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Abstract 

In this paper we revisit the wholesale and retail gasoline price adjustments to 

fluctuations in the input cost prices for a monthly panel dataset of 48 U.S. states over 

the period 1994 to 2011. In doing so, we employ non-linear semiparametric models 

with local Generalized Method of Moments (GMM) estimators. Our findings indicate 

that wholesale and retail gasoline prices adjust more rapidly in an upward than a 

downward direction, confirming the “rockets and feathers” hypothesis. 
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1.  Introduction  

 

There is a common belief among consumers indicating that oil companies adjust the 

retail gasoline prices and their profit margins more quickly to cost increases than to 

cost decreases. This behaviour is broadly known as the “rockets and feathers” 

hypothesis (Bacon, 1991). Within the last years there is a plethora of studies 

examining the existence and the causes of gasoline price asymmetry with 

controversial results. The majority of these studies (Lewis and Noel, 2011, Deltas, 

2008, Chen et al, 2005) apply cointegration techniques and Engle-Granger 

methodology. However, recent studies such as Greenwood-Nimmo and Shin, (2013) 

depart from the standard strand of literature in allowing non-linear functional forms.  

 

Μany important papers have tried to investigate the existence of price asymmetry 

across countries or even regions with conflicting results. Bacon (1991), for example, 

provided sufficient evidence in favor of the price asymmetry debate in the UK. 

Similarly, Borenstein et al. (1997) argued that retail prices in the UK over the period 

1986 to 1992 responded more quickly to crude oil price increases than to decreases. 

Galeotti et al. (2003) studied trends in Germany, France, UK, Italy and Spain from 

January 1985 to June 2000 and concluded that “rockets and feathers” appear to 

dominate the price adjustment mechanism of gasoline markets in many European 

countries. Deltas (2008) reported that U.S. states with high average retail-wholesale 

margins experienced a slower adjustment and a more asymmetric response in retail 

prices. Lewis and Noel (2011) use panel data from U.S. cities with and without 

Edgeworth price cycles, and demonstrate that prices in markets without cycles 

respond much more slowly to wholesale cost fluctuations than in cities with cycles. 
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Greenwood-Nimmo and Shin (2013), in contrast, did not support the existence of 

“rockets and feathers” in the UK gasoline market. Similarly, Lamotte et al (2013) 

argued that the retail price of gasoline in the U.S and France respectively did not 

respond contemporaneously to crude oil shocks.  

 

Despite the rich body of literature, existing studies suffer from two major limitations. 

First, they assume that asymmetric price responsiveness is apparent in a linear form. 

However, this is a rather strong assumption which may lead to biased results (Shin et 

al, 2013). Second and most importantly, nearly all of the existing empirical studies 

assume specific functional forms for their regression relationships. In other words 

they adopt parametric regression models that often lead to misspecification of their 

functional form unless it is correctly specified by the economic theory (Tran and 

Tsionas, 2009). In order to overcome this problem, we rely on panel data 

semiparametric methodology where little prior restriction is imposed on the model’s 

structure. We further extend the existing semiparametric panel data models (see for 

example Li and Stengos, 1996, Knieser and Li, 2002, Baltagi and Li, 2002) by 

allowing for the regression coefficients on the parametric part to vary according to the 

smooth coefficient model. This may lead to more plausible empirical results (Tran 

and Tsionas, 2009).  

 

The aim of this paper is to revisit the “rockets and feathers” hypothesis focusing on 

the role of inventories and using a semiparametric GMM approach. Our findings are 

consistent with an asymmetric wholesale and retail gasoline price pass through. The 

remainder of this paper is organized as follows. The next section describes the 

empirical model and the semiparametric modeling approach. The following two 
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sections discuss the dataset used for the analysis and the empirical findings. Finally, 

the last section reports some concluding remarks. 

