Aspect] Code Analysis and Verification with GASR™

Johan Fabry®*, Coen De Roover”, Carlos Noguera®, Steffen Zschaler®, Awais
Rashidd, Viviane JonckersP

“PLEIAD Laboratory, Computer Science Department (DCC), University of Chile
bSoftware Languages Lab, Virije Universiteit Brussel
¢ Department of Informatics, King’s College London
4 Computer Science Department, Lancaster University

Abstract

Aspect-oriented programming languages extend existing languages with new
features for supporting modularization of crosscutting concerns. These features
however make existing source code analysis tools unable to reason over this
code. Consequently, all code analysis efforts of aspect-oriented code that we are
aware of have either built limited analysis tools or were performed manually.
Given the significant complexity of building them or manual analysis, a lot of
duplication of effort could have been avoided by using a general-purpose tool.
To address this, in this paper we present GASR: a source code analysis tool that
reasons over ASPECTJ source code, which may contain metadata in the form of
annotations. GASR provides multiple kinds of analyses that are general enough
such that they are reusable, tailorable and can reason over annotations. We
demonstrate the use of GASR in two ways: we first automate the recognition
of previously identified aspectual source code assumptions. Second, we turn
implicit assumptions into explicit assumptions through annotations and auto-
mate their verification. In both uses GASR performs detection and verification
of aspect assumptions on two well-known case studies that were manually in-
vestigated in earlier work. GASR finds already known aspect assumptions and
adds instances that had been previously overlooked.

Keywords: Aspect Oriented Programming, Source Code Analysis, Logic
Program Querying, Aspectual Assumptions

*This is an extended edition of the article Aspectual Source Code Analysis with GASR by
Fabry, De Roover and Jonckers, presented at the 13th IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM’13)[1].

*Corresponding author

Email addresses: jfabry@dcc.uchile.cl (Johan Fabry), cderoove@vub.ac.be (Coen De
Roover), cnoguera@soft.vub.ac.be {Carlos Noguera), szschaler@acm.org (Steffen
Zschaler), marash@comp.lancs.ac.uk (Awais Rashid), vejoncke@soft.vub.ac.be (Viviane
Jonckers)

Preprint submitted to FElsevier April 20, 2016

1. Introduction

Aspects are a means to modularize cross-cutting concerns: concerns whose
implementation is spread throughout different modules of the system under
construction. Aspects are a kind of module that encapsulate, in addition to
their behavior, when this behavior needs to be invoked; that is, they also define
a kind of implicit invocation of their behavior.

To perform Aspect-Oriented Programming, new programming languages
have been proposed that are usually extensions of existing OOP languages.
These extensions then consist of language features that allow for the specifi-
cation of these new modules, and most importantly their implicit invocation
conditions, known as pointcuts. As a result of this, existing source code analysis
tools for these OOP languages are incapable to correctly treat these aspects in
their reasoning. Firstly existing analyses may be incorrect and, secondly, anal-
yses that specifically consider the aspectual properties of the source code are
absent. Considering the first case: as aspects modify the control flow of the
program, source code analysis should take these changes into account when rea-
soning over properties of the code, where appropriate. As for the second case,
the extensions made by aspect languages are usually nontrivial. This creates
an entirely new class of analyses that take into account the aspectual nature of
the code and how these features are used and interact amongst themselves and
with the non-aspectual language features. An example of the latter interaction
is that an aspect may change the class hierarchy, an example of the former
interaction is pointcuts that are slightly or subtly incorrect and hence fail to
match or match wrongly. As a result, many possible issues in aspectual code
have been separately identified and source code analysis tools built to address
them [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

Yet, to the best of our knowledge, all of these kinds of analyses have been
made on an ad-hoc or limited basis and were customized specifically to the anal-
ysis task being performed. This is far from trivial work, given the complexity of
building a source code reasoner, or adding the novel aspectual language fatures
to an existing reasoner. As a result there has been a considerable duplication in
development effort and time wasted. Moreover the resulting code reasoners are
not customizable to the actual software under analysis, e.g., to automatically
remove one kind of known false positives from the results, or to augment or
weaken the analysis being performed.

We state that there is a need for a general-purpose source code reasoner for
aspects. It should ease the definition of multiple kinds of source-code analysis
over aspect-oriented source code and also be tailorable to the task at hand by the
user. Moreover, it should take into account that source code may be augmented
by metadata in the form of annotations, e.g., to explicitly mark methods as
overriders as in the Java @Override annotation. Such metadata may also be
used in aspectual code, hence a source code reasoner for aspects should also be
aware of annotations. To address the need for such a source code reasoner, we
built GASR and we present it in this paper.

The novelty of this work lies in that GASR provides multiple kinds of source-

code analysis over aspect-oriented software that are general enough such that
they can be used for multiple types of analyses, can reason over metadata in
annotations, and moreover are adaptable such that they can be tailored to the
task at hand.

More specifically, this paper contains the following contributions:

e It argues for the need for a general-purpose source code analysis tool that
is aware of aspects.

e It presents the logic program querying tool GASR, the first such analy-
sis tool for AspECTJ-like languages [14] and discusses its implementation
along with its library of logical predicates that can be used to reason both
about structure as well as behavior of aspectual source code.

e It shows how GASR can be used to automatically verify a subset of pre-
viously published inter-aspect assumptions [15] that are implicit in the
code.

e It shows how an additional set of implicit aspect assumptions, from the
same work, can be made explicit through annotations, and how GASR can
verify these explicit assumptions.

Note that the last two items in the list above correspond to effectively im-
plementing part of the future work identified in the text on aspectual assump-
tions [15]. The term aspectual assumptions is used in [15] to identify assumptions
made by aspect developers about the context in which their aspect will be wo-
ven. For example, aspect developers might assume that certain other aspects
will also be woven, that a pair of pointcuts identifies joinpoints that are in a
particular control- or data-flow relationship, or that certain abstract pointcuts
will be instantiated to identify points in the system execution with a certain
meaning. Current aspect languages do not allow these assumptions to be made
explicit, so that they cannot be easily captured let alone validated whenever an
aspect’s usage context changes. This leads to a number of fragility issues with
aspect definitions, making their use and reuse difficult.

GASR was originally presented in previous work [1]. This journal paper
extends the conference publication in multiple ways. It firstly extends the anal-
ysis of related work to more clearly show where existing tools fall short when
compared to GASR and provides a more thorough discussion section. Secondly
it expands GASR to include analysis of metadata in the form of annotations,
expanding the reasoning capabilities of the underlying engine. Thirdly it con-
tains additional evaluation work. This through the more complete application
to the scenarios found in the aspectual assumptions paper, which required def-
initions of explicit assumptions as annotations, specifying the reasoning rules
and inserting the annotations in the source code.

The structure of this text is as follows: first we provide the problem state-
ment of the paper, arguing for the need for GASR. In Section 3 we give an
overview of related work, showing that existing analyses have been ad-hoc or
limited. We then present GASR in Section 4, discussing its implementation and

a selection of its library of logical predicates. This is followed by an illustration
of the usefulness of GASR: realizing detection of implicit aspectual assumptions
in Section 5, as previously identified in [15], and detection of explicit aspectual
assumptions in Section 6, extending the same work. The paper then provides
a discussion in Section 7 before presenting conclusions and avenues for possible
future work.

2. Problem Statement

To enable the modular specification of crosscutting concerns, aspects encap-
sulate both their behavior as well as the invocation conditions for this behavior.
This gives rise to new language features and terminology, which in turn requires
new features for a source code reasoner.

2.1. Terminology and Language Features

Broadly put, an aspect contains two parts: its behavior, specified in a num-
ber of advice, and the invocation specifications for this advice, denoted in point-
cuts. Advice are linked to pointcuts, and whenever a pointcut matches the linked
advice is invoked. Conceptually, to match pointcuts each execution step of the
software is reified as a join point and pointcuts are predicates over join points.
The work of performing join point reification, passing them to all pointcuts, and
running the associated advice if a pointcut matches is performed by the aspect
weaver. Implementation strategies for aspect weavers vary from source-code
preprocessing to aspect-aware virtual machines. A last item of terminology is
the join point shadow for a join point: the piece of source code whose execution
produced that join point.

We now show different language features that the prototypical aspect-oriented
language places at the programmers’ disposal, as an indication towards the
possible complexity of aspectual source code. The example language is As-
PECTJ [14], arguably the best-known and most-used aspect language. ASPECTJ
is an extension of Java that introduces aspect features using a specific syntax.
In AspectlJ, aspect declarations are similar to class declarations and are declared
using the aspect keyword. Aspects can contain methods and fields, but only one
zero-argument constructor. The latter is because aspects cannot be manually
instantiated, the weaver performs this when needed (typically aspects are sin-
gletons). Aspects may be abstract, extend classes and abstract aspects, and
implement interfaces.

Pointcuts in ASPECTJ are a new sort of member declaration that use the
pointcut keyword, and have the standard visibility and inheritance semantics.
Pointcuts have a body, unless they are declared as abstract. Abstract pointcuts
can only be contained in an abstract aspect. The body of a pointcut is a
logical combination of pointcut expressions or a primitive pointcut expression.
Primitive pointcut expressions firstly specify the kind of pointcut: an execution
of a method, a call of a method, getting or setting a field, and so on. Secondly,
they provide a pattern that may match on that kind of execution step of the

software, e.g., a signature of a method. In this pattern wildcards may be used
to generalize over names as well as types.

An example of a quite drastic pointcut that uses a pattern is below: a
pointcut named allFoo that matches on the method calls of all methods of the
class Foo, irrespective of the return type and number of parameters.

1public pointcut allFoo() : call(* Foo.*(..));

Advice are similar to methods in that they declare a body of code and have
parameters. They differ firstly in that they do not have a name, but instead
declare that they need to be invoked before, after, or instead of (around) the join
point. They link to a pointcut by providing the pointcut name, or a pointcut
body (known as using an anonymous pointcut).

Lastly, aspects may also modify the type hierarchy and add inter-type dec-
larations. In the former the aspect declares that given classes or aspects extend
or implement other classes or interfaces. In the latter the aspect adds fields or
methods to other classes, similar to what is allowed in Open Classes [16].

2.2. Classic Example: Aspect Reentrancy

Ag a first, brief, example of a concrete need for aspect-specific source code
reasoning we now present a classic example of an ASPECTJ antipattern regarding
reentrancy. We include it here as it is important, yet simple enough to be briefly
explained. Consider the following as a token of its importance: the ASPECTJ
documentation ‘pitfalls’ section! contains just this one example, and no other.

1aspect Boom {
2 before(): call(* *(..)) { System.out.println("before"); }}

The aspect above declares one advice, with a pointcut body that matches on
all method calls in the program. The behavior of the advice is to make a method
call to the System.out.println method. The pointcut matches on all method calls,
hence also this call, hence before the method is called the advice body is again
executed, leading to an infinite loop.

The antipattern in the above example can be easily detected by an aspect-
aware source code reasoner: there is a possibility for infinite application of an
advice when the join point shadows of the associated pointcut are contained in
this advice.

2.83. Problem: A New Reasoning Need

If we consider aspects as simply a means to achieve behavior subject to
implicit invocation with implicit announcement [17], it may seem that the need
for source code reasoning over aspects is simple. Since in this view aspects
essentially are for altering the control flow of the running application, existing

Ihttp://wuw.eclipse.org/aspectj/doc/next/progguide/pitfalls.html

source code reasoners just need to be extended to take this control flow into
account.

Aspects however go beyond the above as they introduce multiple aspectual
language features that interact with the non-aspectual language features as well
as among themselves. An example of the former is that aspects may change the
class hierarchy of the program. As an example of the latter consider a pointcut
named abstractpc, defined as an abstract pointcut in a root aspect Root and
also used by an advice of Root. abstractpc may be concretized in a child-aspect
Child of Root. It may also be concretized again in an aspect Grandchild that is
a child of Child, i.e., a grandchild of Root. The definition of the actual pointcut
that is used for the advice in Root is the lowest in the hierarchy [15], i.e., the
re-concretization in Grandchild.

