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Abstract

We add an independent unfair background risk to higher order risk-

taking models in the current literature and examine its interaction with

the main risk under consideration. Parallel to the well-known concept

of risk vulnerability, which is defined by Gollier and Pratt (Gollier,

C., Pratt, J. W.: Risk vulnerability and the tempering effect of back-

ground risk. Econometrica 64, 1109-1123 (1996)), an agent is said to

have a type of higher order risk vulnerability if adding an independent

unfair background risk to wealth raises his level of this type of higher

order risk-aversion. We derive necessary and sufficient conditions for

all types of higher order risk vulnerabilities and explain their behav-

ioral implications. We find that as in the case of risk vulnerability,

all familiar HARA utility functions have all types of higher order risk

vulnerabilities except for a type of third order risk vulnerability cor-

responding to a downside risk aversion measure called the Schwarzian

derivative.

Key words: background risk, downside risk aversion, downside risk vulner-

ability, higher order risk vulnerability.

JEL codes: D81.
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1 Introduction

Recently, there has been an intense interest in the third or higher order risk

attitudes in the literature. For example, we have seen a series of studies on

the intensity of downside risk aversion (hereafter DRA), which lead to the

establishment of five DRA measures.1 Among the five DRA measures, the

most well-known is the prudence measure defined as P (x) = −u′′′(x)/u′′(x),

where u(x) is a Von Neumann-Morgenstern utility function. Kimball (1990)

establishes this concept to explain precautionary savings. Chiu (2000), how-

ever, finds that prudence is linked to downside risk aversion.2 Chiu (2005,

2010) further shows that prudence measures the intensity of preferences over

a set of downside risk increases and explains its link with skewness prefer-

ence.3

Keenan and Snow (2002, 2009, 2012) suggest another DRA measure, the

Schwarzian derivative S(x) = −R′(x)− 0.5R2(x), where R(x) is the Arrow-

Pratt risk aversion measure, and characterize DRA by considering changes in

risk that induce mean-and-variance-preserving downside risk increases in the

utility distribution. A further measure for the intensity of DRA is proposed

by Modica and Scarsini (2005) and Crainich and Eeckhoudt (2008). Both

studies show that D(x) = u′′′(x)/u′(x) is linked to skewness preference.

Liu and Meyer (2012) propose another measure, −R′(x), the negative

slope of the Arrow-Pratt risk aversion measure along a similar line to Chiu

(2005) and Keenan and Snow (2009), while Huang and Stapleton (2014)

establish a fifth measure which is known as cautiousness C(x) = (1/R(x))′

1The concept of downside risk aversion is established by Menezes et al. (1980).
2Jindapon and Neilson (2007) and Keenan and Snow (2010) also explain how prudence

is linked to DRA.
3Liu and Meyer (2012) also contribute to this result.
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in the literature, using a simple portfolio problem with a risk-free bond,

a stock, and an option. Huang (2012) identifies two sets of downside risk

increases over which the intensity of an individual’s preferences is measured

by cautiousness and D(x) respectively. He also explains the link between

these downside risk aversion measures and skewness preference and shows

the effect of downside risk aversion on option prices.

More work has been done on higher order risk attitudes. For exam-

ple, Eeckhoudt and Schlesinger (2006) create a general framework based

on the concept of risk apportionment for analyzing higher order risk at-

titudes. Eeckhoudt et al. (2009) extend the above analysis by appor-

tioning risks via stochastic dominance. Denuit and Eeckhoudt (2010a)

generalize Chiu’s (2005) analysis of downside risk aversion to higher or-

der cases and develop the nth order Arrow-Pratt risk aversion measure

(−u(n)(x)/u(n−1)(x)).4 They (2010b) also establish higher order Ross risk

aversion measures (−1)n−1u(n)(x)/u(1)(y) and generalize the local DRA

measure D(x) to higher orders (−1)n−1u(n)(x)/u(1)(x). Jindapon and Neil-

son (2007) use a comparative statics approach to generalize Arrow-Pratt and

Ross risk aversion measures to higher orders, while Liu and Meyer (2013)

use the ratio of utility premiums to establish the (n/m)th order local Arrow-

Pratt risk aversion measure (−1)n−mu(n)(x)/u(m)(x) and Ross risk aversion

measure (−1)n−mu(n)(x)/u(m)(y).

All the third and higher order risk-taking models in the above studies

deal with only one source of risk; however, as is well recognized, in the

real world individuals may face multiple sources of risks. An important

4Denuit and Eeckhoudt (2010a) define the nth order Arrow-Pratt risk aversion measure

as −u(n+1)(x)/un(x).
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example of additional sources of risks is a decision maker’s background risk.5

As is explained by Gollier and Pratt (1996) in their seminal paper on risk

vulnerability, even if risks are independent, they interact with each other,

and “not taking these interactions into account can lead the theoretical

model to dramatically misestimate optimal risk-taking.”

In this paper we address this issue. We add an independent unfair back-

ground risk to the higher order risk-taking models in the current literature

and examine its interaction with the main risk under consideration. Basi-

cally we ask the following question: what is the effect of an unfair back-

ground risk on the intensity of higher order risk attitudes towards another

independent risk?

Gollier and Pratt (1996) argue that “conventional wisdom suggests that

independent risks are substitutes for each other. In particular, adding an

unfair background risk to wealth should increase risk aversion to other inde-

pendent risks.” This is equivalent to the condition that an undesirable risk

is never made desirable by the presence of an independent unfair risk. They

call this risk vulnerability. A similar argument may apply to higher order

risk taking, and analogous to their concept of risk vulnerability, an agent is

said to have a higher order risk vulnerability if adding an independent unfair

background risk to wealth raises his level of a higher order risk aversion. We

characterize this concept and derive necessary and sufficient conditions for

higher order risk vulnerabilities.

Compared with risk vulnerability, higher order risk vulnerabilities are

more complex. For example, in the case of the third order, we have five

5Different background risks discussed in the literature include labor income risk, hous-

ing risk, entrepreneurial risk, etc. See, for example, Campbell (2006) for a brief review of

this literature.
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types of downside risk vulnerabilities (hereafter DRV) corresponding to five

different definitions of DRA measures respectively, while in the case of nth

(n > 3) order, there are (n−1) types of risk vulnerabilities corresponding to

the (n/1)th, (n/2)th, ..., and (n/(n− 1))th order Arrow-Pratt risk aversion

measures respectively. We give a detailed analysis for each type of the third

and higher order risk vulnerabilities.

