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Research Significance   

 This research leads to several significant findings: 1) information about hydraulic 

conductivity (K) embedded in head and flux measurements at the same location during 

hydraulic tomography (HT) are non-redundant; 2) joint interpretations of these measurements 

yield superior estimates of K heterogeneity, even when prior layering information is included; 

3) as flux measurements are included in additional to head data in HT analysis, the estimates 

are less prone to uncertainty of prior information required in the analysis.  

 

Index Terms: 

1829 Groundwater hydrology 

1869 Stochastic hydrology 

1894 Instruments and techniques: modeling 

3260 Inverse theory 

 

Keywords: 

hydraulic tomography, groundwater, geostatistics, prior information, inverse modeling, flux 
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1 ABSTRACT 

 Using cross-correlation analysis, we demonstrate that flux measurements at 

observation locations during hydraulic tomography (HT) surveys carry non-redundant 

information about heterogeneity that are complementary to head measurements at the same 

locations.  We then hypothesize that a joint interpretation of head and flux data, even when 

the same observation network as head has been used, can enhance the resolution of HT 

estimates.  Subsequently, we use numerical experiments to test this hypothesis and 

investigate the impact of flux conditioning and prior information (such as correlation lengths, 

and initial mean models (i.e. uniform mean or distributed means)) on the HT estimates of a 

non-stationary, layered medium.   We find that the addition of flux conditioning to HT 

analysis improves the estimates in all of the prior models tested. While prior information on 

geologic structures could be useful, its influence on the estimates reduces as more non-

redundant data (i.e., flux) are used in the HT analysis.  Lastly, recommendations for 

conducting HT surveys and analysis are presented. 

This article is protected by copyright. All rights reserved.



4 

 

2 INTRODUCTION 

 Detailed characterization of the spatial distribution of hydraulic properties of aquifers 

is crucial for high resolution prediction of water and solute movement in the subsurface [Yeh, 

1992; Yeh et al., 1995a, 1995b; Mccarthy et al., 1996; Mas-Pla et al., 1997]. Traditional 

pumping tests and analysis yield either ambiguously averaged and scenario-dependent 

effective hydraulic parameters for equivalent homogeneous aquifers [Wu et al., 2005; 

Straface et al., 2007; Wen et al., 2010], or scenario-dependent distributed effective parameter 

fields that could vary with pumping locations (see Huang et al. [2011] and Wen et al . 

[2010]). As a consequence, results from traditional analysis can only be used as a first-cut 

approach for aquifer characterization [Yeh, 1992].  To minimize the impact of these problems, 

hydraulic tomography (HT) has been developed over the past two decades. 

 While the HT concept had been proposed earlier [e.g., Gottlieb and Dietrich, 1995; 

Vasco et al., 1997; Butler et al., 1999], after the 3-D work by Yeh and Liu [2000] and Zhu 

and Yeh [2005], HT has emerged as a subject of active theoretical, laboratory, and field 

research to characterize the spatial distributions of hydraulic parameters at a higher level of 

detail (e.g. Yeh and Liu [2000]; Bohling et al. [2002; 2010]; Liu et al. [2002]; Brauchler et al. 

[2003, 2011, 2013]; Li et al. [2005, 2008];  Li and Cirpka [2006]; Zhu and Yeh [2005, 2006];  

Illman et al. [2007, 2008, 2009, 2015]; Liu et al. [2007; 2011]; Straface et al. [2007]; 

Kuhlman et al. [2008]; Ni and Yeh [2008]; Cardiff et al. [2009, 2013b]; Castagna and Bellin 

[2009]; Xiang et al. [2009]; Berg and Illman [2011, 2013, 2014]; Cardiff and Barrash [2011]; 

Huang et al. [2011]; Liu and Kitanidis [2011]; Sharmeen et al. [2012]; Jiménez et al. [2013], 

Hochstetler et al. [2015] and Zhao et al. [2015]). In particular, Cardiff and Barrash [2011] 

provide a summary of all peer-reviewed HT studies (1D/2D/3D).  

 These past research efforts have demonstrated that HT is a cost-effective, high-

resolution aquifer characterization method.  Specifically, these studies have consistently 
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demonstrated that transient HT can identify not only the pattern of the heterogeneous 

hydraulic conductivity (K), but also the variation of specific storage (Ss) (see Zhu and Yeh 

[2005, 2006]; Liu et al. [2007]; Xiang et al., [2009] in particular). More importantly, it is also 

shown that the hydraulic property fields estimated by HT can lead to better predictions of 

flow and solute transport processes than conventional characterization approaches [Ni et al., 

2009; Illman et al., 2010, 2012].  

 While HT is a relatively mature technology for characterizing aquifers, there remains 

room for improvement.  HT’s cost-effectiveness stems from collecting non-redundant 

information from a limited number of wells [Yeh and Lee, 2007; Yeh et al., 2008, 2014; 

Huang et al., 2011; Sun et al., 2013].  New approaches that collect additional non-redundant 

information at the wells used by HT experiments (i.e. without using new observation 

locations) would be the most appealing. For example, Lavenue and de Marsily [2001] 

analyze sinusoidal pumping tests conducted in a tomographic survey fashion in a fractured 

dolomite of the Rustler Formation within the Delaware Basin in southeastern New Mexico to 

characterize the K field in the Culebra Dolomite Formation.  Cardiff et al. [2013a] promote 

the advantages of oscillatory hydraulic tomography for characterizing groundwater 

remediation sites.  

 The fusion of different types of surveys (geophysical or tracer data), which may carry 

some non-redundant information about heterogeneity, offers another possible suite of 

approaches to address this issue. Nonetheless, recent studies  have demonstrated that they can 

only provide some limited improvements, which can be attributed to additional uncertainty in 

the relationships between K and other physical attributes of other surveys (such as spatial 

variability of Archie’s law, which links electrical resistivity to moisture content [see Yeh et 

al., 2002], and solute transport  properties of tracers).  
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 An alternative approach to improve the resolution of HT is to jointly invert steady-

state depth-averaged drawdown HT data and the vertical profile of relative hydraulic 

conductivities based on prior flowmeter tests along fully screened observation wells (i.e., Li 

et al. [2008]). In other words, this particular approach overcomes the limitation of the depth-

averaged head measurements at fully-screened observation wells by incorporating prior 

knowledge of vertical relative hydraulic conductivity variations from borehole flowmeter 

profiles. Li et al. [2008] report that such a joint inversion allow them to derive 3-D 

heterogeneity even though the observation wells are fully-screened. 

 More recently, Yeh et al. [2011, 2015a, 2015b] and Mao et al. [2013b] discuss the 

necessary conditions for the inverse problems to be well-defined and advocate the importance 

of having K or flux measurements around the the perimeter of the pumping experiment field 

site. They are essential to constrain the inverse problems for the estimation of K and Ss values, 

such that the problems are well defined.  

 In addition, many existing monitoring wells in the field are fully screened and packed 

with gravel over a long interval.  Head measurements at these wells represent some averaged 

head values over the interval, and they do not carry significant information about vertical 

aquifer heterogeneity [e.g. Li et al., 2008].  To overcome this problem, flux measurements 

along the well screen during HT surveys may offer a possible solution. This approach collects 

flux data along observation wells induced by the pumping of the HT survey, rather than the 

independently pumping at observation wells as in Li et al [2008]. 

 Following this school of thought, Zha et al. [2014] develop a new approach that 

incorporates the flux measurements in HT analysis; and this new approach is then applied to 

2-D synthetic fractured rocks.  They show that inclusion of flux measurements could lead to 

significant improvements in the estimates of fracture conductivity and fracture distribution if 

a large number of measurements are available.  Their study confirms the necessary conditions 
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that are discussed by Yeh et al. [2011, 2015a, 2015b] and Mao et al. [2013b].  Nevertheless, 

such benefits of flux measurements in more continuous 3-D porous media and impacts of 

prior information used in HT analysis need to be explored.  

 The objective of this paper, therefore, is to investigate the improvements of hydraulic 

conductivity (K) estimates based on a joint interpretation of head and flux measurements 

during HT tests in a 3-D non-stationary heterogeneous aquifer, as well as to study the 

influence of prior information on these improvements. We first start with a brief description 

of the Simultaneous Successive Linear Estimator (SimSLE) method for HT analysis using 

both head and flux measurements in section 3.1.  Then, we discuss in section 3.2 the 

associated cross-correlation analysis, which is used to explain the information about 

heterogeneity carried by head or flux measurements. This is followed by a description of the 

setup for numerical experiments (section 4.1).  In section 4.2, we show results from three-

dimensional cross-correlation analysis between K and head and that between K and flux.  We 

then conduct HT inversions in section 4.3 with and without flux conditioning on the synthetic 

K field and examine the effects of prior mean, correlation lengths, and uncertainty in prior 

models on the benefits of flux conditioning. Results from these experiments and their 

relevance to field applications are then discussed (section 5). In section 6, we summarize our 

findings and provide recommendations for conducting HT survey and analysis. 

 

3 METHODS 

3.1 Simultaneous Successive Linear Estimator (SimSLE) 

 For the HT analysis in this study, we adopt the steady-state HT technique with flux 

conditioning developed by Zha et al. [2014], which is based on the SimSLE (Simultaneous 

SLE) algorithm [Xiang et al., 2009]. The SimSLE approach is basically the same as the SLE 

(successive linear estimator) developed by Yeh and colleagues [Yeh et al., 1996, 2002, 2006; 
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Zhang and Yeh, 1997; Hughson and Yeh, 2000; Yeh and Liu, 2000; Zhu and Yeh, 2005; Yeh 

and Zhu, 2007], with the extension that it simultaneously considers the observations from 

multiple pumping/injection events.   

