the random variable ST. We denote uT=GQ,T(ST). We 

then follow Bunn (1984), Dawid (1984), and Diebold et al. (1999) to denote the 

calibration function CT(u), which is the real-world c.d.f. of the random variable uT. 

The calibration function depends on the forecast horizon T. We now consider the real 

world c.d.f. of ST, with Pr standing for the real world probabilities. The real-world 

c.d.f. of ST is 
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Prሺ்ܵ ൑ ሻݔ ൌ Pr ቀܩொ,்ሺ்ܵሻ ൑ ሻቁݔொ,்ሺܩ ൌ Pr ቀ்ݑ ൑ ሻቁݔொ,்ሺܩ 																																	

ൌ ்ܥ ቀܩொ,்ሺݔሻቁ																																																																																							ሺ4.12ሻ 

 

Hence the real-world c.d.f. of ST is 

ሻݔ௉,்ሺܩ ൌ ்ܥ ቀܩொ,்ሺݔሻቁ																																											ሺ4.13ሻ 

 

The real-world density of ST is 

݃௉,்ሺݔሻ ൌ
݀
ݔ݀

்ܥ ቀܩொ,்ሺݔሻቁ ൌ
ݑ݀
ݔ݀

݀
ݑ݀

ሻݑሺ்ܥ ൌ ݃ொ,்ሺݔሻ்ܿሺݑሻ.														ሺ4.14ሻ 

where cT(u) is the density of uT. 

 

It is necessary to assume the calibration function CT(u) is invariant over time, and it is 

standard to assume the parametric calibration function is the c.d.f. of the Beta 

distribution. Fackler and King (1990) first use the equation to transform the 

risk-neutral densities into the real-world densities for corn, soybeans, live cattle and 

hogs option prices, and Liu et al. (2007) also employ it to transform the densities. The 

calibration density is 

்ܿሺݑሻ ൌ ௖ିଵሺ1ݑ െ ሻௗିଵݑ ,ሺܿܤ ݀ሻ⁄ , 0 ൑ ݑ ൑ 1													ሺ4.15ሻ 

 

and the constant B(c, d)=Γ(c) Γ(d)/ Γ(c+d). The two calibration parameters c and d 

depend on the horizon T. The special case that c=d=1 denotes a uniform distribution 

and the RNDs and the RWDs are identical. The real-world density is 

݃௉,்ሺݔሻ ൌ
ሻ௖ିଵሺ1ݔொ,்ሺܩ െ ሻሻௗିଵݔொ,்ሺܩ

,ሺܿܤ ݀ሻ
݃ொ,்ሺݔሻ																						ሺ4.16ሻ 
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Liu et al. (2007) use both utility and statistical calibration transformations, and show 

that a statistical calibration gives a higher log-likelihood than a utility transformation. 

Shackleton et al. (2010) compare parametric and nonparametric transformations, 

obtaining better results for the latter. Hence we also transform the risk-neutral 

densities into the real-world densities using a nonparametric transformation explained 

in chapter 5. 

 

4.4 Density forecast applications 

 

Density forecasts have been applied in many areas. They can be used to estimate the 

risk aversion of investors. They can also be employed to infer probabilities of future 

market changes for different asset classes. Furthermore, they can be used to assess 

market beliefs about future economic and political events when derived from option 

prices. Last but not least, density forecasts are important in risk management, 

particular for the estimation of Value-at-Risk (VaR). Hence density forecasts are of 

importance to central bankers and other decision takers for activities such as 

policy-making, risk management and derivatives pricing. 

 

4.4.1 Estimated risk aversion 

 

We can assess the rationality of estimated risk-neutral densities by referring to their 

associated risk aversion estimates. The utility function has first derivative under the 

representative agent model given by 

ሻݔᇱሺݑ ൌ
݁ି௥்݃ொሺݔሻ

ሻݔ௉ሺ݃ߣ
																																																ሺ4.17ሻ 

 



87 
 

where λ is a positive constant. The second derivative is negative for a rational utility 

function for all values of ݔ. We can assess the rationality of risk-neutral densities by 

estimating the risk aversion function implied by the first and second derivatives of the 

utility function as 

ሻݔሺܣܴ ൌ െ
ሻݔᇱᇱሺݑ

ሻݔᇱሺݑ
ൌ
݃௉
ᇱ ሺݔሻ

݃௉ሺݔሻ
െ
݃ொ
ᇱ ሺݔሻ

݃ொሺݔሻ
																																			ሺ4.18ሻ 

The risk aversion function must be positive for all x if the utility function is rational. 

 

Jackwerth (2000) estimates risk aversion for the S&P 500 index around the 1987 

market crash. Before the crash, the risk aversion function is positive and consistent 

with the economic theory, while after the crash the risk aversion function has negative 

values and increases with wealth, which contradicts the assumptions. Jackwerth (2000) 

argues that mispriced options is the most likely reason. Ait-Sahalia and Lo (2000) 

estimate risk aversion for S&P 500 index options for 1993. They find the risk aversion 

function is positive, but has an irregular U-shape. Bliss and Panigirtzoglou (2004) 

infer the relative risk aversion (RRA) function for FTSE 100 and S&P 500 index 

options for multiple horizons. They state that all their estimates are reasonable, and 

the RRA declines as the forecast horizon increases, and it is lower when the market 

volatility is high. 

 

4.4.2 Infer future market change 

 

Density forecasts have been employed to estimate probabilities of future market 

changes for different asset classes including for stock indices Shackleton et al. (2010) 

and Yun (2014), for interest rates Ivanova and Gutierrez (2014), for exchange rates 

Sarno and Valente (2004), for commodities Hog and Tsiaras (2010) and for lean hog 



88 
 

futures Trujillo-Barrera et al. (2012). 

 

Melick and Thomas (1997) employ the mixture of the lognormal to estimate density 

for crude oil during the first Persian Gulf crisis. The mixture of lognormal method to 

extract densities can clearly show the change of investor expectation in the market, as 

the single lognormal model would overestimate the market’s assessment of the 

probability of a major disruption and underestimate the effect on prices of such a 

disruption. 

 

4.4.3 Assess market beliefs 

 

Density forecasts can be employed to assess market beliefs about future economic and 

political events when derived from option prices due to its forward-looking property. 

The ex-ante analysis infers the possible outcome of the market due to the event, while 

the ex post analysis checks if the market reacts to the event as expected. 

 

Early studies including Bakshi et al. (2003), Bliss and Panigirtzoglou (2004) and 

Anagnou-Basioudis et al. (2005) use the full dataset to make risk-transformations. The 

real-world densities obtained are then ex post because each forecast is made using 

some information from later asset prices. However it is best to apply ex ante 

transformations as in Shackleton et al. (2010). Thus we should only use past and 

present asset and option prices to construct real-world densities as is done in chapter 

5. 
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4.4.4 Estimate Value-at-Risk 

 

Density forecasts play an important role in risk management, especially for the 

estimate of VaR, which measures how much one can lose at a pre-defined confidence 

interval over different horizons. Many institutions, such as J.P. Morgan and the Bank 

of England, periodically publish their density estimates, which enable investors to 

access risk for their investment portfolios. Hence density forecasts are important to 

central bankers and other decision takers for activities such as policy-making, risk 

management and derivatives pricing. 

 

4.5 Density forecast evaluation 

 

Volatility forecast evaluation can be problematic because volatility is latent, and 

density forecast evaluation faces a similar problem. Blair et al. (2001) use the squared 

daily returns and Martens and Zein (2004) use the realised variance as the ex post 

proxy, however, no similar proxy exists for density forecasts. Some studies including 

Jondeau and Rockinger (2000) and Bliss and Panigirtzoglou (2004) evaluate density 

forecasts based on option pricing. But this method only works for risk-neutral 

densities which have closed-form solutions for options, but not the real-world 

densities. Many researchers focus on the time series properties of density forecasts 

and use the probability integral transform (PIT), while some other people prefer 

log-likelihoods. 
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4.5.1 Diagnostic tests 

 

Many studies use the properties of time series of density forecast. Rosenblatt (1952) 

employs the probability integral transform, and states that the PIT is i.i.d. uniform if 

density forecasts are correctly specified. Diebold et al. (1998) initiated the idea of 

using PIT to evaluate density forecasts. They employ a graphical tool to check the i.i.d. 

of the PIT. Some researchers extend the method in Diebold et al. (1998) to formal 

diagnostic tests. One to mention is the Kolmogorov and Smirnov (KS) test. The KS 

test checks the maximum difference between the empirical and theoretical cumulative 

functions, so that we can evaluate if the values of a variable are compatible with a 

certain distribution. The KS test is applied widely as it is simple to implement. 

However, one needs to be careful when interpreting the test results, as the KS test 

tests the uniformity under the i.i.d. assumption rather than checks the i.i.d. and the 

uniformity jointly. 

 

Many studies question the power of the KS test when evaluating density forecast. 

Berkowitz (2001) proposes the BK test, which states that if the PIT is i.i.d. uniform, 

then the normal inverse cumulative function of the PIT is i.i.d. normal. The benefit of 

the BK test is that it can test the independence and the uniformity jointly. The BK test 

has been employed widely in studies including Clements and Smith (2000) and 

Shackleton et al. (2010). Clements (2004) uses PIT to evaluate the UK Monetary 

Policy Committee’s inflation density forecasts. Some studies, including Bliss and 

Panigirtzoglou (2004), Anagnou-Basioudis et al. (2005), and Kang and Kim (2006), 

by minimising the BK test statistics, estimate parameters of utility functions to 

transform the RNDs into the RWDs.  
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Some studies also doubt the power of the BK test. Clements et al. (2003) conduct 

density forecasts using linear autoregressive (AR) and self-exciting threshold 

autoregressive (SETAR) models. They implement a Monte Carlo simulation 

incorporating a two-regime SETAR process to generate data. They find that the BK 

test produces high p value and is unable to reject the mis-specified linear model. 

Guidolin and Timmermann (2005) investigate the economic implications of ‘bull’ and 

‘bear’ regimes in UK stock and bond returns. They find the BK test gives a low 

rejection rate and can hardly show the single-state model to be deficient, while the 

standard Jarque-Bera test is more powerful to reject the mis-specified single-state 

model. 

 

4.5.2 Maximum log-likelihood 

 

Apart from diagnostic tests, researchers also use the log-likelihood metric to evaluate 

density forecasts. One shortcoming of the BK test is that models cannot be compared 

if they are all accepted or rejected. A comparison of log-likelihood among different 

models can solve this problem, as employed by Bao et al. (2007), Liu et al. (2007) and 

Shackleton et al. (2010). 

 

Amisano and Giacomini (2007) use an out-of-sample “weighted likelihood ratio” test 

to compare density forecasts. The forecasts can be made based on different models, 

including parametric (nested or non-nested), semiparametric and nonparametric 

models and Bayesian estimation techniques. They employ the test to evaluate density 

forecasts of U.S. inflation and state that the Markov-switching, Phillips curve model 
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obtained by maximum likelihood gives the best density forecasts of U.S. inflation. 

 

4.6 Density forecasting comparisons 

 

Only a few studies have compared density forecasts. Liu et al. (2007) examine FTSE 

100 index futures and options prices from 1993 to 2003. They extract risk-neutral 

densities using three methods, including a mixture of two lognormals, a generalised 

beta and a flexible density defined by spline functions. They transform the RNDs 

(defined in the first paragraph on page 74) into the RWDs (defined in the second 

paragraph on page 80) using both a utility function and a statistical calibration. They 

find that densities obtained from option prices are superior to historical densities 

based on the log-likelihood criterion, and a combination of parametric, real-world and 

historical densities produces the best density forecasts. 

 

Shackleton et al. (2010) compare density forecasts of the S&P 500 index from 1991 to 

2004, using both daily option prices and five-minute index returns. They use the GJR 

model to obtain densities from historical returns and employ the Heston (1993) model 

which incorporates stochastic volatility to extract RNDs from option prices. They use 

three methods to transform the RNDs into the RWDs, including a drift correction 

method, a parametric and a nonparametric method. They conduct ex ante density 

forecasts for multiple horizons ranging from one day to twelve weeks and obtain 

mixed findings. ARCH densities are more informative for the one day and one week 

horizons, because an accurate forecast of tomorrow’s variance is obtainable from high 

frequency returns summarized by the daily measures of the realised volatility. RWDs 

provided by option prices perform better for two weeks and four weeks horizons. 
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They argue that this can be attributable to the forward looking property of option 

prices as they only use option prices for the contracts with medium-term maturities 

longer than one week, while the short term one day and one week RNDs are 

extrapolations that are not supported by trading options for such short maturities. 

 

Kostakis et al. (2011) use monthly closing prices for S&P 500 futures options from 

1986 to 2009 and extract implied distributions and transform them into the 

corresponding risk-adjusted ones. They then investigate, from a portfolio allocation 

perspective, combining investment in a risky and a risk-free asset and state that the 

risk-adjusted implied distributions perform better than the historical returns’ 

distributions even when they consider transaction costs. 

 

Yun (2014) studies the S&P 500 stock index and options from 1987 to 2000 and 

conducts out-of-sample density forecasts of the affine jump diffusion models. They 

find that the time-varying jump risk premia models are superior for density forecasts 

than the other models based on the log-likelihood criterion. 

 

Hog and Tsiaras (2010) focus on crude oil prices for the period from 1994 to 2006. 

They extract risk-neutral densities from crude oil option prices and compare with the 

standard ARCH type models. They transform the RNDs into the RWDs using both 

parametric and nonparametric calibration. They evaluate density forecasts using the 

goodness-of-fit tests and out-of-sample likelihood comparisons, and state that 

nonparametric calibration is superior to parametric transformation and option prices 

are more informative than historical returns. 
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Ivanova and Gutierrez (2014) examine interest rate, Euribor futures options daily 

observations, from 1999 to 2012. They extract risk-neutral densities from option 

prices using the spline method proposed by Bliss and Panigirtzoglou (2002), and 

transform the RNDs into the RWDs using parametric and nonparametric calibrations 

following Fackler and King (1990). They obtain density forecasts four weeks prior to 

option expiry and conclude that the RWDs, not the RNDs, can generate reliable 

forecasts. 
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5. Density forecast comparisons for stock prices, obtained from high-frequency 

returns and daily option prices 

 

5.1 Introduction 

 

Density forecasts have been used to infer the probabilities of future market changes 

for different asset classes including stock prices, interest rates, exchange rates and 

commodities. They can also be used to assess market beliefs about future economic 

and political events when derived from option prices. Also, density forecasts are 

important in risk management, particular for the estimation of Value-at-Risk, which 

measures how much one can lose at a pre-determined confidence interval over 

different horizons. Hence density forecasts are of importance to central bankers and 

other decision takers for activities such as policy-making, risk management and 

derivatives pricing. 

 

Volatility forecasts produce forward-looking information about the volatility of the 

asset price in the future, while density forecasts are more sophisticated as they provide 

information about the whole distribution of the asset’s future price. Since option 

prices reflect both historical and forward-looking information, volatility forecasters 

might rationally prefer implied volatilities from option prices to realised variance 

calculated from historical time series. We anticipate a similar preference could apply 

to density forecasts. We compare density forecasts derived from option prices using 

the Heston (1993) model and forecasts obtained from historical time series using the 

Corsi (2009) Heterogeneous Autoregressive model of Realised Variance (HAR-RV). 

We also transform the risk-neutral densities into real-world densities using a 
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nonparametric transformation. There are no known previous results for individual 

stocks, so our contribution is to provide the first comparison for density forecasts 

obtained from option prices and historical intraday returns for individual stocks. We 

investigate seventeen stocks from the Dow Jones 30 Index for four horizons ranging 

from one day to one month for the period from 2003 to 2012. 

 

This chapter is structured as follows. Section 5.2 covers methodology, including the 

density forecasting methods, namely Heston model for densities inferred from option 

prices and HAR-RV model for density forecasts obtained from historical 

high-frequency returns. It also includes the econometric methods used to obtain 

ex-ante parameters and evaluate density forecasts. Section 5.3 describes the Dow 

Jones 30 stock and option prices data employed in the study. Section 5.4 focuses on 

the empirical analysis. Section 5.5 summarises the findings and concludes. 

 

5.2 Methodology 

 

5.2.1 Option pricing with stochastic volatility 

 

We want to extract the risk-neutral density for the underlying asset from option prices, 

and a realistic process for an individual stock must incorporate a stochastic volatility 

component, whose increments are correlated with the price increments. We need to 

calculate an enormous number of theoretical option prices, so fast calculations are 

essential. The stochastic volatility process of Heston (1993) meets all our 

requirements as it has closed-form densities and option prices. 
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The risk-neutral price dynamics for the stock price S, which incorporate the stochastic 

variance V, is defined as below 

݀ܵ
ܵ
ൌ ሺݎ	 െ ݐሻ݀ݍ	 ൅ √ܸ݀ ଵܹ																																														ሺ5.1ሻ 

where r is the risk-free interest rate, ݍ is the dividend yield, and W1 is a Wiener 

process. For the variance, we have the familiar square-root process of Cox et al. (1985) 

written as 

ܸ݀ ൌ ߠሺߢ െ ܸሻ݀ݐ ൅ ܸ݀√ߪ ଶܹ																																												ሺ5.2ሻ 

We let ρ denote the correlation between the two Wiener processes ଵܹ and ଶܹ, while 

θ is the level towards which the stochastic variance V reverts, and κ denotes the rate of 

reversion of ܸ  towards θ. The volatility of volatility parameter ߪ  controls the 

kurtosis of the returns. More complicated affine jump-diffusion processes which have 

closed-form solutions are described by Duffie et al. (2000). We do not consider these, 

noting that Shackleton et al. (2010) obtained no benefits from including price jump in 

their study. 