The concept of higher order risk vulnerability we study in this paper

is related to the concepts of standard prudence, proper prudence, and pre-

cautionary vulnerability, which Lajeri-Chaherli (2004) uses to explain the

effect of background risk on precautionary savings. It is also related to Pratt

and Zeckhauser’s (1987) proper risk aversion, Kimball’s (1993) standard risk

aversion, and Franke et al.’s (2006) multiplicative risk vulnerability, which

all explain the effect of background risk on risk aversion. The paper is

also related to the work of Hara et al. (2011) who investigate the effect of

background risk on cautiousness. Other related studies include Tsetlin and

Winkler (2005) and Li (2011) who investigate the effect of background risk

on risky choices and demand for risky assets, respectively.

The structure of the remaining paper is as follows. In Section 2, we

characterize downside risk vulnerability. In Section 3, we characterize higher

order risk vulnerability. In Section 4, we discuss an application of the results.

The last section concludes the paper.

2 Downside Risk Vulnerability

We first consider the case of third order risk vulnerability or DRV. As we

pointed out in the Introduction section, there are five types of DRV corre-

sponding to five different DRA measures respectively. We will examine each
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type of DRV.

In this section, we assume that all utility functions are strictly increasing,

strictly concave, and thrice continuously differentiable with a positive third

derivative unless stated otherwise. Given a von Neumann-Morgenstern util-

ity function u(x), as was explained in the Introduction section, we have the

following five alternative DRA measures: P (x) = −u′′′(x)
u′′(x) (Kimball (1990)

and Chiu (2005)), S(x) =
u′′′(x)
u′(x) − 3

2R
2(x) (Keenan and Snow (2002, 2009,

2012)), −R′(x) (Liu and Meyer (2012)),D(x) = u′′′(x)
u′(x) (Modica and Scarsini

(2005) and Crainich and Eeckhoudt (2008)), and C(x) = ( 1
R(x))

′ (Huang

and Stapleton (2014)), where R(x) is the Arrow-Pratt measure of risk aver-

sion. For convenience, sometimes we denote the five DRA measures by

τ1(x) = C(x), τ2 = D(x), τ3(x) = P (x), τ4(x) = −R′(x), and τ5(x) = S(x),

respectively. Detailed explanations of these five DRA measures are given in

the studies specified above, and a comparison of these five DRA measures

and a discussion of their relationships can be found in Huang (2012).

Now consider the situation where there is an independent background

risk ε̃ to the wealth of an agent u(x). Denote his derived utility function by

û(x), i.e., û(x) = Eu(x+ ε̃). We now give the formal definition of DRV:

Definition 1 An agent u(x) is said to have DRV of the ith type if τi(x) is

increased by any independent unfair background risk, i = 1, ..., 5.

According to this definition, there are five types of DRV corresponding to

the five DRA measures respectively. We will explain behavioral implications

of these five types of DRV later in Subsection 2.5.
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2.1 A Necessary and Sufficient Condition

In this section we derive a necessary and sufficient condition for each type

of DRV. When there is background risk ε̃ to the wealth of an agent u(x), we

denote the type i DRA measure of his derived utility function û(x) by τ̂i(x),

i.e., τ̂1(x) = Ĉ(x) = ( 1
R̂(x)

)′, τ̂2(x) = D̂(x) =
Eu′′′(x+ε̃)
Eu′(x+ε̃) , τ̂3(x) = P̂ (x) =

−Eu′′′(x+ε̃)
Eu′′(x+ε̃) , τ̂4(x) = −R̂′(x), and τ̂5(x) = Ŝ(x) = Eu′′′(x+ε̃)

Eu′(x+ε̃) − 3
2 R̂

2(x), where

R̂(x) = −Eu′′(x+ε̃)
Eu′(x+ε̃) . We present the following result.

Theorem 1 An agent u(x) has type i DRV to zero-mean [unfair] back-

ground risks if and only if τi(x) is increased by all independent binary zero-

mean background risks, i.e., the ith of the following five inequalities is true,

[and τi(x) is monotone decreasing], i = 1, ..., 5.

−
∂ψ(w, x, y)

∂w
≥ C(w)ψ2(w, x, y), ∀ x > 0, y > 0, w, (1)

u′(y)(D(y)−D(x)) ≥ u′(x)D′(x)(y − x), ∀ x, y, (2)

−u′′(y)(P (y)− P (x)) ≥ −u′′(x)P ′(x)(y − x), ∀ x, y, (3)

−
∂ψ(w, x, y)

∂w
≥ −R′(w), ∀ x > 0, y > 0, w, (4)

−
∂ψ(w, x, y)

∂w
− 0.5ψ2(w, x, y) ≥ S(w), ∀ x > 0, y > 0, w, (5)

where ψ(w, x, y) =
xu′′(w−y)+yu′′ (w+x)
xu′(w−y)+yu′ (w+x) .

Proof: See Appendix A.

The above result presents a necessary and sufficient condition for each

type of DRV. We may note that the conditions for type 2 and type 3 DRVs

are bivariate while those for type 1, type 4, and type 5 DRVs are trivariate.

In the latter three cases, for technical reasons we cannot reduce the trivariate

conditions to bivariate forms as we have done for the other two cases;6

6The main technical reason is that in the cases of type 2 and type 3 DRVs, τi(x) is

a ratio of two linear functions of the derivatives of a utility function, thus characterizing
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however, we will be able to derive bivariate sufficient conditions for these

three cases later in Theorem 3, which are close in spirit to the above bivariate

conditions for the other two cases.

2.2 Univariate Necessary Conditions

In the last subsection, we have derived a necessary and sufficient condition

for each of the five types of DRV; however, these conditions are inconvenient

as they are multivariate. In this subsection we search for univariate neces-

sary conditions for the five types of DRV using the case of small background

risks. We have the following result.

Theorem 2 Assume that u(x) is six times continuously differentiable. τi(x)

is increased by all small independent zero-mean [unfair] background risks

only if for all x the ith of the following five inequalities holds [and τi(x) is

monotone decreasing], i = 1, ..., 5.

C′′(x)− 2(1 + 2C(x))C′(x)R(x) + 2C2(x)(1 + C(x))R2(x) ≥ 0, (6)

D′′(x)− 2R(x)D′(x) ≥ 0, (7)

P ′′(x)− 2P (x)P ′(x) ≥ 0, (8)

−R′′′(x) + 2R(x)R′′(x) + 2R′2(x) ≥ 0, (9)

S ′′(x)− 2R(x)S ′(x) + 3(S(x) + 0.5R2(x))2 ≥ 0. (10)

Proof: See Appendix B.

The above result presents a univariate necessary condition for each type

of DRV. The first part (i = 1) of the theorem is derived by Hara et al. (2011)

under the assumption that utility functions are real analytic. We relax this

DRV in these two cases is equivalent to solving a linear-fractional programming problem,

while in the other three cases, it is not.
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assumption to the condition that utility functions are six times continuously

differentiable.

2.3 Univariate Sufficient Conditions

As we pointed out above, the necessary and sufficient conditions for the five

types of DRV presented in Theorem 1 are inconvenient. In this subsection we

derive more convenient sufficient conditions. We first present the following

result.