 SLE conceptualizes the natural logarithm of hydraulic conductivity (lnK=F) as a 

spatial stochastic process, characterized by prior information (i.e., mean, variance, and spatial 

correlation function).  It assumes that the correlation function is an exponential correlation 

function with correlation scales xλ and yλ  in the horizontal directions, and zλ , in the vertical 

direction. Similarly, head (H), and the magnitude of flux (q), are also treated as spatial 

stochastic processes. These stochastic processes can be expressed as the sum of the 

unconditional mean and the unconditional perturbation (i.e., ( ) ( ) ( )H H h= +x x x ,

( ) ( ) ( )q q v= +x x x , and ( ) ( ) ( )F F f= +x x x  ).  The unconditional mean head, ( )H x , 

and flux, ( )q x , are derived from solving the ensemble mean steady groundwater flow 

equation with a given ( )F x . 

 The ensemble mean equation is a combination of Darcy’s law and mass conservation 

in a continuum: 

   ( ) ( ) 0pQ−∇⋅ + =q x x , ( ) ( ) ( )K H= − ∇q x x x    (1) 

subject to the boundary conditions 

    
1 0H HΓ = ,   

1 0qΓ− ⋅ =q n      (2) 

In the above equations, x = (x,y,z) , [L], where x, and y are in the horizontal plane and 

z is positive upward; K(x) is the saturated hydraulic conductivity [L/T], H is the total head [L], 

q is the Darcian flux or the specific discharge (q = [qx, qy, qz], [L/T]) , and Q(xp) is the flow 

rate at a source/sink at the location xp. |q| or q is the magnitude of flux. 1Γ and 2Γ are 

prescribed head and flux at the Dirichlet and Neumann boundary, respectively. For the finite 
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element analysis, the solution domain for Eqs. (1) and (2) is discretized into N elements, such 

that the parameter K field is written as a vector f (N×1) and in turn, <F(x)>. Equations (1) 

and (2) are solved using the finite element code VSAFT3 (Variably SAturated Flow and 

Transport in 3-D) developed by Srivastava and Yeh [1992]. 

Suppose we have collected mh observed head, ∗H  and mq observed flux perturbations,

∗q , during an HT survey which consists of several pumping tests. Thus, the observed data 

vector d (m×1, where m= mh+ mq) is composed of mh head data values and mq flux data sets. 

We then employ a stochastic linear estimator (Eq. 3) to improve the unconditional mean ln 

K(x) by using observed data set. Since the relationship between parameter K and head is 

nonlinear, a successive iteration scheme [Yeh et al., 1996] is adopted here to fully exploit the 

information about K conveyed in the head data sets. That is, 

 ( ) ( ) ( ) ( )( )+1 Tˆ ˆr r r r
c c

∗= + −F F ω d d   (3) 

In Eq. (3), ( )ˆ r
cF  is an N×1 vector representing the estimate of <F(x)>c, given the 

observed data set (conditioning denoted by the subscript c), r is the iteration index.  When r = 

0, the estimate starts from an initial guess (prior information) of the K field (unconditional 

mean K, in general). Afterwards, the estimate of the conditional mean <F(x)>c is successively 

improved by the weighted difference between ∗d  (the observed data) and the vector ( )rd (the 

simulated data). This simulated data is obtained from the conditional mean equation (Eq. (1)) 

using the estimate of the conditional mean ( )ˆ r
cF  at the iteration r. 

 The coefficient matrix ω (m×N) in Eq. (3) is determined by solving the following 

equation: 

 [ ]diag( )dd d dd dfθ+ +ε Q ε ω = ε   (4) 
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where ddε  is the conditional covariance matrix (m×m) between the secondary data (i.e., head, 

flux magnitude, or flux vector) sets, and dfε  is the conditional cross-covariance matrix (m×N) 

between the secondary data sets and the parameter f representing the conditional perturbation 

of the lnK(x) field. In Eq. (4), θ is a stability multiplier and diag( )ddε  is a stability matrix, 

which is the diagonal elements of the ddε matrix, and Qd is a diagonal matrix of variances of 

measurement errors, unresolved heterogeneity, and others.  

 In Eq. 4, estimates of covariance matrix ddε and cross-covariance dfε matrix are 

required. They can be approximated by using 1st-order Taylor’s expansion to obtain

( ) ( ) ( ) ( )r r r r T
dd df ff df=ε J ε J and ( ) ( ) ( )r r r

df df ff=ε J ε respectively, where ( )r
dfJ is the sensitivity (or Jacobian) 

matrix for the observed data with respect to f using the set of estimated parameters at the r-th 

iteration. At r = 0, the covariance matrix for parameters ffε  is unconditional and is 

essentially the spatial covariance matrix ffR . It can be obtained using a user-specified 

covariance function. In the subsequent iterations, the covariance matrices become conditional 

(or residual) covariance given the observations and are updated to reflect the successive 

improvements in the estimates: 

    ( 1) ( ) ( ) ( )r r r T r
ff ff df

+ = −ε ε ω ε       (5)  

Mathematically, this updating procedure is similar to that in the Kalman filter algorithm 

[e.g. Schöniger et al., 2012] as new information is included. However, this update is applied 

to reflect the change in cross-correlation between head and parameters due to improved 

conditional mean parameters during each iteration.  The adjoint sensitivity formulation for 

SimSLE used in this work can be found in Zha et al. [2014]. 
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3.2 Cross-correlation Analysis Formulation 

 Cross-correlation analysis is a weighted sensitivity analysis casted into a stochastic 

framework [Mao et al., 2013a]. It determines the relative impact of each parameter with 

respect to others in time and space on the observed heads according to uncertainty or spatial 

variability of each parameter. The cross-correlation matrix can be obtained by: 

   ( ) ( ) 1/21/2
diag diagdf dd df ff

−−   =    ρ ε ε ε     (6) 

 Each row of the cross-correlation matrix dfρ defines the fractional contribution from 

the uncertainty of data at the given observation location, which are carried forward to 

parameter estimation uncertainty of each element in a geostatistical sense. Since this cross-

correlation analysis is conducted without conditioning on any data, ffε  is replaced by its 

unconditional counterpart ffR . Consequently, dfε  and ddε are determined by ffR and the 

unconditional mean K. With a given mean K, a pumping rate, and boundary conditions, these 

cross-covariances are evaluated numerically using the first-order analysis discussed earlier. 

 The above cross-correlation analysis in heterogeneous aquifers is similar to the 

sensitivity analysis by Oliver [1993] but it adopts the stochastic or geostatistics concept.  In 

particular, the cross-correlation analysis considers the variance (spatial variability) of the 

parameter and its spatial correlation structure (covariance function of the parameter) in 

addition to the most likely flow field considered in the sensitivity analysis. Physically, the 

correlation structure represents the average dimensions of aquifer heterogeneity.  The cross-

correlation in essence represents the statistical relationship of spatial variability (or 

uncertainty) of a given parameter (K) at any location and the variability (or uncertainty) of 

head or flux at an observation location in the aquifer.   Therefore, if the cross-correlation 

pattern between an observed head at a location and K everywhere is different from that 

between an observed flux at the same location and K, then the head and flux carry non-
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redundant information about K distribution in the aquifer.   Inclusion of these different data 

sets will be useful for HT analysis.  

 The above cross-correlation analysis is also similar to the interpolation splines used 

by Kitanidis [1998], Snodgrass and Kitanidis [1998], and Fienen et al. [2008]. Note that the 

cross-correlation is the foundation of the cokriging approach [e.g. Kitanidis and Vomvoris, 

1983; Hoeksema and Kitanidis, 1984; Yeh et al., 1995b; Yeh and Zhang, 1996; Li and Yeh, 

1999],  the nonlinear geostatistical inverse approach [e.g. Kitanidis, 1995; Yeh et al., 1996; 

Zhang and Yeh, 1997; Hanna and Yeh, 1998; Li and Yeh, 1998, 1999; Hughson and Yeh, 

2000], the HT inverse model [e.g. Yeh and Liu, 2000; Zhu and Yeh, 2005], and the 

geostatistical inverse modeling of  electrical resistivity tomography [Yeh et al., 2002].  

  

4 NUMERICAL EXPERIMENTS 

4.1 Experimental Setup 

The synthetic aquifer that is used for the following numerical experiments is 45 m in 

length, 45 m in width and 18 m in depth (Figure 1a). The well configuration and design are 

identical to those at the North Campus Research Site (NCRS) in Waterloo, Ontario, Canada 

[Berg and Illman, 2011].   

Results from the analysis herein may help in the assessment of previous field 

experiments and the design of future experiments at the site.  The 15 m × 15 m × 18 m well 

array is set up in a nine-spot square pattern such that the centers of the well array and the 

synthetic aquifer coincide. It consists of four continuous multichannel tubing (CMT) wells 

containing seven channels as observation ports, and five multilevel pumping wells (PW) 

containing three to five channels (Figure 1b). For the CMT wells, the screens are spaced 2 m 

apart with the upper most screens located between 4.5 and 5.5 m below-ground surface 

(mbgs), and the deepest screens are set at 16.5 to 17.5 mbgs.   
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 This aquifer is discretized into 26,353 nodes that form 23,328 rectangular elements. 