 

2.  The econometric model 

 

Extending Greenwood-Nimmo and Shin (2013) to a panel data framework the model 

is based on an asymmetric nonlinear autoregressive distributed lag model (expressed 

in levels) as:  
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where ψj are the autoregressive parameters, itx  is a vector of regressors of dimension 
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no restriction on the time index t. The coefficients +
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From Eq. 2, we can easily construct the following conditional Panel Vector-Error-

Correction Model (PVECM): 
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Short-run symmetry requires: 
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or alternatively: 
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We use the varying-coefficients approach to model (3) in a non-parametric way. For 

simplicity in notation, we write (3) as: 

( ) itititit ezdxY +′=                                                                     (5) 

where itit yY Δ= , itx  is the vector of right-hand-side variables in (3), itz  is a vector of 

predetermined variables and d represents the coefficients. Notice that the adjustment 

coefficients jγ  are not assumed to be fixed (Fan and Zhang, 1999). Moreover suppose 

( , 1, ..., )i itY Y t T= = , iX  is a matrix whose rows are ′
itx and iZ  is a matrix whose 

rows are ′
itz . We assume there are instruments itw  and iW  is a matrix whose rows are 
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′
itw . We assume that ( ), , ,i i i iX Z W u  are i.i.d over 1, ...,i n=  and 

( )| 0, 1, ..., ,it it itE w u z t T= " =                         (6) 

which implies that for given itz z=  we have: 

( ) ( ) 0'' 1 ==== = zzuwEziZuWE ititit
T
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where ( )'1,...1=Ti is a vector of ones. From Tran and Tsionas (2009) we know that 

identification requires that ( )'' ziZXWE Tiii =  has full column rank. Since we have 

conditional moment restrictions that can be used to construct an estimator similar to 

the GMM, our objective criterion is 
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where ( )'',...,'1 nYYY = is a (NT x 1) vector, ( )'',...,'1 nWWW = is (NT x 1) matrix of 

instruments , ( )',...,'1 nXXX =  is a (NT x p) matrix of regressors, Rn is some (l x l) 

positive definite weighting matrix and K is an (NT x NT) matrix of kernel weights 
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For given itz z=  minimizing ( )nJ d  yields the following estimator: 
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( ) KXWKWRXKXWKWRXzd nn '''')(ˆ 111 −−−=  (9) 

To make the estimator operational we need an estimate of nR  . In the one-step version 

of Tran and Tsionas (2009) if we use ( )i
T
ii WKWEzR ')( =  we have the estimator in 

closed form: 

[ ] KYWKWWKWXKXWKWWKWXzd ')'('')'(')(ˆ 111 −−−=  (10) 

where use is made of the consistent estimator i
T
ii

n
in WKWnR ′= =

−
1

1
1

ˆ ε . As mentioned by 

Tran and Tsionas (2009, p. 44): “Also, it is interesting to note that the one-step local 

GMM estimator given in (6) is numerically equivalent to the two-stage smooth 

coefficient least squares estimator (Li et al., 2002) where in the first stage, a smooth 

coefficient least squares regression of X  on W  , yielding prediction X̂ , and in the 

second stage, a smooth coefficient least squares regression of Y  on X̂  using the 

same kernel K   and bandwidth H .” 

 

We follow the procedure in Tran and Tsionas (2009) for bandwidth and kernel 

selections. In the vector of instruments itw  we include two lags of the dependent 

variable (Retail and wholesale gasoline prices respectively) and regressors (i.e spot 

gasoline prices, crude oil prices, gross profit margin and motor gasoline stocks) 

following the spirit of the standard dynamic GMM procedure (Arellano and Bond, 

1991; Arellano and Bover, 1995). We use a standard normal kernel for k(·) and since 

zit is a scalar, univariate cross validation bandwidth selection procedure is used to 

determine the optimal bandwidth. For the selection of the instruments, we use the 

optimal instrument discussed in Baltagi and Li (2002). Specifically, we use the 

density-weighted kernel estimates of {E(yit−1 | zit−1), E(yit−2 | zit−2), E(kit | zit ), E(kit−1 | 

zit−1), E(nit | zit ), E(nit−1 | zit−1)} as instrument set for {yit−1, kit , nit}. 
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3.  Data  

The sample includes 48 U.S. states over the period from January 1994 to February 

2011. All price variables (i.e Retail and wholesale-rack motor gasoline prices, spot 

gasoline and crude oil prices) are taken from the Energy Information Administration 

(EIA). Moreover, we calculate the gross profit margin, in order to capture the 

presence of market power (Deltas, 2008). Lastly, we use motor gasoline stocks that 

are usually ignored by the existing literature in order to account for the presence of 

inventory capacity (Borenstein and Shepard, 1992).  Figure 1 depicts the relatively 

close co movement between the spot gasoline price and the level of gross profit 

margin. It is evident that gasoline prices were characterized by high volatility within 

the examined period, giving an indication of an asymmetric price pass trough.   