Theorem 3 Given i ∈ {1, ..., 5}, if for all x and y, hi(y)(τi(y) − τi(x)) ≥

(y − x)hi(x)τ
′
i(x), where h1(x) = (u′′(x))2

u′(x) , h2(x) = h4(x) = h5(x) = u′(x),

h3(x) = −u′′(x), [and τi(x) is monotone decreasing] then, τi(x) is increased

by all independent zero-mean [unfair] background risks, and the converse is

true for i = 2, 3.

Proof: See Appendix C.

The above result gives a more convenient sufficient condition for DRV of

types 1, 4, and 5 than Theorem 1. Nevertheless, the main conditions in the

above theorem are still complicated and inconvenient as they are bivariate,

i.e., they involve computations of functions at two levels of wealth x and y.

Similar to Gollier and Pratt’s characterization of risk vulnerability, in the

remainder of this subsection we derive some univariate conditions. We have

the following result.

Theorem 4 For i = 1, assume C(x) ≥ −0.5. If for all x, τ ′′i (x) ≥

ζi(x)τ
′
i(x), where ζ1(x) = 2P (x) − R(x), ζ2(x) = ζ4(x) = ζ5(x) = R(x),

ζ3(x) = P (x), (and τi(x) is monotone decreasing) then, τi(x) is increased

by all independent zero-mean (unfair) background risks, i = 1, ..., 5.
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Proof: See Appendix D.

The above theorem gives a univariate sufficient condition for each type

of DRV, which is similar in spirit to the univariate sufficient condition for

risk vulnerability in Proposition 3 of Gollier and Pratt (1996). We attribute

the third part (i = 3) of the above theorem and Corollary 1 below to Lajeri-

Chaherli (2004) who uses these two results to characterize precautionary

vulnerability in the context of precautionary savings.

As an immediate consequence of the above theorem, we have the follow-

ing corollary.

Corollary 1 For i = 1, assume C(x) ≥ −0.5. If τi(x) is decreasing and

convex then it is increased by all independent unfair background risks, i =

1, ..., 5.

We attribute the result where i = 1 to Hara et al. (2011) who show that

if cautiousness is positive, decreasing, and convex, then it is increased by all

unfair background risks. Here we have relaxed the requirement of positive

cautiousness to the condition that C(x) ≥ −0.5. As we mentioned earlier

the third part of the result (i = 3) is due to Lajeri-Chaherli (2004).

The condition of decreasing and convex DRA measures appears quite

reasonable as we show in the next subsection that most familiar HARA

utility functions satisfy this condition.

2.4 The Case of HARA Utility Functions

The case of HARA utility functions deserves some special attention as they

are most frequently used in economics and finance. Some simple calculations

show that for all HARA utility functions with a marginal utility function

u′(x) = (x + a)−γ , where γ > 0, R(x), D(x), P (x), and −R′(x) are all
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decreasing and convex, and C(x) ≡ C = 1
γ is constant; thus all these HARA

utility functions satisfy the sufficient conditions for the first four types of

DRV in Corollary 1.

The Schwarzian derivative, however, is an exception. For these HARA

utility functions, we have R(x) = γ
x+a and S(x) = −R′(x) − 0.5R2(x) =

γ
(x+a)2 − 0.5γ2

(x+a)2 = γ(2−γ)
2(x+a)2 . It follows that S(x) is decreasing and convex if

and only if γ ∈ (0, 2), i.e., its cautiousness C > 0.5. Thus these HARA

utility functions satisfy the sufficient condition for type 5 DRV in Corollary

1 only if C ≥ 0.5.

In fact, when C < 0.5, i.e., γ > 2, we have S ′(x) > 0, which violates the

necessary condition for type 5 DRV to unfair risks. Thus when C < 0.5, the

HARA utility functions do not have type 5 DRV to unfair risks. Moreover,

we can verify that when C < 0.5, the necessary and sufficient condition for

type 5 DRV to zero-mean risks in Theorem 1 is violated, thus these HARA

utility functions do not have type 5 DRV to zero-mean risks either.7

2.5 Behavioral Implications

In this subsection, we explain behavioral implications of the five types of

DRV. We first present the following lemma.

Lemma 1 Given two CDFs F (x) and G(x) whose supports are both con-

tained in [a, b], assume that G−1(F (x)) is concave and that u(x) is indifferent

between F (x) and G(x). If
∫ b
a ηi(x)

∫ x
a u′(z)(G(z) − F (z))dzdx = 0, where

η1(x) = R2(x), η2(x) = 1
u′2(x) , η3(x) =

R(x)
u′(x) , η4(x) = 1, and η5(x) = u′(x),

then, F (x) is preferred to G(x) by any agent v(x) who has a greater DRA

measure of the ith type than u(x), i = 1, ..., 5.

7The verification is omitted for brevity but is available on request.
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The lemma is part of Theorem 2 in Huang (2012), and its proof can be found

there.

As is explained by Chiu (2005) and Huang (2012), according to Van

Zwet (1964), a convex (concave) transformation of a random variable re-

sults in a strong increase (decrease) in skewness. This implies that the set

of risk changes which satisfy the conditions (i) G−1(F (x)) is concave, (ii)

u(x) is indifferent between F (x) and G(x), and (iii)
∫ b
a ηi(x)

∫ x
a u

′(z)(G(z)−

F (z))dzdx = 0 is a set of strong decreases in skewness. Thus the above

lemma shows that the five sets of strong skewness decreases are indifferent

for u(x) but are unfavored by those who have a greater DRA measure of the

ith type, i = 1, ..., 5, respectively.

This result also gives a glimpse into the relationship between the five

DRA measures: they all explain the intensity of an agent’s preference for

strong increases in skewness, but the sets of strong increases in skewness

over which the intensity of preference they explain are different from each

other.

As an immediate consequence of the above lemma, we have the following

result.

Proposition 1 Let i ∈ {1, ..., 5}. Given two CDFs F (x) and G(x) whose

supports are both contained in [a, b], assume that G−1(F (x)) is concave, an

agent u(x) is indifferent between F (x) and G(x), and
∫ b
a ηi(x)

∫ x
a u

′(z)(G(z)−

F (z))dzdx = 0, where ηi(x) is defined in Lemma 1. If the agent has type i

DRV, in the presence of an independent unfair background risk, he prefers

F (x) to G(x).

This result shows that if an agent has type i DRV, the five sets of strong

skewness decreases which are indifferent for him become unfavored by him
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after an independent unfair background risk is added to his wealth. In other

words, if he has type i DRV, an independent unfair background risk will

increase the intensity of his preference for skewness.