The dimensions of each element are 2.5 m (length) x 2.5 m (width) x 0.25 m (high). The side 

boundaries of the aquifer are identical constant head boundaries of 100 m, while the top and 

bottom boundaries are no-flow.  We then generate K values for each element such that the K 

values in the entire aquifer represent a non-stationary random field with five alternating 

layers of aquifers and aquitards, which is analogous to the geologic characteristics of the 

NCRS.    

  The K field consists of 5 horizontal layers (Figure 2)—layer 1 is from z = 18 m to 9.5 

m, 8.5 m thick; layer 2 is from z = 9.5 m to 8 m, 1.5 m thick; layer 3 is from z = 8 m to 6m, 

2m thick; layer 4 is from 6 m to 4.5 m; 1.5 m thick; and layer 5 is from z = 4.5 m to 0 m. For 

each of the layers, independent random fields of K are generated individually using the 

random field generator. The mean lnK (m/d) or each of the layers, from layer 1 to layer 5, is -

1.2296, 1.4010, -1.7602, -0.3739, and -2.2711, respectively, and the variance of lnK for each 

corresponding layer is 2.5, 0.1, 1.0, 4.0, and 2.0, respectively.  The horizontal correlation 

lengths for each layer are 10 m, while the vertical correlation length is 3 m for layer 1 and 

layer 5, and 0.5 m for others.  The overall mean is -1.2584, while the overall variance is 

3.0724.  Notice that layer 2 is a highly permeable layer with very small variability, and layer 

4 is also a layer of high permeability but high variability.   

After generating the random K field with these spatial statistics, steady-state responses 

of the aquifer under a HT survey are simulated.  The HT survey uses the same set of pumping 

rates and locations as Berg and Illman [2011].  During each pumping test, head (H) and flux 

data are collected at 44-46 observation ports (see Figure 1b). The pumping and observation 

locations are the same as Berg and Illman [2011], which are listed in supplementary 

information Table S1, while the pumping rates are in Table S2.  The HT experiment is 

designed in such a way in order to guide the field experiments at NCRS. 
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4.2 Cross-correlation Analysis 

 For flux measurements to improve HT estimates, they must possess additional and 

non-redundant information on K heterogeneity to that provided in head measurements 

collected at the same location.  This non-redundancy of the flux data can be demonstrated by 

comparing the cross-correlations between the flux magnitude at a location and K everywhere 

in the aquifer ( qfρ ), and that between H and K ( Hfρ ). 

 In order to investigate these cross-correlations, we used a pumping-observation well 

couplet in the synthetic aquifers with the same boundary conditions as discussed in previous 

sections. The couplet includes a pumping port (PW), located at x = 22.5 m, y = 15 m and z = 

9 m, and a head and flux measurement port (OW) at x = 22.5 m, y = 30 m and z = 9 m. The 

pumping rate is given as 2.5 m3/d, and the flow field is at steady state.  The mean K field used 

is 1.733 m/d and variance of lnK is 0.1.  

 We first assume the correlation lengths in x, y, and z-directions to be 1m. The 3-D iso-

surfaces of the cross-correlations between K and head, flux magnitude, and flux vectors are 

shown in Figure S1.  While the 3-D cross-correlation pattern between K and head and flux is 

new, the pattern and physical explanations are very similar to those presented in other recent 

work. (i.e. 1-D head examples [Yeh et al., 2014], 2-D head examples [Mao et al., 2013a; Sun 

et al., 2013]; 2-D flux example [Zha et al., 2014], and 3-D head examples [Mao et al., 

2013a]).  

 Next, we explore the cross-correlation patterns between head and K, and between flux 

and K under different mean K distributions.  In Figure 3, the horizontal and vertical 

correlation lengths in x, y, and z-directions in all cases are assumed to be 10 m, 10 m, and 2.5 
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m respectively. For the ease of comparison, we report only the cross-correlation contours of 

the vertical cross-section that bisects PW and OW.  

 Figures 3a and 3b show the cross-correlations for a uniform assumed mean K. In 

Figure 3a, the cross-correlation between head and K is the highest upstream of PW near the 

left boundary and upstream of OW near the right boundary. As shown in Figure 3b, the cross-

correlation between flux and K is the highest at OW and decreases concentrically away from 

it according to the correlation scales in the horizontal plane. We repeat the cross-correlation 

analysis by moving OW down to z = 4 m (Figure 3c-d). As expected, since a uniform mean is 

assumed, the change in cross-correlation patterns only corresponds to the change in OW 

location.  

 We now proceed to examine the cross-correlation between head and lnK (Figure 3e), 

as well as flux and lnK (Figure 3f) respectively when a layered K field is assumed. Each layer 

is homogeneous, and layer locations and the mean K values are identical to those for the 5 

zones of the reference field (Figure 2). The horizontal and vertical correlation lengths in x, y, 

and z are assumed to be 10 m, 10m, and 2.5 m respectively, and the variance of lnK for all 

layers is 0.1. When comparing Figure 3e with 3a, and Figure 3f with 3b, we notice the 

magnitude of cross-correlation becomes higher at elevations near to that of PW and OW, 

while it becomes smaller near the top and bottom of the domain. We attribute such behavior 

to the fact that the two wells are located in the same highly permeable layer, which suggests 

flow is predominately parallel to the layer boundaries.  

 We also repeat the cross-correlation analysis by moving the OW down to 4 m.  The 

head and K cross-correlation (Figure 3g) changes slightly but high cross-correlation areas 

remain in the high permeability zone, even though the OW is at the low permeability zone. 

The flux and K cross-correlation (Figure 3h), however, drops to close to zero everywhere.  

Such behaviors suggest that the flux measurements carry information highly pertinent to the 
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connectivity between pumping location and observation location. This finding corroborates 

the work by Zha et al. [2014], which demonstrates that flux measurements can enhance 

mapping of fractures significantly. The above finding also has important implications to the 

HT estimates of the layered system in next section.   

 

4.3 HT ANALYSIS 

 In this section, we discuss the use of simulated head data or both head and flux data 

from the numerical experiments and SimSLE to estimate the reference K field (Figure 2), 

with different types of prior information. The aim of this analysis is to evaluate the relative 

importance of observed data (head or head and flux) and prior information required by 

SimSLE and other geostatistically based models. 

 

4.3.1 Prior Information Cases 

 The prior information for SimSLE consists of a mean and a covariance function.  The 

covariance function is a statistical representation of the average shape of the heterogeneous 

field to be estimated. The covariance function comprises variance, autocorrelation function, 

and spatial correlation scales, λx,   λy, and, λz in x, y, and z directions, respectively, of the 

parameter field. These correlation scales are analogous to the average dimensions (i.e., length, 

thickness, and width) of the heterogeneity in the entire domain. For mathematical 

convenience, the autocorrelation function is commonly assumed to be an exponential 

function. For this non-stationary reference K field, we will consider two approaches to the 

prior information: in Case 1, we treat the K field to be estimated as a stationary random field, 

with a uniform mean; and in Case 2, we treat it as a nonstationary random field with 

distributed means. 
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4.3.1.1 Case 1a and Case 1b  

 Two scenarios are considered in Case 1. A geostatistical inversion generally starts 

with a uniform mean model—the field is taken to be homogeneous before it is conditioned on 

measurements to estimate perturbation of parameters about the mean. This represents the case 

in which we have no knowledge about the presence of site-specific geologic structure(s) or 

trend of K in a field site. With a given mean value of the entire K field, we derive the 

estimates from HT data in Case 1a, assuming short horizontal correlation scales (i.e., λx = λy = 

10 m, λz = 2.5 m), i.e., we underestimate the true correlation scales of the entire domain.   In 

Case 1b, we assume long horizontal correlation scales (i.e., λx = λy = 50 m, λz = 2.5 m) to 

represent our prior knowledge about the stratified reference K field. 

4.3.1.2 Case 2 

Case 2 also considers several possible scenarios (Cases 2a, 2b, 2c, and 2d).  In 

practice, geologic cross-sections based on well logs or geophysical surveys can reveal some 

layering structures in an aquifer. This information can serve as our prior knowledge about the 

site-specific distribution of mean K values (e.g., a layer of coarse sand overlying a layer of 

silty clay sand or vice versa) at a site.  As a consequence, in Case 2a, we assume that the prior 

distributed model has perfect information about the layering. That is, it consists of the 5 

zones identical to that used in the reference field generation. Each of the zones is 

homogeneous with a known mean K value identical to that of the corresponding layer in the 

reference K field.  

In Case 2b, we examine the effects of imprecise prior information on layer boundaries, 

while the mean for each layer is known exactly.  That is, we repeat the runs for the distributed 

mean K field using a “smoothed” layered initial guesses, rather than precise ones as in Case 

2a. The smoothing is done by shifting the position of the four layer boundaries about the 
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reference ones by an arbitrarily chosen perturbation function: cos(0.4 )cos(0.2 )e e ex yΔ = , 

where eΔ , rounded to the nearest integer, is the number of elements shifted vertically, while 

ex  and ey are element numbers in the horizontal directions.  

Commonly, true mean K value of each layer is not known based on geologic or 

geophysical investigations. Point measurements of K from core samples or slug tests are 

usually used to estimate the mean of each layer. These mean estimates are likely to be 

different from the true means.  Therefore, in Case 2c, we will consider that the layer 

boundary is known exactly but the mean K values are assigned from point measurements and 

different from the true means.  On the other hand, Case 2d represents the scenario where both 

the boundary and the means are uncertain. The assigned mean lnK (m/d) value for each of the 

layers in Case 2c-d is, from layer 1 to layer 5, -0.4939, 1.7646, -1.2844, 1.5794, -0.3231, 

respectively, as compared with those in the reference field ( -1.2296, 1.4010, -1.7602, -

0.3739, and -2.2711). 