 

Heston (1993) assumes q=0 and also makes some assumptions about the price of 

volatility risk, by referring to Black and Scholes (1973) and Merton (1973), where the 

value of any asset denoted u should satisfy the partial differential equation (PDE) (5.3) 

as below 

1
2
ܸܵଶ

߲ଶܷ
߲ܵଶ

	൅ ܸܵߪߩ	
߲ଶܷ
߲ܵ	߲ܸ

	൅	
1
2
ଶܸߪ

߲ଶܷ
߲ܸଶ

	൅ ܵݎ	
߲ܷ
߲ܵ

 

൅ሼߢሾߠ	 െ 	ܸሿ െ ,ሺܵߣ	 ܸ, ሻሽݐ
߲ܷ
߲ܸ

	െ 	ܷݎ	 ൅	
߲ܷ
ݐ߲

	ൌ 	0,																							ሺ5.3ሻ 

 

where the term ߣሺܵ, ܸ,  ሻ denotes the price of the volatility risk and Heston (1993)ݐ

assumed ߣሺܵ, ܸ, ሻݐ ൌ  .ܸߣ
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A European call option with strike price K which matures at time T and satisfies 

equation (5.3) satisfies the following boundary conditions in equations (5.4), for 

0 ൑ ݐ ൑ ܶ. 

ܷሺܵ, ܸ, ܶሻ ൌ ,ሺ0ݔܽܯ ܵ െ  ሻܭ

ܷሺ0, ܸ, ሻݐ ൌ 0 

߲ܷ
߲ܵ

ሺ∞, ܸ, ሻݐ ൌ 1 

ܵݎ
߲ܷ
߲ܵ

ሺܵ, 0, ሻݐ ൅ ߠߢ	
߲ܷ
߲ܸ

ሺܵ, 0, ሻݐ െ ,ሺܷܵݎ 0, ሻݐ ൅	 ௧ܷሺܵ, 0, ሻݐ ൌ 0 

ܷሺܵ,∞, ሻݐ ൌ ܵ                          (5.4) 

 

Similar to the Black-Scholes formula, at time 0 the Heston call price formula is 

derived by assuming 

,ሺܵ଴ܥ ଴ܸ, 0ሻ ൌ ܵ଴ ଵܲ െ ,ሺ0ܲܭ ܶሻ ଶܲ.                  (5.5) 

The first term ܵ଴ is the current value of the spot price, while the second term 

,ሺ0ܲܭ ܶሻ is the present value of the strike price ܭ. The terms P1 and P2 are functions 

of S0, V0 and the parameters in (5.1) and (5.2). 

 

We also use x to denote the logarithm of the spot price as defined in equation (5.6) 

௧ݔ ൌ  ሺ5.6ሻ																																																													ሺܵ௧ሻ.݃݋݈

 

Heston (1993) substituted equation (5.5) into the PDE equation (5.3) to show that ଵܲ 

and ଶܲ must both satisfy the following PDEs in equation (5.7) 

1
2
ܸ
߲ଶ ௝ܲ

ଶݔ߲
൅ ܸߪߩ	

߲ଶ ௝ܲ

ܸ߲	ݔ߲
൅	
1
2
ଶܸߪ	

߲ଶ ௝ܲ

߲ܸଶ
൅ ൫ݎ ൅	ݑ௝ܸ൯

߲ ௝ܲ

ݔ߲
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൅	൫	 ௝ܽ െ 	 ௝ܾܸ൯	
߲ ௝ܲ

߲ܸ
൅	
߲ ௝ܲ

ݐ߲
ൌ 0																																													ሺ5.7ሻ 

for ݆ ൌ 1, 2, and 

ଵݑ ൌ
ଵ

ଶ
, ଶݑ ൌ 	െ

ଵ

ଶ
, ܽଵ ൌ ܽଶ ൌ ,ߠߢ	 ܾଵ ൌ ߢ	 ൅ ߣ	 െ ,ߪߩ	 ܾଶ ൌ ߢ	 ൅  (5.8)      ߣ	

with λ ൌ 0 when the other parameters are for risk-neutral dynamics. 

 

When x follows the stochastic process, the relevant price dynamics are given by 

equations (5.9) 

ݔ݀ ൌ 	ݎൣ െ 	ݍ	 ൅	ݑ௝ܸ൧݀ݐ ൅	√ܸ݀ ଵܹ, 

݀V ൌ ൫ ௝ܽ െ	 ௝ܾܸ൯݀ݐ ൅ ܸ݀√ߪ	 ଶܹ.                  (5.9) 

where the parameters ݑ௝, ௝ܽ and ௝ܾ are denoted as before. Each ௝ܲ in equation (5.5) 

is a conditional probability that the call option expires in-the-money. The term ଶܲ is 

derived from the characteristic function of ்ܵ under the risk-neutral measure ܳ, 

while ଵܲ is derived from the characteristic function of ்ܵ under a related measure 

ܳ∗ for different drift rates in equation (5.9). 

 

Probabilities are obtained from the conditional characteristic function of ݈݃݋ሺ்ܵሻ, 

which is denoted by ݃ሺߔሻ and defined for all real numbers Φ, with ݅ ൌ 	√െ1, as 

݃ሺߔሻ ൌ ,൫݁௜ః௟௢௚ሺௌ೅ሻหܵ଴ܧ	 ଴ܸ൯.                    (5.10) 

 

This is a complex-valued function. Heston (1993) solves the PDEs to get the 

characteristic function solution 

݃ሺߔሻ ൌ ݁	஼ା஽௏బା௜ః ௟௢௚ሺௌబሻ																																																	ሺ5.11ሻ 

 

The terms ܥ and ܦ are calculated from long equations which can be written as 
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follows in equations (5.12), for a selected value of i: 

	ܥ ൌ 	݅ܶߔݎ	 ൅	 ௝ܽ

ଶߪ
	ሼ൫ ௝ܾ െ 	݅ߔߪߩ	 ൅ 	݀൯ܶ െ 2 ሾ݃݋݈

1	 െ 	݇݁ௗ்

1	 െ 	݇
ሿሽ 

	ܦ ൌ 	 ௝ܾ 	െ 	݅ߔߪߩ	 ൅ 	݀
ଶߪ

	ሾ
1	 െ	݁ௗ்

1	 െ 	݇݁ௗ்
ሿ 

and 

݇	 ൌ 		 ௝ܾ 	െ 	݅ߔߪߩ	 ൅ 	݀

௝ܾ 	െ 	݅ߔߪߩ	 െ 	݀
 

݀	 ൌ 	െට൫݅ߔߪߩ	 െ ௝ܾ൯
ଶ
	െ 	݅ߔ௝ݑଶ൫2ߪ െ  ሺ5.12ሻ																					ଶ൯.ߔ

 

When the asset pays continuous dividends, so q>0. S0 is replaced by S0e
-qT in (5.5) and 

(5.11). For options on futures, q=r. Each desired probability can be obtained by 

inverting the characteristic function, which is given as 

ܲሺ்ܵ ൒ ,଴ܵ	|	ܭ ଴ܸሻ ൌ 	
1
2
൅	
1
ߨ
න ܴ݁	 ቈ

݁ି௜ః ௟௢௚ሺ௄ሻ	݃ሺߔሻ
ߔ݅

቉ ሺ5.13ሻ																	ߔ݀
ஶ

଴
 

where ܴ݁ሾ. ሿ is the real part of a complex number (Kendall et al. 1987). This integral 

can be evaluated rapidly and accurately by numerical methods. 

 

Two methods can be implemented to evaluate this integral. One method is to use 

Adaptive Simpson’s Rule, Matlab function quad (@fun, a, b) uses Adaptive 

Simpson’s Rule on the function @fun over the interval [a, b]. The other method 

employs Gauss Lobatto Rule, Matlab function quadl (@fun, a, b) uses Gauss Lobatto 

Rule to integrate @fun over [a, b] numerically. Matlab defines the functions, quad and 

quadl, as lower and higher order quadrature rules, we hence expect quadl to be 

superior and employ it in our study. 
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The integral also provides the conditional cumulative distribution function of ்ܵ, 

therefore 

ሻݕሺܨ 	ൌ ܲሺ்ܵ ൑ ,଴ܵ	|	ݕ ଴ܸሻ ൌ 1 െ ܲሺ݈݃݋ሺ்ܵሻ ൒ ሻݕሺ݃݋݈ |	ܵ଴, ଴ܸሻ.	 

 

From routine calculations, the conditional risk-neutral density for positive values of y 

is hence 

݂ሺݕሻ 	ൌ 	
ܨ݀
ݕ݀

ൌ 	
1
ݕߨ

	න ܴ݁	ൣ݁ି௜ః ௟௢௚ሺ௬ሻ݃ሺߔሻ൧݀ߔ.																										
ஶ

଴
ሺ5.14ሻ 

 

However, several studies including Kahl and Jackel (2006) and Shackleton et al. 

(2010) point out that using the positive root solution for d in equations (5.12) can 

cause a discontinuity problem in the integrand in equation (5.13), and an investigation 

shows that this actually arises from the complex logarithm in function C in equation 

(5.11). The problem occurs if software chooses values of the complex logarithm 

which do not guarantee a continuous characteristic function. We emphasise the 

problem because many researchers appear to be unaware of it. Several methods have 

been proposed to solve this problem, and we follow Shackleton et al. (2010) to take 

the negative root solution d in equations (5.12). Gatheral (2006) asserts that using the 

negative root does not lead to false option prices, based upon extensive empirical 

experience. 

 

5.2.2 High-frequency HAR methods 

 

The HAR-RV model of Corsi (2009) is a simple AR-type model for the realised 

volatility which combines different volatility components calculated over different 

time horizons, and has been applied in Andersen et al. (2007) and Busch et al. (2011). 
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The HAR-RV model states that the multiperiod realised variance is the average of the 

corresponding one-period measures denoted as 

ܴ ௧ܸ,௧ା௛ ൌ ݄ିଵሾܴ ௧ܸାଵ ൅ ܴ ௧ܸାଶ ൅ ⋯൅ ܴ ௧ܸା௛ሿ																															ሺ5.15ሻ 

 

where h=1, 2, …, by definition ܴ ௧ܸ,௧ା௛ ≡ ܴ ௧ܸା௛  and we use h=5 and h=22 to 

represent the weekly and monthly realised volatility. Here the time period for 

predictions is from t to t+h, both counting trading days. In contrast, our options 

notation is a time period from 0 to T, both measured in years. The HAR model is a 

regression model which is standard and unbiased. There are literature about the 

GARCH model and heavy tailed time series using variance targeting as a means of 

reducing estimation bias, but there is no literature about the HAR model. 

 

The HAR-RV model of Corsi (2009) is stated as a regression of the next RV on 

today’s RV and the average RVs over the latest week and month: 

ܴ ௧ܸ,௧ାଵ ൌ ଴ߚ ൅ ஽ܴߚ ௧ܸିଵ,௧ ൅ ௐܴߚ ௧ܸିହ,௧ ൅ ெܴߚ ௧ܸିଶଶ,௧ ൅  .௧,௧ାଵߝ

 

To make predictions for the next h-day period, the regression specification is simply: 

ܴ ௧ܸ,௧ା௛ ൌ ଴,௛ߚ ൅ ஽,௛ܴߚ ௧ܸିଵ,௧ ൅ ௐ,௛ܴߚ ௧ܸିହ,௧ ൅ ெ,௛ܴߚ ௧ܸିଶଶ,௧ ൅  ሺ5.16ሻ			௧,௧ା௛.ߝ

 

Some volatility forecast models also employ standard deviations as opposed to 

variances. Andersen et al. (2007) present the standard deviation form of HAR-RV 

model as 

ሺܴ ௧ܸ,௧ା௛ሻଵ/ଶ ൌ ଴,௛ߚ ൅ ஽,௛൫ܴߚ ௧ܸିଵ,௧൯
ଵ/ଶ

൅ ௐ,௛ሺܴߚ ௧ܸିହ,௧ሻଵ/ଶ ൅ ெ,௛ሺܴߚ ௧ܸିଶଶ,௧ሻଵ/ଶ 				

൅  ሺ5.17ሻ																																																																																																							௧,௧ା௛ߝ
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Given the logarithmic daily realised volatilities are approximately unconditionally 

normally distributed (Andersen et al., 2001), Andersen et al. (2007) also predict the 

realised variance in logarithmic form as 

൫ܴ݃݋݈ ௧ܸ,௧ା௛൯ ൌ ଴,௛ߚ ൅ ஽,௛ߚ ൫ܴ݃݋݈ ௧ܸିଵ,௧൯ ൅ ௐ,௛ߚ ൫ܴ݃݋݈ ௧ܸିହ,௧൯ ൅ ெ,௛ߚ ൫ܴ݃݋݈ ௧ܸିଶଶ,௧൯

൅  ሺ5.18ሻ																																																																																																							௧,௧ା௛ߝ

 

We also use the logarithmic form of realised variance in our study. However, Pong et 

al. (2004) state that we cannot simply take the exponential of a forecast of logarithmic 

volatility to get a forecast of the variance, as the forecasts obtained will be biased. We 

thus follow Granger and Newbold (1976) to get the volatility forecast. In their 

notation, 

௡ା௛ݔ ൌ ௡݂ା௛ ൅ ݁௡ା௛
ሺ௫ሻ 																																																			ሺ5.19ሻ 

where ݁௡ା௛
ሺ௫ሻ  is the h-step forecast error of ݔ௡ା௛ and ௡݂ା௛ is the optimal forecast of 

௡ܫ ௡ା௛ made at time n. Usingݔ ൌ ሼݔ௡ି௝, ݆ ൒ 0ሽ, we define ܵଶሺ݄ሻ to be the variance 

of the h-step forecast error of ݔ௡ା௛: 

ܵଶሺ݄ሻ ൌ ቀ݁௡ା௛ݎܽݒ
ሺ௫ሻ ቁ.																																																	ሺ5.20ሻ 

The optimal forecast of ݁݌ݔሺݔ௡ା௛ሻ using ܫ௡ is then given by 

݃௡ା௛
ሺ௫ሻ ൌ expቆ ௡݂ା௛ ൅

1
2
ܵଶሺ݄ሻቇ																																						ሺ5.21ሻ 

assuming ሼݔ௡ሽ is a Gaussian process. This is a standard assumption for ݈݃݋ሺܴ ௧ܸሻ. 

The reason for this is that the logarithmic returns are biased, and we reduce the bias in 

the variance. While in (5.25) we reduce the bias in the expectation of the lognormal 

prices. 

 

 



104 
 

5.2.3 Lognormal densities, from the Black-Scholes model and HAR-RV forecasts 

 

In the Black-Scholes model, we assume the prices follow geometric Brownian motion 

݀ܵ ܵ⁄ ൌ ݐ݀ߤ ൅  ሺ5.22ሻ																																																			ܹ݀ߪ

where µ is the expected return per annum, and is equal to the risk free rate plus the 

asset’s risk premium and minus the dividend yield. 

 

Since the distribution of stock price ST is then lognormal, the distribution of log(ST) is 

normal: 

ሺܵ଴ሻ	݃݋ሺ்ܵሻ~ܰሺ݈	݃݋݈ ൅ ܶߤ െ
1
2
,ଶܶߪ  ଶܶሻߪ

 

Under the risk-neutral or the Q-distribution, the risk-neutrality assumption requires a 

drift rate r-q instead of µ, and hence we have 

ሺܵ଴ሻ݃݋ሺ்ܵሻ~ܰሺ݈	݃݋݈ ൅ ሺݎ െ ሻܶݍ െ
1
2
,ଶܶߪ  ଶܶሻߪ

and																																															ܧொሾ்ܵሿ ൌ ܵ଴݁
ሺ௥ି௤ሻ் ൌ  ሺ5.23ሻ																																								଴,்ܨ

where ܨ଴,் is the no-arbitrage, futures price at time 0 for a contract to exchange at 

time T. 

 

The risk-neutral density of ST then depends on three parameters (F0,T, σ, T) and is 

given by the lognormal density 

߰൫ݔหܨ଴,், ,ߪ ܶ൯ ൌ
1

ܶߨ2√ߪݔ
݁
ିଵଶቆ

೗೚೒ሺೣሻషቂ೗೚೒൫ಷబ,೅൯ష
భ
మ഑

మ೅ቃ

഑√೅
ቇ

మ

.																						ሺ5.24ሻ 

 

Similarly, a risk-neutral, lognormal density from the HAR-RV model can be given by 
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replacing ߪ√ܶ by a term ܴ෢்ܸ to give: 

߰൫ݔหܨ଴,், ܴ෢ܸ௧,௧ା௛൯ ൌ
1

෢ܸ௧,௧ା௛ܴߨට2ݔ

݁
ିଵଶቌ

೗೚೒ሺೣሻషቂ೗೚೒൫ಷబ,೅൯ష
భ
మೃೇ
෢ ೟,೟శ೓ቃ

ටೃೇ෢ ೟,೟శ೓

ቍ

మ

																		ሺ5.25ሻ 

The quantity ܴ෢ܸ௧,௧ା௛  is calculated from (5.18) and (5.21) with the horizon h 

(measured in trading days) and maturity T (measured in years). 

 

5.2.4 Nonparametric transformations 

 

The risk-neutral, Q-densities are not satisfactory specifications of the real-world 

densities. One reason is that Q-variance obtained from option prices is usually higher 

than the real-world variance, because there is a negative volatility risk premium (Carr 

and Wu, 2009). Consequently there are fewer observations than predicted in the tails 

of the Q-densities. A second reason is that the equity risk premium is, by definition, 

absent from all the risk-neutral densities. Hence it is necessary to use some technique 

to transform risk-neutral densities into real-world densities. 

 

We consider the nonparametric calibration method in this study. Nonparametric 

calibration functions are re-estimated for each period t. At time t (which counts 

trading days), the nonparametric transformation for a selected horizon h is determined 

by a set of t-h+1 cumulative, risk-neutral probabilities 

௦ା௛ݑ ൌ ,௦ሻ߆|ொ,௦,்ሺܵ௦ା௛ܩ 0 ൑ ݏ ൑ ݐ െ ݄,																											ሺ5.26ሻ 

with T (years) matching h (trading days), s a time before t-h+1, GQ, s, T the cumulative 

distribution function of the price Ss+h, and with Θs a vector of density parameters. We 

assume the observations us+1 are i.i.d. and their c.d.f. is given by the calibration 



106 
 

function CT(u). 