3 Higher Order Risk Vulnerability

3.1 The Definition

As we explained in the introduction section, we have higher order risk aver-

sion measures Rn/m(x) = (−1)n−mu(n)(x)/u(m)(x), where 1 ≤ m < n. In

this section, we assume that (−1)iu(i)(x) < 0, i = 1, ..., n.8 We now give the

following definition.

Definition 2 An agent is said to have (n/m)th order risk vulnerability

if any independent unfair background risk ε̃ makes him behave in a more

(n/m)th order risk-averse way, i.e., Rn/m(x) is increased by ε̃.

The above definition nests risk vulnerability as a special case where n =

2, m = 1. Also, the second and third notions of downside risk vulnerability

discussed earlier are special cases of (n/m)th order risk vulnerability where

n = 3, m = 1 and n = 3, m = 2 respectively.

3.2 Necessary and Sufficient Conditions

We present the following result:

Theorem 5 The following statements are true.

8If a utility function exhibits nth order strictly risk aversion for every n, it is said to

have mixed risk aversion by Caballe and Pomansky (1996). They point out that most

utility functions used in examples have mixed risk aversion.
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1. An agent u(x) is (n/m)th order risk vulnerable if and only if Rn/m(x)

is decreasing and (−1)m−1ξ(w, x) ≥ 0 for all w and x, where ξ(w, x)

is defined by

ξ(w, x) = u(m)(x)(Rn/m(x)− Rn/m(w))− u(m)(w)R′
n/m(w)(x−w).

2. An agent u(x) is (n/m)th order risk vulnerable only if Rn/m(x) is

decreasing and R′′
n/m(x) ≥ 2R′

n/m(x)R(m+1)/m(x) for every x.

3. An agent u(x) is (n/m)th order risk vulnerable if Rn/m(x) is decreasing

and R′′
n/m(x) ≥ R′

n/m(x)R(m+1)/m(x) for every x.

4. An agent u(x) is ((n+1)/n)th order risk vulnerable if both R(n+1)/n(x)

and R(n+2)/(n+1)(x) are decreasing.

Proof: see Appendix E

The above result gives a bivariate necessary and sufficient condition, a

univariate necessary condition, and a univariate sufficient condition for the

(n/m)th order risk vulnerability. When n = 2, m = 1, from the three state-

ments in the above result we obtain Gollier and Pratt’s (1996) Proposition

2, the condition (13), and Proposition 3, respectively.

It is not difficult to verify that any HARA class utility function with

a marginal utility function (x + a)−γ , where γ > 0, has decreasing and

convex (n/m)th order risk aversion, which implies that it satisfies the third

condition in the above theorem; thus all such HARA utility functions have

(n/m)th order risk vulnerability.

3.3 Behavioral Implications

There are alternative ways to give behavioral implications of higher order

risk vulnerabilities: For example, we may use the results on Rn/(n−1)(x) in
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Denuit and Eeckhoudt’s (2010a) and Jindapon and Neilson (2007) to give

two behavioral implications of the (n/(n−1))th order risk vulnerability. We

may also use Denuit and Eeckhoudt’s (2010b) result on (−1)n−1u(n)(x)/u(1)(x)

to give a behavioral implication of the (n/1)th order risk vulnerability.

It is also possible to give behavioral interpretations using Eeckhoudt et

al.’s (2009) concept of risk apportionment via stochastic dominance, how-

ever, in the following discussion, for convenience we use Liu and Meyer’s

(2013) result onRn/m(x) to explain the behavioral implications of the (n/m)th

order risk vulnerability. Let F (x) and G(x) be two CDFs on [a, b]. Let

F1(x) = F (x) and Fi(x) =
∫ x
a Fi−1(y)dy. According to Ekern’s (1980) def-

inition, G(x) is said to have more nth degree risk on [a, b] than F (x) if

Gi(b) = Fi(b), i = 1, ..., n, and ∀x ∈ [a, b], Gn(x) ≥ Fn(x).

As before, given an independent background risk ε̃, we use û(x) to denote

Eu(x+ ε̃). Also, let R̂n/m(x) denote (−1)n−mû(n)(x)/û(m)(x). We have the

following result.

Proposition 2 Assume u(x) has the (n/m)th order risk vulnerability. Given

an independent unfair background risk ε̃, if R̂n/m(x) 6= Rn/m(x) then there

exists δ > 0, such that

∫ x+δ
x−δ ûd(F −G)

∫ x+δ
x−δ ûd(F −H)

>

∫ x+δ
x−δ ud(F −G)

∫ x+δ
x−δ ud(F −H)

for all F (y), G(y), and H(y) on [x− δ, x+ δ] such that G(y) has more nth

degree risk than F (y) and H(y) has more mth degree risk than F (y).

Proof: As u(x) has the (n/m)th order risk vulnerability, if R̂n/m(x) 6=

Rn/m(x) then R̂n/m(x) > Rn/m(x). Then the result immediately follows

from Liu and Meyer’s (2013) Theorem 3.9 Q.E.D.

9Liu and Meyer’s (2013) Theorem 3 states that if u(x) has strictly greater (n/m)th or-
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Using Liu and Meyer’s (2013) explanation, R̂n/m(x) > Rn/m(x) implies

that, in the presence of an independent unfair background risk ε̃, “...re-

stricted to a sufficiently small neighborhood about x, agent u is willing to

pay more in terms of an mth degree risk increase to avoid any nth-degree

risk increase than is agent v.”

4 An Application to Precautionary Savings

In this section we give an example of applications of the results in this paper

to economic problems. Start with a two-period consumption-saving model

which is widely used in the literature. Consider an agent whose first-period

and second-period utility functions are u and v respectively. Assume that u

and v are both strictly increasing and strictly concave. Also assume that u is

continuously differentiable and v is (n+1) times continuously differentiable.

With wealth w and a risk x̃, which has a CDF F (x) defined on a real interval

[a, b], he has the following maximization problem:

max
s
U(s;F ) = u(w− s) +

∫ b

a
v(s+ x)dF (x), (11)

where s is his saving for the second period.

Suppose that just before he finalizes his consumption-saving plan, he

made a financial or non-financial deal which results in some certain change

in his wealth and an additional unfair risk ε̃ independent from the original

risk x̃. With this change, his consumption-saving problem becomes:

max
s
Û(s;F ) = u(ŵ− s) +

∫ b

a
Eε̃v(s+ ε̃+ x)dF (x), (12)

der risk aversion than v(x) then there exists δ > 0, such that
∫ x+δ

x−δ
ud(F−G)/

∫ x+δ

x−δ
ud(F−

H) >
∫ x+δ

x−δ
vd(F −G)/

∫ x+δ

x−δ
vd(F −H) for all F (y), G(y), and H(y) on [x− δ, x+ δ] such

that G(y) and H(y) have more nth and mth degree risk than F (y) respectively.
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where ŵ is his certain amount of wealth after the deal. Suppose that the deal

is carefully considered such that it does not affect his optimal consumption-

saving plan, i.e., the above two problems have the same optimal solution

s∗.