For all scenarios in Case 2 (i.e., 2a-d), we also examine effects of both small 

horizontal correlation scales (i.e., λx = λy = 10 m, λz = 2.5 m) and large horizontal correlation 

scales (i.e., λx = λy = 50 m, λz = 2.5 m).  Generally, since large-scale geologic structures have 

already been depicted by the distributed means, using a smaller horizontal correlation scales 

should facilitate characterization of small-scale heterogeneity within layers [Ye et al., 2005].  

 

4.3.2 Performance Metrics  

 To evaluate the HT estimates with either head or both head and flux data with 

different pieces of prior information, scatter plots of the estimated vs. true K values for each 

case are plotted, and a linear model is then fitted to each case without forcing the intercept to 

zero. The slope and intercept of the fitted linear model, the coefficient of determination (R2), 
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the mean absolute error (L1), and the mean square error (L2) norms are then used as 

performance metrics for evaluation since a single criterion is not sufficient. The L1 and L2 

norms are computed as: 

  1
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i i
i

L K K
N

∗

=
= −     and       2
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i i
i
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where N is the total element of the model, i indicates the element number, iK ∗  is the 

estimated K value for the i-th element, and iK is the true K value of the i-th element.  

 In general, the smaller values for L1 and L2 are, the better the estimates are; the closer 

the slope of the linear regression line to 1 and the intercept to 0, the better the estimates are.  

Similarly, if R2 value is close to 1, the estimate is considered to be better.  

 

4.3.3 Results 

 Performance metrics for results of all cases and scenarios using head and head/flux 

data are listed in Table 1.  For clarity, we will discuss only selected cases and scenarios 

below.    

 

4.3.3.1  Head Inversion  

Figure 4 displays the contour cross-sections and scatter plots along with the 

performance metrics of the estimated K field from head inversion. Figures 4a-b are estimates 

from using uniform mean and short correlation lengths as prior (Case 1a), Figures 4c-d are 

those using uniform mean and long correlation lengths (Case 1b), while Figures 4e-f show 

the results using a perfect distributed mean (Case 2a) and short correlation lengths. When 

only head data are used, the estimates based on short correlation scales and uniform mean as 

prior information (Figures 4b) are largely biased (i.e., slopes deviating from 1 and large 
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intercepts) for both the entire field and the interior field. The estimated K field (Figure 4a) 

successfully resolves the top aquifer (i.e. layer 2), yet most of the other features in the 

reference field are unresolved.  

On the other hand, when the long correlation scales and uniform mean are used as the 

prior information, the bias and errors of the estimates both drop drastically (Figure 4d).  This 

reduction in bias is clearly reflected in all performance metrics. In particular, the L2 drops 

from 3.893 to 2.517 for interior points and from 3.961 to 2.884 overall. The use of the long 

correlation scales as prior information in essence permits SimSLE to closely reproduce the 

head field in the layered medium, such that the final estimated field is more layer-like (Figure 

4c).  However, the estimates still cannot capture the true variability of the reference field, as 

manifested by the large envelope of spread of both the overall and interior scatter points. In 

particular, the shape of the high permeability layer 4 is not clearly identified.  

When a distributed mean is used alongside with the assumed short correlation lengths 

as prior, the K estimates from head inversion improve greatly (Figure 4f), while the bias and 

error of the estimates reduce remarkably.  The layering, as expected, is better recovered given 

the correct distributed prior (Figure 4e). That in turn has helped local features within the well 

field to be better reproduced. Head inversion results from using noisy distributed mean prior 

models (Case 2b-d) with short horizontal correlation scales are illustrated in Figure S2 of the 

supporting information section. 

 

4.3.3.2  Head-and-flux Inversion   

 We next examine the effects of prior information on the estimates when both head and 

flux data are used (Figure 5).   Figures 5a and 5b are the contour map and the associated 

scatter plot, respectively, of estimates from using uniform mean and short correlation lengths 
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as prior (as in Case 1a).  The same plots for estimates from using the same uniform mean and 

long correlation lengths (as in Case 1b) are shown in Figures 5c and 5d.  Similarly, Figure 5e 

and 5f illustrate those based on the precise distributed mean and short correlation lengths (as 

in Case 2a).  

When the uniform mean with the long correlation lengths are used, the estimates in 

the whole domain as well as the interior of the well field are less biased in Figure 5d than 

those in Figure 5b.  This reduction in bias is well manifested when the slopes and intercepts 

of the blue dashed lines and red solid lines in the scatterplots are compared. The L2 also drops 

from 1.252 to 1.061 for interior points and from 2.697 to 1.964 for overall. Notice that the 

scattering of the red points in both Figures 5b and 5d appears to be satisfactory. However, the 

large scatter envelop of the blue points in Figure 5d, seems to indicate that much of the small-

scale variability outside the well field remains undetermined when long correlation scales are 

used.  

  According to the contour plots of the estimates in Figures 5a and 5c, the head-and-

flux inversion with a uniform mean and short or long horizontal correlation scales as prior 

generally resolves the layering features of the non-stationary reference K field.  However, 

assuming short correlation lengths leads to estimates with too many lenses (Figure 5a) and 

assuming long ones overestimates the lateral extents of the high permeability zones (Figure 

5c).  These anomalies disappear when correct distributed means and short horizontal 

correlation scales are used as the prior (see Figure 5e).   That is, using these as the prior, the 

inverse model yields an estimated field that faithfully represents the mixture of lenses and 

layers in the reference field.  Head-and-flux inversion results from using noisy distributed 

mean prior models with short horizontal correlation scales (Case 2b-d) are reported in Figure 

S3 of the supporting material section. 
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5 DISCUSSION 

Comparing the contour maps and scatter plots of head inversion estimates (Figures 4a 

through 4f) with head-and-flux inversion estimates (Figures 5a through 5f), we observe that 

flux conditioning improves estimates in all prior information cases considered. Specifically, 

according to the contour maps (Figures 4a, 4c, 4e, 5a, 5c, and 5e), estimates from head-and-

flux inversion better delineate layers and depict more details within layers of the reference 

field, especially in the cases where the uniform prior K field is used. The improvement is not 

limited to areas within the well field—flux conditioning also improves estimates near the 

domain boundaries even when small correlation lengths are assumed (Figure 4a and Figure 

5a).  When a uniform K is the prior mean, scatter plots reveal that the spread and the bias of 

the estimates based on head and flux data (Figures 5b and 5d) are significantly smaller than 

those based on both head data alone (Figures 4b and 4d).  When distributed means are the 

prior, the improvements due to additional flux data on the estimates are less obvious (Figures 

4f and 5f).  This is likely due to the particular reference K field used, in which the highest 

permeability layer (layer 2) is nearly uniform (variance of lnK = 0.1).  Because of its low 

variability, the benefits of specifying its correct prior mean outweigh the benefits of flux 

information.  We note that, however, the above may not be true for high variability layers 

such as layer 4, which has variance of lnK= 4.0.  

Results of flux and head conditioning for the layered system, created with uniform 

mean and large statistical anisotropy ratios (Figure S4 in supporting material section and Tso 

[2015]), also corroborate the aforementioned results. In this case, the domain is identical to 

that of the reference field in Figure 2 but its reference K field has a mean lnK of -1.384 and a 

variance of 3.0. The horizontal and vertical correlation lengths are 50 m and 10 m, 

respectively.  As shown in Figure S4a, this is also a layered case but is more stratified than 
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the reference field in Figure 2.  Using a uniform mean and long horizontal correlation scales, 

the head-and-flux inversion estimates (Figure S4d) reveal fine layers more sharply than those 

from head inversion (Figure S4b). It also better portrait the low-K zone beneath at the bottom 

of the domain. The scatter plots also show that the estimates from head-and-flux inversion are 

less biased (Figure S4e vs. Figure S4c). 

To better investigate the effects of head and head/flux data conditioning from the 

results in Figures 4 and 5, as well as the effect of different levels of noise in distributed mean 

prior models, we plot bar charts of the performance metrics (R2, slope, and L2) for Cases 1a-b, 

as wells as Cases 2a-d that use short correlation lengths, in Figures 6, 7, and 8, respectively.  

In these bar charts, the metrics for the overall estimates are in blue, while those for the 

interior estimates are in red.  

It is apparent from these bar charts that the estimates from using distributed means 

with short correlation scales as prior information are superior to those from using uniform 

mean, regardless of using head measurements or both head and flux. For overall performance 

metrics, the estimates from using the correct distributed mean values, short correlation scales, 

in conjunction with both head and flux measurements are the best among all estimates. That 

is to say, the prior knowledge of the site-specific geologic structures can play an important 

role in the analysis of an HT survey, at least, in the case of this study. 

Nevertheless, flux measurements in addition to head data collected at the same 

locations unequivocally improve the estimates in all cases and scenarios (even in Case 2a, 

where exact distributed means and layer boundaries were used).  The improvements are 

particularly prominent in estimates for within the well field, as indicated by the red bars. 

Effects of additional flux data on the estimates are even more noticeable in the cases 

where uniform prior mean K is used (Case 1a-b). For instance, the slope of the scatter plot for 
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the interior estimates in Case 1b jumps from 0.434 to 0.722 (Figures 7a and Figure 7b) after 

the inclusion of the flux data.  