As a result, in addition to the classic example of Sect. 2.2, many possible
issues in aspectual code have been separately identified. We provide three ex-
amples. First are aspects assuming specific properties of other aspects to be
present [15], which we will discuss in more detail in Section 5. Second is the
problem of pointcuts that are slightly or subtly incorrect [2], as a result these
fail to match the intended join points, or match unintended join points. Third is
the fragility of pointcuts when the software evolves [6, 7], in this case pointcuts
end up being broken due to changes in the program that were made due to its
evolution. We find it remarkable that for these three examples no single source
code reasoner can yet be used to detect all of these issues such that they can be
revealed using, e.g., a bad smells detection tool.

Also, multiple aspectual design patterns have been presented [18, 19], yet no
mining of these patterns with a source code reasoner has been documented. A
well-known example is the Wormhole [19]: an aspect intervenes in one part of
the control flow to store the value of a specific parameter or variable, and in a
second part retrieves this value and injects it back in the control flow. It is as if
the value passed through a wormhole that lies between both parts. Given that
a pattern is a template, there may be various variations on this template, and
various ways in which these are instantiated. Hence an analysis tool to discover
such patterns or to verify their correct use, e.g., if the stored value is modified
before it is injected, would need to be tailorable to the case at hand.

Lastly, in addition to executable code, source code can contain annotations
that give meta-information, which may also be considered as some form of con-
tract on the source. An example of this is the Java @Override annotation, placed
on methods that are meant to override other methods defined higher up in the
hierarchy. The compiler checks if the overriden method actually exists and will
raise a warning when this is not the case, e.g., if there is a typo in the method
name or the argument types do not match. Such explicit annotation of con-
tracts, together with the verification of these contracts may also be beneficial
for aspect-oriented code, as has been mentioned in previous work [15] and will
be discussed in Section 6. Yet no aspect-oriented code reasoner exists that takes
annotations into account.

From the above, we conclude that there is a need for multiple kinds of source-
code analysis over aspect-oriented software that are general enough such that

they can be used for multiple kinds of analysis, can reason over metadata in
annotations, and moreover are adaptable such that they can be tailored to the
task at hand. In other words, we need a general-purpose source code reasoner
for aspects. With this reasoner we would then be able to, e.g., automatically
identify aspectual assumptions in code, write a bad smells tool that can reveal
errors as in Sect. 2.2, or detect incorrect use of the Wormhole pattern.

3. Related Work

To the best of our knowledge, there is no general-purpose aspect source code
analysis tool. Directly related work consists of specific ad-hoc or limited analyses
made, and indirectly related is work on code comprehension of aspectual source
code, source code reasoning with annotation support and aspect verification.

Getting pointcuts correct can be a hard task [2], and as a result of this,
pointcuts have been the focus of various tracks of research that include code
reasoning. Notable early work is on PointcutDoctor [2], a tool that provides
special-purpose reasoning over pointcuts to establish near matches of pointcuts
as well as the reasons why a given shadow matches, or does not match a specific
pointcut. Related to this is the fragility of pointcuts, as mentioned above.
Wloka et.al. [3] presented a meta-model for pointcut representation and an
impact analysis for pointcuts so that source code refactoring is aspect-aware.
As a result, refactorings that impact shadow matches also include refactoring
proposals for the pointcut, such that these remain valid. In the same line we find
the work on pointcut rejuvenation and Fraglight [4, 5]. New code that is added as
the software evolves may also need to be captured by the existing pointcuts, i.e.,
they need to be changed. Custom analyses are developed that suggests changes
to pointcuts when needed, either considering the aspect developer [4] or the base
code developer [5]. Earlier work in this area [6, 7] also used custom analyses.

Yet reasoning about aspectual source code is not limited to pointcuts only.
For example, ITDVisualizer [8] is a tool that supplies an analysis of the impact of
intertype declarations. It shows how they impact method lookup, and identifies
how code entities are shadowed by intertype declarations. XFindBugs [9] is a
tool that uses static analysis to find potential bugs in aspectual source code.
It defines a catalog of multiple bug patterns for aspect-oriented features, and
implements a set of bug detectors on top of the FindBugs analysis framework?.
Again all of the above tools use a custom reasoner to provide an analysis that
is limited to producing these specific results.

Zhao proposes a change impact analysis for aspect-oriented software [10] by
establishing control and data dependencies. The work effectively extends object-
oriented change analysis to provide support for aspect-oriented code. Last but
not least, the work on Ajana [11] focuses on dataflow analysis for AspeCcTJ
code. More specifically, Ajana is a framework for source-code-level interproce-
dural dataflow analysis, using a control- and data-flow program representation.

2http://findbugs.sourceforge.net/

It provides an object effect analysis and a dependency analysis based on this
representation. Being focused on dataflow analysis, it however does not provide
functionality, e.g., to fully reason over pointcuts or over intertype declarations.

2

—
—
—_—
w
—_

[4, 5] | [6, 7]
+ + |-

x
=)

[10, 11] || GASR

Pointcut Shadows | +
Pointcut Structure | +
Object Structure | +
Aspect Structure | -
Intertype Structure | - - - -
Control Flow | -

Data Flow | - - - - -
Annotations | - - - - - - -

| Customize/Extend [- [- [- | - [-[-1 -]

]+

+
Jr

|

Jr

|]

|

Table 1: Aspectual source code reasoners: does the work reason about ... and
can a user extend or customize the reasoning. In contrast to GASR, none of
previous tools cover all facets and moreover none is extensible or customizable.

In Table 1, we give an overview of what parts of the source code is analyzed
by the different reasoners created for this related work. Notably, none of the
reasoners cover all parts of aspect-oriented source code, and all are restricted to
the specific analyses required for the task at hand. They cannot be extended
with new analyses or the existing analyses cannot be customised by the user. In
contrast, GASR covers all parts of aspect-oriented source code and is extensible
and customizable.

Complementary to the above analyses, code comprehension tools for aspec-
tual source code also include some form of limited reasoning to be able to display
their specific comprehension aids. We highlight two such tools: the AJDT and
AspectMaps.

The AspectJ Development Toolkit (AJDT) [12] is arguably the most mature,
feature-rich and best known tool suite for AOP. It consists of a set of plug-ins
to the Eclipse IDE that add code comprehension features, amongst others. It
provides a “Cross References” view that, when editing an aspect or class, shows
a summary of the join point shadows or advice that apply, respectively. In the
code editor, at each join point shadow, gutter markers are present that reveal in-
formation about the advice. AJDT also provides for a visualization of the source
code, but this feature has been superseded by other aspectual visualizations, the
most recent of which is AspectMaps [13, 20]. AspectMaps is a visualization tool
that shows where in the code aspects apply. Of all aspect visualizations, As-
pectMaps shows the most information about the source code [13]. Moreover,
by using a selective structural zoom, it ensures a scalable visualization from
package level all the way down to method level. At this finest granularity it
shows exactly where advice apply, the order of advice execution at one shadow
and whether the advice has any run-time invocation conditions.

A common thread in all the above work is that the required source code

analysis is provided ad-hoc, entailing a significant duplication of effort. If a
general-purpose aspect-oriented source code reasoner would have existed, this
duplication of effort might have been avoided.

To the best of our knowledge, no aspectual source code reasoner exists that
also takes annotations into account. Existing work on source code analysis with
annotations are purely for non-aspectual code, with different focuses: explicit-
ing contracts for the design-by contracts approach as annotations [21], pluggable
type systems that use annotations to express type qualifiers [22] or take anno-
tations into account when checking [23], keeping annotations and source code
consistent when either is evolved [24].

In Section 6 we show how explicit annotations to AspectJ source code can
be used to validate developer assumptions automatically. This is closely related
to the verification of aspect-oriented software. One system that has previously
explored aspect verification is MAVEN [25], which provides modular verification
of LTL properties of aspects. To provide practical applicability, MAVEN has
later been extended with an ability to derive LTL properties to be verified from
English-language template descriptions [26]. This verification is more powerful
than what we are presenting here, as the LTL approach naturally supports re-
lating multiple points on an execution path and our proposed solution currently
only relates two points on an execution path. However in MAVEN “aspects are
specified directly as state machines” [25] in a language specific to MAVEN. As
a consequence, MAVEN should not be considered as a source code reasoner but
rather as a model checker, and a means to convert source code to a MAVEN
model, to the best of our knowledge, does not exist.

4. Querying ASPECTJ Programs using GASR

We introduce GASR (General-purpose Aspectual Source code Reasoner) as
a tool for answering user-specified questions about the structure as well as the
behavior of an aspect-oriented program. Examples range from “which pointcut
definitons are overridden in a subtype?” over “which pointcuts have a join point
shadow in an advice?” to “can these advices be executed consecutively?”. GASR
specifically targets programs implemented in ASPECTJ, arguably the most ap-
propriate target language for an aspectual source code reasoning infrastructure.
We discuss this choice in more detail in Section 7.

Users’ questions have to be specified as a logic query of which the condi-
tions quantify over the program’s source code. The expressiveness of the logic
paradigm has been shown to facilitate specifying the characteristics of sought
after code. Once specified in a logic program query, retrieving source code ele-
ments that exhibit these characteristics is left to the querying tool. This relieves
users of having to implement an imperative search themselves. As such, GASR
is a tool in the tradition of logic program querying. Other examples include
CODEQUEST [27], PQL [28] and SouL [29].

GASR owes its query language to the CORE.LOGIC? port to Clojure of MINIKAN-
REN [30], and its IDE integration to the EKEKO [31] Eclipse plugin. The EKEKO
plugin enables launching logic program queries from within Eclipse. These
queries are passed for evaluation to the logic engine of CORE.LOGIC, which re-
turns a collection of source code elements from the queried program that satisfy
all of the query’s conditions. The EKEKO plugin subsequently presents these
elements to the user for inspection. Section 4.1 introduces the query syntax and
their evaluation.

GASR itself provides an extensive library of logic predicates to be used within
queries about AspectJ programs. These predicates expose information from the
AspectJ compiler about the state of the queried program. The source code el-
ements returned for a query are in fact instances of various org.aspectj.weaver
classes, more specifically those that were used during the most recent compila-
tion of the AspectJ program in the Eclipse workspace. As such, solutions to a
query always correspond to the current state of the queried program. Section 4.2
details the GASR predicate library and their implementation.

4.1. Launching Program Queries

Queries can be launched from a read-eval-print loop using the exexo* special
form. It takes a vector of logic variables, each denoted by a starting question
mark, as its first argument and this is then followed by a sequence of logic goals:

1 (ekeko* [?x ?y]
2 (contains [1 2] 7x)
3 (contains [3 4] 7?y))

The binary predicate contains/2, used by both goals, holds if its first argu-
ment is a collection that contains the second argument. Solutions to a query
consist of the different bindings for its variables such that all logic goals succeed.
Internally, the logic engine performs an exploration of all possible results, using
backtracking to yield the different bindings for logic variables. The four solu-
tions to the above query consist of bindings [7x 7y] such that ?x is an element
of vector [1 2] and 7y is an element of vector [3 4]: ([1 3] [1 4] [2 3] [2 41).

Logic variables have to be introduced explicitly into a lexical scope. Above,
the ekexox special form introduced two variables into the scope of its logic con-
ditions. Additional variables can be introduced through the fresh special form:

1 (ekeko* [?x]

2> (differs 7x 4)

3 (fresh [7y]

4 (equals ?y ?x)

5 (contains [3 4] ?y)))

The above query has but one solution: ([3]). Indeed, 3 is the only binding for
7x such that all goals succeed. The differs/2 goal on line 2 imposes a disequality

Shttps://github.com/clojure/core.logic

10

constraint such that any binding for ?x has to differ from 4. The equals/2 goal
on line 4 requires 7x and the newly introduced 7y to unify.

Finally, new predicates can be defined as regular Clojure functions that
return a logic goal. As such, the aforementioned special forms give rise to an
embedding of logic programming in a functional language.

1 (defn contains+ [7c 7e]

2 (conde [(contains 7c 7e)]

3 [(fresh [?7x]

4 (contains 7c ?x)

5 (contains+ ?x ?e)]1))))

Here, the special form conde returns a goal that is the disjunction of one or
more goals. The newly defined predicate contains+ therefore succeeds for 7e that
reside at an arbitrary depth within a collection 7c.