 

The values of the variables u for the Heston model are given by (5.13). The variables 

u for the HAR-RV model can be derived in the following way. For the risk-neutral 

dynamics, 

௦,௦ା௛൯ܨ൫݃݋ሺܵ௦ା௛ሻ~ܰሺ݈݃݋݈ െ
1
2
ܴ෢ܸ௦,௦ା௛, ܴ෢ܸ௦,௦ା௛ሻ 

with Fs, s+h the futures price at time s for a transaction at time s+h and with ܴ෢ܸ௦,௦ା௛ 

the forecast of RV for the period from time s to s+h inclusive. From the outcome መܵ௦ା௛ 

we calculate 

௦ା௛ݑ																													 ൌ ொ,௦,்൫ܩ መܵ௦ା௛ห߆௦൯ 

ൌ ߔ

ۉ

ۇ
ሺ	݃݋݈ ሚܵ௦ା௛ሻ െ ሺ݈݃݋	ሺܨ௦,௦ା௛ሻ െ

1
2ܴ
෢ܸ௦,௦ା௛ሻ

ටܴ෢ܸ௦,௦ା௛ ی

 ሺ5.27ሻ																	.ۊ

 

The values of the variables u for the Black-Scholes model are given in a similar way6 

௦ା௛ݑ ൌ ቌߔ
ሺ	݃݋݈ ሚܵ௦ା௛ሻ െ ሺ݈݃݋ሺܨ෨௦,௦ା௛ሻ െ

1
ߪ2

ଶܶሻ

ܶ√ߪ
ቍ																							ሺ5.28ሻ 

 

We use φ() and Φ() to represent the density and the c.d.f. of the standard normal 

distribution. We then transform the observations ui, whose domain is from 0 to 1, to 

new variables yi=Φ
-1(ui), and then fit a nonparametric kernel c.d.f. to the set {y1, y2, …, 

yt-h+1}. We use a normal kernel with bandwidth B to obtain the kernel density and 

c.d.f.: 

                                                              
6 When calculating densities and variables u, we use forward prices on day s for future transactions at time s+h. 
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෠݄
்ሺݕሻ ൌ

1
ሺݐ െ ݄ ൅ 1ሻܤ

෍ ߮

௧ି௛ାଵ

௜ୀଵ

ቀ
ݕ െ ௜ݕ
ܤ

ቁ, 

ሻݕ෡்ሺܪ ൌ
1

ݐ െ ݄ ൅ 1
෍ ߔ

௧ି௛ାଵ

௜ୀଵ

ቀ
ݕ െ ௜ݕ
ܤ

ቁ.																															ሺ5.29ሻ 

The bandwidth B decreases as t increases. We apply the standard formula of 

Silverman (1986), where B=0.9σy/t
0.2 and σy is the standard deviation of the terms yi. 

 

The empirical calibration function is then 

ሻݑመ்ሺܥ ൌ  ሺ5.30ሻ																																															ሻ൯ݑଵሺିߔ෡்൫ܪ

 

which is calculated at time t. At the same time, we let ݃ொ,்ሺݔሻ and GQ,T(x) denote the 

risk-neutral density and the cumulative distribution function of the random variable 

்ܵ. We define ்ݑ ൌ  ொ,்ሺ்ܵሻ. We follow Bunn (1984) and denote the calibrationܩ

function CT(u), which is the real-world c.d.f. of the random variable ்ݑ. Now we 

consider the real world c.d.f. of ்ܵ, with Pr referring to the real world probabilities. 

The c.d.f. is 

Prሺ்ܵ ൑ ሻݔ ൌ Pr ቀܩொ,்ሺ்ܵሻ ൑ ሻቁݔொ,்ሺܩ ൌ Pr ቀ்ݑ ൑ ሻቁݔொ,்ሺܩ 																																	

ൌ ்ܥ ቀܩொ,்ሺݔሻቁ																																																																																							ሺ5.31ሻ 

 

Consequently replacing ்ܥሺ. ሻ by ܥመ்ሺ. ሻ, the predictive real-world c.d.f. of ்ܵ is 

ሻݔ௉,்ሺܩ ൌ መ்ܥ ቀܩொ,்ሺݔሻቁ																																											ሺ5.32ሻ 

 

The real-world density is 
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݃௉,்ሺݔሻ ൌ
݀
ݔ݀

෡்ܪ ൬ିߔଵ ቀܩொ,்ሺݔሻቁ൰ ൌ
݀
ݔ݀

ሻݕ෡்ሺܪ ൌ
ݕ݀
ݔ݀

ሻݕ෡்ሺܪ݀
ݕ݀

 

ൌ
ݑ݀
ݔ݀

ݕ݀
ݑ݀

෠݄
்ሺݕሻ ൌ

݃ொ,்ሺݔሻ ෠்݄ሺݕሻ
߮ሺݕሻ

.																																			ሺ5.33ሻ 

 

Also the nonparametric calibration density is 

்ܿ̂ሺݑሻ ൌ
݀
ݑ݀

ሻݑመ்ሺܥ ൌ
݀
ݑ݀

ሻݕ෡்ሺܪ ൌ
ሻݕ෡்ሺܪ݀
ݕ݀

ݕ݀
ݑ݀

ൌ
෠݄
்ሺݕሻ

߮ሺݕሻ
.													ሺ5.34ሻ 

 

5.2.5 Parameter estimation 

 

The densities are all evaluated out-of-sample and thus the parameter values are 

obtained ex ante, i.e. the values at time t are estimated based on the information 

available at time t. For the HAR variances we estimate all parameters from 

regressions over five-year windows. For Black-Scholes lognormal densities, we use 

the nearest-the-money, nearest-to-expiry option implied volatility. 

 

For the Heston model, we estimate the risk-neutral parameters of the asset price 

dynamics every day. On each day, we estimate the initial variance Vt, the rate of 

reversion κt, the unconditional expectation of stochastic variance θt, the volatility of 

volatility σt, and the correlation ρt between the two Wiener processes. Assume there 

are Nt European, call7 option contracts traded on day t, denoted by i=1, …, Nt, and the 

market prices are ct,i, for strike prices Kt,i, and expiry times Tt,i. We also assume pt,i is 

the futures price for the asset, calculated for a synthetic futures contract which expires 

in Tt,i years. Then we calibrate the five risk-neutral Heston parameters by minimising 

                                                              
7 We use put-call parity to obtain the equivalent European call prices from the put prices, and then apply them to 
(5.5), this is also discussed in section 5.3.2. 
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the total squared errors in 

෍ሺܿ௧,௜ െ ܿ൫݌௧,௜, ,௧,௜ܭ ௧ܶ,௜ , ௧ܸ , ,௧ߢ ,௧ߠ ,௧ߪ ௧൯ሻଶߩ
ே೟

௜ୀଵ

																									ሺ5.35ሻ 

with c(.) the solution for the European call option price from the Heston model given 

in (5.5).8 

 

Christoffersen and Jacobs (2004) argue that the loss function used in parameter 

estimation and model evaluation should be the same for any given model, and the 

estimation loss function should be identical when comparing across models. Different 

loss functions are used in the estimation and evaluation stages in the literature. Bakshi 

et al. (1997) use mean-squared absolute option pricing errors in estimation, but both 

mean-squared absolute and relative option pricing errors in evaluation. Rosenberg and 

Engle (2002) employ mean-squared absolute option pricing errors in estimation, but 

relative hedging errors in the evaluation stage. Pan (2002) estimates parameters using 

generalised method of moments (GMM) loss function and evaluate models using 

implied volatility mean squared errors. Chernov and Ghysels (2000) use efficient 

method of moments (EMM) in estimation, and both mean-squared absolute and 

relative option pricing errors in evaluation. Benzoni (2002) employs EMM and 

mean-squared absolute option pricing errors in estimation, and mean-squared absolute 

option pricing errors in the evaluation stage. 

 

 

 

 

                                                              
8 Christoffersen and Jacobs (2004) conclude that it is a “good general-purpose loss function in option valuation 
applications”. Christoffersen et al. (2010) also employed it in the study of S&P 500 dynamics. 
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5.2.6 Econometric methods 

 

5.2.6.1 Maximum log-likelihood 

There are several ways to evaluate density forecasts, and we will use the standard 

log-likelihood criterion previously employed by Bao et. al (2007), Liu et. al (2007) 

and Shackleton et al. (2010). For a given horizon h, assuming method m gives 

densities ݃௠,௧ሺݔሻ at times i, .., j for the asset price at times i+h, …, j+h. Our goal is 

to find the method which maximises the out-of-sample log-likelihood of observed 

asset prices, and this log-likelihood for method m is given by 

௠ܮ ൌ෍݈݃݋ ቀ݃௠,௧ሺܵ௧ା௛ሻቁ

௝

௧ୀ௜

																																								ሺ5.36ሻ 

 

To compare two methods we apply a version of the log-likelihood ratio test in 

Amisano and Giacomini (2007). The null hypothesis states that two different density 

forecasting methods m and n have equal expected log-likelihood. The test is based on 

the log-likelihood differences 

݀௧ ൌ ݃݋݈ ቀ݃௠,௧ሺܵ௧ା௛ሻቁ െ ݃݋݈ ቀ݃௡,௧ሺܵ௧ା௛ሻቁ , ݅ ൑ ݐ ൑ ݆.																				ሺ5.37ሻ 

 

Amisano and Giacomini (2007) follow Diebold and Mariano (1995) and add the 

assumption that the differences are uncorrelated and ignore all covariance terms in the 

estimator. Hence the AG test statistic is 

௜,௝ݐ ൌ
݀̅

ௗݏ ඥሺ݆ െ ݅ ൅ 1ሻ⁄
ൌ

௠ܮ െ ௡ܮ
ௗඥሺ݆ݏ െ ݅ ൅ 1ሻ

																															ሺ5.38ሻ 

 

This statistic follows a standard normal distribution, where ݀̅ is the mean and ݏௗ is 
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the standard deviation of the terms ݀௧. 

 

When h>1 the forecasts overlap and it is plausible to expect some autocorrelation in 

the differences. A Newey-West adjustment should then be made when estimating the 

variance of ݀̅. Assuming the terms ݀௧ are stationary, 

൫݀̅൯ݎܽݒ ൌ ݎܽݒ ൬
݀ଵ ൅ ݀ଶ ൅ ⋯൅ ݀௡

݊
൰ 

ൌ
1
݊ଶ
ሾ݊ݎܽݒሺ݀ଵሻ ൅ 2ሺ݊ െ 1ሻܿݒ݋ሺ݀ଵ, ݀ଶሻ ൅ ⋯൅ ,ሺ݀ଵݒ݋2ܿ ݀௡ሻሿ 

					ൌ
ሺ݀ଵሻݎܽݒ

݊
൤1 ൅ 2 ൬

݊ െ 1
݊

൰ ଵߩ ൅ 2 ൬
݊ െ 2
݊

൰ ଶߩ ൅⋯൅ 2 ൬
1
݊
൰  ௡ିଵ൨ߩ

 

where the autocorrelations are ߩఛ ൌ ,ሺ݀௧ݎ݋ܿ ݀௧ାఛሻ . The typical estimate of the 

variance of ݀̅ is 

ௗݏ
ଶ

݊
ሾ1 ൅ 2߱ଵߩොଵ ൅ ⋯൅ 2߱௞ߩො௞ሿ 

 

and a standard set of weights for k estimated autocorrelations is ߱ఛ ൌ
௞ାଵିఛ

௞ାଵ
, 

1 ൑ ߬ ൑ ݇. 

 

5.2.6.2 Diagnostic tests 

Appropriate diagnostic tests use properties of time series derived from density 

forecasts. Rosenblatt (1952) introduces the probability integral transform, and states 

that the PIT values are i.i.d. uniform for known densities. Diebold et al. (1998) 

initiated the idea of using PIT values to evaluate density forecasts. Following this and 

Shackleton et al. (2010), we also employ a series of observed cumulative probabilities 

to check the accuracy of the forecasts. For a given method m the PIT probabilities are 
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given by 

௧ାଵݑ ൌ න ݃௠,௧ሺݔሻ݀ݔ,
ௌ೟శభ

଴
																																												ሺ5.39ሻ 

for prices St+1 matched with densities ݃௠,௧ሺݔሻ. 

 

We then evaluate if the values of u are compatible with i.i.d. observations from the 

uniform distribution. We can employ the Kolmogorov and Smirnov test. The KS test 

checks the maximum difference between the empirical and theoretical cumulative 

functions. For forecasts made at times ݅ ൑ ݐ ൑ ݆, the sample c.d.f. of {ui+1, …, uj+1}, 

evaluated at u, is the proportion of values less than or equal to u, i.e. 

ሻݑሚሺܥ ൌ
1

݆ െ ݅ ൅ 1
෍ ܵሺݑ െ ௧ሻݑ

௝ାଵ

௧ୀ௜ାଵ

																																			ሺ5.40ሻ 

with S(x)=1 if ݔ ൒ 0, and S(x)=0 if ݔ ൏ 0. The test statistic is given by 

ܵܭ ൌ ݌ݑݏ
଴ஸ௨ஸଵ

หܥሚሺݑሻ െ  ሺ5.41ሻ																																																ห.ݑ

 

The KS test is widely applied because it is easy to implement. However, one needs to 

be cautious when interpreting the test results, as the KS test checks for uniformity 

under the i.i.d. assumption rather than tests i.i.d. and uniformity jointly. 

 

Some researchers doubt the power of the KS test when evaluating density forecasts. 

Berkowitz (2001) invented the BK test, which states that if the PIT is i.i.d. uniform, 

then the normal inverse cumulative function of the PIT is i.i.d. normal. The advantage 

of the BK test is that it can test independence and uniformity jointly. The BK test has 

been applied in Clements and Smith (2000), Clements (2004), Guidolin and 

Timmermann (2005) and Shackleton et al. (2010). 
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The BK method transforms the observations ui to new variables yi=Φ
-1(ui), with Φ() 

the c.d.f. of the standard normal distribution. The null hypothesis of the test is that the 

values of y are i.i.d. and follow a standard normal distribution, against the alternative 

hypothesis that y is a stationary, Gaussian, AR(1) process with no restrictions on the 

mean, variance and autoregressive parameters. Let 

௧ݕ െ ߤ ൌ ௧ିଵݕሺߩ െ ሻߤ ൅ 	ሺ5.42ሻ																																															௧.ߝ

 

Then the null hypothesis is that ߤ ൌ ߩ ,0 ൌ 0, and ݎܽݒሺߝ௧ሻ ൌ 1. The log-likelihood 

for T observations from (5.42) is 

െ
ܶ
2
ሻߨሺ2݃݋݈ െ

1
2
ଶߪሾ݃݋݈ ሺ1 െ ⁄ଶሻߩ ሿ െ

ሺݕଵ െ ߤ ሺ1 െ ⁄ሻߩ ሻଶ

ଶߪ2 ሺ1 െ ⁄ଶሻߩ
െ
ܶ െ 1
2

ଶሻߪሺ݃݋݈

െ෍ቆ
ሺݕ௧ െ ߤ െ ௧ିଵሻଶݕߩ

ଶߪ2
ቇ

்

௧ୀଶ

																																																																		ሺ5.43ሻ 

 

Here ߪଶ is the variance of εt. The log-likelihood is written as a function of the 

unknown parameters of the model, ܮሺߤ, ,ଶߪ  ሻ. The log-likelihood ratio test (LR3) isߩ

ଷܴܮ ൌ െ2ሺܮ଴ െ ଵሻܮ ൌ െ2൫ܮሺ0, 1, 0ሻ െ ,ߤሺ̂ܮ ,ොଶߪ 	ሺ5.44ሻ																					ොሻ൯.ߩ

 

Here hats denote maximum-likelihood values, L0 and L1 are the maximum 

log-likelihoods for the null and alternative hypotheses, and the test statistic has an 

asymptotic ݔଷ
ଶ distribution. One disadvantage of the BK test is that models cannot be 

easily compared if they are all accepted or rejected. The AG test, which we discussed 

before, compares the log-likelihoods between models and solves this problem. 
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5.3 Data 

 

5.3.1 Option data 

 

We investigate a majority of the Dow Jones Industrial Average (DJIA) 30 Index 

stocks for 10 years from 1st January 2003 to 31st December 2012. The calculations 

are time consuming and consequently we report results for only 17 stocks which we 

find are sufficient to obtain clear conclusions. Table 5.1 lists the stocks studied, which 

were all DJIA constituents at the end of our sample period. 

 

The option data are obtained from Ivy DB OptionMetrics, which includes price 

information for all U.S. listed equity options, based on daily closing quotes at the 

CBOE. The OptionMetrics database also includes information about end-of-day 

security prices and zero-coupon interest rate curves. The security price file provides 

the closing price for each security on each day from CRSP. 

 

5.3.2 Option prices 

 

In terms of filtering option price records, we follow the criteria of Carr and Wu (2003, 

2009 and 2010) and Huang and Wu (2004). We delete an option record when the bid 

price is zero or negative. We also delete an option record when the bid price is greater 

than the ask price. As do Carr and Wu (2009), we eliminate all the options which have 

maturity equal to or more than one year. Following Carr and Wu (2003), Huang and 

Wu (2004), Shackleton et al. (2010) and Taylor et al. (2010), we delete all data for 

options with maturity equal to or less than seven calendar or five business days. 
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Table 5.1 

List of 17 DJIA constituent stocks studied. 

Number Company Exchange Symbol Industry Date Added

1 Alcoa NYSE AA Aluminum 1959/6/1 

2 American Express NYSE AXP Consumer finance 1982/8/30 

3 AT&T NYSE T Telecommunication 1999/11/1 

4 Boeing NYSE BA Aerospace and defense 1987/3/12 

5 Cisco Systems NASDAQ CSCO Computer networking 2009/6/8 

6 General Electric NYSE GE Conglomerate 1907/11/7 

7 Hewlett-Packard NYSE HPQ Computers & technology 1997/3/17 

8 The Home Depot NYSE HD Home improvement retailer 1999/11/1 

9 Intel NASDAQ INTC Semiconductors 1999/11/1 

10 IBM NYSE IBM Computers & technology 1979/6/29 

11 Johnson & Johnson NYSE JNJ Pharmaceuticals 1997/3/17 

12 JPMorgan Chase NYSE JPM Banking 1991/5/6 

13 McDonald's NYSE MCD Fast Food 1985/10/30 

14 Merck NYSE MRK Pharmaceuticals 1979/6/29 

15 Pfizer NYSE PFE Pharmaceuticals 2004/4/8 

16 Wal-Mart NYSE WMT Retail 1997/3/17 

17 Walt Disney NYSE DIS Broadcasting and entertainment 1991/5/6 
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All the equity options are American. OptionMetrics provides implied volatilities, 

calculated from binomial trees which incorporate dividends and permit early exercise. 