Our findings have substantiated the results of the cross-correlation analysis, which 

show that 1) flux data carry non-redundant information about heterogeneity in comparison 

with head data, and 2) this information reflects the connectivity between the pumping 

location and the observation location and in turn, the layering or geologic structures.   These 

benefits of flux measurements on structures are also evident in the case shown in Figure S4, 

where the formation is not perfectly stratified.  These benefits are even more distinct for HT 

analysis in fractured rocks for mapping discrete fractures, reported in the study by Zha et 

al.[2014]. 

Importance of inclusion of flux measurements is also apparent in the cases (Cases 2b, 

2c, and 2d) in which the incorrect prior distributed means or smoothed layer boundaries are 

assumed.  The improvement from the addition of flux is particularly prominent for estimates 

within the well field, as indicated by the red bars. We also notice that the improvements due 

to the addition of flux conditioning is more prominent when the prior distributed model is 

noisier (i.e. the improvement in Case 2d is the greatest, followed by Case 2b-c). Our 

observations are consistent with the fact that flux in addition to head measurements is critical 

to yield better estimated K values, as pointed out by Yeh et al. [2011, 2015a, and 2015b] as 

well as Mao et al. [2013].  Again, we emphasize that our discussion on Cases 2a-d here only 

considers the use of short horizontal correlation lengths, which yield better results than when 

they are repeated using long ones. 

While the measurement of groundwater flux is far from common practice for aquifer 

testing and monitoring, its importance has long been recognized [e.g. Dagan, 1989]. In 

groundwater remediation, there has been a growing interest on predicting flux fields, as mass 
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flux has become an important metric to evaluate remediation effort [ITRC, 2010; Suthersan et 

al., 2010]. 

In reality, numerous methods have been developed over the past few decades for flux 

measurements in a borehole. Among them, the simplest one is the point dilution method 

[Drost et al., 1968], which is well documented in many textbooks.  More advanced methods 

commonly involves the release of colloids [Kearl, 1997], heat [Melville et al., 1985], or tracer  

[Palmer, 1993]. The rate at which they dissipate is used to estimate groundwater velocity at 

the well. Other borehole methods utilize Doppler shift of waves [Momii et al., 1993; Wilson 

et al., 2001]. To resolve flow variations along a wellbore, spinner log or electronic borehole 

flowmeter profiling [Molz et al., 1989; Young and Pearson, 1995] are widely used. 

In-situ methods are immune from wellbore effects and outperform borehole methods 

when measuring both magnitude and direction of groundwater velocity. They are more 

common for shallow, unconsolidated environments [Berg and Gillham, 2010; Kempf et al., 

2013]. Small equipment that consists of a tracer or heat release port and several sensors are 

buried underground and they measure the arrival time of tracer or heated fluid at sensors 

within the equipment [Ballard, 1996; Labaky et al., 2007, 2009; Devlin et al., 2012]. 

 Lastly, our study certainly is not conclusive and definitive for any real-world 

problems since it tests the joint interpretation algorithm with a single realization of a 

synthetic layered heterogeneous random field, without including all possible sources of noise 

and other influences. Nevertheless, this study brings forth a new way to collect non-

redundant data using the same well facilities during an HT survey.  Notice that our previous 

work [Zha et al., 2014] focuses on the joint inversion of head and flux data in fractured media, 

where fractures are discrete.  The current study examines its usefulness for HT analysis in a 

porous medium, which is more “continuous” and contains large-scale structures (i.e., 

stratifications).  Effects of flux measurements in addition to head data does not appear to be 
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as substantial as in the study by Zha et al. [2014] since the prior distributed means specify the 

large-scale connectivity or stratifications.  Nevertheless, as we have demonstrated, the flux 

measurements are still useful to improve the resolution of the estimates by HT analysis even 

if correct layering structures and layer means are known exactly.  These results are consistent 

with the necessary conditions for inverse problems that Yeh et al. [2011, 2015a, 2015b] and 

Mao et al. [2013b] have advocated. 

 

6 SUMMARY AND CONCLUSION 

 In this paper, using cross-correlation analysis, we first demonstrate that flux 

measurements at observation locations during HT surveys carry non-redundant information 

about heterogeneity that are complementary to head measurements at the same locations.  

That is, a joint interpretation of head and flux data, even if they are collected at the same 

locations, can enhance the resolution of the HT estimates. We then examine the impacts of 

prior information such as correlation lengths, and initial mean models (uniform or distributed 

means) on the HT estimates of a nonstationary field, using either head or both head and flux 

data.  The results of the analysis are summarized below.  

 When a homogeneous initial K model is assumed for HT analysis of a non-stationary 

K field, head-and-flux inversion provide superior estimates to the inversion based on head 

data only, independent of initial guess correlation scales.  This result is attributed to the fact 

that flux data in addition to head data provide sufficient information about multi-scale 

heterogeneity structures.  On the contrary, if a distributed mean K model is assumed, 

improvements due to the flux data in addition to head data are not as prominent. We attribute 

this to the fact the distributed mean model has already captured layer characteristics of the 

field.  With small initial correlation scales, the head-and-flux inversion then improves its 
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interior estimates, indicating flux data can refine the estimates of heterogeneity at sub-layer 

scales. 

When noisy distributed prior K models are used, the estimates slightly deteriorate but 

they are still superior to cases where homogeneous models are used. Also, head-and-flux 

inversion still generally outperforms head inversion.   

 In conclusion, we find that head data and flux data are complementary to each other as 

advocated by Yeh et al. [2011, 2015a, and 2015b] and Mao et al. [2013b]. Therefore, using 

flux measurements in HT analysis can improve the estimates of HT. Moreover, head-and-flux 

inversion estimates are found to be less impacted by the choice of different prior models. 

While prior information (such as uniform mean or layered means, correlation scales) could be 

useful, its influence on the estimates reduces as more non-redundant data (i.e. flux) are used 

in the HT analysis (see Yeh and Liu, [2000]).  

 Based on our research finding, we provide the following recommendations for 

practical HT experimental design and analysis. Firstly, collect head data and flux data at as 

many locations as possible and use them in HT analysis. For locations where head is 

measured, measurements of flux at the same locations will improve K estimates. Secondly, 

use uniform mean properties and long horizontal correlation scales as prior information if 

geologic or geophysical information about the heterogeneity is not available. Finally, if 

geologic or geophysical information is available, use correct distributed mean properties and 

short correlation scales as prior information for HT analysis.  

  

This article is protected by copyright. All rights reserved.



28 

 

7 ACKNOWLEDGEMENT 

 

The work was supported by the U.S. Environmental Security Technology Certification 

Program (ESTCP) grant ER-201212. Additional support partially comes from the NSF EAR 

grant 1014594. Y. Zha acknowledges the support of the “China Scholarship Council.” T.-C.J. 

Yeh also acknowledges the Outstanding Oversea Professorship award through Jilin 

University from the Department of Education, China. We thank Ty Ferre and Chin Man Mok 

for their comments on earlier versions of this manuscript. Reviews from the associate editor 

and three anonymous reviewers have greatly helped improved this work. We thank Elizabeth 

Hubbs for editing. All data from this work is available upon request through the 

corresponding author.  

  

This article is protected by copyright. All rights reserved.



29 

 

8 REFERENCES 

Ballard, S. (1996), The in situ permeable flow sensor: a ground-water flow velocity meter, 
Ground Water, 34(2), 231–240, doi:10.1111/j.1745-6584.1996.tb01883.x. 

Berg, S. J., and R. W. Gillham (2010), Studies of water velocity in the capillary fringe: the 
point velocity probe., Ground Water, 48(1), 59–67, doi:10.1111/j.1745-
6584.2009.00606.x. 

Berg, S. J., and W. A. Illman (2011), Three-dimensional transient hydraulic tomography in a 
highly heterogeneous glaciofluvial aquifer-aquitard system, Water Resour. Res., 47(10), 
W10507, doi:10.1029/2011WR010616. 

Berg, S. J., and W. A. Illman (2013), Field study of subsurface heterogeneity with steady-
state hydraulic tomography, Ground Water, 51(1), 29–40, doi:10.1111/j.1745-
6584.2012.00914.x. 

Berg, S. J., and W. A. Illman (2014), Comparison of hydraulic tomography with traditional 
methods at a highly heterogeneous site, Ground Water, 53(1), 71–89, 
doi:10.1111/gwat.12159. 

Bohling, G. C., and J. J. Butler (2010), Inherent limitations of hydraulic tomography., 
Ground Water, 48(6), 809–24, doi:10.1111/j.1745-6584.2010.00757.x. 

Bohling, G. C., X. Zhan, J. J. Butler, and L. Zheng (2002), Steady shape analysis of 
tomographic pumping tests for characterization of aquifer heterogeneities, Water Resour. 
Res., 38(12), 60–1–60–15, doi:10.1029/2001WR001176. 

Brauchler, R., R. Liedl, and P. Dietrich (2003), A travel time based hydraulic tomographic 
approach, Water Resour. Res., 39(12), 1370, doi:10.1029/2003WR002262. 

Brauchler, R., R. Hu, P. Dietrich, and M. Sauter (2011), A field assessment of high-resolution 
aquifer characterization based on hydraulic travel time and hydraulic attenuation 
tomography, Water Resour. Res., 47(3), W03503, doi:10.1029/2010WR009635. 

Brauchler, R., R. Hu, L. Hu, S. Jiménez, P. Bayer, P. Dietrich, and T. Ptak (2013), Rapid 
field application of hydraulic tomography for resolving aquifer heterogeneity in 
unconsolidated sediments, Water Resour. Res., 49(4), 2013–2024, 
doi:10.1002/wrcr.20181. 