Note that an idiomatic Prolog definition of the above would consist of two
rules that define the same predicate: one for the base case and one for the
recursive case, thus creating an implicit choice point. By relying on function
definition, the above implementation has to make such choice points explicit.

4.2. The Predicate Library of GASR

To enable querying ASPECTJ programs, GASR provides a library of predi-
cates that can be used in EKEKO queries. For instance, solutions to the follow-
ing query correspond to instances of the aspect reentrancy example described
in Section 2.2:

1 (ekeko* [?aspect ?7advice]

2 (fresh [?shadow]

3 (aspect-advice 7aspect ?advice)

4 (advice-shadow 7advice ?shadow)

5 (shadow-enclosing ?shadow ?advice)))

Upon backtracking, the goal on line 3 successively binds 7advice with each advice
of an aspect 7aspect —which is also bound successively to each aspect known to
the AspECTJ weaver. The goal on line 4 binds ?shadow to one of the join point
shadows of this advice, while the goal on line 5 requires 7advice to unify with
the immediately enclosing source code entity of 7shadow. Hence, 7advice will be
bound to an advice that advices itself, i.e., a possible infinite loop. Note that,
by convention, the names of predicates that reify an n-ary relation consist of n
components separated by a -, each describing an element of the relation. Also,
vertical bars | separate words within the description of a single component.

The predicates used in the above query concern the structure of the woven
AspPECTJ program. In contrast, the predicates below concern possible behavior
of the program at run-time. Its solutions correspond to possible instances of the
wormbhole pattern described in Section 2.3:

11

1 (ekeko* [7aspect ?advicelentry 7advicelexit 7field]
(aspect-advice 7aspect ?advicelentry)

(type-field ?aspect ?7field)

(advice|writes-field ?advicelentry 7field)

(differs ?advice|exit ?advicelentry)

(aspect-advice 7aspect ?advicelexit)
(advice|reads-field ?7advicelexit ?field)
(advice-reachable|advice ?advicelentry 7advicelexit))

0 N e U A W N

The first goal binds 7advice|entry to an advice that will serve as the entry point
of the wormhole 7aspect. Lines 3—4 therefore ensure that this advice writes to
a 7field defined in the same aspect. Lines 5-6 require this aspect to feature a
different 7advicelexit that will serve as the exit point of the wormhole. As such,
the exit advice has to read from the field written to by the entry advice (line
7). Note how multiple occurrences of a logic variable link these goals together.
The final goal conservatively ensures that there might be an execution of the
woven program in which 7advicelexit is executed after advice|entry.

We have developed a comprehensive library of logic predicates, which we
do not discuss in full here. Instead, Table 2 and Table 3 list representative
predicates that reify structural resp. behavioral relations between ASPECTJ
source code entities. We refer to the online documentation® for an overview
of the complete predicate library. The remainder of this section discusses the
highlights of its implementation.

4.2.1. Predicates Reifying Structural Relations

The predicates listed in Table 2 reify the structural relations between the
source code entities of an ASPECTJ program (e.g., types and their members,
aspects and their pointcut definitions, advices and their shadows). To this end,
their implementation consults the domain model populated by the ASPECTJ
weaver after each compilation.

EKEKO supports calling out to Java from within a logic goal. This obviates
the need to convert the weaver’s domain objects to logic facts. Instead, they
are kept as instances of various org.aspectj.weaver classes. The binary predicate
aspect-pointcutdefinition/2, €.g., is as follows:

1(defn aspect-pointcutdefinition [?aspect ?pcdef]

2 (fresh [?pcdefs]

3 (aspect 7aspect)

4 (equals 7?pcdefs (.getDeclaredPointcuts ?aspect))
5 (contains ?pcdefs ?pcdef)))

The predicate reifies the relation between an aspect and one of its own, non-
inherited pointcut definitions. The goal on line 3 ensures that 7aspect is bound to
the weaver’s representation of an aspect (i.e., an instance of ResolvedType). This
enables the goal on line 4 to unify 7pcdefs with the result returned by method
getDeclaredPointcuts() on the binding of 7aspect. Upon backtracking, the goal

“nttps://github.com/cderoove/damp.ekeko.aspectj

12

Predicate

Reified Relation Of

(type 7eype)

(type-declaredsuper ?type 7super)
(type-declaredinterface ?type ?interface)

(type-super+ ?type ?super)

(type-method ?type 7method)
(type-method+ 7type 7method)

All types known to the weaver (i.e., aspects, classes,
interfaces, enums, etc).

A type and its direct declared superclass or -aspect.
A type and one of the interfaces it declares to be
implementing or extending directly.

A type and one of its direct or indirect super types
(classes, aspects as well as interfaces), including those
that stem from an intertype declaration.

A type and one of its declared methods.

A type and one of its declared or inherited methods.
Does not include intertype declaration methods.

(aspect 7asp)
(aspect-pointcutdefinition zasp 7pcder)
(aspect-advice 7asp 7adv)

(aspect-intertype 7asp zintertype)

(aspect-declare 7asp ?declare)

All known aspects. Subrelation of type/2.

An aspect and one of its declared pointcut definitions.
An aspect and one of its declared advice.

An aspect and one of its intertype member declara-
tions.

An aspect and one of its declare declarations (e.g.,
parents, precedence).

(pointcutdefinition-pointcut 7pcder 7pc)
(pointcutdefinition-name 7pcdef 7name)

(point cutdefinition\abstract 7pcdef)

A non-abstract pointcut definition and its pointcut.
A pointcut definition and its name.

Abstract pointcut definitions. Sub-relation of
pointcutdefinition/1.

(advice|before 7adv)

(advice-pointcut zadv 7pointcut)

(advice-pointcutdefinition radv 7pcder)

before advices. Sub-relation of advice/1.

An advice and its pointcut. The latter either an
anonymous pointcut, or a pointcut definition.

An advice and the concrete pointcutdefinition its
name resolves to (i.e., overrides of possibly abstract
pointcutdefinitions are taken into account).

(advice-shadow 7adv ?shadow)

(shadow-enclosing ?shadow 7enclosing)

(shadow-ancesor |type 7shadow 7type)

An advice and one of its join point shadows.

A shadow and its immediately enclosing entity or the
entity itself for entity shadows. This entity can be a
class, aspect, enum, method, intertype method, ad-
vice, etc ...

A shadow and its first enclosing type entity (e.g., as-
pect, class, enum).

(intertype-member-target 7itd ?mem Ztype)

An intertype declaration, the member (i.e., field,
method or constructor) it declares, and the type to
which this member is added.

(declare|parents ?7dec)
(declare|parents-target-parent
7dec 7target 7parent)

(declare\precedence 7dec)

aspec ominates-aspect 7dasp 7sasp
(tld t t)

declare parents. Subrelation of declare/1.

declare parents with one of the target types matching
its pattern and the corresponding supertype.

declare precedence. Subrelation of declare/1.

Actual domination relations between aspects that re-
sult from declare precedence declarations.

Table 2: Representative predicates concerning structure.

on line 5 will therefore successively unify ?pcdet with each of the elements of the
returned collection of ResolvedPointcutDefinition instances.

4.2.2. Predicates for Annotations

In addition to reasoning about the code, GASR can also take into account the
metadata placed in the source in the form of Java annotations. The type of such

13

annotations is codified through an annotation type declaration that essentially
specfies a number of key-value attributes. Such annotations are also reified in
GASR, which allows for them to be queried and their respective key-value pairs
to be obtained.

For example, consider adding explicit labels to source code entities
through a @Label annotation (which we will use in Section 6.2). First
a type needs to be created, let’s say we use the fully qualified name
damp . ekeko.aspectj.annotations.Label, and it specifies that the label takes
one argument: a string. Source code can then be queried for all these annota-
tions by using the predicate below, and binding 7atn to the fully qualified name
damp . ekeko.aspectj.annotations.Label in the query.

1(defn type-annotation-annotation|typelname [7type 7ann 7atn]
2 (fresh [7at]

3 (type-annotation ?type ?ann)

4 (annotation-annotationtype 7ann 7at)

5 (type-name ?at ?atn)))

The goal on line 3 successively binds 7ann with each annotation of a type
?type, in turn successively bound to each type. In line 4 7at is bound to the
annotation type declaration of the annotation, and in line 5 7atn unifies with
the name of this type.

To be able to reason about the contents of the annotation, the following
predicate exposes the key and value pairs present in an annotation. It relies
on the previous predicate to obtain an annotation of which its containing type
and annotation type name are bound (in line 4) to the logic variables given as
argument. For these annotations ?ann, line 5 successively binds the different 7xey
and ?value combinations through backtracking.

1(defn type-annotation|key-annotation|value-annotation|type|name
2 [7type %key ?value ?atn]

3 (fresh [?ann]

4 (type-annotation-annotation|type|name ?type ?ann 7atn)

5 (annotation-key-value 7ann 7key ?value)))

The above predicate can be used in the same way, binding ?atn to the fully
qualified name damp .ekeko.aspectj.annotations.Label in the query. If such
queries are frequently used it is however bothersome to need to specify the fully
qualified name every time. One option for a programmer would be to add a
custom predicate to the system to simplify things as follows:

1 (defn labeled|type-label|val [?type ?vall

2 (fresh [7key]

3 (type-annotationl|key-annotation|value-annotation|type|name ?type 7key ?val
4 "damp .ekeko.aspectj.annotations.Label")))

This predicate successively binds types to 7type and successively the values
of the labels present to ?val. To do this, it uses the previous predicate to bind
the label annotations in lines 3 and 4. From these annotations only the values

14

are bound, because since labels only have one key-value pair there is no need to
consider the key.

An alternative to the use of fully qualified names for types would be to use
type patterns, as present in ASPECTJ. This not only shortens the specification

Predicate Reified Relation Of
(advice|reads-field 7advice 7field) An advice and one of the fields it reads from.
(advice|writes-field 7advice ?field) An advice and one of the fields it writes to.

(advice-reachable|advice 7adavicei 7advice2) An advice and another advice such that the
latter may be executed after the former. Con-
cretely, this is the relation of two successive
advices on a path through the inter-procedural
control flow graph of the woven program.

(behavior-reachable|behavior 7bent 7ben2) An advice, method or constructor and another
advice, method or constructor that have the
same relation as above.

(field-soot|field 7field 7scot) A field and the Soor field that represents its
implementation.
(advice-soot|method 7advice ?soot) An advice and the SooT method that repre-

sents its implementation.

(intertype|method-soot|method ritmethod 7so0t) A method declared by an intertype declaration
and the SooT method that represents its im-
plementation.

(soot |method-soot |unit 7method 7unit) A Sootr method and one of the units in
its body. These correspond to instructions
in Soor’s JiMpLE intermediate representa-
tion [32] of the woven program.

(soot |unit |reads-soot |valuebox 7unit 7va1) A SOOT unit and one of the values (e.g., pa-
rameters, field references, expressions...) it
reads from.

(soot |unit |writes-soot|valuebox zumnit 7va1) A SOOT unit and one of the values it writes to.

(icfglmain-start ricfg 7ictg|start) The inter-procedural control flow graph of the
woven program and its starting node.

(icfgnode-unit 7node 7unit) A node of the inter-procedural control flow
graph and a SooT unit.

(icfgnode-method 7node 7metnod) A node of the inter-procedural control flow
graph and the Soot method in which it re-
sides.

(icfgnode-stack 7node 7stack) A node of the inter-procedural control flow

graph and the (finite) configuration of the call
stack at the time it was encountered during a
traversal.

(path 7icfg 7start 7end [vi...vn] Q1 ...Qn) Inter-procedural control flow graphs ?icfg in
which there exists a path from ?start till 7end
that is of the form described by the regular
path expression gqi...¢qn. Here g is one of the
regular path primitives provided by the QwaL
library [33]: q=> skips a single node, q=>« skips
zero or more nodes, and q=>+ skips one or more
nodes on the path. Primitive qcurrent evalu-
ates logic goals against the current node on
the path, possibly involving one of the vy ...v,
logic variables.

Table 3: Representative predicates concerning behavior.

15

of types, but also gives more flexibility to the programmer when specifying type
names (as will be shown in Section 6.1).