We use equivalent European option prices defined by assuming the European and 

American implied volatilities are equal. This method assumes the early exercise 

premium can be obtained from constant volatility pricing models. The assumption is 

particularly reasonable for out-of-the-money options which have small early exercise 

premia. 

 

European call and put prices for the same strike and maturity theoretically contain the 

same information. Either the call option or the put option will be out-of-the-money 

(OTM), or under rare circumstances both are at-the-money (ATM). Options are ATM 

when the strike price equals the stock price (S=K), calls are OTM when S<K and puts 

are OTM when S>K; they are nearest-the-money if |ܵ െ  is nearer zero than for all |ܭ

other contemporaneous strikes. We choose to use the information given by the prices 

of OTM and ATM options only, because in-the-money (ITM) options are less liquid 

and have higher early exercise premia. We use put-call parity to obtain equivalent 

European call prices from the European OTM put prices. 

 

5.3.3 Interest rates 

 

We follow Taylor et al. (2010) to get the interest rate corresponding to each option’s 

expiry by linear interpolation of the two closest zero-coupon rates supplied by Ivy 

DB. 
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5.3.4 IBM example 

 

We use IBM to illustrate our data and results. A total of 109,111 option prices are 

investigated in our sample period for IBM stock. The average number of option prices 

used per day is 44, consisting of 19 OTM calls and 25 OTM puts. Table 5.2 presents 

the quantity, moneyness and maturity of the option contracts used in this paper. 

 

5.3.5 Futures prices 

 

We calculate synthetic futures prices, which have the same expiry dates as the options, 

as the future value of the current spot price minus the present value of all the 

dividends expected during the life of the futures contract until the option expiry time T, 

i.e. 

்,଴ܨ ൌ ݁௥்൫ܵ െ ܸܲሺ݀݅ݏ݀݊݁݀݅ݒሻ൯																																								ሺ5.45ሻ 

We use the actual dividends amount in the distribution file from OptionMetrics. 

 

5.3.6 High-frequency stock prices 

 

We use the transaction prices of DJIA 30 Index stocks for ten years during the period 

between 1st January 1998 and 31st December 2012. The data are obtained from 

pricedata.com. The prices provided are the last prices in one-minute intervals. After an 

inspection of the high-frequency data, we find a number of problematic days which do 

not have complete trading records. We set the price equal to that for the previous 

minute when there is a missing record, and we delete a day when there are more than  
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Table 5.2 

Summary statistics for IBM option data. Information about out-of-the-money (OTM) 

and at-the-money (ATM) options on IBM stock from 2003 to 2012. 

Total Average per day Maximum per day Minimum per day

Calls 47709 19 46 6 

Puts 61402 25 74 5 

Total 109111 44 115 12 

Maturity <1 month Between 1 and 6 months >6 months Subtotal 

Moneyness S/K 

Deep OTM put >1.05 6462 30100 13596 50158 

(5.92%) (27.59%) (12.46%) (45.97%) 

OTM put 1.01-1.05 2040 5123 1839 9002 

(1.87%) (4.70%) (1.69%) (8.25%) 

At/near the money 0.99-1.01 1049 2641 973 4663 

(0.96%) (2.42%) (0.89%) (4.27%) 

OTM call 0.95-0.99 2278 5733 2330 10341 

(2.09%) (5.25%) (2.14%) (9.48%) 

Deep OTM call <0.95 3168 20393 11386 34947 

(2.90%) (18.69%) (10.44%) (32.03%) 

Subtotal 14997 63990 30124 109111 

(13.74%) (58.65%) (27.61%) (100.00%)
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40 consecutive missing prices. The days deleted are usually close to holidays such as 

New Year’s Day, Easter, Independence Day, Thanksgiving Day and Christmas. 

 

Between 2003 and 2012, 17 days are deleted because of missing high-frequency 

prices and these days usually only have prices for half a day. There are also 8 days 

with unsatisfactory option price data. All 25 days are deleted from the high-frequency 

and option files leaving a sample of 2488 days for each firm for the ten-year period 

ending on 31st December 2012. 

 

The stocks are traded for six-and-a-half-hours, from 9:30 EST to 16:00 EST. We 

calculate realised variances from 5-minute returns because Bandi and Russell (2006) 

state that the 5-minute frequency provides a satisfactory trade-off between 

maximising the accuracy of volatility estimates and minimising the bias from 

microstructure effects. As usual, returns are changes in log prices. We have 77 

5-minute intraday returns for each day after deleting the data in the first five minutes 

to avoid any opening effects. The realised variance for day t is the sum of the squares 

of the 5-minute returns rt,i: 

ܴ ௧ܸ ൌ෍ݎ௧,௜
ଶ

଻଻

௜ୀଵ

.																																																							ሺ5.46ሻ 

 

However, this calculation of realised variance is downward biased as a measurement 

of close-to-close volatility over a 24-hour period. This is because we only include the 

information during the trading period when we calculate the realised variance for a 

day, so the variation overnight (from close-to-open) is excluded. We thus need to scale 

the realised variance up. We multiply forecasts from the HAR-RV model by a scaling 
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factor. The denominator of the scaling factor is the sum of the squares of the 5-minute 

returns representing the open market period, while the numerator of the scaling factor 

is the sum of the squares of the daily returns representing open and closed market 

periods. We use a rolling window for the scaling factor, hence if we forecast the 

realised variance on day t, then we use the information about returns up to and 

including day t to calculate 

ܴ෢ܸ௧,௧ା௛ ቆ
∑ ௧ଶݎ
௧
௜ୀଵ

∑ ∑ ௧,௝ݎ
ଶ଻଻

௝ୀଵ
௧
௜ୀଵ

ቇ. 

 

This quantity replaces ܴ෢ܸ௧,௧ା௛  in (5.25) when the high-frequency, lognormal 

densities are evaluated. 

 

5.4 Empirical results 

 

5.4.1 Heston risk-neutral parameters 

 

Table 5.3 shows the summary statistics for risk-neutral parameters calibrated for IBM 

and across all stocks for each day in our sample period. The risk-neutral parameters 

minimise the mean squared error (MSE) of option prices on each day. 

 

For IBM, our median estimate of the stochastic variance ߠ is 0.3457, equivalent to 

an annualized volatility level of 58.80%. The mean estimate of the rate of reversion ߢ 

is 1.6861, for which the half-life parameter of the variance process is then about 5 

months. The median estimate of the volatility of volatility parameter ߪ  which 

controls the kurtosis of returns is 0.8617. Also the median estimate of the correlation  
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Table 5.3 

Summary statistics for risk-neutral calibrated parameters for IBM and across all 

stocks. Estimates are summarised for the risk-neutral dynamics (5.2). The parameters 

are estimated each day from 2003 to 2012, from the OTM and ATM options, through 

minimising the MSE of the fitted option prices. We apply the constraints0 ൑ ߢ ൑ 36, 

0 ൑ ߠ ൑ ߪ ,1 ൒ 0, െ1 ൑ ߩ ൑ 1, 0 ൑ ଴ݒ ൑ 1. 

κ θ σ ρ v0 

IBM 

Mean 1.6861 0.5042 1.2038 -0.6723  0.0653 

Median 0.1661 0.3457 0.8617 -0.6652  0.0444 

Standard deviation 3.6779 0.4201 2.1596 0.1051  0.0726 

Averages across all firms 

Mean 3.0401 0.4037 1.9675 -0.6331  0.1081 

Median 1.1136 0.2308 1.0267 -0.6305  0.0692 

Standard deviation 5.2434 0.3594 5.6694 0.1462  0.1206 
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Figure 5.1 Plot of IBM Heston parameter κ from 2003 to 2012. 
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Figure 5.2 Plot of IBM Heston parameters θ and v0 from 2003 to 2012. 
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Figure 5.3 Plot of IBM Heston parameter σ from 2003 and 2012. 
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Figure 5.4 Plot of IBM Heston parameter ρ from 2003 to 2012. 
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Table 5.4 

Initial and calibrated parameters for IBM, estimated on five days from 2003 to 2012, 

from five different initial values. 

Initial Parameter 

κ θ σ ρ v0 MSE 

4.9292  0.0505  0.9296  -0.6590  0.1898  

4.1528  0.0452  0.7925  -0.6624  0.1787  

3.8748  0.0421  0.6977  -0.6788  0.1877  

3.0920  0.0347  0.6400  -0.6795  0.1651  

2.0000  0.0100  0.1000  0.0000  0.0100  

Calibrated Parameter 

Day 1 

3.3211  0.2155  1.9444  -0.6689  0.1857  0.0238  

3.3201  0.2155  1.9446  -0.6689  0.1858  0.0238  

3.3224  0.2154  1.9440  -0.6690  0.1858  0.0238  

3.3207  0.2154  1.9445  -0.6688  0.1858  0.0238  

3.3214  0.2154  1.9443  -0.6690  0.1858  0.0238  

Day 50 

0.0774  1.0000  0.8654  -0.6433  0.1342  0.0256  

0.0774  1.0000  0.8654  -0.6433  0.1342  0.0256  

0.0775  1.0000  0.8655  -0.6432  0.1342  0.0256  

0.0774  1.0000  0.8655  -0.6432  0.1342  0.0256  

0.0775  0.9999  0.8654  -0.6433  0.1342  0.0256  

Day 100 

0.1050  1.0000  0.7849  -0.6612  0.0670  0.0135  

0.1050  1.0000  0.7849  -0.6612  0.0670  0.0135  

0.1052  0.9982  0.7850  -0.6612  0.0670  0.0135  

0.1049  1.0000  0.7849  -0.6612  0.0670  0.0135  

0.1050  0.9999  0.7848  -0.6612  0.0670  0.0135  
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Day 150 

κ θ σ ρ v0 MSE 

0.0518  0.9935  0.5303  -0.5889  0.0731  0.0068  

0.0576  0.9005  0.5306  -0.5890  0.0731  0.0068  

0.0623  0.8377  0.5309  -0.5890  0.0731  0.0068  

0.0707  0.7478  0.5317  -0.5888  0.0731  0.0068  

0.0531  0.9686  0.5299  -0.5893  0.0731  0.0068  

Day 200 

0.1051  1.0000  0.7621  -0.5203  0.0461  0.0142  

0.1058  0.9936  0.7620  -0.5203  0.0461  0.0142  

0.1051  1.0000  0.7619  -0.5203  0.0461  0.0142  

0.1056  0.9956  0.7620  -0.5203  0.0461  0.0142  

0.1052  1.0000  0.7621  -0.5203  0.0461  0.0142  
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 is -0.6652, consistent with estimates in the literature. Time series plots of the five ߩ

calibrated parameters are shown from Figures 5.1 to 5.4. 

 

Given that considerable time variation is noted for the estimated Heston parameters, 

some possible reasons are discussed below. Firstly, the market may not use the Heston 

model to reflect stochastic volatility, hence it cannot explain why the parameters 

change. Additionally, the Matlab software may not be able to find the true minimum, 

thus it has more variation than it should. Moreover, the quality of the estimates can 

also be related to how many option records we have on each day, and we do not have 

fixed number of options during the sample period. We check our Matlab code against 

the Heston (1993) paper to make sure it is reliable. However, the potential non 

convergence of the search algorithm around the parameter space to a global minimum 

of the loss function may not be the true reason. As shown in Table 5.4, we start with 

five different initial values on five different days in our dataset, and we get similar 

calibrated parameters and the same MSE. 

 

5.4.2 Examples of density forecasts 

 

The one-day ahead risk-neutral Heston, lognormal and HAR densities for IBM 

calculated on January 2nd 2003 are shown in Figure 5.5. The Heston density is 

negatively skewed while the lognormal density is slightly positively skewed. The 

HAR density is seen to have less variance than the Heston and the lognormal densities. 

The one-month ahead risk-neutral Heston, lognormal and HAR densities for IBM 

calculated on January 2nd 2003 are shown in Figure 5.6 display similar properties. 

These densities are all risk-neutral because the expectation is equal to the futures. 
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5.4.3 Examples of cumulative probabilities and nonparametric transformations 

 

The one-day ahead risk-neutral densities give the cumulative distribution functions 

GQ,t(x) for the next stock price pt+1, and the observed risk-neutral probabilities 

ut+1=GQ,t(pt+1) are not consistent with uniform probabilities, as expected. The sample 

cumulative probabilities ܥሚሺݑሻ  are calculated using (5.40), and the deviations 

between the sample c.d.f. and a uniform c.d.f., namely ܥሚሺݑሻ െ  are plotted in ,ݑ

Figure 5.7 for IBM, for one-day-ahead forecasts obtained from the Heston model. We 

can observe from the figure that there are few observations u close to either zero or 

one; only 7.3% of the variables u are below 0.1 and only 5.1% of them are above 0.9. 

The KS test statistic is the maximum value of |ܥሚሺݑሻ െ  ,which is equal to 7.1% ,|ݑ

hence the null hypothesis of a uniform distribution is rejected at the 0.01% 

significance level. The shape of the curve may be explained by the fact that the 

historical volatility is lower than the risk-neutral volatility, hence the risk-neutral 

probabilities of large price changes exceed the real-world probabilities. The 

corresponding plot for IBM for one-day-ahead forecasts obtained from Black-Scholes 

and HAR lognormal densities are shown in Figures 5.8 and 5.9. 

 

The nonparametric transformation of the probabilities ut+1 used in the calculation of 

the real-world density is calculated from (5.34). The calibration densities ܿ̂ሺݑሻ, for 

one-day ahead HAR, Black-Scholes and Heston lognormal forecasts are shown in 

Figure 5.10; these densities use the values of u for all 10 years from 2003 to 2012. 

The purpose of the calibration is to create real-world densities which have uniformly 

distributed observed probabilities ut+1. These calibration densities are not smooth at 
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Figure 5.5 Heston, lognormal and HAR one-day ahead risk-neutral density forecasts for IBM on January 2nd 2003. 
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Figure 5.6 Heston, lognormal and HAR one-month ahead risk-neutral density forecasts for IBM on January 2nd 2003. 
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Figure 5.7 Function ܥሚሺݑሻ െ  .for one-day ahead forecasts from the Heston model and a nonparametric transformation for IBM ݑ
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Figure 5.8 Function ܥሚሺݑሻ െ  .for one-day ahead forecasts from the Black-Scholes model and a nonparametric transformation for IBM ݑ
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Figure 5.9 Function ܥሚሺݑሻ െ  .for one-day ahead forecasts from the HAR model and a nonparametric transformation for IBM ݑ
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Figure 5.10 Nonparametric calibration densities ܿ̂ሺݑሻ from one-day ahead HAR, Lognormal and Heston forecasts for IBM. 
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the tails because they are based on samples which have few observations at the 

extremes. The differences ܥሚሺݑሻ െ  after applying the nonparametric calibration ݑ

method for one-day ahead forecasts from Heston, Black-Scholes and HAR lognormal 

densities are shown in Figures 5.7 to 5.9. The differences are much nearer zero 

compared to the risk-neutral densities. Comparable figures and results are obtained for 

longer horizon density forecasts. 

 

5.4.4 Log-likelihood comparison 

 

Table 5.5 gives the log-likelihoods for IBM, another sixteen stocks and the average 

across the seventeen stocks from 2003 to 2012, for six forecasting methods. The 

density forecasts are overlapping for four horizons, namely one day, one week (5 

trading days), two weeks (10) and one month (22).9 Overlapping forecasts are 

evaluated for horizons exceeding one day. The log-likelihood of the untransformed 

HAR model is defined as the benchmark level, the log-likelihoods of the other five 

density forecasting methods exceeding the benchmark are summarised in the table. 

For IBM stock, the lognormal Black-Scholes model gives the highest log-likelihoods 

for all four horizons ranging from one day to one month, for both risk-neutral and 

transformed real-world densities. The HAR model and the Heston model give similar 

likelihoods for all four horizons after applying transformations. The log-likelihoods 

for nonparametric transformation are always higher than those under risk-neutral 

measure for all methods and horizons, and the differences range from 66.3 to 192.8. 

 

Similarly, for the average across seventeen stocks, the lognormal Black-Scholes 

                                                              
9 For a horizon h trading days, we set T=h/252 to calculate option implied densities. 
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Table 5.5 

Log-likelihoods for overlapping forecasts. The numbers shown are the log-likelihoods 

of the HAR untransformed density forecasts (0 for the average across 17 stocks) and 

the log-likelihoods of the other forecasts in excess of the HAR benchmark values. The 

letter Q defines untransformed and risk-neutral densities, while the letter P denotes 

nonparametric transformation of the Q densities defined by (5.33). The numbers in 

bold in each row refer to the best method, which has the highest log-likelihood for the 

selected forecast horizon. 