4.1 Mean-Utility-Preserving Risk Increases

Now consider the class of changes in the agent’s original risk x̃ which are

called mean-utility-preserving risk increases for utility function −v′ with

wealth s∗ defined by Diamond and Stiglitz (1974).10 In this case, since

such risk increases do not change the expectation of v′(s∗ + x̃), they do

not change the optimal solution to the agent’s consumption-saving problem

(11). However, what is the effect of such risk increases on problem (12)?

Let Pv and Tv denote the absolute prudence and temperance of v.11

Assume that Pv is decreasing and either Tv is decreasing or Pv ≥ P ′
vPv .

Then according to Theorem 5, the absolute risk aversion of −v′, which is

equal to the absolute prudence of v, is increased by the unfair risk ε̃. In this

case, it is well known −Ex̃Eε̃v
′(s∗ + ε̃+ x̃) is reduced by such mean-utility-

preserving risk increases.12 It follows that Û ′(s∗;G) ≥ Û ′(s∗;F ), which

implies an increase in the optimal saving. Hence, while these risk changes

do not affect the optimal saving in problem (11), they raise the optimal

saving in problem (12).

10According to Diamond and Stiglitz (1974), a change in risk F (x) → G(x) on [a, b] is a

mean-utility-preserving risk increase for a utility function u with wealth w0 if
∫ y

a
u′(w0 +

x)G(x)dx ≥
∫ b

a
u′(w0 + x)F (x)dx, ∀x ∈ [a, b], with the equality holding at y = b.

11The absolute temperance is defined by Eeckhoudt et al. (1996) and Gollier and Pratt

(1996) as −v′′′′/v′′′.
12See, for example, Theorem 3 in Diamond and Stiglitz (1974).
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4.2 Mean-Utility-Preserving Higher Degree Risk Increases

We first present the following definition of mean-utility-preserving nth de-

gree risk increases given by Denuit and Eeckhoudt (2010a):

Definition 3 Assume that u is (n−1)th degree risk averse, i.e., (−1)nu(n−1)

> 0. A risk change F (x) → G(x) on [a, b] is said to be a mean-utility-

preserving nth degree risk increases for u with wealth w0 if it preserves the

first n − 2 moments and the mean utility and satisfies the condition that

Gn(b) < Fn(b) and there exists z such that Gn(x) ≥ Fn(x), ∀x ≤ z and

Gn−1(x) ≤ Fn−1(x), ∀x ≥ z.

Consider the class of mean-utility-preserving nth degree increase in risk

for −v′ with wealth s∗. In this case, since such risk increases do not change

the expectation of v′(s∗ + x̃), they do not change the optimal solution to

the agent’s consumption-saving problem (11). However, what is the effect

of such risk increases on problem (12)?

Let Rv
(n+1)/n denote the ((n + 1)/n)th order absolute risk aversion of

v, i.e., Rv
(n+1)/n = −v(n+1)

v(n) . Assume that Rv
(n+1)/n is decreasing and either

Rv
(n+2)/(n+1) is decreasing or Rv′′

(n+1)/n ≥ Rv′
(n+1)/nR

v
(n+1)/n. Then according

to Theorem 5, any unfair risk ε̃ raises the ((n+ 1)/n)th order absolute risk

aversion of v.

According to the Proposition 1 in Denuit and Eeckhoudt (2010a), since

−v̂′(x) = −Eε̃v
′(x+ ε̃) has greater nth order absolute risk aversion than −v′,

the above class of risk increases will reduce −Ex̃Eε̃v
′(s∗ + ε̃+ x̃). It follows

that Û ′(s) is increased by these risk increases, which implies an increase in

the optimal saving. Hence, while these mean-utility-preserving nth degree

risk increases do not affect the optimal saving in problem (11), they raise

the optimal saving in problem (12).
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5 Conclusion

In this paper we have added an independent unfair background risk to the

higher order risk-taking models in the literature and examined its interaction

with the main risk under consideration. An agent is said to have a higher

order risk vulnerability if adding an independent unfair background risk to

wealth raises his level of a higher order risk-aversion. We have presented

analytical necessary and sufficient conditions for this concept.

Compared with risk vulnerability, the case of higher order risk vulnera-

bility is more complex. For example, in the case of the third order, corre-

sponding to the five definitions of DRA measures respectively, there are five

types of third order risk vulnerabilities or DRVs, while in the case of the nth

(n > 3) order, there are (n − 1) types of risk vulnerabilities corresponding

to the (n/1)th, (n/2)th, ..., and (n/(n − 1))th orders of Arrow-Pratt risk

aversion measure respectively. We have given a detailed analysis for each

type of the third and higher order risk vulnerabilities.

As in the case of risk vulnerability, all familiar DARA utility functions —

in fact, all HARA (CARA, CRRA,...) functions — have all types of higher

order risk vulnerability except for the type of DRV corresponding to the

Schwarzian derivative. These HARA utility functions will have this type of

DRV if and only if we additionally require that cautiousness is larger than

0.5.
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Appendix A Proof of Theorem 1

To prove the theorem, we need the following lemma. Let Ω0 be the set of all

zero-mean binary random variables. Let Ω be any set of zero-mean random

variables which contains Ω0. Let f(x), g(x), and h(x) be three functions

such that ∀ ε̃ ∈ Ω, Ef(ε̃) ≥ 0, Eg(ε̃) ≥ 0, and Eh(ε̃) ≥ 0.

Lemma 2 ∀ ε̃ ∈ Ω, Eg(ε̃)Eh(ε̃) ≥ [Ef(ε̃)]2 if and only if the inequality is

true for all ε̃ ∈ Ω0.

Proof: We first prove the following statement: ∀ ε̃ ∈ Ω, Eg(ε̃)Eh(ε̃) ≥

[Ef(ε̃)]2, if and only if ∀ ε̃1 ∈ Ω and ∀ ε̃2 ∈ Ω, Eg(ε̃1)Eh(ε̃2)+Eg(ε̃2)Eh(ε̃1) ≥

2Ef(ε̃1)Ef(ε̃2). This is proved as follows. To prove the “if” part, we let

ε̃1 = ε̃2 in the latter inequality, while to prove the “only if” part, we need

only note that

Eg(ε̃1)Eh(ε̃2) + Eg(ε̃2)Eh(ε̃1) ≥ 2
√

Eg(ε̃1)Eh(ε̃1)Eh(ε̃2)Eg(ε̃2).