We have included type pattern matching in GASR by simply hooking into
the ASPECTJ compiler’s pattern matching logic, and extending it with the logic
for an extra wildcard: =. As a result, the semantics of type patterns we use is
an extension of the ASPECTJ semantics:

e The * wildcard on its own matches all types.
e The * wildcard matches zero or more characters except for the dot.

e The .. wildcard matches any sequence of characters that start and end
with a dot.

e The + wildcard matches all subtypes of a type (or a collection of types),
including the type itself. It needs to immediately follow a type name
pattern.

e The = wildcard matches all subtypes of a type (or a collection of types),
except for the type itself. It needs to immediately follow a type name
pattern.

Considering the Label example, using wildcards would allow us to specify
*..Label instead of damp.ekeko.aspectj.annotations.Label in queries.

4.2.8. Predicates Reifying Behavioral Relations

The predicates listed in Table 3 reify control flow and data flow relations
between the source code entities of the woven ASpECTJ program. While the
former concerns the order in which instructions may be executed at run-time,
the latter concerns the values these instructions may operate upon.

The predicates at the top of Table 3 reify behavioral relations between ele-
ments that stem from the weaver’s domain model. These can be combined with
the structural predicates of Table 2. For example, solutions to the following
consist of an advice and a type of which the advice modifies a field:

1 (ekeko* [?advice ?7type]

2 (fresh [7field]

3 (advice|writes-field ?advice ?field)
4 (type-field ?type 7field)))

These predicates are implemented themselves in terms of predicates that
quantify over static analysis results provided by the SOOT [32] analysis frame-
work (third row in Table 3) and predicates that link both sources of infor-
mation together (second row in Table 3). For instance, the binary predicate
advice|writes-field/2 is implemented as follows:

16

1
2
3
4
5
6
7
8
9

10

(defn advice|writes-field [7advice 7field]
(fresh [?soot|method ?soot|field ?soot|unit
?vbox ?valuel]

(advice-soot |method ?advice ?soot|method)
(field-soot|field ?field ?soot|field)
(soot|method-soot|unit ?sootImethod 7soot|unit)
(soot|unit|writes-soot|valuebox ?soot|unit ?vbox)
(soot|valuebox-soot|value ?vbox 7value)
(succeeds (instance? soot.jimple.FieldRef ?value))
(equals ?soot|field (.getField ?value))))

The goal on line 4 retrieves SOOT’s representation of the method that rep-
resents the weaver’s advice 7advice in the woven program. The goal on line 5
does the same for the weaver’s field 7field. The remaining goals use predicates
that reify relations between SOOT elements only. Upon backtracking, the goal
on line 6 will successively unify ?soot|unit with one of the units in the body
of 7soot|method. These correspond to instructions in SOOT’s JIMPLE intermedi-
ate representation [32] of the woven program. Lines 710 ensure that this unit
writes to the SOOT field 7soot|field that represents the weaver’s field ?field in
the woven program. Note that the final goal calls out to SOOT to resolve a field
reference to the referenced field —possible because we forego a conversion to
logic facts.

Predicates such as advice-reachable|advice/2, which reifies the relation be-
tween an advice and another advice such that the latter may be executed af-
ter the former, require more detailed information about the woven program.
They are hence implemented in terms of predicates that quantify over the paths
through an inter-procedural control flow graph of the woven program (fourth
row in Table 3). We compute this graph by linking the intra-procedural control
flow graphs of callers and callees using the results of SOOT’s points-to analysis,
i.e., the demand-driven, context-sensitive version by Sridharan et al. [34]. We
refer to the online documentation of EKEKO for behavioral predicates that reify
may-alias and must-alias dataflow relations between SOOT values based on this
analysis.

To summarize: the possible methods an invocation may resolve to are deter-
mined using a compile-time approximation of the dynamic type of its receiver,
i.e., the types of the objects in its points-to set, rather than its static type —
which is more precise. Note that multiple call sites result in control flow splits
at the exit points of callees for link-based whole-program graphs. Our graph
traversal predicates therefore take care not to follow unrealizable paths, with-
out endangering termination (i.e., a finite call stack ensures that successors of
a method’s exit node agree with an earlier method invocation).

Of the graph traversal predicates at the bottom of Table 3, path/n is of
special interest as it embodies the implementation of parametric regular path
expressions [35, 36] in EKEKO (which we have applied in earlier work to query the
history of versioned software [33]). Regular path expressions are akin to regular
expressions, except that they consist of logic goals to which regular expression
operators have been applied. Rather than matching a sequence of characters in a
string, they match paths through a graph along which their logic goals succeed.

17

This is illustrated by the implementation of predicate advice-reachable|advice/2:

1 (defn advice-reachable|advice [?advicel ?advice2]
2 (fresh [?s|methodl ?s|method?2

3 ?icfg ?icfglstart 7icfg|end]

4 (advice-soot|method 7advicel ?s|methodl)

5 (differs ?advicel ?advice?2)

6 (advice-soot|method 7advice2 ?s|method2)

7 (icfglmain-start ?icfg ?icfglstart)

8 (path 7icfg ?icfglstart ?icfglend []

9

(g=>%)
10 (qcurrent [?n]
11 (icfgnode-method 7n ?slmethodl))
12 (g=>+)
13 (qcurrent [?n]
14 (icfgnode-method n 7s|method2)))))

The goals on lines 46 of quantify over two distinct advices and their cor-
responding SOOT methods in the woven program. Line 7 unifies 7icfg with an
inter-procedural control flow graph that starts at the main() method of the wo-
ven program. The goal on line 8 succeeds if there is a path through this graph
from node 7icfglstart to 7icfglend that is of the form described by the regular
path expression in its body: zero or more non-distinct nodes (i.e., nodes against
which no logic goals have to succeed) (line 9), followed by one node that resides
in the SOOT method corresponding to 7advice1 (lines 10-11), followed in turn by
one or more non-distinct nodes (line 12), concluded by a node that resides in
the SOOT method corresponding to 7advice2 (line 13).

Note that a similar regular path expression can be used to warn about possi-
bly incorrect implementations of the wormhole pattern described in Section 2.3.
These are characterized by an execution path on which the wormholed field is
written to inbetween the entry and exit advice.

5. Detecting Implicit Aspect Assumptions with GASR

As an illustration of the usefulness of GASR we now show how it can be used
to implement detection of developers’ assumptions about aspect usage. This
effectively extends the “Aspect Assumptions” work of Zschaler and Rashid [15].
For brevity, in the rest of this paper we will refer to this work as AA. For AA
three non-trivial aspectual systems were studied, to discover the assumptions
made by the different modules about the functionality, presence and implemen-
tation of other modules. The AA paper starts a catalogue of such assumption
types, based on the assumptions discovered in the three case studies. All of the
developers’ assumptions found in the code were implicit: there is no denotation
or documentation that states the meaning of the assumptions, and there are no
rules laid out that codify how to ensure that the assumption is met. Hence,
to discover the assumptions, the investigation consisted of manual inspection of
the source code and developer interviews.

The AA text also proposes a followup that, to the best of our knowledge,
has not previously been performed. It consists in codifying the assumptions

18

such that these can be “used to semi-automatically identify assumptions in other
aspect code” [15]. This would allow, on the one hand for implicit assumptions to
be elicited from the source code, and on the other hand for known assumptions
to be verified. For the latter, the ideal case would be “making fully automatic
verification a feasible goal for at least some of the assumption categories” [15].
In this section we show how GASR can be used to perform exactly this. We
implement elicitation rules for a subset of these implicit aspect assumptions
and run them on two of the three case studies used in AA®. We consider that
providing a complete set of rules would be a separate contribution and hence
out of the scope of this work.

Concretely, we restrict ourselves to inter-aspect assumptions (Sect. 3.1.1
in [15]) and run the experiments on the HealthWatcher [37] and MobileMe-
dia [38] systems. We implemented analysis rules for all implicit assumptions
that can be sufficiently formalized into a set of rules, or approximated by a
heuristic, codified as a set of rules. All these rules were developed on a test-first
basis and both the rules and the test cases are available online®. After running
the analyses, the results were verified for correctness and completeness. This
was achieved by manually inspecting both the source code as well as the full list
of assumption instances published as additional material of the AA paper”. Our
results confirm the assumption instances listed and, more importantly, provide
new assumption instances that were overseen in AA. The latter clearly demon-
strates the advantages of automatic aspectual source code reasoning, even on
assumptions that are implicit in the source code.

We do not fully document all the analyses we created for assumption identi-
fication, for brevity. Instead we choose to focus here on the interesting analyses:
those that achieve fully automatic verification, reveal new assumption instances
and show customizability.

5.1. Assumptions on concretisation of pointcuts

The first assumption we talk about here was already mentioned in Sect. 2.3:
an abstract pointcut that is concretized in a subclass and re-concretized in one of
its subclasses. The implicit assumption is that in such a case the aspect actually
would wish to preserve existing behavior and hence should not override already
concretised pointcuts. We can use GASR to perform fully automatic verification
of this assumption, yielding a first step of the followup work proposed in the
AA paper. The following logic rule will reveal violations of the assumption:

(defn pointcut-concretized-reconcretized
[?pointcut ?cpointcut ?rcpointcut]
(all
(pointcut-concretizedby ?pointcut ?cpointcut)
(pointcut-concretizedby ?cpointcut ?rcpointcut)))

5The third system investigated in AA currently fails to compile due to an AspecTJ internal
compiler error and hence could not be analysed by us.

6 Available at https://github.com/cderoove/damp.ekeko.aspectj

7 Available at http://www.steffen-zschaler.de/publications/rivar_data/

19

N

In line 4 of the code above, we find a ?pointcut that is concretised by a
second ?cpointcut, and in line 5 we find a ?rcpointcut that concretises ?cpointcut.
Any solutions for this goal hence consist of a ?pointcut that is concretised by
?cpointcut and reconcretised by ?rcpointcut.

We have queried both example case studies for matches of this rule and have
found none. In other words there are no cases where this assumption has been
violated, which is in accordance to the results published in AA.

5.2. Precedence assumptions

AsPECTJ provides for a mechanism to order the execution of advice when
multiple advice apply at a given join point. It consists of precedence relations
between different aspects and advice. This results in a domination order that
determines the execution order of advice. The language contains precedence
rules that determine dominance between the aspects in an inheritance tree.
Additionally, dominance between advice of the same aspect is determined by
their order in the source code. The developer may also add declarations of
precedence between different aspects. One precedence assumption stated in
AA is that the implicit precedence rules of the language are not modified by
the precedence declarations that are explicitly stated by the developers. GASR
can also be used to provide fully automatic verification of this assumption, as
follows:

(defn overridden|imp|precedence [?aspl ?asp2]

(all
(aspect|dominates-aspect ?asp2 Zaspl)
(aspect|implicitdominates-aspect+ 7aspl 7asp2)))

Line 3 of the above rule provides bindings for domination relationships be-
tween aspects that have been explicitly declared by the developer, while line 4
succeeds for implicit domination relationships that are the opposite. The re-
sulting bindings hence violate the aspect assumption. We have found none in
the case studies, again in accordance to the results found in AA.

Note that development of the rules included thorough testing using a com-
prehensive test suite, where violations are indeed detected when present. Not
finding any violations in both these case studies is simply a consequence of using
these specific case studies. We consider that a search for a case study that does
violate these rules would consist in an large amount of work that would however
not add any significant value to the research. Hence we have not undertaken
such a search.

5.8. Inclusion assumptions of aspects

AA describes inclusion assumptions of aspects in general as “Some aspects
require other aspects to be deployed to function correctly.” This general as-
sumption relies on the implicit meaning of “correct” functioning and therefore
cannot be unambiguously made explicit, i.e., defined in code rules that cap-
ture all the requirements of presence of other aspects. The paper however also
identifies a specific variant: an aspect defines a marker interface, i.e., an empty

20

interface, and another aspect contains a declare parents statement that adds it
as an implemented interface to a given class.