Forecast horizon No. of obs. HAR Lognormal Heston 

Q P Q P Q P 

IBM 

1 day 2487 -4312.5 124.1 33.0  128.5  -9.3  113.2 

1 week 2483 -6419.1 157.3 100.1  217.4  100.9  167.2 

2 weeks 2478 -7222.1 189.3 78.1  270.9  76.1  176.2 

1 month 2466 -8232.5 179.9 77.2  257.6  65.7  151.1 

Alcoa 

1 day 2487 -1616.5 81.3 68.2  117.1  6.9  77.7  

1 week 2483 -3687.9 60.9 77.8  107.6  7.0  82.9  

2 weeks 2478 -4575.0 131.0 108.8  161.8  -5.1  111.1 

1 month 2466 -5693.6 305.0 202.5  332.0  -17.7  239.7 

Boeing 

1 day 2487 -3706.5 168.5 178.7 208.5  119.5 174.6 

1 week 2483 -5644.3 110.8 115.3 150.9  44.4 134.8 

2 weeks 2478 -6439.4 100.4 72.3 119.8  -57.5 109.2 

1 month 2466 -7387.4 158.9 57.3 147.5 -186.9 113.4 

Cisco 

1 day 2487 -1235.1 260.2 185.3  269.8  129.3  242.8 

1 week 2483 -3218.6 161.0 223.4  266.9  92.9  226.9 

2 weeks 2478 -3966.3 109.0 130.3  189.3  -29.9  115.3 

1 month 2466 -4904.4 81.3 68.1  133.3  -181.3  50.0  
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Forecast horizon No. of obs. HAR Lognormal Heston 

Q P Q P Q P 

Disney 

1 day 2487 -1787.1 163.6 166.3  231.4  98.9  200.7 

1 week 2483 -3569.7 69.3  85.0  131.8  -38.9  93.0  

2 weeks 2478 -4368.9 105.3 76.2  191.5  -117.6 118.9 

1 month 2466 -5342.1 169.2 43.7  237.0  -255.5 204.5 

General Electric 

1 day 2487 -2636.3 185.2 -150.7  -8.6  -702.0 -97.3 

1 week 2483 -3330.3 208.8 347.9  385.7  135.2  267.3 

2 weeks 2478 -3910.0 62.0  75.6  109.2  -166.0 -2.3  

1 month 2466 -5220.7 160.3 396.3  453.1  36.2  335.6 

Home Depot 

1 day 2487 -2009.2 78.3 40 98.5 -222.6 -59.9 

1 week 2483 -4014.8 54.2 77.6 110.8 -261.3 -151.3 

2 weeks 2478 -4815.7 72.8 46.9 117.4 -238.3 -162.7 

1 month 2466 -5821.9 92.6 26.2 136.7 -321.8 -221.1 

Hewlett Packard 

1 day 2487 -2395.3 356.2 238.3 401.3 257.6 386.3 

1 week 2483 -4299.4 255.6 193.4 316.8 248.5 311.5 

2 weeks 2478 -5035.9 200 127.8 245.1 180 232.9 

1 month 2466 -6095.3 280.6 136.7 332.6 244.1 302.2 

Intel 

1 day 2487 -2395.3 85.5 7.6 77.2 -1.9 71 

1 week 2483 -4299.4 75.4 65.9 104.8 52.1 91.6 

2 weeks 2478 -5035.9 83.6 26.7 80.3 16 71.8 

1 month 2466 -6101 86.8 -34.2 51.3 5.5 38.7 
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Forecast horizon No. of obs. HAR Lognormal Heston 

Q P Q P Q P 

Johnson & Johnson 

1 day 2487 -2395.3 171.9 62.6  163.7  -58.3  106.1 

1 week 2483 -4299.4 146.5 59.3  174.8  -113.7 46.2  

2 weeks 2478 -5035.9 105.4 -4.5  145.9  -208.4 -31.4 

1 month 2466 -6101.0 104.6 -37.5  112.7  -286.4 -137.6 

JP Morgan Chase 

1 day 2487 -2395.3 101.7 15.1  95.6  5.5  87.6  

1 week 2483 -4299.4 62.5 28.4  93.7  -2.3  61.3  

2 weeks 2478 -5035.9 53.1 9.7  106.6  -50.4  39.8  

1 month 2466 -6101.0 43.5 -33.3  79.5  -112.9 -4.6  

McDonald's 

1 day 2487 -2395.3 135.9 92.7 167.1 57.2 148.5 

1 week 2483 -4299.4 207 429.6 516.1 384.1 453.7 

2 weeks 2478 -5035.9 78.7 -31.7 85.8 -72.6 19.7 

1 month 2466 -6101 153.8 -42.3 121.8 -65.4 58.9 

Merck 

1 day 2487 -2395.3 790.4 235.6  850.8  570.2  751.0 

1 week 2483 -4299.4 553.8 137.1  609.6  353.0  492.6 

2 weeks 2478 -5035.9 582.3 102.2  648.8  459.7  586.7 

1 month 2466 -6101.0 431.9 -20.5  464.6  266.2  404.9 

Pfizer 

1 day 2487 -2395.3 197.6 91.5  222.3  1.5  180.2 

1 week 2483 -4299.4 82.5 57.9  113.1  3.5  71.0  

2 weeks 2478 -5035.9 64.9 30.3  96.2  -33.7  48.3  

1 month 2466 -6101.0 49.1 12.9  101.3  -123.7 13.7  
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Forecast horizon No. of obs. HAR Lognormal Heston 

Q P Q P Q P 

AT&T 

1 day 2487 -2395.3 85.1 74.0  121.9  -597.4  -284.7 

1 week 2483 -4299.4 57.0 59.6  105.7  -754.4  -494.7 

2 weeks 2478 -5035.9 79.0 86.5  139.0  -703.0  -435.1 

1 month 2466 -6101.0 116.6 109.4  171.9  -786.2  -491.3 

Walmart 

1 day 2487 -2395.3 183.2 127.4 213.7 83.6 183.5 

1 week 2483 -4299.4 69.7 56.2  102.0  -25.0  50.7  

2 weeks 2478 -5035.9 40.5 5.4  71.1  -98.0  -7.9  

1 month 2466 -6101.0 29.3 -36.8  48.9  -140.6  -31.5 

American Express 

1 day 2487 -3046.9 271.7 154.4 267.2 53.1 305 

1 week 2483 -4829.3 117.9 89 153.4 -75.1 12.1 

2 weeks 2478 -5608.6 94.9 52.3 144.5 -40.5 10.5 

1 month 2466 -6456.2 92.7 33.7 145.5 -91.9 9.9 

Average 

1 day 2487 0 202.0 95.3  213.3  -12.2  152.1 

1 week 2483 0 144.1 129.6  215.4  8.9  112.8 

2 weeks 2478 0 126.6 58.4  172.0  -64.1  58.9  

1 month 2466 0 149.0 56.5  195.8  -114.5  61.4  
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Table 5.6 

Best methods. Each count is the frequency that the method has the highest 

log-likelihood for the selected forecast horizon across 17 stocks. Separate counts are 

shown for risk-neutral ሺܳሻ  and transformed ሺܲሻ  densities. The log-likelihood 

always increases after transforming from ܳ  to ܲ , for all stocks, horizons and 

methods. 

Forecast horizon No. of obs. Q P 

HAR Lognormal Heston HAR Lognormal Heston 

1 day 2487 1 14 2 4 12 1 

1 week 2483 0 14 3 0 17 0 

2 weeks 2478 2 13 2 1 16 0 

1 month 2466 4 10 3 3 14 0 

Total 7 51 10 8 59 1 
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Figure 5.11 Nonparametric HAR and Lognormal Black-Scholes log-likelihoods for 

17 stocks, relative to untransformed HAR model. 

 

 

 

Figure 5.12 Nonparametric Lognormal Black-Scholes and Heston log-likelihoods for 

17 stocks, relative to untransformed HAR model. 
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model gives the highest log-likelihoods for all four horizons, and for both 

untransformed risk-neutral and transformed real-world densities. The HAR model 

produces higher log-likelihoods than Heston model for almost all horizons both before 

and after applying transformations, with the exception of the risk-neutral density for 

one week horizon. The log-likelihoods from nonparametric transformation are always 

higher than those under risk-neutral measure for all methods and horizons, and the 

average differences vary between 85.8 and 202.0. 

 

Table 5.6 gives the number of times that the respective method has the highest 

log-likelihoods for the selected forecast horizon across seventeen stocks. For 

transformed real-world densities, the lognormal Black-Scholes model gives the 

highest log-likelihoods for fifty-nine out of sixty-eight combinations from seventeen 

stocks and four horizons. Figures 5.11 and 5.12 show graphically that the 

nonparametric lognormal Black-Scholes model gives higher log-likelihoods than the 

nonparametric HAR and the nonparametric Heston models. (some points are outside 

the plotted range) The lognormal Black-Scholes model also gives the highest 

log-likelihoods fifty-one times for untransformed risk-neutral densities. The HAR 

model and the Heston model give the highest log-likelihoods for a similar number of 

times for risk-neutral densities, while the HAR model gets the highest log-likelihoods 

more times than the Heston model for transformed real-world densities. 

 

5.4.5 Diagnostic tests 

 

The KS statistic tests if the densities are correctly specified under the i.i.d. assumption. 

Table 5.7 summarises the p-values for the KS test for six density forecasting methods 
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for four horizons for IBM and another sixteen stocks. Since the null hypothesis is 

rejected at the α significance level when p<α, for IBM stock all the risk-neutral 

measure p-values reject the null hypothesis at the 5% significance level, which might 

be due to the mis-specified risk-neutral densities which have higher variance than 

real-world densities. The untransformed HAR densities are also mis-specified, as they 

are conditionally normal. All nonparametric transformations have satisfactory 

p-values greater than 50%. 

 

Table 5.8 gives the number of times that the null hypothesis is rejected at the 5% 

significance level for the KS test across seventeen stocks. All the nonparametric 

transformations pass the KS test while the null hypothesis is rejected for almost all 

risk neutral and untransformed cases at the 5% significance level. 

 

The Berkowitz LR3 statistic tests the null hypothesis that the variables yi=Φ
-1(ui) are 

i.i.d. and follow a standard normal distribution, against the alternative hypothesis of a 

stationary, Gaussian, AR(1) process with no restrictions on the mean, variance and 

autoregressive parameters. Table 5.9 presents the LR3 test statistic, and the estimates 

of the variance and AR parameters for six density forecasting methods and four 

horizons for IBM and another sixteen stocks. 

 

For IBM stock, the MLEs of the autoregressive parameters are between -0.01 and 

0.01 for the one-day horizon, hence there is no significant evidence of time-series 

dependence. However, the MLEs for the one-week horizon range between -0.04 and 

-0.08, thus four of them reject the null hypothesis that the autoregressive parameter is 

0 at the 5% significance level. The longer two-weeks and one-month horizons also 
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Table 5.7 

KS test results for overlapping forecasts. The numbers are the percentage p-values of 

the KS test for the null hypothesis that the terms ut are uniformly distributed. The 

letter Q defines untransformed and risk-neutral densities, while the letter P denotes 

nonparametric transformation of the real-world densities defined by (5.33). * indicates 

that the p-values are greater than 50%. The null hypothesis is rejected at the α 

significance level when p<α. 

Forecast horizon No. of obs. HAR (%) Lognormal (%) Heston (%)

Q P Q P Q P

IBM 

1 day 2487 0.42 * 0.00 * 0.00 * 

1 week 2483 0.01 * 0.00 * 0.00 * 

2 weeks 2478 0.00 * 0.00 * 0.00 * 

1 month 2466 0.00 * 0.00 * 0.00 * 

Alcoa 

1 day 2487 49.13 * 0.73 * 0.00 * 

1 week 2483 * * 7.53 * 1.97 * 

2 weeks 2478 30.38 * 0.55 * 2.24 * 

1 month 2466 1.86 * 0.17 * 0.01 * 

Boeing 

1 day 2487 0.01 * 0.15 * 0.02 * 

1 week 2483 0.01 * 0.00 * 0.00 * 

2 weeks 2478 0.00 * 0.00 * 0.00 * 

1 month 2466 0.00 * 0.00 * 0.00 * 

Cisco 

1 day 2487 0.02 * 0.00 * 0.00 * 

1 week 2483 2.22 * 0.60 * 0.00 * 

2 weeks 2478 0.01 * 0.00 * 0.00 * 

1 month 2466 0.00 * 0.00 * 0.00 * 
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Forecast horizon No. of obs. HAR (%) Lognormal (%) Heston (%)

Q P Q P Q P 

Disney 

1 day 2487 0.54 * 0.62 * 0.00 * 

1 week 2483 0.14 * 0.00 * 0.00 * 

2 weeks 2478 0.00 * 0.00 * 0.00 * 

1 month 2466 0.00 * 0.00 * 0.00 41.18

General Electric 

1 day 2487 9.38 * 1.68 * 0.00 * 

1 week 2483 1.91 * 0.12 * 0.00 * 

2 weeks 2478 24.41 * 0.01 * 0.00 * 

1 month 2466 0.03 * 0.00 * 0.00 44.16

Home Depot 

1 day 2487 9.62 * 0.00 * 2.21 * 

1 week 2483 0.01 * 0.00 * 15.83 * 

2 weeks 2478 0.00 * 0.00 * 8.38 * 

1 month 2466 0.00 * 0.00 * 0.00 * 

Hewlett Packard 

1 day 2487 6.08 * 0.00 * 0.00 * 

1 week 2483 0.93 * 0.00 * 0.01 * 

2 weeks 2478 0.00 * 0.00 * 0.00 * 

1 month 2466 0.00 * 0.00 48.90 0.08 * 

Intel 

1 day 2487 1.53  * 0.00  * 0.01  * 

1 week 2483 4.19  * 0.69  * 1.36  * 

2 weeks 2478 0.03  * 0.00  * 0.01  * 

1 month 2466 0.01  * 0.00  * 11.13  * 
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Forecast horizon No. of obs. HAR (%) Lognormal (%) Heston (%)

Q P Q P Q P

Johnson & Johnson 

1 day 2487 0.06  * 0.00  * 0.00  * 

1 week 2483 0.11  * 0.00  * 0.00  * 

2 weeks 2478 0.00  * 0.00  * 0.00  * 

1 month 2466 0.00  * 0.00  * 0.00  * 

JP Morgan Chase 

1 day 2487 2.80  * 0.00  * 0.05  * 

1 week 2483 0.00  * 0.00  * 0.51  * 

2 weeks 2478 0.00  * 0.00  * 0.00  * 

1 month 2466 0.00  * 0.00  * 0.00  * 

McDonald's 

1 day 2487 0.00  * 0.00  * 0.00  * 

1 week 2483 0.00  * 0.00  * 0.00  * 

2 weeks 2478 0.00  * 0.00  * 0.00  * 

1 month 2466 0.00  * 0.00  * 0.00  * 

Merck 

1 day 2487 0.00  * 0.00  * 0.00  * 

1 week 2483 0.01  * 0.00  * 0.47  * 

2 weeks 2478 0.02  * 0.00  * 0.14  * 

1 month 2466 0.03  * 0.09  * 0.00  * 

Pfizer 

1 day 2487 0.62  * 0.00  * 0.00  * 

1 week 2483 7.72  * 0.00  * 0.00  * 

2 weeks 2478 12.95  * 0.00  * 0.00  * 

1 month 2466 3.35  * 0.00  * 0.00  * 
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Forecast horizon No. of obs. HAR (%) Lognormal (%) Heston (%)

Q P Q P Q P

AT&T 

1 day 2487 0.00  * 0.00  * 0.00  *

1 week 2483 0.00  * 0.00  * 0.00  *

2 weeks 2478 0.00  * 0.00  * 0.00  *

1 month 2466 0.00  * 0.00  * 0.00  *

Walmart 

1 day 2487 0.05  * 0.00  * 0.00  *

1 week 2483 0.33  * 0.00  * 0.00  *

2 weeks 2478 0.16  * 0.00  * 0.00  *

1 month 2466 0.00  * 0.00  * 0.00  *

American Express 

1 day 2487 0.48 * 0.00 * 0.07 *

1 week 2483 0.23 * 0.00 * 1.64 *

2 weeks 2478 0.00 * 0.00 * 0.49 *

1 month 2466 0.00 * 0.00 * 0.00 *
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Table 5.8 

KS test results for overlapping forecasts. The numbers are the times that the null 

hypothesis is rejected at the 5% significance level for 17 stocks. 

Forecast horizon HAR Lognormal Heston 

Q P Q P Q P 

1 day 13 0 17 0 17 0 

1 week 16 0 16 0 16 0 

2 weeks 14 0 17 0 16 0 

1 month 17 0 17 0 16 0 
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Table 5.9 

Berkowitz test results for overlapping forecasts. The null hypothesis that the variables 

yi=Φ
-1(ui) are i.i.d. and follow a standard normal distribution is tested against the 

alternative hypothesis of a stationary, Gaussian, AR(1) process with no restrictions on 

the mean, variance and autoregressive parameters. The numbers are the LR3 test 

statistic, and the estimates of the variance and AR parameters. * indicates that the null 

hypothesis is rejected at 5% significance level when LR3>7.81. 

