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Abstract: We show that for 1≤ k ≤
√

2log3 n− (5/2), the multiset of isomorphism types
of k-generated subgroups does not determine a group of order at most n. This answers a
question raised by Tim Gowers in connection with the Group Isomorphism problem.
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1 Introduction

We say that a group is k-generated if it has a set of at most k generators. Let Gk be the set of isomorphism
types1 of all k-generated finite groups. Let G be a finite group. Following Gowers [3], we say that the
k-profile of G is the function fG : Gk → N defined by letting fG(H) be the number of subgroups of G
isomorphic to H (H ∈ Gk).

Tim Gowers raised the question [3], for which k does the k-profile determine a group of order n ?
Such a k yields a simple isomorphism test2 in time nO(k) for groups of order n given by their Cayley
tables (see Section 3).

1Two groups belong to the same isomorphism type if and only if they are isomorphic.
2Regarding the significance of the Group Isomorphism problem to the Graph Isomorphism problem we refer the reader to

Section 13 of [1] and especially to footnote 9 in that section.
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Theorem 1.1. If p is an odd prime, k and n are positive integers, and

1≤ k ≤
√

2logn/ log p− (5/2) ,

then there exist nonisomorphic p-groups of order at most n with identical k-profiles.

Remark 1.2. In particular, setting p = 3, we see that if k and n are positive integers such that 1≤ k ≤√
2log3 n− (5/2), then there exist nonisomorphic groups of order at most n with identical k-profiles.

Our examples are p-groups of class 2 and exponent p.

Theorem 1.3. For any odd prime p and positive integer k there exist nonisomorphic p-groups of class 2,
exponent p, and order pN , where N = (k+2)(k+3)/2, with identical k-profiles.

2 The proof

Recall that a nilpotent group G is of class 2 if G′ ≤ Z(G), where G′ denotes the commutator subgroup
G′ = [G,G] and Z(G) denotes the center of G. For an odd prime p, a relatively free p-group P of class 2
and exponent p with m generators can be obtained from a free group with m generators by factoring out
all elements up and all commutators [[u,v],w].

Fact 2.1. For real numbers m and k such that m≥ k+2, we have

m(m−1)/2≥ 1+mk− (k2 + k)/2 .

Proof. Let x = m− k−2, so x≥ 0 and we wish to show that f (x)≥ 0 where

f (x) = (k+2+ x)(k+1+ x)−2(k+2+ x)k+ k2 + k−2 .

But then f (x) = x2 +3x≥ 0, as desired.

Fact 2.2. For an odd prime p and a positive integer k we have

(pk−1)(pk− p) · · ·(pk− pk−1)> (1/2)pk2
.

Proof.
∏

k−1
i=0 (pk− pi)

pk2 =
k

∏
j=1

(
1− 1

p j

)
> 1−

∞

∑
j=1

1
p j = 1− 1

p−1
≥ 1

2
.

Hypothesis 2.3.

(i) p is an odd prime,

(ii) m is a positive integer, and

(iii) P is a relatively free group with m generators, class two, and exponent p.
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Lemma 2.4. Assume Hypothesis 2.3. Suppose k is a positive integer such that m ≥ k+2. Then there
exists an element of P′ that does not lie in Q′ for any k-generated subgroup Q of P.

Note. This is false for k = 2 and m = k+1 = 3.

Proof. In this situation, P′ = Z(P), |P/P′|= pm, and |P′|= pm(m−1)/2.
We claim that for every k-generated subgroup Q of P, there exists a k-generated subgroup R of P such

that R′ ≥ Q′ and |R/(R∩P′)|= pk.
Indeed, let Q be a k-generated subgroup of P and pi = |Q/(Q∩P′)| = |QP′/P′|. Let s1, . . . ,si be

elements of Q such that Q∩P′ together with s1, . . . ,si generate Q. Let S = 〈s1, . . . ,si〉. Then i ≤ k. If
i = k, let R = S. If i < k then there exist elements si+1, . . . ,sk such that |RP′/P′|= pk for R = 〈s1, . . . ,sk〉.
In both cases, |RP′/P′|= pk, |R′|= pk(k−1)/2, Q = S(Q∩P′)≤ SP′ ≤ RP′, and Q′ ≤ (RP′)′ = R′. This
proves the claim.

The number of distinct subgroups of the form RP′ is the same as the number of k-dimensional
subspaces of an m-dimensional vector space over the prime field Fp. Call this number N(m,k). Then

N(m,k) =
(pm−1)(pm− p) . . .(pm− pk−1)

(pk−1)(pk− p) . . .(pk− pk−1)
. (1)

Clearly, the numerator of N(m,k) is less than pmk. By Fact 2.2, the denominator is greater than
(1/2)pk2

. Therefore, N(m,k)< 2pmk−k2
. Since p≥ 3, we have N(m,k)< pmk−k2+1.

Now we count the elements of P′ that lie in Q′ for some k-generated subgroup Q of P. Each such
element lies in (RP′)′ for some subgroup RP′ as above. So we obtain the upper bound

pk(k−1)/2N(m,k)< pe+1 (2)

for e = (k2− k)/2+mk− k2 = mk− (k2 + k)/2.
We saw above that |P′|= pm(m−1)/2. Fact 2.1 shows that

m(m−1)/2≥ e+1 .

This gives the desired conclusion.

Lemma 2.5. Assume Hypothesis 2.3 for a group P1 in place of P. Let d be a positive integer such that
m≥ d +2. Let P2 = 〈w〉 be a cyclic group of order p and P = P1×P2. Then there exists an element v of
P′1 such that

(a) |〈v,w〉|= p2,

(b) P/〈v〉 is not isomorphic to P/〈w〉, and

(c) for every d-generated subgroup Q of P we have Q′∩〈v,w〉= 1.