The cases identified in the code studied for AA are actually a generaliza-
tion of the use of marker interfaces: the interface sometimes is stand-alone,
i.e., defined in its own compilation unit. Moreover, aspects may refer to a sub-
interface of this interface. The rules below successfully identify these assumption
instances:

1 (defn markerinterface [?interface]

2 (fresh [?member]

3 (interface ?interface)

4 (fails (type-member ?interface 7member))))

5 (defn aspect-declareparents|markerinterface
6 [?aspect ?interface]
7 (fresh [?superinterface ?declare]

8 (markerinterface ?superinterface)

9 (iface-self|or|sub ?superinterface ?interface)

10 (declare|parents-parent|type 7declare ?interface)
11 (aspect-declare ?aspect ?declare)))

This code first defines a rule for a marker interface: an interface (line 3)
that fails to have any members (line 4), i.e., is a marker interface. This is then
used in the assumption rule as a goal in line 8. Line 9 provides bindings for
the interface and all its direct and indirect subinterfaces in ?interface. As a
result, line 10 succeeds on all declare parents statements of marker interfaces
or their (in)direct subinterfaces. Line 11 reveals the 7aspect that contains this
declaration.

The above rules identify the known instances of this assumption. But
more importantly, they also reveal three previously unidentified instances in the
HealthWatcher case. Firstly, the ServletCommanding aspect refers to the Com-
mandReceiver empty interface, which is stand-alone and specifically designed for
aspects to use as a marker interface, as revealed by its comments. Secondly,
the UpdateStateObserver aspects refers to the Observer interface contained in
the ObserverProtocol aspect. This nested interface was also created specifically
for other aspects to mark, as indicated by its comments. Thirdly, analogous to
the previous instance, UpdateStateObserver also refers to the Subject interface
contained in the ObserverProtocol aspect, also created for this. The fact that
these assumption instances have been overlooked in AA clearly demonstrates
the benefits of automated analysis as enabled by GASR.

5.4. Mutual Ezxclusion Assumptions

AA states that “aspects may also be mutually exclusive”, i.e., of the mutually
exclusive set only one aspect may be deployed. Again, this assumption relies
on an implicit meaning: “mutually exclusive”. Hence it also cannot be unam-
biguously defined in a code rule. At most we can infer some heuristics that can
give possible cases for such a mutual exclusion. Based on the conjecture that
mutually exclusive aspects may provide different implementations for the same

21

feature and hence act on the same parts of the software, we present two such
heuristics here: having the same pointcut name and matching on the same join
point shadows.

We do not claim that this conjecture and the resulting heuristics are par-
ticularly efficient, nor even valid. These only serve as an illustration of how we
can use GASR to (attempt to) make implicit assumptions explicit and establish
whether the software under study adheres to these assumptions. An arguably
better solution would be to make such assumptions explicit in the source code,
e.g., through annotations, and base verification of the assumptions on those
annotations. This will be accomplished in Section 6.

5.4.1. Same Pointcut Name

For this heuristic we assume that the name of the pointcuts convey their
semantics. Hence if two aspects use pointcuts with the same name they may
implement the same feature. The following rule reveals such aspects:

(defn same|pointcutname-aspectl-aspect2
[?name 7aspectl ?aspect2:|
(fresh [?pcl 7pc2]
(differs ?aspectl ?7aspect2)
(aspect-pointcutdefinition ?aspectl ?pcl)
(aspect-pointcutdefinition 7aspect2 ?pc2)
(pointcutdefinition-name ?pcl ?name)
(pointcutdefinition-name 7pc2 ?name)))

I N

The code of the rule is straightforward, obtaining pointcut definitions of two
different aspects where the name of the pointcut is the same. For the Health-
Watcher case this rule only reveals two cases where an abstract pointcut is
concretized. In MobileMedia however 146 cases are detected, defying manual
analysis of each case. It is immediately apparent that a small subset of pointcut
names are present a sizeable amount of times: “handleCommandAction”, “init-
Menu” and “constructor”. This is because many aspects are used to implement
a command pattern and they match on these pointcuts to realize the pattern.
Using GASR we can eliminate these matches from the rule by amending extra

conditions to the query, as below:

1 (ekeko [?name 7asl ?as2]

2 (all

3 (same|pointcutname-aspectl-aspect2 7name 7asl 7as2)
4 (differs 7name "handleCommandAction")

5 (differs 7name "constructor")

6 (differs 7name "initMenu")))

Running this query returns eleven different matches, which is a number
that allows for manual analysis. This actually reveals six cases of copy-paste

VAN

reuse of a pointcut: “createMediaData”, “getMediaController”, “goToPreviousS-
creen”; “initForm”, “appendMedias” and “start App”. The two remaining pointcut
names: “resetMediaData” and “showImage” do not reveal mutual exclusion of

aspects.

22

© 0 N e U A W N e

10
11

The use of this heuristic did not reveal assumption instances but is nonethe-
less valuable. This is because its use in the MobileMedia case study illustrates
the advantage of a general-purpose code reasoner to adapt code queries to the
actual case being studied. In this case it allowed for filtering out a high number
of false negatives. This resulted in the discovery of six cases of copy-paste reuse,
which is arguably not a good characteristic of the code.

5.4.2. Same join point shadows

Using the same pointcut names is not the only possible indication of im-
plementing the same features. This second heuristic considers the join point
shadows of two aspects. If two different aspects have the same collection of
shadows, they may implement the same feature. This can be detected using the
code below.

(defn sameshadows|aspectl-aspect2
[?aspectl ?7aspect2]
(fresh [?shadowsl ?shadows2]
(aspect 7aspectl) (aspect Zaspect2)
(differs?aspectl ?aspect2)
(findall ?shadowl
(aspect-shadow 7aspectl ?shadowl) ?shadowsl)
(findall ?shadow?2
(aspect-shadow ?aspect2 ?shadow2) ?shadows2)
(differs ?shadowsl []) (differs ?shadows2 [])
(same-elements 7?shadowsl ?shadows2)))

Notable here are lines 6 and 8: all shadows of both aspects are gathered in
the collections ?shadowsi and ?shadows2, respectively. Line 10 ensures that the
collections are not empty, to exclude aspects without advice. Line 11 verifies
that the collections have the same elements, i.e., are the same.

For the HealthWatcher case two matches are found: HWTransactionExcep-
tionHandler and HWDistributionExceptionHandler. Both aspects perform com-
plementary exception handling: one for transaction exceptions and one for RMI
exceptions. In MobileMedia nine different matches are found, of which one is a
mutual exclusion case: OneAlternativeFeature and TwoAlternativeFeatures. Both
add an exit command to the same menu and hence are mutually exclusive. This
case was not mentioned in the AA paper due to space limitations, but is present
in the raw data.

5.5. Assumptions on the use of Inter-Type Declarations

One kind of purpose for inter-type declarations is to provide additional public
features that are packaged in the aspect. In these cases these methods “are often
not used from the declaring aspect” [15], so the implicit assumption is that
other code will call these aspects at some points. GASR accomplishes automatic
verification of this assumption by reasoning over the results of our extended soot
analysis, discussed in Sect. 4.2. The code is as follows:

23

1(defn intertypemethod|unused [7itmethod]

2 (fresh [?sootmethod ?caller]

3 (intertype|method ?itmethod)

4 (fails (all

5 (intertype Imethod-soot|method

6 ?itmethod 7sootmethod)

7 (soot|method|callee-soot |method|caller
8 ?sootmethod 7caller)))))

In the code above, line 3 provides bindings for methods that are inter-type
declarations in ?itmethod. Lines 5 and 6 provide the bridge between the method
and the corresponding soot method, and lines 7 and 8 find methods that call
that soot method, binding these to ?caller. The goal in line 4 fails if the goals
in lines 5-8 succeed, i.e., if no bindings can be found for 7caller. As a result
the rule succeeds for inter-type declarations that are not called.

In the case studies we have found one violation of this assumption in Health-
Watcher: Command.isExecutable() in the CommandProtocol aspect is a default
implementation for the abstract method declared in the Command class. Yet
this method is never referenced at all. A record of this violation of the assump-
tion is not present in the raw data of AA. Hence this is again a new discovery
made thanks to GASR.

5.6. Conclusion

In this section we have illustrated the usefulness of GASR by implementing
detection of aspect assumptions (AA) that are implicit in the code. We have
implemented logic rules for the detection of inter-aspect assumptions that have
been elicited in earlier work [15]. This effectively achieves some of the future
work laid out in that publication. We have run these rules on two of the three
systems that were used for discovering the aspect assumptions. The results of
these GASR queries were verified for correctness and completeness by manually
inspecting the source code as well as by cross-checking with the full published
list of assumption instances.

All the assumption instances that had been previously found were detected
using GASR. More important though are the three following results: First,
we achieved fully automatic verification of assumption instances in Section 5.1
and 5.2. Second, we also detected three previously unknown assumption in-
stances in Section 5.3 and one in Section 5.5. Third, we have shown in Sec-
tion 5.4.1 how the general-purpose nature of GASR enables the tailoring of an
existing rule to the software under study. Thanks to this, we incidentally found
six cases of copy-paste reuse of pointcuts.

6. Detecting Explicit Aspect Assumptions with GASR

Section 5 showed one use of GASR for analysing aspect-oriented programs.
However, the automated analysis introduced there may only tell us that a par-
ticular assumption might be made by a given piece of aspect code, or that code

24

may violate an assumption, for example as discussed in Section 5.4. This analy-
sis cannot confirm that such an assumption s indeed being made by the author
of that code or that the code indeed violates the assumption. The only way
in which we can ensure we capture the assumptions of the developers and to
verify these assumptions is to provide developers with ways of expressing their
assumptions directly in the code and have detection rules that rely on this ex-
plicit information. As we have already noted in our previous work on aspectual
assumptions [15](AA), we could only be sure of assumptions identified from
manual code analysis after discussing these initial findings with the original
developers.

In the work on AA we discovered various implicit assumptions that required
the use of some form of annotations for them to be checkable. Using such annota-
tions together with GASR code analysis would increase both the maintainability
and the reusability of the aspect code:

e For maintainability: any changes in the aspect’s context (e.g., the base
code) can be automatically re-checked against the explicit assumption
annotations. This way, any changes that will break aspect assumptions
can be quickly identified and the aspect code can be adjusted accordingly.

o For reusability: When aspect code is written in a generic manner allowing
its reuse in the context of different applications (e.g., as is the case with
Glassbox [39], one of the three projects studied in [15]), it becomes es-
pecially important that its assumptions can be validated for each specific
reuse context.

In this section, we present a set of annotations that allows developers of
aspect code to make explicit some of their implicit assumptions. These anno-
tations are underpinned with GASR queries, enabling us to validate that the
assumptions hold in any context in which the aspect code might be deployed.
As in Section 5, rules were developed on a test-first basis and both the rules
and the test cases are available online®. Also as in Section 5, we analyzed two
of the three case studies used in AA and after running the analyses the results
were verified for correctness and completeness.

Below, we discuss two types of annotations: We first discuss annotations
that enable expressing assumptions on the static structure of an AspectJ pro-
gram, in particular the presence or absence of specific types. We then describe
some annotations that enable expressing more dynamic assumptions on the ap-
plication control flow. Our annotations do not cover all assumption types from
[15]. Other annotations could be expressed, but we do not consider them here
due to space limitations. For each of the annotations that we introduce, we
present the actual annotation as well as GASR rules that interpret the annota-
tions and identify violations of the assumptions expressed. When analyzing the
code, GASR will provide a warning if the assumptions do not hold.

8 Available at https://github.com/cderoove/damp.ekeko.aspectj

25

6.1. Annotations for the Presence of Aspects

We first present the three different annotations we defined and then we show
how they are used to verify assumptions on actual case studies. Each of the three
annotations can be placed on a type and take as argument a list of type patterns
or a list of label names (both of these were introduced in Section 4.2.2). Each
annotation signifies the following:

e QRequires: If the type is present in the deployment, the types referred to
in the argument should also be present.

e QExcludes: If the type is present in the deployment, the argument types
may not be present.

e QOneOf: Exactly one of the argument types is present in the deployment.

Below we discuss some examples from the HealthWatcher and MobileMedia
case studies to explain the use of these annotations as well as their implemen-
tation in GASR. For simplicity, we will only use type patterns here. The use of
labels is shown in Section 6.2 and a note on labels versus patterns is given in
Section 6.2.3.