Forecast horizon HAR Lognormal Heston 

Q P Q P Q P 

IBM 

1 day AR -0.01 -0.01 0.01  0.00  0.01  0.00  

Variance 1.17  0.97  0.79  0.97  0.78  0.97  

LR3 42.19* 1.74  74.23* 1.36  75.42* 1.47  

1 week AR -0.04 -0.07 -0.06  -0.08  -0.05  -0.06 

Variance 1.18  0.96  0.86  0.96  0.84  0.96  

LR3 50.06* 15.07* 44.06* 19.08* 44.69* 11.08* 

2 weeks AR 0.01  0.00  0.01  0.00  0.01  0.01  

Variance 1.11  0.96  0.82  0.96  0.81  0.96  

LR3 30.61* 2.42  67.22* 2.51  56.32* 2.54  

1 month AR 0.01  -0.02 0.01  -0.02  -0.02  -0.01 

Variance 1.12  0.96  0.86  0.96  0.90  0.96  

LR3 44.77* 3.42  62.91* 4.12  23.80* 2.64  
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Forecast horizon HAR Lognormal Heston 

Q P Q P Q P 

Alcoa 

1 day AR 0.03 0.03 0.03 0.03 0.04 0.04 

Variance 1.18 0.97 0.94 0.97 0.91 0.97 

LR3 38.04* 3.55 6.78 3.32 15.38* 5.06 

1 week AR -0.01 -0.02 -0.02 -0.02 0.00 0.00 

Variance 1.11 0.97 1.04 0.97 1.01 0.96 

LR3 15.70* 2.69 2.58 2.37 1.48 2.21 

2 weeks AR 0.02 -0.01 0.00 -0.01 0.03 0.01 

Variance 1.09 0.96 1.01 0.96 1.01 0.95 

LR3 11.57* 2.92 2.92 2.49 3.49 3.66 

1 month AR 0.07 -0.01 0.02 -0.01 0.06 0.02 

Variance 1.17 0.95 1.07 0.96 1.12 0.94 

LR3 49.71* 3.69 8.32* 2.84 27.69* 7.11 

Boeing 

1 day AR 0.03 0.02 0.02 0.02 0.02 0.02 

Variance 1.51 0.97 0.95 0.97 0.97 0.97 

LR3 254.41* 2.79 9.95* 2.66 14.53* 2.50 

1 week AR -0.02 -0.02 -0.02 -0.02 -0.01 -0.02 

Variance 1.36 0.97 1.00 0.97 0.94 0.96 

LR3 144.11* 2.87 18.19* 2.55 12.59* 2.88 

2 weeks AR -0.01 -0.02 -0.01 -0.01 0.02 0.01 

Variance 1.27 0.96 0.95 0.96 0.92 0.95 

LR3 94.77* 2.87 37.40* 2.32 29.18* 3.63 

1 month AR -0.04 -0.05 -0.06 -0.06 -0.04 -0.04 

Variance 1.21 0.94 0.93 0.95 0.95 0.93 

LR3 80.46* 11.79* 87.29* 13.48* 50.36* 12.58* 
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Forecast horizon HAR Lognormal Heston 

Q P Q P Q P 

Cisco 

1 day AR 0.01 0.00 -0.01 -0.01 -0.01 -0.01 

Variance 1.18 0.96 0.89 0.97 0.86 0.97 

LR3 44.79* 1.81 22.55* 1.53 42.32* 1.77 

1 week AR -0.07 -0.07 -0.07 -0.07 -0.06 -0.04 

Variance 1.09 0.96 0.88 0.96 0.91 0.96 

LR3 22.12* 15.76* 29.54* 12.91* 26.05* 7.30 

2 weeks AR -0.03 -0.04 -0.02 -0.02 0.01 0.01 

Variance 0.98 0.96 0.85 0.97 0.89 0.96 

LR3 3.81 4.89 38.37* 2.74 26.66* 2.89 

1 month AR -0.05 -0.04 -0.04 -0.04 -0.03 -0.01 

Variance 0.92 0.97 0.88 0.97 0.98 0.95 

LR3 15.90* 6.97 34.24* 5.31 10.08* 5.39 

Disney 

1 day AR 0.01 0.02 0.02 0.03 0.02 0.03 

Variance 1.44 0.97 0.90 0.97 0.86 0.97 

LR3 183.84* 2.25 14.36* 3.25 35.39* 3.07 

1 week AR -0.05 -0.06 -0.07 -0.07 -0.05 -0.06 

Variance 1.16 0.96 0.83 0.96 0.84 0.96 

LR3 40.18* 10.03* 59.04* 14.59* 59.73* 11.86* 

2 weeks AR -0.01 -0.03 -0.02 -0.03 0.00 -0.02 

Variance 1.06 0.97 0.76 0.96 0.82 0.95 

LR3 18.85* 3.65 110.89* 4.27 90.37* 4.62 

1 month AR -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 

Variance 1.00 0.96 0.78 0.95 0.89 0.92 

LR3 35.55* 5.63 130.83* 6.09 95.00* 12.85* 
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Forecast horizon HAR Lognormal Heston 

Q P Q P Q P 

General Electric 

1 day AR 0.06 0.06 0.05 0.05 0.07 0.08 

Variance 1.32 0.96 0.93 0.97 0.96 0.96 

LR3 118.50* 10.08* 12.54* 7.29 15.85* 16.01*

1 week AR -0.01 -0.01 -0.01 -0.01 0.00 0.01 

Variance 1.34 0.97 0.95 0.97 1.06 0.96 

LR3 116.36* 1.88 5.58 1.67 4.68 2.68 

2 weeks AR -0.01 -0.01 -0.01 -0.01 0.01 0.01 

Variance 1.16 0.96 0.92 0.96 1.07 0.95 

LR3 29.72* 2.33 16.05* 2.45 9.27* 4.39 

1 month AR 0.03 0.01 -0.01 -0.01 0.04 0.04 

Variance 1.28 0.97 0.94 0.96 1.14 0.92 

LR3 80.81* 2.07 15.26* 3.59 31.18* 13.50*

Home Depot 

1 day AR 0.03 0.03 0.02 0.02 0.02 0.02 

Variance 1.20 0.96 0.85 0.96 1.19 0.96 

LR3 60.24* 3.14 34.33* 2.67 47.95* 2.10 

1 week AR -0.04 -0.05 -0.05 -0.06 -0.08 -0.08 

Variance 1.13 0.96 0.88 0.96 1.25 0.96 

LR3 31.36* 7.09 38.10* 9.51* 90.39* 17.01*

2 weeks AR 0.02 0.03 0.03 0.03 -0.01 0.01 

Variance 1.05 0.97 0.83 0.97 1.17 0.96 

LR3 17.37* 4.13 64.31* 4.47 37.53* 2.09 

1 month AR 0.03 0.03 0.04 0.05 -0.01 0.01 

Variance 1.04 0.96 0.88 0.96 1.29 0.96 

LR3 30.00* 5.37 65.97* 8.69* 101.27* 2.53 
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Forecast horizon HAR Lognormal Heston 

Q P Q P Q P 

Hewlett Packard 

1 day AR 0.00 -0.01 -0.01 -0.02 -0.01 -0.02 

Variance 1.54 0.96 0.94 0.96 0.84 0.97 

LR3 272.00* 2.20 6.01 2.36 35.41* 2.16 

1 week AR -0.06 -0.08 -0.08 -0.08 -0.08 -0.08 

Variance 1.38 0.96 0.94 0.96 0.83 0.96 

LR3 155.17* 17.76* 18.49* 18.89* 51.72* 17.68*

2 weeks AR 0.02 -0.01 0.00 -0.02 -0.01 -0.02 

Variance 1.25 0.96 0.88 0.96 0.78 0.97 

LR3 68.49* 2.33 20.58* 2.91 70.93* 2.44 

1 month AR -0.02 -0.03 -0.03 -0.03 -0.04 -0.04 

Variance 1.29 0.95 0.96 0.95 0.82 0.96 

LR3 91.00* 6.62 4.73 6.79 57.88* 7.63 

Intel 

1 day AR 0.02  0.01 0.01  0.01  0.02  0.01 

Variance 1.03  0.97 0.91  0.97  0.87  0.97 

LR3 4.77  1.68 14.61* 1.58  26.62* 1.69 

1 week AR -0.04  -0.05 -0.04  -0.04  -0.03  -0.04 

Variance 0.99  0.96 0.93  0.97  0.90  0.97 

LR3 4.19  7.81 11.58* 5.46  15.53* 4.98 

2 weeks AR 0.03  0.02 0.03  0.03  0.02  0.03 

Variance 0.92  0.97 0.89  0.97  0.86  0.97 

LR3 11.78* 3.18 21.89* 3.58  28.22* 3.70 

1 month AR 0.01  -0.01 0.01  -0.01  -0.01  0.00 

Variance 0.92  0.97 0.98  0.97  0.90  0.97 

LR3 11.30* 2.27 2.12  2.01  16.82* 2.18 
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Forecast horizon HAR Lognormal Heston 

Q P Q P Q P 

Johnson & Johnson 

1 day AR 0.01  0.01 0.01  0.00  0.04  0.02 

Variance 1.35  0.97 0.81  0.97  0.86  0.96 

LR3 149.16* 1.57 65.97* 1.33  33.90* 2.56 

1 week AR -0.06  -0.06 -0.04  -0.05  -0.02  -0.03 

Variance 1.18  0.96 0.78  0.97  0.89  0.96 

LR3 4.19  7.81 11.58* 5.46  15.53* 4.98 

2 weeks AR -0.04  -0.04 -0.01  -0.02  0.01  0.00 

Variance 1.07  0.96 0.74  0.96  0.90  0.96 

LR3 19.99* 6.10 115.44* 3.42  14.16* 2.81 

1 month AR -0.06  -0.07 -0.06  -0.07  -0.06  -0.04 

Variance 1.01  0.96 0.75  0.96  0.88  0.96 

LR3 21.39* 13.86* 110.62* 12.91* 37.97* 6.42 

JP Morgan Chase 

1 day AR -0.04  -0.05 -0.05  -0.05  -0.04  -0.05 

Variance 1.31  0.97 0.97  0.96  0.91  0.97 

LR3 107.55* 7.08 8.21* 8.10* 14.07* 6.80 

1 week AR -0.04  -0.05 -0.04  -0.04  -0.03  -0.04 

Variance 1.13  0.96 0.91  0.96  0.91  0.96 

LR3 27.27* 7.45 14.94* 6.57  14.10* 5.89 

2 weeks AR -0.03  -0.03 -0.03  -0.03  -0.03  -0.02 

Variance 1.04  0.96 0.85  0.96  0.90  0.96 

LR3 10.70* 4.36 36.20* 4.52  15.77* 3.83 

1 month AR 0.00  0.00 0.01  0.01  0.00  0.00 

Variance 0.94  0.96 0.83  0.95  0.91  0.96 

LR3 21.01* 3.40 51.31* 4.55  12.68* 3.70 
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Forecast horizon HAR Lognormal Heston 

Q P Q P Q P 

McDonald's 

1 day AR -0.02  -0.02 -0.02  -0.02  -0.01  -0.01 

Variance 1.27  0.97 0.87  0.97  0.84  0.97 

LR3 104.87* 2.21 42.66* 2.24  47.85* 1.78 

1 week AR -0.07  -0.07 -0.05  -0.06  -0.05  -0.05 

Variance 0.71  0.96 0.82  0.96  0.84  0.96 

LR3 181.30* 12.98* 97.32* 9.19* 64.87* 8.86* 

2 weeks AR -0.04  -0.05 -0.05  -0.05  -0.05  -0.04 

Variance 0.85  0.95 0.75  0.95  0.83  0.95 

LR3 113.76* 9.39* 179.73* 10.18* 88.46* 8.08* 

1 month AR -0.02  -0.01 -0.01  0.00  0.01  0.01 

Variance 0.76  0.94 0.70  0.94  0.84  0.94 

LR3 257.23* 6.56 308.69* 5.87  125.15* 6.18 

Merck 

1 day AR 0.06  0.08 0.05  0.07  0.07  0.07 

Variance 1.82  0.95 1.41  0.95  1.05  0.96 

LR3 594.85* 17.91* 192.10* 16.73* 36.75* 14.52*

1 week AR 0.03  0.00 0.03  0.00  0.01  0.00 

Variance 1.63  0.96 1.43  0.96  1.16  0.97 

LR3 350.23* 2.38 179.70* 2.44  31.37* 1.58 

2 weeks AR 0.02  0.02 0.02  0.02  0.03  0.02 

Variance 1.63  0.95 1.48  0.95  1.13  0.96 

LR3 347.35* 4.23 214.50* 5.01  19.98* 3.15 

1 month AR 0.06  0.02 0.05  0.01  0.01  0.00 

Variance 1.51  0.96 1.52  0.96  1.19  0.96 

LR3 243.04* 4.74 244.28* 3.97  36.47* 2.94 
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Forecast horizon HAR Lognormal Heston 

Q P Q P Q P 

Pfizer 

1 day AR 0.03  0.02 0.02  0.02  0.02  0.02 

Variance 1.37  0.97 0.88  0.97  0.82  0.97 

LR3 151.72* 2.82 26.35* 2.33  48.88* 2.27 

1 week AR -0.05 -0.05 -0.05  -0.05  -0.05  -0.05 

Variance 1.18  0.97 0.86  0.97  0.83  0.96 

LR3 44.17* 7.17 34.23* 7.90* 46.27* 7.52 

2 weeks AR -0.04 -0.04 -0.05  -0.05  -0.05  -0.05 

Variance 1.08  0.97 0.79  0.97  0.78  0.96 

LR3 12.68* 6.38 68.36* 7.07  82.74* 7.29 

1 month AR 0.08  0.08 0.08  0.08  0.10  0.08 

Variance 0.99  0.96 0.76  0.96  0.79  0.95 

LR3 18.08* 18.75* 98.79* 17.58* 94.23* 20.11*

AT&T 

1 day AR 0.12  0.11 0.12  0.11  0.11  0.10 

Variance 1.12  0.96 0.99  0.96  1.11  0.95 

LR3 100.19* 29.29* 71.13* 30.45* 64.83* 25.06*

1 week AR -0.02 -0.02 -0.03  -0.03  0.01  0.01 

Variance 0.91  0.97 0.95  0.97  1.10  0.96 

LR3 26.82* 2.92 19.79* 3.71  12.14* 2.91 

2 weeks AR -0.03 -0.04 -0.05  -0.05  -0.02  0.01 

Variance 0.81  0.95 0.85  0.95  1.03  0.94 

LR3 75.83* 7.48 56.20* 11.25* 6.00  4.94 

1 month AR 0.00  0.00 0.01  0.01  0.06  0.08 

Variance 0.74  0.94 0.80  0.94  1.05  0.93 

LR3 138.63* 6.21 90.57* 6.32  17.90* 24.04*
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Forecast horizon HAR Lognormal Heston 

Q P Q P Q P 

Walmart 

1 day AR -0.01  -0.02 -0.01  -0.01  -0.01  -0.01 

variance 1.44  0.97 0.86  0.97  0.84  0.97 

LR3 199.90* 2.14 34.59* 1.80  39.83* 1.77 

1 week AR -0.05  -0.05 -0.06  -0.06  -0.06  -0.06 

variance 1.23  0.97 0.84  0.97  0.85  0.96 

LR3 69.06* 7.79 45.08* 9.71* 36.78* 9.21*

2 weeks AR -0.05  -0.05 -0.07  -0.07  -0.05  -0.06 

variance 1.13  0.96 0.78  0.96  0.82  0.96 

LR3 28.78* 8.03* 87.93* 13.46* 55.36* 10.27*

1 month AR -0.08  -0.09 -0.09  -0.10  -0.07  -0.08 

variance 1.00  0.96 0.72  0.96  0.77  0.96 

LR3 24.63* 19.51* 147.79* 24.77* 94.43* 18.27*

American Express 

1 day AR -0.05 -0.06 -0.06 -0.06 -0.03 -0.05 

variance 1.52 0.96 0.95 0.96 1.19 0.96 

LR3 259.78* 9.63* 13.62* 11.54* 44.80* 9.25*

1 week AR -0.04 -0.05 -0.05 -0.05 -0.05 -0.05 

variance 1.26 0.96 0.88 0.96 1.00 0.96 

LR3 75.86* 8.26* 31.00* 8.84* 6.29 6.94 

2 weeks AR -0.08 -0.09 -0.09 -0.09 -0.10 -0.10 

variance 1.15 0.95 0.95 0.81 0.88 0.95 

LR3 47.05* 22.85* 23.10* 79.78* 42.49* 25.68*

1 month AR -0.05 -0.03 -0.05 -0.04 -0.01 -0.02 

variance 1.01 0.96 0.74 0.96 0.87 0.96 

LR3 14.41* 5.40 135.46* 6.53 27.68* 4.51 
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Table 5.10 

Berkowitz LR3 test results for overlapping forecasts. The numbers are the frequencies 

that the null hypothesis is rejected at the 5% significance level for 17 stocks. 

Forecast horizon HAR Lognormal Heston 

Q P Q P Q P 

1 day 16 4 15 4 17 4 

1 week 15 6 15 9 14 6 

2 weeks 16 3 16 4 15 3 

1 month 17 4 15 5 17 6 
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Figure 5.13 Untransformed HAR and Lognormal Black-Scholes Berkowitz LR3 

statistic for 17 stocks. 

 

 

 

Figure 5.14 Untransformed Lognormal Black-Scholes and Heston Berkowitz LR3 

statistic for 17 stocks. 
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Figure 5.15 Nonparametric HAR and Lognormal Black-Scholes Berkowitz LR3 

statistic for 17 stocks. 

 

 

 

Figure 5.16 Nonparametric Lognormal Black-Scholes and Heston Berkowitz LR3 

statistic for 17 stocks. 
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provide no evidence of dependent observations. The MLEs of the variance parameter 

are near one for correctly specified densities. The low estimates for one-day 

lognormal and Heston forecasts under Q measure can be explained by the fact that the 

risk-neutral standard deviations are on average are higher than the historical standard 

deviations. 

 

The LR3 test statistic is significant at the 5% level when it exceeds 7.81. Table 5.9 

indicates that, for IBM stock, the null hypothesis is rejected for all risk-neutral 

forecasts and all one-week forecasts. The null hypothesis is accepted for all real-world 

forecasts for one day, two-weeks and one-month horizons. The significant values of 

the LR3 test statistic might be attributed to the negative estimates of the AR parameter 

for the one-week horizon, or the mis-specified risk-neutral density which has higher 

variance than the real-world level. 

 

Table 5.10 shows the number of times that the null hypothesis is rejected at the 5% 

significance level for all seventeen stocks for the LR3 test. Figures 5.13 and 5.14 

show that the null hypothesis is rejected for almost all risk neutral measures at the 5% 

significance level as most Berkowitz LR3 statistics are greater than 7.81. (some points 

are outside the plotted range) While figures 5.15 and 5.16 show that the majority of 

the nonparametric transformations pass the LR3 test at the 5% significance level as 

most Berkowitz LR3 statistics are smaller than 7.81. (some points are outside the 

plotted range) The number of times that the null is rejected at the 5% level for 

seventeen stocks are similar across different horizons. 

 

Table 5.11 shows the number of times that the row method provides statistically better 
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forecasts than the column method at the 5% significance level for all seventeen stocks 

for the Amisano and Giacomini (AG) test. For all four horizons, the nonparametric 

lognormal method has the largest number of times to be statistically better than the 

other five density forecasting methods. For one day and one week horizons, the HAR 

method has the least number of times to be significantly better than the other five 

methods, while for the longer two weeks and one month horizons, the Heston method 

gets the least number. The number of times that each method is statistically better than 

the remaining methods are similar across the four horizons, and the nonparametric 

methods have more times to be significantly better than the parametric methods. 

 

Table 5.12 gives the number of times that the row method is statistically better than 

the column method at the 5% level for all seventeen stocks for the AG test when the 

Newey-West adjustment is made to the estimated variance of ݀̅  and 20 

autocorrelations are used. The results are similar for the one day horizon, but the 

number of times that each method is statistically better than the remaining methods 

decreases as the forecast horizon increases to one week, two weeks and one month. As 

the Newey-West adjustments are necessary, we should rely on Table 5.12 rather than 

on Table 5.11. 

 

Table 5.13 summarises the test statistics for the AG test for six density forecasting 

methods and four horizons for IBM. At the one day horizon, two of the AG test 

statistics are insignificant at the 5% level when the best method, nonparametric 

lognormal, is compared to the five alternatives; the AG test statistics equal -0.37 and 

1.27 for tests against nonparametric HAR and nonparametric Heston methods. 
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Table 5.11 

AG test results for overlapping forecasts. The numbers are the times that the row 

method is statistically better than the column method at the 5% level for 17 stocks. 