Butler, J. J., C. D. McElwee, and G. C. Bohling (1999), Pumping tests in networks of 
multilevel sampling wells: Motivation and methodology, Water Resour. Res., 35(11), 
3553–3560, doi:10.1029/1999WR900231. 

Cardiff, M., and W. Barrash (2011), 3-D transient hydraulic tomography in unconfined 
aquifers with fast drainage response, Water Resour. Res., 47(12), W12518, 
doi:10.1029/2010WR010367. 

This article is protected by copyright. All rights reserved.



30 

 

Cardiff, M., W. Barrash, P. K. Kitanidis, B. Malama, A. Revil, S. Straface, and E. Rizzo 
(2009), A potential-based inversion of unconfined steady-state hydraulic tomography, 
Ground Water, 47(2), 259–70, doi:10.1111/j.1745-6584.2008.00541.x. 

Cardiff, M., T. Bakhos, P. K. Kitanidis, and W. Barrash (2013a), Aquifer heterogeneity 
characterization with oscillatory pumping: Sensitivity analysis and imaging potential, 
Water Resour. Res., 49(9), 5395–5410, doi:10.1002/wrcr.20356. 

Cardiff, M., W. Barrash, and P. K. Kitanidis (2013b), Hydraulic conductivity imaging from 
3-D transient hydraulic tomography at several pumping/observation densities, Water 
Resour. Res., 49(11), 7311–7326, doi:10.1002/wrcr.20519. 

Castagna, M., and A. Bellin (2009), A Bayesian approach for inversion of hydraulic 
tomographic data, Water Resour. Res., 45(4), W04410, doi:10.1029/2008WR007078. 

Dagan, G. (1989), Flow and Transport in Porous Formations, Springer Berlin Heidelberg, 
Berlin, Heidelberg. 

Devlin, J. F., P. C. Schillig, I. Bowen, C. E. Critchley, D. L. Rudolph, N. R. Thomson, G. P. 
Tsoflias, and J. A. Roberts (2012), Applications and implications of direct groundwater 
velocity measurement at the centimetre scale., J. Contam. Hydrol., 127(1-4), 3–14, 
doi:10.1016/j.jconhyd.2011.06.007. 

Drost, W., D. Klotz, A. Koch, H. Moser, F. Neumaier, and W. Rauert (1968), Point dilution 
methods of investigating ground water flow by means of radioisotopes, Water Resour. 
Res., 4(1), 125–146, doi:10.1029/WR004i001p00125. 

Gottlieb, J., and P. Dietrich (1995), Identification of the permeability distribution in soil by 
hydraulic tomography, Inverse Probl., 11(2), 353–360, doi:10.1088/0266-5611/11/2/005. 

Hanna, S., and T.-C. J. Yeh (1998), Estimation of co-conditional moments of transmissivity , 
hydraulic head , and velocity fields, Adv. Water Resour., 22(1), 87–95. 

Hochstetler, D. L., W. Barrash, C. Leven, M. Cardiff, F. Chidichimo, and P. K. Kitanidis 
(2015), Hydraulic tomography: continuity and discontinuity of high-K and low-K zones, 
Groundwater, doi:10.1111/gwat.12344. 

Hoeksema, R. J., and P. K. Kitanidis (1984), An application of the geostatistical approach to 
the inverse problem in two-dimensional groundwater modeling, Water Resour. Res., 
20(7), 1003–1020, doi:10.1029/WR020i007p01003. 

Huang, S.-Y., J.-C. Wen, T.-C. J. Yeh, W. Lu, H.-L. Juan, C.-M. Tseng, J.-H. Lee, and K.-C. 
Chang (2011), Robustness of joint interpretation of sequential pumping tests: Numerical 
and field experiments, Water Resour. Res., 47(10), W10530, 
doi:10.1029/2011WR010698. 

Hughson, D. L., and T.-C. J. Yeh (2000), An inverse model for three-dimensional flow in 
variably saturated porous media, Water Resour. Res., 36(4), 829–839. 

This article is protected by copyright. All rights reserved.



31 

 

Illman, W. A., X. Liu, and A. Craig (2007), Steady-state hydraulic tomography in a 
laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale 
validation of hydraulic conductivity tomograms, J. Hydrol., 341(3-4), 222–234, 
doi:10.1016/j.jhydrol.2007.05.011. 

Illman, W. A., A. J. Craig, and X. Liu (2008), Practical issues in imaging hydraulic 
conductivity through hydraulic tomography., Ground Water, 46(1), 120–32, 
doi:10.1111/j.1745-6584.2007.00374.x. 

Illman, W. A., X. Liu, S. Takeuchi, T.-C. J. Yeh, K. Ando, and H. Saegusa (2009), Hydraulic 
tomography in fractured granite: Mizunami Underground Research Site, Japan, Water 
Resour. Res., 45(1), W01406, doi:10.1029/2007WR006715. 

Illman, W. A., S. J. Berg, X. Liu, and A. Massi (2010), Hydraulic/partitioning tracer 
tomography for DNAPL source zone characterization: small-scale sandbox experiments., 
Environ. Sci. Technol., 44(22), 8609–14, doi:10.1021/es101654j. 

Illman, W. A., S. J. Berg, and T.-C. J. Yeh (2012), Comparison of approaches for predicting 
solute transport: sandbox experiments., Ground Water, 50(3), 421–31, 
doi:10.1111/j.1745-6584.2011.00859.x. 

Illman, W. A., S. J. Berg, and Z. Zhao (2015), Should hydraulic tomography data be 
interpreted using geostatistical inverse modeling? A laboratory sandbox investigation, 
Water Resour. Res., in press, doi:10.1002/2014WR016552. 

ITRC (2010), Use and Measurement of Mass Flux and Mass Discharge, Washington DC. 

Jiménez, S., R. Brauchler, and P. Bayer (2013), A new sequential procedure for hydraulic 
tomographic inversion, Adv. Water Resour., 62, 59–70, 
doi:10.1016/j.advwatres.2013.10.002. 

Kearl, P. M. (1997), Observations of particle movement in a monitoring well using the 
colloidal borescope, J. Hydrol., 200(1-4), 323–344, doi:10.1016/S0022-1694(97)00026-
7. 

Kempf, A., C. E. Divine, G. Leone, S. Holland, and J. Mikac (2013), Field performance of 
point velocity probes at a tidally influenced site, Remediat. J., 23(1), 37–61, 
doi:10.1002/rem.21337. 

Kitanidis, P. K. (1995), Quasi-linear geostatistical theory for inversing, Water Resour. Res., 
31(10), 2411–2419. 

Kitanidis, P. K. (1998), How Observations and Structure Affect the Geostatistical Solution to 
the Steady-State Inverse Problem, Ground Water, 36(5), 754–763, doi:10.1111/j.1745-
6584.1998.tb02192.x. 

Kitanidis, P. K., and E. G. Vomvoris (1983), A geostatistical approach to the inverse problem 
in groundwater modeling (steady state) and one-dimensional simulations, Water Resour. 

This article is protected by copyright. All rights reserved.



32 

 

Res., 19(3), 677–690, doi:10.1029/WR019i003p00677. 

Kuhlman, K. L., A. C. Hinnell, P. K. Mishra, and T.-C. J. Yeh (2008), Basin-scale 
transmissivity and storativity estimation using hydraulic tomography., Ground Water, 
46(5), 706–15, doi:10.1111/j.1745-6584.2008.00455.x. 

Labaky, W., J. F. Devlin, and R. W. Gillham (2007), Probe for Measuring Groundwater 
Velocity at the Centimeter Scale, Environ. Sci. Technol., 41(24), 8453–8458, 
doi:10.1021/es0716047. 

Labaky, W., J. F. Devlin, and R. W. Gillham (2009), Field comparison of the point velocity 
probe with other groundwater velocity measurement methods, Water Resour. Res., 45(4), 
W00D30, doi:10.1029/2008WR007066. 

Lavenue, M., and G. de Marsily (2001), Three-dimensional interference test interpretation in 
a fractured aquifer using the Pilot Point Inverse Method, Water Resour. Res., 37(11), 
2659–2675, doi:10.1029/2000WR000289. 

Li, B., and T.-C. J. Yeh (1998), Sensitivity and moment analyses of head in variably saturated 
regimes, Adv. Water Resour., 21, 477–485. 

Li, B., and T.-C. J. Yeh (1999), Cokriging estimation of the conductivity field under variably 
saturated flow conditions, Water Resour. Res., 35(12), 3663–3674, 
doi:10.1029/1999WR900268. 

Li, W., and O. A. Cirpka (2006), Efficient geostatistical inverse methods for structured and 
unstructured grids, Water Resour. Res., 42(6), W06402, doi:10.1029/2005WR004668. 

Li, W., W. Nowak, and O. A. Cirpka (2005), Geostatistical inverse modeling of transient 
pumping tests using temporal moments of drawdown, Water Resour. Res., 41(8), 
W08403, doi:10.1029/2004WR003874. 

Li, W., A. Englert, O. A. Cirpka, and H. Vereecken (2008), Three-dimensional geostatistical 
inversion of flowmeter and pumping test data., Ground Water, 46(2), 193–201, 
doi:10.1111/j.1745-6584.2007.00419.x. 

Liu, S., T.-C. J. Yeh, and R. Gardiner (2002), Effectiveness of hydraulic tomography: 
Sandbox experiments, Water Resour. Res., 38(4), 2–10. 

Liu, X., and P. K. Kitanidis (2011), Large-scale inverse modeling with an application in 
hydraulic tomography, Water Resour. Res., 47(2), W02501, 
doi:10.1029/2010WR009144. 