6.1.1. Inclusion assumptions of aspects

In the MobileMedia system, the PhotoAndMusicAspect has as an assumption
that the MusicSelector and PhotoSelector aspects have also been deployed, but
the VideoSelector aspect has not. Instead, the PhotoAndMusicAndVideo aspect
has been created for when all three photo, music and video aspects are present.
This assumption for PhotoAndMusicAspect can be made explicit by annotating
the aspect declaration as follows:

1 ORequires(type = "*..MusicSelector","*..PhotoSelector")
2 Q@Excludes(type = "*..VideoSelector")
3 public aspect PhotoAndMusicAspect...

This uses a combination of the @Requires and @Excludes annotations to ex-
plicitly denote the assumption. GASR can then check for violation of the as-
sumptions using the two logic rules detailed below.

First, the rule missing|required-requires reveals the names of types that have
been declared to be required but are missing, together with the type that con-
tains the annotation:

1 (defn missing|required-requires [7name ?requirer]

2 (fresh [?requ ?required]

3 (requiringltype-key-val ?requirer "type" 7?reqds)
4 (contains ?reqds 7name)

5 (fails (type-typelpattern ?required 7name))))

In this rule, line 3 is similar to the rule for the @Label annotations we de-
scribed in Sect. 4.2.2. It matches on the @Required annotations, and 7reqds will
bind to the array of arguments of the type attribute. (For matching on labels,

26

the label attribute is used.) Through backtracking line 4 will successively bind
7name t0 each element of the array. Note that ?name may be a type pattern. Line
5 then succeeds if the pattern matching rule type-type|pattern cannot find a type
?required for that pattern, i.e., the required type is missing.

Second, the rule present|excluded-excluder reveals the types that are present
yet should not be, together with the class that contains the annotation, as
follows:

1 (defn present|excluded-excluder [7exd ?excluder]

2 (fresh [?exds Zexcluded]

3 (excluding|type-key-val ?excluder "type" ?exds)
4 (contains ?exds ?7exd)

5 (type-typelpattern 7excluded 7exd)))

Structured like the first rule, the only elements of note here are lines 3 where
the @Excludes annotations are matched, and line 5 that succeeds if the pattern
can be matched in the system, ¢.e., if an excluded class is present.

Surprisingly, running these rules on the MobileMedia system reveals that the
inclusion assumption is being violated. This is because on a default build of the
system, all classes and aspects are compiled and included in the deployment.
As a result, the VideoSelector aspect is also present, yet it should not be. As
GASR respects build configurations (see Section. 4), to satisfy the rule it suffices
to have a build configuration that does not include VideoSelector. This shows
that simply downloading and building the MobileMedia system as-is will cause
erroneous behavior, which was not clear from the download instructions.

6.1.2. Mutual Exclusion Assumptions

The HealthWatcher system is a client-server environment where the clients
use Java RMI to connect to the servers. The system has however been designed
to also allow for other communication methods: the abstract aspect HWClient-
Distribution defines one pointcut that sub-aspects should use to redirect calls
over the network. The RMIClientDistribution aspect is currently the only sub-
aspect of HWClientDistribution. If another subaspect is created, deployment of
the system should only include one of the subclasses, otherwise the same calls
will be redirected multiple times over the network, once for each subaspect.

To make explicit this assumption, the following annotation is added to the
declaration of HW(ClientDistribution:

1 @0One0f (type = "#..HWClientDistribution=")
2 public aspect HWClientDistribution...

This states that there may be only one subclass of HWClientDistribution
present in the system. To verify this, GASR uses the following rule, revealing
for which type declaration a @OneOf annotation is violated and which are the
offending types:

27

1(defn tooMany|definer-offenders [?dec Zoffs]

2 (fresh [?7patterns 7count 7pattern]

3 (oneOfing|type-key-val ?dec "type" ?patterns)
4 (contains 7patterns ?7pattern)

5 (typepatterns-matches ?7pattern ?offs)

6 (differs 7count 1)

7 (equals ?7count (count 7offs))))

In this rule, line 3 binds 7patterns to the collection of type patterns in a
@OneOf annotation. Line 5 then constructs a set 7offs for each pattern 7pattern
in 7patterns. For example, for the annotation above there is one pattern and its
set would contain all of the subclasses of HWClientDistribution. Lines 6 and 7
state that the number of elements in this set must be different from 1, i.e., there
are zero or more than one of the stated types present in the system.

Since there is only one subaspect of HW(ClientDistribution in the Health-
Watcher system, we find that this mutual exclusion assumption is satisfied. If
in an evolution of HealthWatcher a different distribution technology would be
added, this rule will show that the mutual exclusion assumption has been vio-
lated. To solve this, different build configurations will need to be created; one
for each distribution technology.

6.1.3. Assumptions on the use of Inter-Type Declarations

Returning to the MobileMedia system, there is an inter-type declaration
(ITD) assumption of interest as it illustrates that the oneOfViolation rule needs
to be able to handle lists of type name patterns. The MusicSelector aspect
provides an advice that implements some of the handling of the selection of
music. As part of its implementation it retrieves music album data, which is set
by calling an ITD that is defined in the same aspect. Put differently, there is
an assumption of a call protocol between an ITD and an advice: the ITD has
been called before the advice executes, otherwise the music album data would
be null.

This ITD is called in the PhotoAndMusicAndVideo and PhotoAndMusicAspect
aspects, as part of the startup of the system. Hence, if either of these two aspects
is present the assumption is satisfied. This can be made explicit by the following
annotation on the MusicSelector aspect declaration:

1 @One0f (type = "%..PhotoAndMusicAndVideo","*..PhotoAndMusicAspect")

For this annotation, in the oneOfViolation rule, typepatterns-matches (on line
4) constructs a set that comprises the types in the system whose name matches
at least one of the patterns in the list of type names. Concretely, it will contain
the PhotoAndMusicAndVideo and PhotoAndMusicAspect aspects.

As in Section 6.1.1, running this rule in GASR shows a violation: both the
PhotoAndMusicAndVideo and PhotoAndMusicAspect aspects are present in the
system, which means they initialize the music album data twice. Both these
aspects are actually mutually exclusive, a deployment of the system should
only include one. This assumption can also be made explicit, using @Excludes
annotations in both aspects: each one excluding the other one.

28

While this use of the @OneOf annotation allows for verifying the assumption,
it is not resilient to certain changes. If in an evolution of the code a third aspect
is added that initializes the music album data, it will need to be added to the
annotation. Alternatively, if from the existing two aspects the initialization code
is removed, the @OneOf annotation no longer captures the requirement of the
call protocol. A better solution would be to verify the control flow between the
ITD and the advice, ensuring that the ITD is always called before the advice
runs. This can also be verified using GASR, as we will show next.

6.2. Control Flow Annotations

We defined two annotations for verifying control flow assumptions. We
present them here and then show their use. Each of these annotations is placed
on a piece of behavior (a method, constructor or advice) and takes as argument
a list of label names. Only label names can be used here because we need to
be able to refer to advice and these do not have unique signatures, like con-
structors or methods. When analyzing the code, GASR will provide a warning
if the requirements that are denoted using the annotations are not met. Each
annotation signifies the following:

e ©@ExcludesPrevious this behavior may only execute if none of the argument
behaviors have executed previously.

e QRequiresPrevious this behavior may only execute if all the argument be-
haviors have executed previously.

Similar to the above, GASR implements these annotations with the following
rules:

1(defn present|excludedPrevious-excluder [7excluded ?excluder ?labell]
2 (all

3 (exclPrev|behavior-val 7excluder 7label)

4 (labeled|behavior-label|val 7excluded ?label)

5 (behavior-reachable|behavior ?excluded ?excluder)))

6 (defn missing|requiredPrevious-requirer-label [?required ?requirer ?label]
7 (all

8 (regPrev|behavior-val ?requirer ?label)
9 (labeled|behavior-label|val ?required ?label)
10 (fails (ajsoot/behavior-reachable|behavior ?required ?requirer))))

The first rule obtains the @ExcludesPrevious annotations ?excluder and the
value of their label in line 3 and the @Label annotations 7excluded and their
values in line 4. Both values need to be the same, and line 5 states that there
is a control flow that arrives in 7excluder after having passed through 7excluded.
This is a violation of the assumption, and the rule exposes both behaviors and
the value of the label. The second rule is much alike to the first rule, except in
the last line where it states that there is a control flow that did not pass through
the label, violating the assumption.

GASR is more powerful than what these annotations can express. For exam-
ple, we could extend the use of labels to explicitly require/exclude:

29

e a specific method to be invoked (in at least one, or in all potential execu-
tions of the program);

e a specific sequence of methods to be invoked;

e the receivers of successive method invocations to be the same object (in at
least one potential execution of the program) or different (in all potential
executions of the program); or

e the potential run-time types involved in an invocation (arguments, re-
ceiver) to include / exclude a specific subtype of the statically declared
ones.

However it’s not clear that any of these richer capabilities are indeed needed
in practice. Using the annotations and rules we have defined, we can already
successfully codify all of the 12 cases raised in [15]. In fact, we have only needed
to use ORequiresPrevious, as we shall see in the remainder of this section.

6.2.1. Assumptions on the use of Inter-Type Declarations

As we have discussed in Section 6.1.3, in the MusicSelector aspect of Mobile-
Media there is an assumption of a call protocol between an ITD and an advice.
Music album data must be set before it can be read and therefore the ITD
always needs to be called before the advice executes. This assumption can be
made explicit by annotating the ITD with ©@Label("SetMusicAlbumData") and
annotating the advice with @RequiresPrevious("SetMusicAlbumData").

Source code analysis with GASR reveals that currently the system does sat-
isfy the assumption, as already was established in Section 6.1.3. This annotation
is however much more robust than the OneOf annotation used in Section 6.1.3 as
it will not be affected by the code-evolution scenarios discussed in Section 6.1.3.

6.2.2. Assumptions on Sequential execution of Advice

Control flow checks should not only work on advice and methods, they should
also be able to verify the flow between different advice. For example, in Mo-
bileMedia there is such an assumption in the PhotoAspect aspect. This aspect
adds the functionality for viewing photos. To do so it adds a “View” command
to the user interface when the menus are initialized in a first advice, and in a
second advice intercepts menu pick actions, adding the foto viewing behavior.
Hence, for the second advice to be able to work, the first advice needs to have
run beforehand.

This assumption is made explicit by annotating the first advice with
@Label("ViewCommandAdded"), and the second advice with @RequiresPrevi-
ous("ViewCommandAdded"). Using GASR we established that this assumption
indeed holds.

Note that, even though these two pieces of advice are located in the same
aspect, it is not obvious that they will be invoked in the right order. In fact,
their invocation order depends on where in the base (and, potentially, any other

30

aspects deployed) their respective pointcuts match and in which order the cor-
responding join points are encountered during program execution. Checking the
assumption, thus, requires a whole-system analysis and cannot be done manu-
ally in a robust fashion.

6.2.3. A Note on Label Annotations

Control flow annotations required label annotations so that we could pre-
cisely refer to various points in the execution of an AspectJ program that we
wanted to relate. It is worth emphasising that we can of course use label an-
notations with the same label string in a number of places in our program,
essentially stating that these are similar in relation to a particular assumption
we want to express. Using backtracking, GASR will iterate through all occur-
rences of the same label, effectively ensuring the constraint holds for all places
thus annotated. This makes label annotations potentially more flexible than
wildcard types: annotations with the same label can be placed on types with
vastly different names. Expressing similar quantification with type wildcards
invariably leads to lengthy expressions.

At the same time, however, label annotations are potentially less robust than
type wildcards: Because the location of constraint definition and the location of
the label annotation(s) is different (possibly in different files), it is easily possible
for a label to be missing from a newly introduced file or for a newly introduced
label to accidentally break a constraint definition.

6.3. Conclusion

In this section, we have illustrated the use of GASR for defining annotations
that enable developers to explicitly express their aspect assumptions. We have
shown a number such annotations, their implementation in GASR, and their
application in the HealthWatcher and MobileMedia case studies. We have only
illustrated a selection of annotations; others can be defined to cover more of
the catalogue from [15]. In particular, we have only focused on aspect-aspect—
coordination assumptions and have only touched on assumptions on control or
data flow.