1 day HAR-Q HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q / 0 0 0 2 1 

HAR-P 16 / 12 0 16 4 

Lognormal-Q 10 0 / 0 12 2 

Lognormal-P 15 7 16 / 17 9 

Heston-Q 3 0 0 0 / 0 

Heston-P 13 1 9 0 17 / 

1 week HAR-Q HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q / 0 0 0 3 2 

HAR-P 17 / 5 0 14 5 

Lognormal-Q 15 3 / 0 12 4 

Lognormal-P 17 17 17 / 17 14 

Heston-Q 7 1 1 0 / 0 

Heston-P 13 4 5 0 17 / 

2 weeks HAR-Q HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q / 0 1 0 8 2 

HAR-P 17 / 10 0 16 7 

Lognormal-Q 11 0 / 0 13 3 

Lognormal-P 17 14 17 / 17 14 

Heston-Q 2 0 2 0 / 0 

Heston-P 8 1 7 0 17 / 

1 month HAR-Q HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q / 0 4 0 11 3 

HAR-P 17 / 14 2 17 11 

Lognormal-Q 9 1 / 0 12 4 

Lognormal-P 17 13 17 / 17 16 

Heston-Q 2 0 3 0 / 0 

Heston-P 10 2 7 0 17 / 
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Table 5.12 
AG test results for overlapping forecasts when the Newey-West adjustment is made 
and 20 autocorrelations are used. The numbers are the times that the row method is 
statistically better than the column method at the 5% level for 17 stocks. 

1 day HAR-Q HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q / 0 0 0 2 1 

HAR-P 15 / 11 0 15 3 

Lognormal-Q 10 0 / 0 10 2 

Lognormal-P 14 5 16 / 17 7 

Heston-Q 3 0 0 0 / 0 

Heston-P 13 1 7 0 16 / 

1 week HAR-Q HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q / 0 0 0 1 1 

HAR-P 3 / 1 0 3 2 

Lognormal-Q 1 1 / 0 5 1 

Lognormal-P 4 6 7 / 11 5 

Heston-Q 0 0 1 0 / 0 

Heston-P 0 2 1 0 9 / 

2 weeks HAR-Q HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q / 0 0 0 1 1 

HAR-P 0 / 0 0 3 2 

Lognormal-Q 0 0 / 0 2 1 

Lognormal-P 1 2 1 / 9 3 

Heston-Q 0 0 0 0 / 0 

Heston-P 0 0 0 0 6 / 

1 month HAR-Q HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q / 0 0 0 0 0 

HAR-P 0 / 0 0 0 0 

Lognormal-Q 0 1 / 0 0 0 

Lognormal-P 0 1 0 / 0 0 

Heston-Q 0 0 0 0 / 0 

Heston-P 0 0 0 0 1 / 
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Table 5.13 

AG test results for IBM overlapping forecasts. The null hypothesis states that two 

different density forecasting methods have equal expected log-likelihood. The 

numbers are the test statistics. * indicates that the null hypothesis is rejected at the 5% 

significance level when |1.96<|ݐ. 

IBM 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -3.28*  -0.92  -3.09*  0.26  -2.81*  

HAR-P 4.20*  -0.37  6.07*  0.72  

Lognormal-Q -5.31*  4.30*  -4.27*  

Lognormal-P 6.99*  1.27  

Heston-Q -6.70*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -3.56*  -2.97*  -4.63*  -2.22*  -3.61*  

HAR-P 2.27*  -4.65*  3.11*  -0.69  

Lognormal-Q -5.58*  -0.04  -2.90*  

Lognormal-P 7.34*  4.24*  

Heston-Q -6.45*  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -4.10*  -3.03*  -5.64*  -1.59  -3.68*  

HAR-P 2.91*  -6.68*  5.83*  0.85  

Lognormal-Q -5.38*  0.06  -2.65*  

Lognormal-P 10.91*  6.94*  

Heston-Q -8.42*  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -6.13*  -3.69*  -7.80*  -1.74  -4.33*  

HAR-P 4.22*  -6.05*  5.43*  1.59  

Lognormal-Q -8.33*  0.40  -2.82*  

Lognormal-P 9.79*  6.48*  

Heston-Q -7.32*  
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Table 5.14 

AG test results for overlapping forecasts when the Newey-West adjustment is made to 

the estimated variance of ݀̅ and 20 autocorrelations are used. The null hypothesis 

states that two different density forecasting methods have equal expected 

log-likelihood. The numbers are the test statistics. * indicates that the null hypothesis 

is rejected at the 5% significance level when |1.96<|ݐ. 

IBM 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -3.17*  -1.01  -3.27*  0.26  -2.96*  

HAR-P 2.98*  -0.33  3.68*  0.56  

Lognormal-Q -4.05*  2.75*  -3.32*  

Lognormal-P 4.40*  0.99  

Heston-Q -4.34*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.96  -0.83  -1.25  -0.61  -1.01  

HAR-P 0.73  -1.73  1.06  -0.29  

Lognormal-Q -1.69  -0.01  -1.00  

Lognormal-P 2.56*  1.83  

Heston-Q -2.38*  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.68  -0.54  -0.93  -0.26  -0.64  

HAR-P 0.60  -1.58  1.61  0.24  

Lognormal-Q -1.10  0.01  -0.60  

Lognormal-P 2.87*  2.10*  

Heston-Q -2.38*  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.53  -0.40  -0.69  -0.17  -0.41  

HAR-P 0.46  -0.95  0.93  0.22  

Lognormal-Q -0.82  0.04  -0.33  

Lognormal-P 1.73  1.08  

Heston-Q -1.34  
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Alcoa 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -3.01*  -3.03*  -3.89*  -0.32  -2.67*  

HAR-P 0.88  -3.40*  2.95*  0.31  

Lognormal-Q -3.73*  3.20*  -0.57  

Lognormal-P 4.01*  2.99*  

Heston-Q -3.41*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.82  -0.82  -1.00  -0.12  -0.94  

HAR-P -0.43  -1.23  0.93  -0.55  

Lognormal-Q -1.31  1.17  -0.14  

Lognormal-P 1.37  0.69  

Heston-Q -1.69  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.62  -0.54  -0.61  0.06  -0.55  

HAR-P 0.42  -0.61  0.97  0.41  

Lognormal-Q -0.86  0.89  -0.04  

Lognormal-P 0.90  0.80  

Heston-Q -0.99  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.37  -0.38  -0.38  0.06  -0.33  

HAR-P 0.41  -0.40  0.69  0.54  

Lognormal-Q -0.44  1.01  -0.18  

Lognormal-P 0.67  0.60  

Heston-Q -0.66  
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Boeing 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -4.35*  -4.39*  -4.66*  -2.63*  -3.81*  

HAR-P -0.70  -3.36*  1.76  -0.31  

Lognormal-Q -3.12*  2.13*  0.19  

Lognormal-P 3.05*  1.69  

Heston-Q -3.51*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.70  -1.67  -1.99*  -0.54  -1.67  

HAR-P -0.25  -1.78  -0.93  -0.65  

Lognormal-Q -1.77  1.29  -0.55  

Lognormal-P 1.68  0.50  

Heston-Q -2.16*  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.13  -0.70  -1.14  0.55  -0.98  

HAR-P 0.48  -0.49  1.61  -0.14  

Lognormal-Q -1.09  1.59  -0.55  

Lognormal-P 1.79  0.24  

Heston-Q -2.04*  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.86  -0.26  -0.65  1.08  -0.50  

HAR-P 0.64  0.12  1.73  0.44  

Lognormal-Q -0.71  1.61  -0.32  

Lognormal-P 1.57  0.38  

Heston-Q -1.54  
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Cisco 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -2.74*  -2.60*  -2.97*  -1.65  -2.62*  

HAR-P 2.46*  -0.67  4.09*  0.84  

Lognormal-Q -3.48*  2.58*  -1.84  

Lognormal-P 4.50*  1.29  

Heston-Q -4.44*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.96  -1.33  -1.45  -0.76  -1.31  

HAR-P -1.27  -2.66*  0.90  -2.11*  

Lognormal-Q -1.55  2.19*  -0.09  

Lognormal-P 2.18*  1.48  

Heston-Q -1.84  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.01  -1.07  -1.40  0.33  -1.00  

HAR-P -0.37  -1.58  1.32  -0.11  

Lognormal-Q -1.87  1.78  0.24  

Lognormal-P 1.94  1.31  

Heston-Q -1.57  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.94  -0.86  -1.52  1.36  -0.40  

HAR-P 0.14  -1.04  1.41  0.30  

Lognormal-Q -0.86  1.55  0.13  

Lognormal-P 1.67  0.80  

Heston-Q -1.47  
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Disney 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -3.18*  -3.18*  -3.34*  -1.65  -2.89*  

HAR-P -0.10  -1.88  1.74  -0.97  

Lognormal-Q -2.72*  2.61*  -1.15  

Lognormal-P 3.88*  1.32  

Heston-Q -4.33*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.12  -0.96  -1.50  0.40  -1.01  

HAR-P -0.59  -2.36*  1.63  -0.53  

Lognormal-Q -2.20*  2.23*  -0.19  

Lognormal-P 2.49*  0.98  

Heston-Q -2.60*  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.96  -0.62  -1.39  0.95  -0.87  

HAR-P 0.53  -2.25*  1.74  -0.21  

Lognormal-Q -1.90  1.98*  -0.53  

Lognormal-P 2.19*  1.16  

Heston-Q -2.05*  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.76  -0.32  -0.99  1.78  -0.81  

HAR-P 0.90  -1.58  1.56  -0.41  

Lognormal-Q -1.23  1.74  -0.83  

Lognormal-P 1.70  0.34  

Heston-Q -1.60  
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General Electric 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -2.00*  -1.59  -1.91  0.68  -0.72  

HAR-P 2.33*  0.67  3.31*  2.05*  

Lognormal-Q -2.56*  2.77*  1.00  

Lognormal-P 3.29*  2.01*  

Heston-Q -3.94*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.40  -1.81  -1.95  -0.85  -1.46  

HAR-P -2.07*  -2.69*  0.71  -0.87  

Lognormal-Q -2.02*  2.14*  1.36  

Lognormal-P 2.27*  2.00*  

Heston-Q -1.79  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.86  -0.87  -1.19  0.76  0.02  

HAR-P -0.39  -1.62  1.52  0.77  

Lognormal-Q -1.76  1.71  0.91  

Lognormal-P 1.99*  1.31  

Heston-Q -0.90  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.64  -1.17  -1.28  -0.14  -1.01  

HAR-P -1.99*  -2.20*  0.60  -0.99  

Lognormal-Q -1.08  1.56  0.39  

Lognormal-P 1.66  0.88  

Heston-Q -1.60  
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Home Depot 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -2.74*  -1.51  -3.08*  3.70*  1.19  

HAR-P 1.52  -1.49  5.02*  3.22*  

Lognormal-Q -3.06*  4.78*  2.24*  

Lognormal-P 5.18*  3.42*  

Heston-Q -3.72*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.96  -0.90  -1.38  1.70  1.31  

HAR-P -0.49  -2.10*  2.36*  2.46*  

Lognormal-Q -1.90  2.38  2.63  

Lognormal-P 2.65*  3.02*  

Heston-Q -1.49  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.79  -0.51  -1.02  1.10  0.95  

HAR-P 0.46  -1.18  1.76  2.00*  

Lognormal-Q -1.19  1.42  1.49  

Lognormal-P 1.92  2.21*  

Heston-Q -0.88  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.94  -0.48  -1.20  1.11  0.91  

HAR-P 0.65  -1.08  1.47  1.54  

Lognormal-Q -0.94  1.19  1.03  

Lognormal-P 1.62  1.75  

Heston-Q -0.81  
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Hewlett Packard 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -3.36*  -2.67*  -3.42*  -2.44*  -3.30*  

HAR-P 2.98*  -1.40  2.22*  -0.88  

Lognormal-Q -3.74*  -0.76  -3.45*  

Lognormal-P 4.00*  1.39  

Heston-Q -3.95*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.43  -1.40  -1.66  -1.34  -1.65  

HAR-P 1.02  -2.09*  0.20  -2.20*  

Lognormal-Q -1.98*  -0.96  -1.82  

Lognormal-P 2.24*  0.31  

Heston-Q -2.25*  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.33  -0.78  -1.42  -1.03  -1.45  

HAR-P 0.92  -0.86  0.32  -0.67  

Lognormal-Q -1.73  -0.96  -1.57  

Lognormal-P 1.40  0.45  

Heston-Q -1.32  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.73  -0.41  -0.76  -0.58  -0.71  

HAR-P 1.09  -0.61  0.54  -0.28  

Lognormal-Q -1.31  -0.83  -1.14  

Lognormal-P 1.38  0.60  

Heston-Q -1.42  
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Intel 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -2.36*  -0.37  -2.32*  0.07  -2.32*  

HAR-P 2.56*  0.56  2.88*  0.91  

Lognormal-Q -3.05*  0.53  -2.86*  

Lognormal-P 3.31*  0.63  

Heston-Q -3.83*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.03  -0.95  -1.17  -0.71  -1.25  

HAR-P 0.31  -0.96  0.57  -0.71  

Lognormal-Q -1.92  0.60  -1.43  

Lognormal-P 1.53  0.71  

Heston-Q -1.70  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.12  -0.30  -0.75  -0.16  -0.85  

HAR-P 0.99  0.05  1.06  0.26  

Lognormal-Q -1.96  0.29  -1.50  

Lognormal-P 1.77  0.32  

Heston-Q -1.78  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.89  0.50  -0.39  -0.04  -0.30  

HAR-P 1.38  0.61  0.94  0.79  

Lognormal-Q -0.90  -0.33  -0.77  

Lognormal-P 0.99  0.36  

Heston-Q -1.03  
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Johnson &Johnson 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -2.36*  -0.37  -2.32*  0.07  -2.32*  

HAR-P 2.56*  0.56  2.88*  0.91  

Lognormal-Q -3.05*  0.53  -2.86*  

Lognormal-P 3.31*  0.63  

Heston-Q -3.83*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.43  -0.59  -1.63  1.06  -0.40  

HAR-P 2.36*  -1.47  3.00*  1.75  

Lognormal-Q -3.50*  2.19*  0.20  

Lognormal-P 3.22*  2.12*  

Heston-Q -2.29*  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.28  0.03  -1.54  1.39  0.21  

HAR-P 1.47  -1.33  2.13*  1.34  

Lognormal-Q -2.42*  1.53  0.23  

Lognormal-P 2.33*  1.70  

Heston-Q -1.95  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.51  0.29  -1.37  1.13  0.73  

HAR-P 1.48  -0.18  1.54  1.42  

Lognormal-Q -1.71  1.20  0.65  

Lognormal-P 1.74  1.61  

Heston-Q -1.33  
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JP Morgan Chase 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -4.20*  -0.45  -3.52*  -0.22  -3.33*  

HAR-P 2.23*  0.40  3.71*  0.85  

Lognormal-Q -3.11*  0.30  -2.41*  

Lognormal-P 3.94*  0.73  

Heston-Q -4.18*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -2.10*  -0.80  -2.31*  0.01  -1.53  

HAR-P 0.84  -1.21  1.48  0.03  

Lognormal-Q -2.18*  0.65  -0.81  

Lognormal-P 2.43*  1.15  

Heston-Q -1.97*  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.06  -0.26  -1.81  0.53  -0.75  

HAR-P 0.45  -1.64  1.53  0.34  

Lognormal-Q -1.05  0.55  -0.35  

Lognormal-P 2.43*  1.55  

Heston-Q -2.27*  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.63  0.30  -0.96  0.59  0.16  

HAR-P 0.55  -0.77  1.26  0.81  

Lognormal-Q -0.89  0.36  -0.04  

Lognormal-P 1.48  1.15  

Heston-Q -1.35  
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McDonald's 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -4.02*  -3.22*  -4.51*  -1.72  -3.91*  

HAR-P 2.21*  -2.95*  3.02*  -1.02  

Lognormal-Q -4.39*  2.45*  -3.09*  

Lognormal-P 4.39*  1.75  

Heston-Q -4.38*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -2.10*  -0.80  -2.31*  0.01  -1.53  

HAR-P 0.84  -1.21  1.48  0.03  

Lognormal-Q -2.18*  0.65  -0.81  

Lognormal-P 2.43*  1.15  

Heston-Q -1.97*  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.29  0.55  -1.26  0.96  -0.36  

HAR-P 1.22  -0.21  2.17*  1.40  

Lognormal-Q -1.39  0.71  -0.60  

Lognormal-P 2.69*  1.82  

Heston-Q -1.95  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.97  0.43  -0.80  0.31  -0.45  

HAR-P 1.00  0.66  1.40  1.25  

Lognormal-Q -0.87  0.17  -0.60  

Lognormal-P 1.47  1.21  

Heston-Q -1.08  
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Merck 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.57  -3.08*  -1.68  -1.18  -1.53  

HAR-P 1.27  -1.90  3.78*  1.38  

Lognormal-Q -1.40  -0.80  -1.21  

Lognormal-P 4.05*  3.21*  

Heston-Q -3.96*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.73  -2.08*  -0.80  -0.57  -0.71  

HAR-P 0.55  -2.76*  1.24  0.90  

Lognormal-Q -0.62  -0.35  -0.52  

Lognormal-P 1.52  1.58  

Heston-Q -1.41  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.48  -1.48  -0.53  -0.43  -0.49  

HAR-P 0.39  -2.03*  0.64  -0.09  

Lognormal-Q -0.44  -0.33  -0.40  

Lognormal-P 1.02  1.60  

Heston-Q -0.79  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.35  0.17  -0.37  -0.26  -0.34  

HAR-P 0.32  -0.71  0.61  0.27  

Lognormal-Q -0.34  -0.24  -0.31  

Lognormal-P 0.78  0.74  

Heston-Q -0.74  
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Pfizer 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -2.87*  -2.41*  -3.13*  -1.13  -2.70*  

HAR-P 2.03*  -1.86  3.63*  0.92  

Lognormal-Q -2.53*  0.84  -1.92  

Lognormal-P 4.60*  2.65*  

Heston-Q -4.34*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.17  -0.68  -1.26  -0.04  -0.77  