Liu, X., W. A. Illman, A. J. Craig, J. Zhu, and T.-C. J. Yeh (2007), Laboratory sandbox 
validation of transient hydraulic tomography, Water Resour. Res., 43(5), W05404, 
doi:10.1029/2006WR005144. 

Mao, D., T.-C. J. Yeh, L. Wan, C.-H. Lee, K.-C. Hsu, J.-C. Wen, and W. Lu (2013a), Cross-

This article is protected by copyright. All rights reserved.



33 

 

correlation analysis and information content of observed heads during pumping in 
unconfined aquifers, Water Resour. Res., 49(2), 713–731, doi:10.1002/wrcr.20066. 

Mao, D., T.-C. J. Yeh, L. Wan, K.-C. Hsu, C.-H. Lee, and J.-C. Wen (2013b), Necessary 
conditions for inverse modeling of flow through variably saturated porous media, Adv. 
Water Resour., 52, 50–61, doi:10.1016/j.advwatres.2012.08.001. 

Mas-Pla, J., T.-C. J. Yeh, T. M. Williams, and J. F. Mccarthy (1997), Analyses of slug tests 
and hydraulic conductivity variations in the near field of a two-well tracer experiment 
site, Groundwater, 35(3), 1997. 

Mccarthy, J. F., B. Gu, L. Liang, T. M. Williams, and T.-C. J. Yeh (1996), Field tracer tests 
on the mobility of natural organic matter in a sandy aquifer, Water Resour. Res., 32(5), 
1223–1238. 

Melville, J. G., F. J. Molz, and O. Guven (1985), Laboratory Investigation and Analysis of a 
Ground-Water Flowmeter, Ground Water, 23(4), 486–495, doi:10.1111/j.1745-
6584.1985.tb01498.x. 

Molz, F. J., R. H. Morin, A. E. Hess, J. G. Melville, and O. Güven (1989), The Impeller 
Meter for measuring aquifer permeability variations: Evaluation and comparison with 
other tests, Water Resour. Res., 25(7), 1677–1683, doi:10.1029/WR025i007p01677. 

Momii, K., K. Jinno, and F. Hirano (1993), Laboratory studies on a new laser Doppler 
Velocimeter System for horizontal groundwater velocity measurements in a borehole, 
Water Resour. Res., 29(2), 283–291, doi:10.1029/92WR01958. 

Ni, C.-F., and T.-C. J. Yeh (2008), Stochastic inversion of pneumatic cross-hole tests and 
barometric pressure fluctuations in heterogeneous unsaturated formations, Adv. Water 
Resour., 31(12), 1708–1718, doi:10.1016/j.advwatres.2008.08.007. 

Ni, C.-F., T.-C. J. Yeh, and J.-S. Chent (2009), Cost-effective hydraulic tomography surveys 
for predicting flow and transport in heterogeneous aquifers., Environ. Sci. Technol., 
43(10), 3720–7. 

Oliver, D. S. (1993), The influence of nonuniform transmissivity and storativity on 
drawdown, Water Resour. Res., 29(1), 169–178, doi:10.1029/92WR02061. 

Palmer, C. D. (1993), Borehole dilution tests in the vicinity of an extraction well, J. Hydrol., 
146, 245–266, doi:10.1016/0022-1694(93)90279-I. 

Schöniger, A., W. Nowak, and H.-J. Hendricks Franssen (2012), Parameter estimation by 
ensemble Kalman filters with transformed data: Approach and application to hydraulic 
tomography, Water Resour. Res., 48(4), W04502, doi:10.1029/2011WR010462. 

Sharmeen, R., W. A. Illman, S. J. Berg, T.-C. J. Yeh, Y.-J. Park, E. A. Sudicky, and K. Ando 
(2012), Transient hydraulic tomography in a fractured dolostone: Laboratory rock block 
experiments, Water Resour. Res., 48(10), W10532, doi:10.1029/2012WR012216. 

This article is protected by copyright. All rights reserved.



34 

 

Srivastava, R., and T.-C. J. Yeh (1992), A three-dimensional numerical model for water flow 
and transport of chemically reactive solute through porous media under variably 
saturated conditions, Adv. Water Resour., 15, 275–287. 

Straface, S., T.-C. J. Yeh, J. Zhu, S. Troisi, and C. H. Lee (2007), Sequential aquifer tests at a 
well field, Montalto Uffugo Scalo, Italy, Water Resour. Res., 43(7), W07432, 
doi:10.1029/2006WR005287. 

Sun, R., T.-C. J. Yeh, D. Mao, M. Jin, W. Lu, and Y. Hao (2013), A temporal sampling 
strategy for hydraulic tomography analysis, Water Resour. Res., 49(7), 3881–3896, 
doi:10.1002/wrcr.20337. 

Suthersan, S., C. Divine, J. Quinnan, and E. Nichols (2010), Flux-informed remediation 
decision making, Gr. Water Monit. Remediat., 30(1), 36–45, doi:10.1111/j.1745-
6592.2009.01274.x. 

Tso, C.-H. M. (2015), The relative importance of head, flux, and prior information on 
hydraulic tomography analysis, University of Arizona. 

Vasco, D. W., A. Datta-Gupta, and J. C. S. Long (1997), Resolution and uncertainty in 
hydrologic characterization, Water Resour. Res., 33(3), 379–397, 
doi:10.1029/96WR03301. 

Wen, J.-C., C.-M. Wu, T.-C. J. Yeh, and C.-M. Tseng (2010), Estimation of effective aquifer 
hydraulic properties from an aquifer test with multi-well observations (Taiwan), 
Hydrogeol. J., 18(5), 1143–1155, doi:10.1007/s10040-010-0577-1. 

Wilson, J. T., W. A. Mandell, F. L. Paillet, E. R. Bayless, R. T. Hanson, P. M. Kearl, W. B. 
Kerfoot, M. W. Newhouse, and W. H. Pedler (2001), An evaluation of borehole 
flowmeters used to measure horizontal ground-water flow in limestones of Indiana, 
Kentucky, and Tennessee, 1999, U.S.G.S Water-Resources Investig. Rep. 01-4139. 

Wu, C.-M., T.-C. J. Yeh, J. Zhu, T. H. Lee, N.-S. Hsu, C.-H. Chen, and A. F. Sancho (2005), 
Traditional analysis of aquifer tests: Comparing apples to oranges?, Water Resour. Res., 
41(9), W09402, doi:10.1029/2004WR003717. 

Xiang, J., T.-C. J. Yeh, C.-H. Lee, K.-C. Hsu, and J.-C. Wen (2009), A simultaneous 
successive linear estimator and a guide for hydraulic tomography analysis, Water Resour. 
Res., 45(2), W02432, doi:10.1029/2008WR007180. 

Ye, M., R. Khaleel, and T.-C. J. Yeh (2005), Stochastic analysis of moisture plume dynamics 
of a field injection experiment, Water Resour. Res., 41(3), W03013, 
doi:10.1029/2004WR003735. 

Yeh, T.-C. J. (1992), Stochastic modelling of groundwater flow and solute transport in 
aquifers, Hydrol. Process., 6(4), 369–395. 

Yeh, T.-C. J., and C.-H. Lee (2007), Time to change the way we collect and analyze data for 

This article is protected by copyright. All rights reserved.



35 

 

aquifer characterization., Ground Water, 45(2), 116–8, doi:10.1111/j.1745-
6584.2006.00292.x. 

Yeh, T.-C. J., and S. Liu (2000), Hydraulic tomography : Development of a new aquifer test 
method, Water Resour. Res., 36(8), 2095–2105. 

Yeh, T.-C. J., and J. Zhang (1996), A geostatistical inverse method for variably saturated 
flow in the vadose zone, Water Resour. Res., 32(9), 2757–2766. 

Yeh, T.-C. J., and J. Zhu (2007), Hydraulic/partitioning tracer tomography for 
characterization of dense nonaqueous phase liquid source zones, Water Resour. Res., 
43(6), W06435, doi:10.1029/2006WR004877. 

Yeh, T.-C. J., J. Mas-pla, J. F. Mccarthy, and T. M. Williams (1995a), Modeling of natural 
organic matter transport processes in groundwater, Environ. Health Perspect., 
103(Suppl 1), 41–46. 

Yeh, T.-C. J., J. Mas-pla, T. M. Williams, and J. F. McCarthy (1995b), Observation and 
three-dimensional simulation of chloride plumes in a sandy aquifer under forced-
gradient conditions, Water Resour. Res., 31(9), 2147–2157. 

Yeh, T.-C. J., M. Jin, and S. Hanna (1996), An iterative stochastic inverse method: 
Conditional transmissivity and hydraulic head fields, Water Resour. Res., 32(1), 85–92. 

Yeh, T.-C. J., S. Liu, R. J. Glass, K. Baker, J. R. Brainard, D. Alumbaugh, and D. LaBrecque 
(2002), A geostatistically based inverse model for electrical resistivity surveys and its 
applications to vadose zone hydrology, Water Resour. Res., 38(12), WR001204, 
doi:10.1029/2001WR001204. 

Yeh, T.-C. J., J. Zhu, A. Englert, A. Guzman, and S. Flaherty (2006), A successive linear 
estimator for electrical resistivity tomography, in Applied hydrogeophysics, edited by H. 
Vereecken, A. M. Binley, G. Cassini, A. Revil, and K. Titov, pp. 45–74, Springer 
Netherlands. 

Yeh, T.-C. J. et al. (2008), A view toward the future of subsurface characterization: CAT 
scanning groundwater basins, Water Resour. Res., 44(3), W03301, 
doi:10.1029/2007WR006375. 