7. Discussion

We consider GASR a reasonable baseline for a general-purpose source code
analysis tool for aspect-oriented programming with annotation support. How-
ever we cannot and do not claim that it is suitable for all possible kinds of
reasoning over aspectual source code.

Completeness. The fact that we only performed our experiments on two con-
crete cases comprises a threat to validity. Nonetheless, the rules were developed
independently of the case studies, on a test-first basis, and should hence per-
form equally well on other case studies. Secondly, we have only shown here
that GASR works for rules from the work on Aspect Assumptions [15]. As high-
lighted in Section 3, there is a large amount of work that performs analysis of

31

aspectual code and we do not validate that GASR is as effective for those cases.
By providing a comprehensive library of predicates, discussed in Section 4.2, we
do however provide a large number of basic building blocks that can be used to
build these analyses using GASR. It remains to be shown whether the library is
extensive enough. If not, it may need to be extended.

Input Language. GASR is a source code analysis tool that works, as-is, on As-
PECTJ source code only. Yet almost all published analyses of aspectual source
code have been performed on ASPECTJ code [2, 3, 4, 5, 6, 8, 9, 11, 12, 13], and
it is commonly considered as being the most used aspect-oriented language. As
a result, GASR is a suitable alternative for these approaches and can also be
used to analyse a substantial fraction of all aspectual source code. Moreover,
the predicate library is relatively language-agnostic as it works in terms of the
aspect-oriented concepts and the data obtained from the annotations. We are
confident that if the library is adapted to work on other languages, the major-
ity of analyses built using GASR will be straightforwardly reusable. We have
demonstrated similar results previously in earlier work on language-independent
source code analysis [40]. Hence, in our opinion, GASR truly is general-purpose.

Performance. The logic engine of GASR is hardly optimized for speed, and
as a consequence GASR query results are not instantaneous. Nonetheless, we
found the performance of GASR to be satisfactory overall. This is thanks to
our implementations of key library predicates dispatching on whether they are
invoked with particular arguments bound or not, and some predicates calling
out to Clojure or Java where an imperative approach is more efficient. Future
work could consider switching to a more performant logic engine altogether. For
instance, to the highly optimized LogiQL [41] on top of which en entirely logic-
based implementation of a sophisticated points-to analysis [42] has outperformed
imperative ones.

As for queries written by program developers, procedural knowledge about
backtracking and unification in logic programming can drastically impact query
evaluation times. For instance, logic conditions should be ordered such that the
ones pruning most candidate solutions are evaluated first.

Another determining factor is the kind of predicates used in a query. In
general, solutions to queries about the structure of the code are returned near-
instantly. This is because the structural predicates from Section 4.2.1 and Sec-
tion 4.2.2 merely have to consult the state of the ASPECTJ compiler (e.g., back-
track over the elements of a collection containing all advice known to the com-
piler). The same goes for most behavioral predicates from Section 4.2.3 that
consult static analysis results provided by the Soot [32] framework. Graph
traversal predicates, however, should be used with care. Insufficiently restricted
invocations easily enumerate all paths between arbitrary nodes in the program’s
control flow graph. For applications where this is desirable, a dedicated model
checker may perform better.

Usability and Ezisting Uses. To the best of our knowledge, there are no studies
on how application developers use program queries in practice. There has been

32

empirical research on the kind of questions developers frequently ask about there
code [43, 44, 45]. Using a program querying tool would be appropriate to answer
some of these questions. For instance, a question that involves several variables
would require extensive configuration of such a tool. Alternatively, when several
separate tools would need to be combined to answer the question, using just one
general program querying tool would be better.

To answer questions about ASPECTJ code, GASR users need to compose and
launch a program query from the appropriate predicates and inspect its results.
The approach we have used in this text is is to follow a set of established
(design or code) patterns or assumptions and translate these into a logic form.
Examples of this are in the logic rules for the reentrancy example and the
wormhole pattern (both in Section 4.2) as well as the different rules for the
different aspectual assumptions (in Sections 5 and 6). While this approach is a
good starting point for describing rules and queries, it is by no means the only
way of working with GASR and we expect users to use a variety of approaches,
depending on the task at hand.

Constructing queries for GASR requires familiarity with our query language,
although GASR’s read-eval-print loop and graphical result inspector do facilitate
this task (cf. Section 4). This concern is shared by all approaches to program
querying that feature a dedicated query language. Their support for user-defined
queries renders them more powerful than tools that are limited to answering
pre-defined queries, yet the downside is that this power comes at the cost of
requiring users to master the query language.

Several examples exist, however, of the use of such tools by experts as an
enabling technology in development tooling and in empirical studies. The RAs-
CAL [46] language, for instance, powers the PHP AIR tool [47] which has been
used to study the usage of PHP features in a large corpus [48]. The .QL lan-
guage [49] is powering a commercial quality assessment tool suite that computes
metrics and violations of coding rules [50]. EKEKO [31] powers academic proto-
types for tracing [51] and automating [52, 53] changes to source code, and has
been used in a large corpus study about the maintenance of automated func-
tional tests [54]. SOUL [29] powers, among others, a tool for enforcing design
regularities in code [55] or for performing annotation-aware refactorings [56].
Each of these languages features dedicated support for expressing the charac-
teristics of source code elements that need to be retrieved. This renders them
attractive for prototyping development tools. Comparisons of the expressiveness
of some of these languages exist [57, 58], but they are not yet comprehensive.

The most likely users of GASR will therefore not be application developers,
but rather tool builders. In fact, we are already aware that the aspectual frame
inference tool ajFX? [59] builds on top of GASR for computing which variables
may potentially be modified during the execution of an advice. Along the same
lines, the predicates from Section 5 for detecting potential implicit inter-aspect
assumptions could be packaged as a tool on their own. The same goes for the

9 Available from https://github.com/timmolderez/ajfx

33

predicates from Section 6 that verify assumptions made explicit in the code
through annotations. This tool would be tasked with launching pre-defined
queries, composed of the predicates we have presented, and presenting the user
with their results. As such, its use would not require any particular expertise
from an application developer —but be limited to checking the set of predefined
assumptions presented in this paper.

8. Conclusion and Future Work

There is a need for source code analysis of aspect-oriented source code that
is demonstrated by the multiple tracks of research performing such analysis. On
the one hand, existing analyses need to be extended to take into account the
aspect-oriented nature of the software, and on the other hand this nature gives
rise to new kinds of analyses being required. Yet, to the best of our knowledge,
all of this work has been limited in scope to the specific analysis at hand. As
a result there has been a significant amount of duplicate work and it is unclear
whether any analyses may be customized to the software being analysed, e.g., as
we perform in Section 5.4.1.

We state that what is required is a general-purpose aspectual source code
analysis tool that reasons about source code and its metadata, as present in an-
notations. Also, the source code reasoner should be extensible and customizable
to the code at hand. This will allow to avoid duplicate work building analyses
and furthermore enable existing analyses to be reused, extended and customized
to fit the task at hand. To the best of our knowledge no such work has yet been
published.

To address this need, we have implemented GASR: an ASPECTJ source code
analysis tool in the tradition of logic querying. GASR is a General-purpose As-
pectual Source code Reasoner for AspECTJ-like languages whose analyses may
be customized relatively straightforwardly, as illustrated in Section 5.4.1 and
take annotations into account, as shown in Section 6. In this paper we pre-
sented GASR, have shown illustrative predicates for the reification of structural
and behavioral relations, and discussed their implementation.

Following this, we performed source code analysis on two representative
pieces of aspect-oriented software. First we detected a subset of implicit inter-
aspect assumptions that were previously identified by Zschaler and Rashid [15]
by manual inspection of the same software. The same work had revealed as-
sumptions that were implicit, so second we made them explicit through the
use of annotations and verified that they were satisfied. Our automated analy-
sis effectively consists in realizing part of the future work outlined in that text:
allowing detection of assumptions and fully automatic verification that some as-
sumptions are not being violated. We detected the same assumption instances
as Zschaler and Rashid. More importantly, we also found assumption instances
that were overlooked in their work.

There are multiple avenues for possible future work. Firstly, we contend
that the current state of GASR is a reasonable baseline for performing aspect-
oriented source code analysis but do not assert that it is sufficient for all kinds

34

of analyses. More experiments, implementing different analyses and executing
them on multiple case studies may reveal areas where GASR is lacking. Secondly,
the assumptions of Zschaler and Rashid [15] which we did not implement yet
are an avenue for further work. Thirdly, our control flow reasoning currently is
limited to relating two points on an execution path. This is less powerful than
the LTL approach of MAVEN [26], which naturally supports relating multiple
points on the same path. Launching a composite query for related control
flow annotations would bring us closer to the LTL approach, but is not yet
implemented. Lastly, GASR can be seen as base infrastructure on which new
and more advanced analyses can be built. Our preferences are for analyses that
can extract design-level documents [60] and provide information on whether
there exist any dependencies and interactions between aspects [61].

Acknowledgments

Johan Fabry is partially funded by FONDECYT project number 1130253,
Coen De Roover is partially funded by the Cha-@) SBO project sponsored by the
“Flemish agency for Innovation by Science and Technology” (IWT Vlaanderen).
Carlos Noguera is funded by the FWO AIRCO project. Thanks to Romain
Robbes for feedback on draft versions of this text. The original research on
aspect assumptions was partially funded by the European Union under Marie-
Curie fellowship RIVAR.

Bibliography

[1] J. Fabry, C. De Roover, and V. Jonckers, “Aspectual source code analysis
with GASR,” in Proceedings of 13th IEEE International Working Confer-
ence on Source Code Analysis and Manipulation (SCAM’13), 2013, pp.
53-62.

[2] L. Ye and K. De Volder, “Tool support for understanding and diagnosing
pointcut expressions,” in Proceedings of the 7th international conference
on Aspect-oriented software development, ser. AOSD '08. New York, NY,
USA: ACM, 2008, pp. 144-155.

[3] J. Wloka, R. Hirschfeld, and J. Hénsel, “Tool-supported refactoring of
aspect-oriented programs,” in Proceedings of the 7th International Con-
ference on Aspect-oriented Software Development(AOSD ’08). New York,
NY, USA: ACM, 2008, pp. 132-143.

[4] R. Khatchadourian, P. Greenwood, A. Rashid, and G. Xu, “Pointcut reju-
venation: Recovering pointcut expressions in evolving aspect-oriented soft-
ware,” in 24th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE ’09), 2009, pp. 575-579.

35

5]

[6]

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

R. Khatchadourian, A. Rashid, H. Masuhara, and T. Watanabe, “Detecting
broken pointcuts using structural commonality and degree of interest,” in
30th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2015). Lincoln, Nebraska, USA: IEEE press, nov 2015.

C. Koppen and M. Stoerzer, “PCDiff: Attacking the fragile pointcut prob-
lem,” in European Interactive Workshop on Aspects in Software (EIWAS),
2004.

A. Kellens, K. Mens, J. Brichau, and K. Gybels, “Managing the evolution
of aspect-oriented software with model-based pointcuts,” in Furopean Con-
ference on Object-Oriented Programming (ECOOP), ser. LNCS, no. 4067,
2006, pp. 501-525.

D. Zhang, E. Duala-Ekoko, and L. Hendren, “Impact analysis and visualiza-
tion toolkit for static crosscutting in AspectJ,” in International Conference
on Program Comprehension (ICPC), 2009.

H. Shen, S. Zhang, J. Zhao, J. Fang, and S. Yao, “XFindBugs: eX-
tended FindBugs for Aspectd,” in Proceedings of the 8th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering
(PASTE08), 2008, pp. 70-76.

J. Zhao, “Change impact analysis for aspect-oriented software evolution,”
in Proceedings of the International Workshop on Principles of Software
Evolution (IWPSE ’02). New York, NY, USA: ACM, 2002, pp. 108-112.

G. Xu and A. Rountev, “AJANA: a general framework for source-code-level
interprocedural dataflow analysis of Aspect] software,” in Proceedings of
the 7th international conference on Aspect-oriented Software Development
(AOSD08), 2008, pp. 36-47.