Proof. By Lemma 2.4, P′1 has an element v that does not lie in Q′ for any d-generated subgroup Q of P.
Then (a) is obvious. We obtain (b) because

(P/〈v〉)′ = P′1/〈v〉 and (P/〈w〉)′ ∼= P′1 . (3)
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To obtain (c), let s1, . . . ,sd be d elements of P. Set R = 〈s1, . . . ,sd〉. Then there exist unique elements
u1, . . . ,ud of P1 such that u−1

i si ∈ 〈w〉 for each i, and R′ = Q′ where Q = 〈u1, . . . ,ud〉. By the choice of v,
we see that v 6∈ R′. As R′ ≤ P1, we have R′∩〈v,w〉= 1.

Lemma 2.6. Assume the hypothesis and notation of Lemma 2.5. Then there exists a bijection between
the set of all d-generated subgroups of P/〈v〉 and the set of all d-generated subgroups of P/〈w〉 such that
corresponding subgroups are isomorphic.

Proof. Consider a d-generated subgroup Q of P/〈v〉. Then Q = Q∗/〈v〉 for a subgroup Q∗ of P that
contains v, and Q∗ = 〈Q0,v〉 for some d-generated subgroup Q0 of P. Let Q∗∗ = 〈Q∗,w〉 = 〈Q0,v,w〉.
Recall that v and w are in Z(P). So

(Q∗∗)′ = (Q∗)′ = (Q0)
′ . (4)

By Lemma 2.5 we infer (Q∗∗)′∩〈v,w〉= 1.
For a d-generated subgroup R of P/〈w〉, we obtain analogous subgroups R∗, R0, R∗∗ of P. Note that

Q and R uniquely determine Q∗∗ and R∗∗.
Now consider the family of all subgroups S of P such that

(i) v and w are in S, and

(ii) S = 〈S0,v,w〉 for some d-generated subgroup S0 of S.

The analysis above shows that to prove Lemma 2.6, it suffices to obtain, for each subgroup S as above, a
bijection between

• the set of all d-generated subgroups Q of P/〈v〉 for which Q∗∗ = S and

• the set of all d-generated subgroups R of P/〈w〉 for which R∗∗ = S

such that corresponding subgroups Q and R are isomorphic.
For each subgroup S, we have S′∩〈v,w〉= S′0∩〈v,w〉= 1 by Lemma 2.5.
Since P has exponent p and S/S′ is abelian, there exists a complement S1/S′ to 〈S′,v,w〉/S′ in S/S′.

Since S′, v, and w are central, we have S = S1×〈v,w〉. Therefore, there exists a unique automorphism of
S that induces the identity on S1 and switches v and w. This establishes the desired bijection.

Proof of Theorem 1.3. The result is contained in Lemma 2.6. Let m = k+2. Then

|P|= p1+m(m+1)/2 = p1+(k+2)(k+3)/2 .

The groups P/〈v〉 and P/〈w〉 have order |P|/p.

Proof of Theorem 1.1. The condition k ≤
√

2logn/ log p− (5/2) means

n≥ p(k+(5/2))2/2 > p(k+2)(k+3)/2 = pN .

By Theorem 1.3, there exist nonisomorphic groups of order pN with identical k-profiles.
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Remark 2.7. We comment on the case k = 1. It is obvious that p-groups of exponent p of equal order
have the same 1-profile. In particular, for every odd prime p there exist nonisomorphic p-groups of order
p3 with the same 1-profile. Moreover, for all primes p there exists a nonabelian group of order p4 with a
cyclic subgroup of order p3 called M4(p), which has the same 1-profile as the direct product of a cyclic
group of order p3 and the cyclic group of order p. (For the definition of M4(p) see the classification
of p-groups with a cyclic subgroup of index p in [2, pp. 192–193].) In particular, M4(2) has order 16,
improving Remark 1.2 for k = 1.

3 The isomorphism test

We describe the isomorphism test based on k-profiles suggested by Gowers [3].

Proposition 3.1. Let k,n be positive integers and suppose the groups of order n are determined, up to
isomorphism, by their k-profiles. Then isomorphism of two groups of order n, given by their Cayley tables,
can be decided in time n2k+O(1).

Proof. Let G,H be two groups of order n. By our assumption, G and H are isomorphic if and only if
their k-profiles agree, so we only need to show how to compare the k-profiles of the two groups. This can
be done by computing the following equivalence relation on the disjoint union X := Gk ∪̇Hk. We say that
two k-tuples (x1, . . . ,xk) ∈ X and (y1, . . . ,yk) ∈ X are equivalent if the correspondence xi 7→ yi extends to
an isomorphism of the subgroups generated by these k-tuples. This can be checked in polynomial time
per instance, so n2k+O(1) total time. Now the k-profiles of G and H agree if and only if each equivalence
class is evenly divided between Gk and Hk.

Remark 3.2. While our result shows that the comparison of k-profiles alone will not solve the Group
Isomorphism problem in polynomial time, it does not rule out a role for this algorithm in improving the
state of the art in this area. Indeed, Group Isomorphism is not currently known to be testable in time
no(logn) (cf. [4, 6, 5, 7]). Therefore, if our bound on k is not very far from being tight, say the result stated
in Remark 1.2 would fail if we replace

√
2log3 n by O((logn)0.99), this would mean progress on the

complexity of the Group Isomorphism problem.
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