Yeh, T.-C. J., D. Mao, L. Wan, C.-H. Lee, J.-C. Wen, and K.-C. Hsu (2011), Well 
definedness, scale consistency, and resolution issues in groundwater model parameter 
identification, Tucson: Department of Hydrology and Water Resources, University of 
Arizona. 

Yeh, T.-C. J., D. Mao, Y. Zha, K.-C. Hsu, C.-H. Lee, J.-C. Wen, W. Lu, and J. Yang (2014), 
Why hydraulic tomography works?, Ground Water, 52(2), 168–72, 
doi:10.1111/gwat.12129. 

Yeh, T.-C. J., R. Khaleel, and K. C. Carroll (2015a), Flow Through Heterogeneous Geologic 

This article is protected by copyright. All rights reserved.



36 

 

Media, Cambridge University Press, Cambridge. 

Yeh, T.-C. J., D. Mao, L. Wan, C.-H. Lee, J.-C. Wen, and K.-C. Hsu (2015b), Well 
definedness, scale consistency, and resolution issues in groundwater model parameter 
identification, Water Sci. Eng., accepted m, doi:10.1016/j.wse.2015.08.002. 

Young, S. C., and H. S. Pearson (1995), The Electromagnetic Borehole Flowmeter: 
Description and Application, Ground Water Monit. Remediat., 15(4), 138–147, 
doi:10.1111/j.1745-6592.1995.tb00561.x. 

Zha, Y., T.-C. J. Yeh, D. Mao, J. Yang, and W. Lu (2014), Usefulness of flux measurements 
during hydraulic tomographic survey for mapping hydraulic conductivity distribution in 
a fractured medium, Adv. Water Resour., 71, 162–176, 
doi:10.1016/j.advwatres.2014.06.008. 

Zhang, J., and T.-C. J. Yeh (1997), An iterative geostatistical inverse method for steady flow 
in the vadose zone, Water Resour. Res., 33(1), 63–71. 

Zhao, Z., W. A. Illman, T.-C. J. Yeh, S. J. Berg, and D. Mao (2015), Validation of hydraulic 
tomography in an unconfined aquifer: A controlled sandbox study, Water Resour. Res., 
51(6), 4137–4155, doi:10.1002/2015WR016910. 

Zhu, J., and T.-C. J. Yeh (2005), Characterization of aquifer heterogeneity using transient 
hydraulic tomography, Water Resour. Res., 41(7), W07028, 
doi:10.1029/2004WR003790. 

Zhu, J., and T.-C. J. Yeh (2006), Analysis of hydraulic tomography using temporal moments 
of drawdown recovery data, Water Resour. Res., 42(2), W02403, 
doi:10.1029/2005WR004309. 

This article is protected by copyright. All rights reserved.



37 

 

TABLES  

Table 1 Summary statistics for head and head-and-flux inversion using different prior models. 

 

 
L1 L2 Slope Intercept R2 Figure No. 

Overall Interior Overall Interior Overall  Interior Overall Interior Overall Interior

He
ad

 (λ
=
10
m
) 

(Case 1) Uniform Prior           1.577 1.45 3.961 3.893 0.148 0.166 -0.025 0.249 0.096 0.091 4a-b 
(Case 2a) Exact Layer Mean K and True Layer Boundary 0.96 0.716 1.606 0.892 0.577 0.718 -0.206 -0.008 0.518 0.728 4e-f 

(Case 2b) Exact Layer Mean K and Smoothed Layer Boundary 1.032 0.745 1.86 0.958 0.526 0.688 -0.274 -0.044 0.444 0.705 S.2a-b 

(Case 2c) Point Layer Mean K and True Layer Boundary 1.088 0.803 2.074 1.111 0.465 0.641 -0.033 0.133 0.458 0.707 S.2c-d 

(Case 2d) Point Layer Mean K and Smoothed Layer Boundary 1.166 0.84 2.368 1.226 0.419 0.622 -0.094 0.103 0.368 0.662 S.2e-f 
      

He
ad

 (λ
=
50
m
) 

(Case 1) Uniform Prior           1.293 1.107 2.884 2.517 0.362 0.434 -0.345 -0.146 0.221 0.29 4c-d 

(Case 2a) Exact Layer Mean K and True Layer Boundary 1.069 0.797 1.97 1.068 0.613 0.717 -0.327 -0.056 0.437 0.668   

(Case 2b) Exact Layer Mean K and Smoothed Layer Boundary 1.127 0.856 2.133 1.22 0.525 0.615 -0.402 -0.174 0.377 0.612   

(Case 2c) Point Layer Mean K and True Layer Boundary 1.062 0.809 1.943 1.075 0.559 0.659 -0.221 0.036 0.438 0.686   

(Case 2d) Point Layer Mean K and Smoothed Layer Boundary 1.149 0.857 2.249 1.247 0.505 0.628 -0.293 -0.029 0.361 0.622   
      

He
ad

-a
nd

-fl
ux

 
(λ
=
10
m
) 

(Case 1) Uniform Prior           1.252 0.857 2.697 1.325 0.351 0.585 -0.014 0.09 0.333 0.637 5a-b 

(Case 2a) Exact Layer Mean K and True Layer Boundary 0.926 0.627 1.522 0.713 0.599 0.791 -0.275 -0.077 0.531 0.773 5e-f 

(Case 2b) Exact Layer Mean K and Smoothed Layer Boundary 0.992 0.651 1.761 0.753 0.558 0.778 -0.284 -0.084 0.468 0.76 S.3a-b 

(Case 2c) Point Layer Mean K and True Layer Boundary 0.982 0.622 1.751 0.699 0.529 0.778 -0.144 -0.017 0.498 0.783 S.3c-d 

(Case 2d) Point Layer Mean K and Smoothed Layer Boundary 1.067 0.654 2.05 0.773 0.477 0.757 -0.198 -0.056 0.412 0.757 S.3e-f 
      

He
ad

-a
nd

-fl
ux

 
(λ
=
50
m
) 

(Case 1) Uniform Prior           1.061 0.761 1.964 0.977 0.526 0.722 -0.337 -0.153 0.413 0.687 5c-d 

(Case 2a) Exact Layer Mean K and True Layer Boundary 1.042 0.818 1.905 1.181 0.628 0.727 -0.388 -0.156 0.451 0.633   

(Case 2b) Exact Layer Mean K and Smoothed Layer Boundary 1.11 0.808 2.091 1.101 0.594 0.738 -0.44 -0.186 0.407 0.654   

(Case 2c) Point Layer Mean K and True Layer Boundary 1.034 0.772 1.863 1.032 0.622 0.748 -0.334 -0.118 0.458 0.676   

(Case 2d) Point Layer Mean K and Smoothed Layer Boundary 1.093 0.767 2.053 0.999 0.58 0.749 -0.397 -0.138 0.409 0.684   
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FIGURES 

 

Figure 1 (a) Plane view of the model domain, the 15m by 15m enclosed area is bounded by 

pumping and observations wells (b) The well layout.  

 

Figure 2 Reference hydraulic conductivity (K) field.  

 

Figure 3 Cross-correlation between K and head (a, c, e, g), as well as K and flux (b, d, g, h) 

along the vertical plane bisecting the pumping (PW) and observation ports (OW). a-d are 

evaluated with a uniform mean K field (λx = λy = 10 m and λz = 2.5m), while e-h are evaluated 

with a distributed mean K field (λx = λy = 10 m and λz = 2.5m). The dashed lines are head 

contours, while the solid lines are streamlines. Note that in a, b, e, f the OW is at (22.5 m, 30 

m, 9 m), while in c, d, g, h the OW is at (22.5 m, 30 m, 4 m). 

 

Figure 4: Cross sections of estimated K fields (a, c, e) and their associated scatter plots (b, d, 

f) from head inversion. Head inversion results for (a, b) Case 1a (uniform mean, λx = λy = 10 

m, and λz = 2.5m), (c, d) Case 1b (uniform mean, λx = λy = 50 m and λz = 2.5m), and (e, f) 

Case 2a (distributed mean, λx = λy = 10 m and λz = 2.5m, precise layer boundaries) are 

reported. Blue points are for overall estimates, while red points are for interior estimates 

within the well field.  

 

Figure 5:  Cross sections of estimated K fields (a, c, e) and their associated scatter plots 

(b, d, f) from head-and-flux inversion. Head-and-flux inversion results for (a, b) Case 1a 

(uniform mean, λx = λy = 10 m), (c, d) Case 1b (uniform mean, λx = λy = 50 m, λz = 2.5 m), 
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and (e, f) Case 2a are reported (distributed mean, λx = λy = 10 m, λz = 2.5 m, and precise layer 

boundaries). Blue points are for overall estimates, while red points are for interior estimates 

within the well field.  

 

Figure 6 R2 for (a) head inversion and (b) head-and-flux inversion using different prior 

models.  For distributed models (i.e. Case 2a-d), only results from assuming short correlation 

lengths (i.e., λx = λy = 10 m, λz = 2.5 m) are presented. 

 

Figure 7 Slope for (a) head inversion and (b) head-and-flux inversion using different prior 

models.  For distributed models (i.e. Case 2a-d), only results from assuming short correlation 

lengths (i.e., λx = λy = 10 m, λz = 2.5 m) are presented. 

 

Figure 8 L2 for (a) head inversion and (b) head-and-flux inversion using different prior 

models.  For distributed models (i.e. Case 2a-d), only results from assuming short correlation 

lengths (i.e., λx = λy = 10 m, λz = 2.5 m) are presented. 
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