A. Colyer, A. Clement, G. Harley, and M. Webster, Eclipse AspectJ: aspect-
oriented programming with AspectJ and the Eclipse AspectJ development
tools. Addison-Wesley Professional, 2004.

J. Fabry, A. Kellens, and S. Ducasse, “AspectMaps: A scalable visual-
ization of join point shadows,” in Proceedings of 19th IEEE International
Conference on Program Comprehension (ICPC2011). IEEE, Jul 2011, pp.
121-130.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold, “An overview of AspectJ,” in Proceedings of the 15th European Con-
ference on Object-Oriented Programming (ECOOP 2001), ser. Lecture
Notes in Computer Science, J. L. Knudsen, Ed., no. 2072. Budapest,
Hungary: Springer-Verlag, Jun. 2001, pp. 327-353.

S. Zschaler and A. Rashid, “Aspect assumptions: a retrospective study
of AspectJ developers’ assumptions about aspect usage,” in Proceedings of

36

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

the tenth international conference on Aspect-oriented software development,
ser. AOSD ’11. New York, NY, USA: ACM, 2011, pp. 93-104.

C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein, “MultiJava:
modular open classes and symmetric multiple dispatch for Java,” in Pro-
ceedings of the 15th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, ser. OOPSLA ’00. New
York, NY, USA: ACM, 2000, pp. 130-145.

J. Xu, H. Rajan, and K. Sullivan, “Understanding aspects via implicit invo-
cation,” in Proceedings. 19th International Conference on Automated Soft-
ware Engineering (ASE), 2004, pp. 332-335.

S. Hanenberg and A. Schmidmeier, “Idioms for building software frame-
works in AspectJ,” in Proceedings of the workshop on Aspects, Components,
and Patterns for Infrastructure Software (ACP4IS) at AOSD 2003, 2003,
p- 95.

R. Laddad, AspectJ in action, 2nd ed. Manning Publications, 2009.

J. Fabry, A. Kellens, S. Denier, and S. Ducasse, “AspectMaps: Extend-
ing Moose to visualize AOP software,” Science of Computer Programming,
vol. 79, pp. 6 — 22, 2014, http://dx.doi.org/10.1016/j.scico.2012.02.007.

E. Poll, P. Chalin, D. Cok, J. Kiniry, and G. T. Leavens, “Beyond asser-
tions: Advanced specification and verification with JML and ESC/Java2,”
in In Formal Methods for Components and Objects (FMCO) 2005, Revised
Lectures, volume 4111 of LNCS. Springer, 2006, pp. 342-363.

M. Papi, M. Ali, T. Luis Correa, J. Perkins, and M. Ernst, “Practical
pluggable types for Java,” in International Symposium on Software Testing
and Analysis (ISSTA), 2008, pp. 201-212.

S. Markstrum, D. Marino, M. Esquivel, T. Millstein, C. Andreae, and J. No-
ble, “JavaCOP: Declarative pluggable types for Java,” ACM Trans. Pro-
gram. Lang. Syst., vol. 32, no. 2, pp. 1-37, 2010.

A. Kellens, C. Noguera, K. De Schutter, C. De Roover, and T. D’Hondt,
“Co-evolving annotations and source code through smart annotations,”
in Furopean Conference on Software Maintenance and Reengineering
(CSMR). IEEE Computer Society Press, 2010, pp. 119-128.

M. Goldman, E. Katz, and S. Katz, “MAVEN: Modular aspect verification
and interference analysis,” Formal Methods in System Design, vol. 37, no. 1,
pp. 61-92, 2010.

E. Katz and S. Katz, “User queries for specification refinement treating
shared aspect join points,” in Proc. 8th IEEE Int’l Conf. Software Engi-
neering and Formal Methods (SEFM’10), J. L. Fiadeiro and S. Gnesi, Eds.,
2010, pp. 73-82.

37

[27]

[28]

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]

E. Hajiyev, M. Verbaere, and O. de Moor, “CodeQuest: Scalable source
code queries with Datalog,” in Proceedings of the 20th European Confer-
ence on Object-Oriented Programming (ECOOP06), ser. Lecture Notes in
Computer Science, vol. 4067, 2006, pp. 2-27.

M. Martin, B. Livshits, and M. Lam, “Finding application errors and se-
curity flaws using PQL: a program query language,” in Proceedings of the
20th annual ACM SIGPLAN Conference on Object-oriented Programming
Systems, Languages and Applications (OOPSLA05), 2005, pp. 365-383.

C. De Roover, C. Noguera, A. Kellens, and V. Jonckers, “The SOUL tool
suite for querying programs in symbiosis with Eclipse,” in Proceedings of
the 9th International Conference on the Principles and Practice of Pro-
gramming in Java (PPPJ11), 2011.

W. E. Byrd, “Relational programming in miniKanren: Techniques, ap-
plications, and implementations,” Ph.D. dissertation, Indiana University,
August 20009.

C. De Roover and R. Stevens, “Building development tools interactively
using the Ekeko meta-programming library,” in Proceedings of the IEEE
CSMR-WCRE 2014 Software Evolution Week, Tool Demo Track (CSMR-
WCRE14), 2014.

P. Lam, E. Bodden, O. Lhoték, and L. Hendren, “The Soot framework
for Java program analysis: a retrospective,” in Cetus Users and Compiler
Infrastructure Workshop (CETUS 2011), Oct. 2011.

R. Stevens, C. De Roover, C. Noguera, and V. Jonckers, “A history query-
ing tool and its application to detect multi-version refactorings,” in Pro-
ceedings of the 17th European Conference on Software Maintenance and
Reengineering (CSMR 2013), 2013.

M. Sridharan and R. Bodik, “Refinement-based context-sensitive points-to
analysis for Java,” in Proceedings of the 27th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI06), 2006.

O. de Moor, D. Lacey, and E. V. Wyk, “Universal regular path queries,”
Higher-order and Symbolic Computation, vol. 16, no. 1-2, pp. 15-35, 2003.

Y. A. Liu, T. Rothamel, F. Yu, S. D. Stoller, and N. Hu, “Parametric regular
path queries.” in Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation (PLDI04), 2004, pp.
219-230.

S. Soares, P. Borba, and E. Laureano, “Distribution and persistence as
aspects,” Software: Practice and Experience, vol. 36, no. 7, pp. 711-759,
2006.

38

138]

[39]

[40]

[41]

42|

[43]

[44]

[45]

[46]

[47]

48]

E. Figueiredo, I. Galvao, S. Khan, A. Garcia, C. Sant’Anna, A. Pimentel,
A. Medeiros, L. Fernandes, T. Batista, R. Ribeiro, P. van den Broek, M. Ak-
sit, S. Zschaler, and A. Moreira, “Detecting architecture instabilities with
concern traces: An exploratory study,” in Proceedings of 8th Joint Working
IEEE/IFIP Conference on Software Architecture, 2009 Furopean Confer-
ence on Software Architecture. WICSA/ECSA 2009., 2009, pp. 261-264.

D. Pickering and R. Bodkin, “Glassbox project page,” Published on-line:
http:/ /sourceforge.net /projects/glassbox/, accessed April 09, 2015.

J. Fabry and T. Mens, “Language-independent detection of object-oriented
design patterns,” Science of Computer Programming, vol. 30, no. 1-2, pp.
21-33, April-July 2004.

M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic,
T. L. Veldhuizen, and G. Washburn, “Design and implementation of the
logicblox system,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, 2015.

M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification of
sophisticated points-to analyses,” Proceedings of the 24th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLAO09, vol. 44, no. 10, pp. 243-262, 20009.

T. Fritz and G. C. Murphy, “Using information fragments to answer the
questions developers ask,” in Proceedings of the 32nd International Confer-
ence on Software Engineering (ICSE10), 2010, pp. 175-184.

J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers ask
during software evolution tasks,” in Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of Software Engineering (FSE06),
2006.

T. D. LaToza and B. A. Myers, “Hard-to-answer questions about
code,” in FEvaluation and Usability of Programming Languages and Tools
(PLATEAU10), 2010, pp. 8:1-8:6.

P. Klint, T. v. d. Storm, and J. Vinju, “Rascal: A domain specific lan-
guage for source code analysis and manipulation,” in Proceedings of the
9th IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAMO09), 2009.

M. Hills and P. Klint, “PHP air: Analyzing PHP systems with rascal,”
in Proceedings of the IEEE CSMR-WCRE 2014 Software Evolution Week,
Tool Demo Track (CSMR-WCRE14), 2014, pp. 454-457.

M. Hills, P. Klint, and J. J. Vinju, “An empirical study of PHP feature us-
age: a static analysis perspective,” in Proceedings of the 2018 International
Symposium on Software Testing and Analysis (ISSTA13), 2013.

39

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

0. de Moor, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ekman, N. Ongk-
ingco, D. Sereni, and J. Tibble, “Keynote address: .ql for source code analy-
sis,” in Proceedings of the Seventh IEEFE International Working Conference
on Source Code Analysis and Manipulation (SCAMO07), 2007, pp. 3-16.

P. Avgustinov, A. I. Baars, A. S. Henriksen, R. G. Lavender, G. Menzel,
0. de Moor, M. Schifer, and J. Tibble, “Tracking static analysis violations
over time to capture developer characteristics,” in Proceedings of the 37th
IEEE/ACM International Conference on Software Engineering (ICSE15),
2015.

C. N. Angela Lozano and V. Jonckers, “Managing traceability links
with matraca,” in Proceedings of the 23rd IEEFE International Confer-
ence on Software Analysis, Evolution, and Reengineering (SANER16), Tool
Demonstration Track, 2016.

C. De Roover and K. Inoue, “The Ekeko/X program transformation tool,”
in Proceedings of 14th IEEE International Working Conference on Source
Code Analysis and Manipulation, Tool Demo Track (SCAM14), 2014.

T. Molderez and C. De Roover, “Automated generalization and refinement
of code templates with ekeko/x,” in Proceedings of the 23rd IEEE Inter-
national Conference on Software Analysis, Fvolution, and Reengineering
(SANER16), Tool Demonstration Track, 2016.

L. Christophe, R. Stevens, C. De Roover, and W. De Meuter, “Prevalence
and maintenance of automated functional tests for web applications,” in

Proceedings of the 30th International Conference on Software Maintenance
and Evolution (ICSMel14), 2014.

J. Brichau, A. Kellens, S. Castro, and T. D’Hondt, “Enforcing structural
regularities in software using IntensiVE,” Science of Computer Program-
ming, vol. 75, no. 4, pp. 232-246, 2010.

C. Noguera, A. Kellens, C. De Roover, and V. Jonckers, “Refactoring in
the presence of annotations,” in Proceedings of the 28th IEEFE International
Conference on Software Maintenance (ICSM12), 2012.

R.-G. Urma and A. Mycroft, “Programming language evolution via source
code query languages,” in Proceedings of the ACM jth annual workshop
on Fvaluation and usability of programming languages and tools, 2012, pp.
35-38.

Z. Ujhelyi, A. Horvath, D. Varr6, N. I. Csiszar, G. Sz6ke, L. Vidacs, and
R. Ferenc, “Anti-pattern detection with model queries: A comparison of
approaches,” in Proceedings of the IEEE CSMR-WCRE 2014 Software Evo-
lution Week (CSMR-WCRE14), 2014.

T. Molderez, “Modular reasoning in aspect-oriented languages,” PhD, Uni-
versiteit Antwerpen, Antwerp, 10/2014 2014.

40

|60]

[61]

J. Fabry, A. Zambrano, and S. Gordillo, “Expressing aspectual interactions
in design: Experiences in the slot machine domain,” in Model Driven En-
gineering Languages and Systems, ser. Lecture Notes in Computer Science,
J. Whittle, T. Clark, and T. Kiihne, Eds. Springer Berlin / Heidelberg,
2011, vol. 6981, pp. 93-107.

R. Chitchyan, J. Fabry, S. Katz, and A. Rensink, “Editorial for special
section on dependencies and interactions with aspects,” Transactions on
Aspect-Oriented Software Development, vol. LNCS 5490, pp. 133-134, 2009.

41