HAR-P 0.50  -0.93  1.41  0.27  

Lognormal-Q -1.69  1.00  -0.32  

Lognormal-P 2.37*  1.62  

Heston-Q -2.58*  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.96  -0.27  -0.87  0.25  -0.41  

HAR-P 0.65  -0.74  1.23  0.27  

Lognormal-Q -1.85  0.90  -0.34  

Lognormal-P 1.98*  1.25  

Heston-Q -1.82  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.98  -0.09  -0.91  0.57  -0.07  

HAR-P 0.33  -0.61  0.89  0.25  

Lognormal-Q -1.66  0.78  -0.01  

Lognormal-P 1.45  0.88  

Heston-Q -1.82  
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AT & T 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -2.93*  -2.60*  -3.13*  2.10*  2.29*  

HAR-P 0.58  -2.25*  2.36*  2.99*  

Lognormal-Q -2.92*  2.30*  2.81*  

Lognormal-P 2.39*  3.05*  

Heston-Q -2.82*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -2.17*  -1.39  -2.40*  2.10*  2.46*  

HAR-P -0.03  -1.49  2.17*  2.58*  

Lognormal-Q -1.68  2.09*  2.43*  

Lognormal-P 2.19*  2.59*  

Heston-Q -3.10*  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.51  -1.56  -2.01*  2.03*  2.29*  

HAR-P -0.10  -1.38  2.09*  2.44*  

Lognormal-Q -1.40  2.02*  2.32*  

Lognormal-P 2.12*  2.50*  

Heston-Q -2.67*  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.16  -1.45  -1.54  1.73  1.77  

HAR-P 0.11  -0.91  1.83  1.91  

Lognormal-Q -0.82  1.71  1.77  

Lognormal-P 1.82  1.92  

Heston-Q -2.18*  
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Walmart 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -3.72*  -3.69*  -4.34*  -1.97*  -3.72*  

HAR-P 2.02*  -3.12*  3.21*  -2.84*  

Lognormal-Q -3.49*  1.74  -2.02*  

Lognormal-P 4.30*  3.10*  

Heston-Q -3.22*  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.56  -0.94  -1.79  0.29  -0.95  

HAR-P 0.44  -1.31  1.30  0.67  

Lognormal-Q -2.15*  1.11  0.17  

Lognormal-P 1.74  2.04*  

Heston-Q -1.34  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.95  -0.07  -1.05  0.90  0.09  

HAR-P 0.58  -0.93  1.72  1.03  

Lognormal-Q -1.44  1.23  0.21  

Lognormal-P 2.09*  1.69  

Heston-Q -2.05*  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.72  0.25  -0.64  1.01  0.35  

HAR-P 0.51  -0.36  1.48  0.92  

Lognormal-Q -0.83  0.76  -0.05  

Lognormal-P 1.75  1.31  

Heston-Q -1.34  
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American Express 

1 day HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -1.82  -1.47  -1.80  -0.40  -2.04*  

HAR-P 2.34*  0.54  2.64*  -0.41  

Lognormal-Q -2.29*  2.03*  -1.78  

Lognormal-P 2.55*  -0.49  

Heston-Q -1.69  

1 week HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.79  -0.78  -1.01  0.35  -0.07  

HAR-P 0.61  -1.45  1.41  1.28  

Lognormal-Q -1.52  1.20  0.86  

Lognormal-P 1.77  1.86  

Heston-Q -1.57  

2 weeks HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.55  -0.32  -0.75  0.16  -0.04  

HAR-P 0.87  -1.49  1.20  0.87  

Lognormal-Q -1.86  0.73  0.37  

Lognormal-P 1.70  1.48  

Heston-Q -1.60  

1 month HAR-P Lognormal-Q Lognormal-P Heston-Q Heston-P 

HAR-Q -0.57  -0.15  -0.68  0.29  -0.03  

HAR-P 0.48  -0.82  0.99  0.44  

Lognormal-Q -0.94  0.72  0.14  

Lognormal-P 1.57  0.92  

Heston-Q -1.58  
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Table 5.14 summarises the test statistics for the AG test for six methods and four 

horizons for IBM and another sixteen stocks when the Newey-West adjustment is 

made to the estimated variance of ݀̅ and 20 autocorrelations are used. For IBM stock 

the AG test has similar test values and the same conclusions. The insignificant values 

become -0.33 and 0.99 when twenty autocorrelations are considered. The AG test 

results show that the best method for one week horizon is significantly better than two 

of the remaining five methods at the 5% level, and the best method is statistically 

better than one method at the 5% level for two weeks horizon, while the best method 

is statistically indifferent to the other methods at the longest, one month horizon, 

when the Newey-West adjustment is employed. 

 

5.5 Conclusions 

 

We compare density forecasts for the prices of Dow Jones 30 stocks, obtained from 

5-minute high-frequency returns and daily option prices by using Heston, lognormal 

Black-Scholes, lognormal HAR-RV and transformed densities. Our comparison 

criterion is the log-likelihood of observed stock prices. For the sixty-eight 

combinations from seventeen stocks for four horizons, the transformed, lognormal 

Black-Scholes model gives the highest log-likelihoods for fifty-nine combinations. 

The HAR-RV model and the Heston model have similar forecast accuracy for 

different horizons, either before or after applying a transformation which enhances the 

densities. 

 

Jiang and Tian (2005) suggest that daily option prices are more informative than daily 

and intraday index returns when forecasting the volatility of the S&P 500 index over 
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horizons from one to six months. Shackleton et al. (2010) similarly imply that option 

prices are more informative when based on mid-term forecast horizons due to the 

forward-looking nature of option prices. They only use option prices for the contracts 

with maturities of more than one week, hence the short horizons of one day and one 

week density forecasts are extrapolations which are not backed by active trading. 

They state that the historical density is best for the one day horizon as we can forecast 

the volatility for tomorrow accurately by calculating the realised variance from recent 

high-frequency returns. 

 

Most density research only focuses on either risk-neutral densities or ex post 

real-world density forecasts for horizons matching option expiry dates, while we 

generate ex ante real-world densities for different forecast horizons. We use a 

nonparametric transformation to transform the risk-neutral density into real-world 

density. The log-likelihoods for the nonparametric transformation are always higher 

than those under the risk-neutral measure for all methods and horizons. The 

nonparametric transformation also gives better diagnostic test results. Hence central 

banks, risk managers and other decision takers should not merely focus on risk-neutral 

densities, but should also obtain more accurate predictions by using risk 

transformations applied to risk-neutral densities. The relatively unsatisfactory 

performance of the Heston model for individual firms might be attributed to the 

illiquidity of their out-of-the-money options. Compared to the index, the individual 

firm stocks options have fewer strikes that are traded. 

 

Density forecasts can be applied in many areas. They can be used to estimate the risk 

aversion of investors. They can also be employed to infer probabilities of future 
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market changes for different asset classes including stock indices, interest rates, 

exchange rates and commodities. In particular, it can help to analyse the impact of a 

market crash, whether it is anticipated by investors, and whether it is a temporary 

phenomenon or it results from market failure. Furthermore, they can be used to assess 

market beliefs about future economic and political events when derived from option 

prices due to its forward looking nature. The ex-ante analysis infers the possible 

outcome of the market due to the event, while the ex posts analysis checks if the 

market reacts to the event as expected. Last but not least, density forecasts are 

important in risk management, particular for the estimation of Value-at-Risk, which 

measures how much one can lose at a pre-defined confidence interval over different 

horizons. Many institutions, such as investment banks and central banks, periodically 

publish their density estimates, which enable investors to assess risk for their 

investment portfolios. Hence density forecasts are of importance to central bankers 

and other decision takers for activities such as policy-making, risk management and 

derivatives pricing. Concerning the current study, investors should use options 

information rather than stock prices when choosing their pricing and forecasting 

models. The simple Black-Scholes lognormal model performs better than the 

stochastic volatility Heston model. And a nonparametric transformation from 

risk-neutral densities to real-world densities always give more accurate forecasts. 
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Appendix. Assumptions about prices, dividends and options 

Stock prices jump when dividends are assigned. We apply the Heston dynamics to 

futures prices which do not jump. We also need to assume all synthetic futures prices 

have the same dynamics. We assume futures and options contracts expire at time T1, 

and there is a dividend at time τ1 between time 0 and time T1. The second expiry time 

for futures and options is T2 and there is another dividend at τ2 between time T1 and T2. 

We can use the same dynamics for all futures from simple dividend assumptions; this 

is easy for continuous dividends but harder for discrete dividends. We denote the 

futures price at t for delivery at T to be Ft,T. Our discussion below refers to dividend 

constants c1, c2, …, which do not need to be calculated. 

 

We assume, at time t before time τi, that the expected dividends are 

௜ሿ߬	ݐܽ	݀݊݁݀݅ݒ௧ሾ݀݅ܧ ൌ ܿଵ݁௥ሺఛభି௧ሻܵ௧																																					߬ ൌ 1, ݐ ൏ ߬ଵ 

ൌ ܿଶሺ1 െ ܿଵሻ݁௥
ሺఛమି௧ሻܵ௧																					߬ ൌ 2, ݐ ൏ ߬ଶ 

ൌ ܿଷሺ1 െ ܿଵሻሺ1 െ ܿଶሻ݁௥
ሺఛయି௧ሻܵ௧					߬ ൌ 3, ݐ ൏ ߬ଷ 

etc. We assume futures prices are set by no-arbitrage conditions, so 

்,௧ܨ ൌ ݁௥ሺ்ି௧ሻሾܵ௧ െ ܸܲሺ݁݀݁ݐܿ݁݌ݔ	ݏ݀݊݁݀݅ݒ݅݀	݉݋ݎ݂	ݐ	݋ݐ	ܶሻሿ. 

 

Then for the first contract 

,௧ܨ భ் ൌ ݁௥ሺ భ்ି௧ሻൣܵ௧ െ ݁ି௥ሺఛభି௧ሻܿଵ݁௥ሺఛభି௧ሻܵ௧൧ 

ൌ ሺ1 െ ܿଵሻ݁௥
ሺ భ்ି௧ሻܵ௧																																																		0 ൑ ݐ ൏ ߬ଵ, 

ൌ ݁௥ሺ భ்ି௧ሻܵ௧																																																																߬ଵ ൑ ݐ ൑ ଵܶ. 
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Then we have 

݈݊൫ܨ௧, భ் ܵ௧⁄ ൯ ൌ ݈݊ሺ1 െ ܿଵሻ ൅ ሺݎ ଵܶ െ 0																									ሻݐ ൑ ݐ ൏ ߬ଵ, 

ൌ ሺݎ ଵܶ െ ߬ଵ																																																ሻݐ ൑ ݐ ൑ ଵܶ. 

Thus 

݀൫݈݊ܨ௧, భ்൯ ൌ ݀ሺ݈݊ܵ௧ሻ െ ݐ																																													ݐ݀ݎ ് ߬ଵ 

Also St jumps down by ܿଵܵఛభ at time t=τ1, but ܨ௧, భ் does not jump at t=τ1. 

 

Similarly, for the second contract 

,௧ܨ మ் ൌ ݁௥ሺ మ்ି௧ሻൣܵ௧ െ ݁ି௥ሺఛభି௧ሻܿଵ݁௥ሺఛభି௧ሻܵ௧ െ ݁ି௥ሺఛమି௧ሻܿଶሺ1 െ ܿଵሻ݁௥ሺఛమି௧ሻܵ௧൧ 

ൌ ݁௥ሺ మ்ି௧ሻሺ1 െ ܿଵሻሺ1 െ ܿଶሻܵ௧																																																																0 ൑ ݐ ൏ ߬ଵ, 

ൌ ݁௥ሺ మ்ି௧ሻሺ1 െ ܿଶሻܵ௧																																																																														߬ଵ ൑ ݐ ൏ ߬ଶ, 

ൌ ݁௥ሺ మ்ି௧ሻܵ௧																																																																																													߬ଶ ൑ ݐ ൑ ଶܶ. 

 

Hence we have 

݀൫݈݊ܨ௧, మ்൯ ൌ ݀ሺ݈݊ܵ௧ሻ െ ݐ																																			ݐ݀ݎ ് ߬ଵ, ߬ଶ, 

ൌ ݀൫݈݊ܨ௧, భ்൯																																								0 ൑ ݐ ൑ ଵܶ. 

And we also have 

,௧ܨ మ்
,௧ܨ భ்

ൌ ݁௥ሺ మ்ି భ்ሻሺ1 െ ܿଶሻ																											0 ൑ ݐ ൑ ଵܶ. 

 

We estimate the Heston parameters from the prices of European options which expire 

at T1, T2, …, TN, and strike prices are available as Ki,j, with 1≤i≤N and 1≤j≤ni. At time 

0 we have Black-Scholes implied volatilities σi,j, these give market prices from the 

standard formula for options on futures, 

ܿ௜,௝ ൌ ܿ஻൫ܨ଴,்೔, ௜ܶ , ,௜,௝ܭ ,ݎ  .௜,௝൯ߪ
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Here we have 

଴,்೔ܨ ൌ ݁௥்೔ሾܵ଴ െ ܸܲሺ݁݀݁ݐܿ݁݌ݔ	ݏ݀݊݁݀݅ݒ݅݀	݉݋ݎ݂	݋ݎ݁ݖ	݋ݐ	 ௜ܶሿ 

and S0 is the spot price. 

 

Our target is to estimate the Heston parameters θ as: 

෠ߠ ൌ ݊݅݉݃ݎܽ
ఏ

෍෍ൣܿ௜௝ െ ܿு௘௦௧௢௡൫ܨ଴,்೔, ௜ܶ , ,௜௝ܭ ,ݎ ൯൧ߠ
ଶ

௝௜

 

 

At time 0 and for any future time τ, we can obtain the density of ܵఛ ൌ  ఛ,ఛ byܨ

evaluating the Heston-density with initial price ܨ଴,ఛ and parameters ߠ෠. 
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6. Conclusions 

 

One-minute returns of ten foreign exchange rates are investigated for five years from 

2007 to 2011. We employ the ABD and LM jump detection tests to detect intraday 

price jumps for ten rates and cojumps for six groups of two dollar rates and one cross 

rate. The null hypothesis that jumps are independent is rejected, as there are far more 

cojumps than predicted by independence for all rate combinations. Some clustering of 

jumps and cojumps are also detected and can be related to the macroeconomic news 

announcements affecting the exchange rates. The selected ABD and LM jump 

detection tests detect a similar number of jumps for ten foreign exchange rates. 

 

Foreign exchange rates contain frequent and relatively small jumps as they are usually 

affected by two sources of news and they have more liquidity shocks during the 

continuously traded 24-hour market. Some foreign exchange rates jump and cojump 

more than others, this is because some exchange rates are closely correlated, or it is 

easy to simultaneously trade some exchange rates. For example, the U.S. scheduled 

macroeconomic news announcements may affect all dollar exchange rates, and some 

European news may affect both euro and pound exchange rates. 

 

Previous studies such as Lahaye et al. (2011) only investigate dollar rates, while we 

examine more currencies through checking six groups of two dollar rates and one 

cross rate at the higher one minute frequency for ten years. We find that one dollar 

rate and the cross rate combination almost always has more cojumps than the two 

dollar rates combination. 
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We compare density forecasts for the prices of Dow Jones 30 stocks, obtained from 

5-minute high-frequency returns and daily option prices by using Heston, lognormal 

Black-Scholes, lognormal HAR-RV and transformed densities. We base comparisons 

on the log-likelihood of observed stock prices. For the sixty-eight combinations from 

seventeen stocks for four horizons, the transformed lognormal Black-Scholes model 

gives the highest log-likelihoods for fifty-nine combinations. The HAR-RV model and 

the Heston model gives the highest log-likelihood for a similar number of times, 

either before or after applying a nonparametric transformation. 

 

Jiang and Tian (2005) argue that daily option prices are more informative than daily 

and intraday index returns when forecasting the volatility of the S&P 500 index over 

horizons from one to six months. Shackleton et al. (2010) also imply that option 

prices contain more information when based on mid-term forecast horizons due to the 

forward-looking nature of option prices. They only use option prices for the contracts 

with maturities of more than seven calendar days, hence the short horizons of one day 

and one week density forecasts are extrapolations which are not supported by frequent 

trading. They state that the historical density is best for the one day horizon as we can 

forecast the volatility for tomorrow accurately by calculating the realised variance 

from recent high-frequency returns. 

 

Most density research only focuses on either risk-neutral densities or ex post 

real-world densities for horizons matching option expiry dates, while we generate ex 

ante real-world densities for different forecast horizons. We use a nonparametric 

transformation to transform the risk-neutral densities into the real-world densities. The 

log-likelihoods for the nonparametric transformation are always higher than those 
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under the risk-neutral measure for all methods and horizons. The nonparametric 

transformation also provides better diagnostic test results. Hence central banks, risk 

managers and other investors should not only look at risk-neutral densities, but also 

obtain more accurate predictions by using risk transformations applied to risk-neutral 

densities. The relatively unsatisfactory performance of the Heston model for 

individual firms might be attributed to the illiquidity of their out-of-the-money options. 

Compared to the index, the individual firm stocks options have fewer strikes that are 

traded. 

 

There are several possible directions of future research to point out. Concerning the 

foreign exchange rates jump and cojump study, it should be more helpful if we can 

use more detailed sources of macroeconomic news announcements and employ some 

models to formally assess the effect of macroeconomic news announcements on 

jumps and cojumps. Additionally, we can conduct a Monte Carlo simulation to 

compare the size and power of the ABD and the LM jump detection tests. Regarding 

the density forecast study, since Pong et al. (2004) state that the better accuracy of 

volatility forecasts comes from the high-frequency data, but not necessarily from a 

long memory specification. We could check if long memory models (e.g. ARFIMA) 

for realised variance can improve density forecasts obtained using high-frequency 

data. Moreover, we evaluate density forecasts using log-likelihoods and diagnostic 

tests. It might be interesting if we can also make comparisons based on some risk 

management application, such as the value-at-risk. Last but not least, Shackleton et al. 

(2010) focus on a U.S. stock index and get different findings, hence we could extend 

the analysis to other asset classes, such as currencies, commodities and interest rates, 

to see what findings we can get. 
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