On the other hand, if we fix either of the two random variables, the ex-

pression Eg(ε̃1)Eh(ε̃2)+Eg(ε̃2)Eh(ε̃1)−2Ef(ε̃1)Ef(ε̃2) is linear in the distri-

bution of the other (in the probabilities of its possible values). This implies

that ∀ ε̃1 ∈ Ω and ∀ ε̃2 ∈ Ω, Eg(ε̃1)Eh(ε̃2)+Eg(ε̃2)Eh(ε̃1) ≥ 2Ef(ε̃1)Ef(ε̃2)

if and only if ∀ ε̃1 ∈ Ω0 and ∀ ε̃2 ∈ Ω0, the inequality is true. Now applying

the preceding statement for the case where Ω = Ω0, we immediately obtain

the lemma. Q.E.D.

With the help of Lemma 2, we are now ready to prove the theorem.

The result where i = 2 and 3 is a special case of Statement 1 of Theorem 5

which is proved in the last appendix, thus we need only prove the result for

the other three cases. Note that as an unfair risk can be decomposed into

a certain reduction in wealth and a zero-mean risk, a necessary [sufficient]
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condition for all independent zero-mean background risks to increase τi(x)

combined with the condition that τi(x) is monotone decreasing is a nec-

essary [sufficient] condition for all independent unfair background risks to

increase τi(x). Thus we need only prove the result for the case of zero-mean

background risks.

To prove the result for τ1(x) = C(x), note that the inequality Ĉ(x) ≥

C(x) is equivalent to

u′(x)u′′′(x)

u′′2(x)
[Eu′′(x+ ε̃)]2 ≤ Eu′(x+ ε̃)Eu′′′(x+ ε̃). (13)

Thus the problem is to characterize the utility function u(x) which satisfies

the following condition

Eε̃ = 0 ⇒
u′(x)u′′′(x)

u′′2(x)
[Eu′′(x+ ε̃)]2 ≤ Eu′(x+ ε̃)Eu′′′(x+ ε̃).

It is straightforward to see that Lemma 2 is applicable to this case. From

this lemma it is clear that the inequality Ĉ(x) ≥ C(x) is true for all zero-

mean risks if and only if it is true for all zero-mean binary risks, which is

equivalent to Inequality (1) as C(x) = ( 1
R(x))

′. This proves the result for

τ1(x).

To prove the result for τ4(x) = −R′(x), we have

−R̂′(x) =
Eu′′′(x+ ε̃)Eu′(x+ ε̃) − [Eu′′(x+ ε̃)]2

[Eu′(x+ ε̃)]2
.

Thus the inequality −R̂′(x) ≥ −R′(x) is equivalent to

E[u′′′(x+ ε̃) + R′(x)u′(x+ ε̃)]Eu′(x+ ε̃) ≥ [Eu′′(x+ ε̃)]2.

It follows that the problem is to characterize the utility function u(x)

which satisfies the following condition

Eε̃ = 0 ⇒ [Eu′′(x+ ε̃)]2 ≤ E[u′′′(x+ ε̃) +R′(x)u′(x+ ε̃)]Eu′(x+ ε̃).
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If for some zero-mean ε̃, E[u′′′(x + ε̃) + R′(x)u′(x + ε̃)] < 0, then there

must exist a zero-mean binary ε̃ such that E[u′′′(x+ ε̃)+R′(x)u′(x+ ε̃)] < 0.

Thus we need only consider the case where for all zero-mean risks, E[u′′′(x+

ε̃) + R′(x)u′(x + ε̃)] ≥ 0. Now Lemma 2 is applicable to this case, and the

inequality −R̂′(x) ≥ −R′(x) is true for all zero-mean risks if and only if it

is true for all binary zero-mean risks, which is equivalent to Inequality (4).

This proves the result for τ4(x).

To prove the result for τ5(x) = S(x), we have

Ŝ(x) =
Eu′′′(x+ ε̃)

Eu′(x+ ε̃)
−

3

2
[
Eu′′(x+ ε̃)

Eu′(x+ ε̃)
]2.

Thus the inequality Ŝ(x) ≥ S(x) is equivalent to

E[u′′′(x+ ε̃) − S(x)u′(x+ ε̃)]Eu′(x+ ε̃) ≥
3

2
[Eu′′(x+ ε̃)]2. (14)

It follows that the problem is to characterize the utility function u(x) which

satisfies the following condition

Eε̃ = 0 ⇒
3

2
[Eu′′(x+ ε̃)]2 ≤ E[u′′′(x+ ε̃)− S(x)u′(x+ ε̃)]Eu′(x+ ε̃).

Similar to the case of τ4(x), we need only consider the case where for all

zero-mean risks, E[u′′′(x + ε̃) − S(x)u′(x + ε̃)] ≥ 0. Again, Lemma 2 is

applicable to this case, and Inequality (14) is true for all zero-mean risks

if and only if it is true for all binary zero-mean risks, which is equivalent

to Inequality (5) as S(x) = −R′(x) − 0.5R2(x). This proves the result for

τ5(x). Q.E.D.

Appendix B Proof of Theorem 2

As was explained at the beginning of the proof of Theorem 1, we need only

prove the result for the case of zero-mean background risks. The result
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where i = 1 follows from Theorem 1 in Hara et al. (2011), and its proof can

be found there. The result where i = 2 and 3 is a special case of Statement 2

of Theorem 5 which is proved in the last appendix, thus we need only prove

the result for the other two cases.

To prove the result where i = 4, we have R̂(x) = E( u′

Eu′R).13 Differenti-

ating the equation with respect to x, we obtain

R̂′(x) = E[(
u′

Eu′
)′R] + E(

u′

Eu′
R′). (15)

As E( u′

Eu′ )
′ = 0, we have E[( u′

Eu′ )
′R] = E[( u′

Eu′ )
′(R − R̂(x))]. Moreover, as

( u′

Eu′ )′ = u′

Eu′ (R̂(x)− R), we obtain

E[(
u′

Eu′
)′R] = −E[

u′

Eu′
(R̂(x) −R)2]. (16)

This and Equation (15) lead to

−R̂′(x)Eu′ = −E(u′R′) + E[u′(R̂(x)− R)2]. (17)

Adding R′(x)Eu′ to both sides, we obtain

(−R̂′(x) +R′(x))Eu′ = R′(x)Eu′ −E(u′R′) + E[u′(R̂(x)− R)2]. (18)

Meanwhile, we have (Eu′)2E(u′(R̂(x)−R)2) = E[u′(−Eu′′−REu′)2] =

E[u′(R′(x)u′(x)ε+O(ε2))2] = R′2(x)u′3(x)σ2
ε +O(σ3

ε ). This implies that

E(u′(R̂(x) −R)2) = u′(x)R′2(x)σ2
ε +O(σ3

ε ). (19)

We also have

R′(x)Eu′ − E(u′R′) = 0.5[R′(x)u′′′(x) − (u′(x)R′(x))′′]σ2
ε +O(σ3

ε ).