 
Figure 1: Gasoline prices and profit margin (USD/gallon)   
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4.  Results and discussion  

Table 1 depicts the empirical findings. We report results at itz z=  where z  is the 

average of itz . It is evident that all the estimated coefficients are statistically 

significant at a = 0.01. Moreover, in both market segments positive coefficients are 

larger, in absolute value, than their negative counterparts indicating that the effects of 

upstream price increases are larger than those of price decreases2. Regarding the 

wholesale segment, it is highlighted that the speed of adjustment to positive input cost 

fluctuations is rather sluggish at 59%-60% per month. This means that if the 

wholesale price of gasoline is 10% above its long-run equilibrium price, the 

percentage change difference over a period of one month will be 5.8% and 6.0% 

respectively. However, in the retail segment, the speed of adjustment to the long-run 

equilibrium is characterised by larger variation reaching its peak at 70%. This finding 

indicates that the level of retail competition varies significantly between the two 

market segments. Moreover, we find long-run coefficients (α+ and α-) equal to 0.9 

approximately for both wholesale and retail market segments. The relatively high 

value shows a clear indication that a long-run rent-seeking oligopolistic behaviour is 

present by the oil companies, which in turns is consistent with an asymmetric gasoline 

price adjustment mechanism at least in the long run.  

 

In addition, the short-run price effect ( 0π
+  and 0π

− ) is larger in the retail than in the 

wholesale segment with estimated values approaching 0.477 compared to 0.307 

respectively. This means that retail gasoline prices seem to react more to price 

increases and to negative gaps to the equilibrium than to price decreases and positive 
                                                            

2 The estimated results do not significantly change compared to a parametric estimation of Equation 3. 
The parametric results are available from the authors upon request.    
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disequilibrium. From the magnitude of the relevant estimates, we argue that a 10% 

short-run increase in spot gasoline price will tend to increase the wholesale price of 

gasoline by about 3.0%-3.2% approximately. Lastly, if we try to compare the two-

market segments, some important features emerge. First, the magnitude of short-run 

coefficients is in the most cases larger in the retail than in the wholesale level. This 

means that retailers do immediately transfer onto final prices all the adjustments in the 

spot gasoline prices. Second, the adjustment towards the equilibrium level is more 

gradual in the wholesale level revealing the differences between the two market 

segments.  
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Table 1. Non-parametric effects evaluated at the means z of itz   

Spot gasoline price  

Panel A 

Crude oil price  

Panel B Estimated 
coefficients 

Wholesale Retail Wholesale Retail 

ρ -0.588*** 

(0.021) 

-0.644*** 

(0.017) 

-0.603*** 

(0.018) 

-0.701*** 

(0.015) 

α+ 0.913*** 

(0.012) 

0.920*** 

(0.013) 

0.910*** 

(0.011) 

0.919*** 

(0.009) 

α- 0.865*** 

(0.043) 

0.907*** 

(0.017) 

0.882*** 

(0.033) 

0.932*** 

(0.017) 

0π
+  0.307*** 

(0.027) 

0.435*** 

(0.032) 

0.318*** 

(0.025) 

0.477*** 

(0.020) 

0π
−  0.201*** 

(0.030) 

0.355*** 

(0.044) 

0.277*** 

(0.025) 

0.400*** 

(0.028) 

q 1
jj 1

− +
=
π∑  0.803*** 

(0.018) 

0.900*** 

(0.022) 

0.825*** 

(0.019) 

0.930*** 

(0.044) 

q 1
jj 1

− −
=
π∑  0.787*** 

(0.005) 

0.813*** 

(0.011) 

0.884*** 

(0.006) 

0.887*** 

(0.007) 

Note: The table reports non-parametric marginal effects. Asymptotic standard errors are reported in 
parentheses. Results are reported using both Spot (Panel A) and Crude oil price (Panel B) in the 
Wholesale / Retail market segment respectively. Significant at ***1%.  