13For brevity, in the rest of the proof, we omit the argument (x + ε̃) of the functions

under the expectation operator.
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The last two equation, together with Equation (18), imply that (−R̂′(x) +

R′(x))Eu′ is equal to

0.5(R′(x)u′′′(x)− (u′(x)R′(x))′′)σ2
ε + u′(x)R′2(x)σ2

ε +O(σ3
ε ).

Thus for arbitrarily small σε, −R̂
′(x) ≥ −R′(x) only if R′(x)u′′′(x) + 2u′(x)

R′2(x)− (u′(x)R′(x))′′ ≥ 0, which is equivalent to −R′′′(x) + 2R(x)R′′(x) +

2R′2(x) ≥ 0.

To prove the result where i = 5, we have

Ŝ(x) = −R̂′(x)− 0.5R̂2(x) = −[E(
u′

Eu′
R)]′ − 0.5[E(

u′

Eu′
R)]2,

where again for brevity, we have omitted the argument (x+ε̃) of the functions

under the expectation operators.

Hence we obtain

Ŝ(x) = −E[(
u′

Eu′
)′R]+E[

u′

Eu′
(−R′−0.5R2)]+0.5E(

u′

Eu′
R2)−0.5(E

u′

Eu′
R)2.

In the meantime, from Equation (16), we have −E[( u′

Eu′ )′R] = E[ u′

Eu′ (R̂(x)−

R)2], while E( u′

Eu′R
2) − (E u′

Eu′R)2 = E[ u′

Eu′ (R̂(x) − R)2]. Hence from the

preceding equation, we have

Ŝ(x) = E[
u′

Eu′
S] +

3

2
E[

u′

Eu′
(R̂(x)− R)2]. (20)

Rewrite it as

(Ŝ(x)− S(x))Eu′ = −S(x)Eu′ +E(u′S) +
3

2
E[u′(R̂(x) −R)2].

As we haveEu′ = u′(x)+u′′′(x)σ2
ε+O(σ3

ε ), E(u′S) = u′(x)S(x)+(u′(x)S(x))′′

σ2
ε +O(σ3

ε ), and Equation (19), it follows that (Ŝ(x)− S(x))Eu′ is equal to

[−0.5S(x)u′′′(x) + 0.5(u′(x)S(x))′′ +
3

2
u′(x)R′2(x)]σ2

ε +O(σ3
ε ).
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Thus for arbitrarily small σε, Ŝ(x) ≥ S(x), only if −S(x)u′′′(x)+(u′(x)S(x))′′

+3u′(x)R′2(x) ≥ 0. As S(x) = −R′(x) − 0.5R2(x), it can be rewrit-

ten as S(x)(u′(x)R(x))′ − (u′(x)R(x)S(x))′ + (u′(x)S ′(x))′ + 3u′(x)(S(x)

+0.5R2(x))2 ≥ 0. Simplifying it, we obtain −2R(x)S ′(x)+S ′′(x)+3(S(x)+

0.5R2(x))2 ≥ 0. Q.E.D.

Appendix C Proof of Theorem 3

The result where i = 2 and 3 is a special case of Statement 1 of Theorem

5 which is proved in the last appendix, thus we need only prove the result

for the other three cases. As was explained at the beginning of the proof

of Theorem 1 in Appendix A, we need only prove the result for the case of

zero-mean risks. We first prove the following lemma.

Lemma 3 For i ∈ {1, 4, 5}, τi(x) is increased by a zero-mean background

risk ε̃ if

E(τi(x+ ε̃)hi(x+ ε̃)) ≥ τi(x)Ehi(x+ ε̃), (21)

where hi(x) is defined in Theorem 3.

Proof: The results where i = 4 and 5 immediately follow from Equations

(17) and (20), respectively, thus we need only prove the case where i = 1.

To prove this case, we have

Ĉ(x) + 1 =
Eu′(x+ ε̃)Eu′′′(x+ ε̃)

(Eu′′(x+ ε̃))2
.

Some simple calculations lead to

Ĉ(x) + 1 =
Eu′(x+ ε̃)

(Eu′′(x+ ε̃))2
E[(C(x+ ε̃) + 1)

(u′′(x+ ε̃))2

u′(x+ ε̃)
]. (22)
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Meanwhile, from the Cauchy-Schwarz inequality (Eε̃21Eε̃
2
2 ≥ [E(ε̃1ε̃2)]

2), we

have

Eu′(x+ ε̃)E
(u′′(x+ ε̃))2

u′(x+ ε̃)
≥ (Eu′′(x+ ε̃))2.

Rewrite it as
Eu′(x+ ε̃)

(Eu′′(x+ ε̃))2
≥

1

E (u′′(x+ε̃))2

u′(x+ε̃)

.

This, together with Equation (22), implies that

Ĉ(x) + 1 ≥
1

E (u′′(x+ε̃))2

u′(x+ε̃)

E[(C(x+ ε̃) + 1)
(u′′(x+ ε̃))2

u′(x+ ε̃)
]

=
1

E (u′′(x+ε̃))2

u′(x+ε̃)

E[C(x+ ε̃)
(u′′(x+ ε̃))2

u′(x+ ε̃)
] + 1.

Hence Ĉ(x) ≥ C(x) if E[C(x + ε̃)h1(x + ε̃)] ≥ C(x)Eh1(x + ε̃), where

h1(x) = (u′′(x))2

u′(x) . Q.E.D.

We now use the lemma to prove the theorem. Applying the lemma, we

need only prove that the inequality in Theorem 3 is necessary and sufficient

for Inequality (21). This is shown as follows. It is well known that Inequality

(21) is true for all zero-mean ε̃ if and only if it is true for all zero-mean binary

ε̃, i.e., pτi(x+ ε1)hi(x+ ε1)+ (1−p)τi(x+ ε2)hi(x+ ε2) ≥ τi(x)[phi(x+ ε1)+

(1− p)hi(x+ ε2)], for all p ∈ (0, 1), ε1 and ε2 satisfying pε1 + (1 − p)ε2 = 0.

After the elimination of p, this is equivalent to the condition that there exists

a scalar m(x) such that

hi(x+ ε1)
τi(x+ ε1) − τi(x)

ε1
≥ m(x) ≥ hi(x+ ε2)

τi(x+ ε2) − τi(x)

ε2
,

for any ε1 > 0 > ε2. By symmetry, the only candidate form(x) is hi(x)τ
′
i(x).

The above condition is thus equivalent to hi(y)(τi(y)−τi(x))−hi(x)τ
′
i(x)(y−

x) ≥ 0. Q.E.D.
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Appendix D Proof of Theorem 4

As was explained at the beginning of the proof of Theorem 1 in Appendix

A, we need only prove the result for the case of zero-mean risks. We first

prove the following lemma. The proof uses a technique that is very close to

the one used by Gollier and Pratt (1996) in the proof of their Proposition

3.

Lemma 4 Assume that for a given w, g(w) > 0, and for all x, f(x) > 0,

f ′(x) ≤ 0, and ( g(x)
f(x))

′ ≤ 0. If for all x, ( g(x)
f(x))

′′ ≥ −( g(x)
f(x))

′ f
′(x)

f(x) then, for any

unfair ε̃, Eg(w+ε̃)
Ef(w+ε̃) ≥

g(w)
f(w) .

Proof: Note that as for all x, f(x) > 0 and ( g(x)
f(x))

′′ ≥ −( g(x)
f(x))

′ f
′(x)

f(x) ,

we have [(
g(x)
f(x))

′f(x)]′ = (
g(x)
f(x))

′′f(x) + (
g(x)
f(x))

′f ′(x) ≥ 0, i.e., (
g(x)
f(x))

′f(x) =

g′(x)− g(x)f ′(x)
f(x) is increasing. Thus as g(w) > 0 and for all x, f ′(x) ≤ 0, g(x)

f(x)

is decreasing, and g′(x)− g(x)f ′(x)
f(x) is increasing, y has the same sign as

1

g(w)
[(g′(w + y) −

g(w+ y)f ′(w + y)

f(w + y)
) − (g′(w)−

g(w)f ′(w)

f(w)
)]

+
f ′(w+ y)

g(w)
(
g(w+ y)

f(w + y)
−
g(w)

f(w)
),

which is equal to

g′(w+ y)

g(w)
−
f ′(w + y)

f(w)
− (

g′(w)

g(w)
−
f ′(w)

f(w)
).

Therefore, since the direction of integration cancels out the sign, we have

∫ ε

0
[
g′(w + y)

g(w)
−
f ′(w + y)

f(w)
− (

g′(w)

g(w)
−
f ′(w)

f(w)
)]dy ≥ 0.

Since this is true for any ε, taking the expectation over a random variable ε̃

yields

Eg(w+ ε̃) − g(w)

g(w)
−
Ef(w+ ε̃)− f(w)

f(w)
≥ (

g′(w)

g(w)
−
f ′(w)

f(w)
)Eε̃.
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As f(w) and g(w) are both strictly positive and g(w)
f(w) is decreasing, the right

hand side is non-negative, and it follows that
Eg(w+ε̃)
Ef(w+ε̃) ≥

g(w)
f(w) . Q.E.D.

We now use the lemma to prove Theorem 4. Let f(x) = hi(x) and

g(x) = (τi(x)+α0)hi(x), where hi(x) is defined in Theorem 3 and α0 > 0 is

arbitrarily large. Note that for i = 1, ..., 5, for all x, f(x) = hi(x) > 0, and

for any given w, as α0 > 0 is arbitrarily large, g(w) = (τi(w)+α0)hi(w) > 0.

Also note that for i = 1, C(x) ≥ −0.5 implies h′1(x) = −h1(x)R(x)(2C(x)+

1) ≤ 0, for i = 3, h′i(x) = −u′′′(x) ≤ 0, and for i = 2, 4, 5, h′i(x) =

u′′(x) ≤ 0. Moreover, as τi(x) is decreasing, g(x)
f(x) = τi(x) + α0 is also

decreasing. Furthermore, we have −(lnhi(x))
′ = ζi(x), where ζi(x) is defined

in the theorem, and it follows from the given condition in the theorem that

( g(x)
f(x))

′′+( g(x)
f(x))

′ f
′(x)

f(x) = τ ′′i (x)−τ ′i(x)ζi(x) ≥ 0. Thus f(x) and g(x) satisfy all

the conditions in the lemma. Now applying the lemma, we obtain Eg(w+ε̃)
Ef(w+ε̃) ≥

g(w)
f(w) ∀ε̃. This implies that ∀ε̃, E[(τi(w+ε̃)+α0)hi(w+ε̃)]

Ehi(w+ε̃) ≥ (τi(w)+α0)hi(w)
hi(w) , i.e.,

E[τi(w + ε̃)hi(w + ε̃)] ≥ τi(w)Ehi(w + ε̃). Applying Lemma 3 of the last

appendix, we immediately obtain the conclusion in the theorem. Q.E.D.

Appendix E Proof of Theorem 5

As was explained at the beginning of the proof of Theorem 1 in Appendix A,

we need only prove the result for the case of zero-mean risks. We first prove

Statement 1. The inequality (−1)n−m Eu(n)(x+ε̃)
Eu(m)(x+ε̃)

≥ Rn/m(x) is equivalent to

(−1)n−1Eu(n)(x+ ε̃) ≥ (−1)m−1Rn/m(x)Eu(m)(x+ ε̃).

It is well known that the above inequality is true for all zero-mean ε̃ if and

only if it is true for all zero-mean binary ε̃.14 Thus the inequality is true for

14See, for example, Gollier and Pratt’s (1996) argument in the proof of their Proposition

2.
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all zero-mean ε̃ if and only if for all x2 < x < x1,

[(−1)n−1u(n)(x1)− (−1)m−1Rn/m(x)u(m)(x1)](x− x2)

+[(−1)n−1u(n)(x2) − (−1)m−1Rn/m(x)u(m)(x2)](x1 − x) ≥ 0.

This is equivalent to the condition that there exists a scaler κ(x) such that

(−1)m−1u(m)(x1)
Rn/m(x1) −Rn/m(x)

x1 − x
≥ κ(x)

≥ (−1)m−1u(m)(x2)
Rn/m(x)− Rn/m(x2)

x− x2
.

The only candidate for κ(x) is u(m)(x)R′
n/m(x), and it follows that the

above condition is equivalent to (−1)m−1ξ(w, x) ≥ 0, where ξ(w, x) =

u(m)(x)(Rn/m(x) − Rn/m(w)) − u(m)(w)R′
n/m(w)(x − w). This proves the

first statement.

To prove the second statement, observe that ξ(w, w) = 0 and

∂ξ(w, x)

∂x
= u(m+1)(x)(Rn/m(x) −Rn/m(w))

+u(m)(x)R′
n/m(x)− u(m)(w)R′

n/m(w),

which implies ∂ξ(w,x)
∂x |x=w = 0. It follows that to have (−1)m−1ξ(w, x) ≥ 0

∀w, x, it is necessary that (−1)m−1 ∂2ξ(w,x)
∂x2 |x=w ≥ 0 ∀w, which is equivalent

to R′′
n/m(w) ≥ 2R(m+1)/m(w)R′

n/m(w) ∀w.

To prove the third statement, let f(x) = (−1)m−1u(m)(x) and g(x) =

(−1)n−1u(n)(x). Applying Lemma 4 in the last appendix, we immediately

conclude that the third statement is true.

The proof of the fourth statement follows from the proof of Proposition

1 in Kimball (1993) and from the fact that R(n+1)/n is isomorphic to risk

aversion as applied to (−1)n−1u(n−1). Q.E.D.
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