 

Figure 2 plots the accumulated generalized impulse responses (GIR) of inventories to 

fluctuations in spot gasoline prices over a three month period. The GIR can be defined 

as the difference of two forecasts (Koop et al, 1996) indicated by the following 

expression:  

, , , ,( ) ( ) ( 0 ) 0 1 2i i t s it it i t s i t s it i t sGIR t s d E Y v d X E Y v X s …+ + + +, , = | = ; − | = ; , = , , ,           (11)                     
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where id  represents the value of the shock ite  and itX   represent other variables in 

the non-parametric regression. 3  As it is evident, we observe a strong and rapid 

reaction of inventories to positive changes but a more gradual response to negative 

changes. It is clear that a 10% increase (decrease) in the spot gasoline price is 

associated with a maximum average increase and a moderate decrease (nearly 5-6%) 

in the level of motor gasoline stocks respectively. This happens because retailers will 

almost immediately adopt new gasoline price by restoring the excess capacity and 

release it to the market in higher prices (Borenstein and Shepard, 1992). This 

behaviour provides a solid illustration of the “rockets and feathers” hypothesis in the 

U.S. gasoline market.  

Figure 2. Accumulated generalized impulse responses to 10% increase and decrease 
in the spot gasoline price. 

 
Note: Margin is normalized to lie between min and max denoted by 0 and 1 respectively. The vertical 
axis is normalized so that 10%=1.0. Tick marks on the horizontal axis represent three-month intervals.  

                                                            

2 Similar findings are also traced when we examine the GIR generated in the wholesale market segment 
by fluctuations in the crude oil price.   



  13

To contextualize these findings, we draw comparisons with Deltas (2008), a study 

which linearly evaluates the effects of market structure through interacting lagged 

wholesale and retail price changes with state specific margins. Deltas (2008) finds 

coefficient estimates of response differences for wholesale price changes to be 

positive, indicating a faster response to price increases than decreases, indicating 

retail price asymmetry. His results also reveal that both the speed of adjustment and 

the degree of asymmetry depend on the average retail-wholesale margin of a state. He 

claims that states with large average profit margins tend to have more asymmetric and 

slower adjustment than states with small margins. Our empirical findings are in 

alignment with the aforementioned study revealing an asymmetric response of 

gasoline price to crude oil and spot price fluctuations. However, Deltas (2008) did not 

split the sample into high and low margin states by using a threshold analysis and 

allow for dynamic interactions of wholesale and retail gasoline price to input cost 

shocks (e.g crude oil price). Instead following the specifications of Borenstein and 

Shepard, 1996, Borenstein et al, (1997) and lastly Lewis, (2003), he used a linear lag 

adjustment model with an error correction term in order to investigate wholesale and 

retail price asymmetries. As described above, a linear ECM suffers from estimation 

uncertainty or errors arising from the estimation of the long run cointegrating 

relationship (Greenwood-Nimmo and Shin, 2013). In this study we address this 

limitation by the estimation of a threshold PVECM and subsequent PGIRFs that help 

us to assess the timing and magnitude of the responses to one time demand or supply 

shocks in the spot gasoline market (Kilian and Park, 2009; Kapetanios and Tzavalis, 

2010). Lastly, by using a threshold (sample splitting) PVECM, we treated all our 

variables as endogenous with the inclusion of an exogenous threshold variable in 
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contrast to the above study which require that all right-hand-side variables are strictly 

exogenous.   

5.  Concluding remarks  

 

Using the NPGMM framework, we have found strong evidence suggesting the 

validity of the “rockets and feathers” hypothesis in the U.S gasoline market. Further, 

we infer that an input cost price increase is passed through more forcefully than a 

price decrease revealing a rent-seeking oligopolistic behaviour by the oil companies. 

The oligopolistic structure of the local gasoline markets along with fluctuations in 

both unanticipated shocks in spot gasoline price and inventories trigger the price 

asymmetric adjustment path.  
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