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Summary: Construction of confidence sets for the optimal factor levels is an important topic in response surfaces

methodology. In Wan et al. (2015), an exact (1 − α) confidence set has been provided for a maximum or minimum

point (i.e. an optimal factor level) of a univariate polynomial function in a given interval. In this paper, the method

has been extended to construct an exact (1 − α) confidence set for the optimal factor levels of response surfaces.

The construction method is readily applied to many parametric and semi-parametric regression models involving a

quadratic function. A conservative confidence set has been provided as an intermediate step in the construction of

the exact confidence set. Two examples are given to illustrate the application of the confidence sets. The comparison

between confidence sets indicates that our exact confidence set is better than the only other confidence set available

in the statistical literature that guarantees the (1 − α) confidence level.
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1 Introduction

When studying response surfaces, the researcher is often interested in finding the optimal

factor levels in constrained experimental regions. For example, in medical and pharmaceutical

studies, the interest often lie in finding the dosage that optimizes the treatment; in chemical

reaction experiments, it is important to decide the factor levels, such as reaction temperature

and proportion of chemicals combined, that optimize the reaction process. A response surface

is typically expressed as a quadratic polynomial model

Y = β0 + xxx′β + xxx′Bxxx+ e (1)

where xxx = [x1, x2, ..., xq]
′ is the design variables, Y is the response, e ∼ N(0, σ2) is the noise,

and β0,

β =


β1

β2
...

βq

 and B =


β11

1
2
β12 · · · 1

2
β1q

1
2
β12 β22 · · · 1

2
β2q

...

1
2
β1q

1
2
β2q · · · βqq


are the unknown parameters. The optimal factor level of the response surface is either the

maximum point or the minimum point of the response function, depending on the problem

under consideration. For example, if the response is the efficacy of certain treatments, then

the optimal factor level is the maximum point of the response function; on the other hand,

if the response is the toxicity of a medicine, then the optimal factor level should be the

minimum point. The point estimation of the optimal factor levels of the response surface is a

simple calculus problem for the fitted response surface model; see, for example, Bliss (1970,

pp44-50), Studier et al. (1975) and Zar (1999, pp458-459). Due to the sampling variation, a

confidence region for the optimal factor level is much more useful (cf. Myers and Montgomery,

1995 and Cahya et al., 2004). However, a confidence region is much more difficult to construct

than a point estimate.

In this paper, without loss of generality, we focus on the construction of an exact (1 − α)
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confidence set for a maximum point of the response function in (1) within a pre-specified

experimental region. The construction of a confidence set for a minimum point of the response

function can be simply translated into the construction of a confidence set for a maximum

point of −(β0 + xxx′β + xxx′Bxxx). It is noteworthy that the maximum point of the response

function in (1) has nothing to do with β0, therefore the focus is on the construction of a

confidence set for a maximum point of

f(xxx,θθθ) = xxx′β + xxx′Bxxx = zzz(xxx)′θθθ (2)

where zzz(xxx) = [x1, x2, · · · , xq, x21, x22, · · · , x2q, x1x2, x1x3, · · · , xq−1xq]′ and

θθθ = [β1, β2, · · · , βq, β11, β22, · · · , βqq, β12, β13, · · · , βq−1,q]′. The dimension of both zzz(xxx) and θθθ

is p× 1 where p = q(q + 3)/2.

Although the method provided in this paper is based on the linear regression model in (1),

it can be extended to many parametric and semi-parametric models that involve a linear

function of θθθ as illustrated in Section 3. If the estimates of the coefficients in the linear

function of these models are normally distributed, then our method can directly be applied

to produce an exact (1 − α) level confidence set for a maximum point. However, in many

statistical models such as generalized linear models, random effects linear models and random

effects generalized linear models (cf. Dobson, 2001, Pinheiro et al., 2000 and McCulloch et

al., 2001), the maximum likelihood estimators of fixed effects regression coefficients only have

large sample approximate normal distributions. In this case, our method can be applied to

produce a (1− α) asymptotic confidence set.

A method of constructing a confidence set for the solution of a set of simultaneous equations

is given in Box and Hunter (1954). Because a stationary point can be found by solve a set

of simultaneous equations, Box and Hunter’s method (referred to as BH henceforth) is used

to construct a confidence set for a stationary point over the whole covariate space. This

confidence set is sometimes miss-used as a confidence set for a maximum point; it is clear
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that a stationary point is not necessarily a maximum point, for it can be an inflection point

or a minimum point (Del Castillo and Cahya, 2001). Carter et al. (1982) applies this method

to the construction of a confidence set for the optimal treatment of cancer and discussed

how the confidence set can be used to assess the therapeutic synergism of drug components.

By using the Lagrange multiplier, Stablein et al. (1983) modifies the BH approach and

provides a confidence set for a maximum point within a given covariate region. However, it

has ignored the sampling variability of the multipliers and hence the nominal (1 − α) level

is not guaranteed, as pointed out by Cahya, Del Castillo and Peterson (2004) (referred to as

CDP hereafter). Peterson, Cahya and Del Castillo (2002) (referred to as PCD henceforth)

provides a general approach on the construction of confidence sets for a maximum point of

f(xxx,θθθ), while the paper CDP proposes a method of reducing the computation time of PCD

confidence set. However, the critical constant
√
qfαq,ν used in PCD and CDP, is too small

and does not guarantee the (1 − α) confidence level. Rao’s method (Rao, 1973, pp.473) of

constructing confidence sets can be used to produce the confidence set for a maximum point

and it is the only method available in the statistical literature that guarantees the nominal

(1− α) confidence level. However, Rao’s confidence set is often too conservative; see further

discussion in Section 2.5.

2 Method

2.1 Construction Method

The confidence set construction method we use is first given by Neyman (1937) and utilizes

a family of acceptance sets, and has been introduced in many statistical textbooks (cf.

Lehmann, 1986, pp.214, Rao, 1973, pp.471, and Casella and Berger, 2002, pp.420-422). It

has been widely used and extended in the construction of intriguing confidence sets (cf.

Stefansson et al., 1988, Hayter and Hsu, 1994, and Finner and Strassberge, 2002). Both the
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BH and PCD confidence sets use this method. Wan et al. (2015) also uses this method to

construct a confidence set for a maximum point of a univariate polynomial function in a

given covariate interval. The key idea of Neyman’s (1937) method is that a (1 − α) level

confidence set for an unknown parameter θθθ or, more generally, a function of the unknown

parameter k = k(θθθ) is given by the set of k0 values such that the null hypothesis H0 : k = k0

is not rejected by a size α test. Specifically, let A(k0) be the acceptance set of a size α test

of H0 : k = k0, i.e. Pθθθ0{YYY ∈ A(k0)} > 1 − α in which YYY is the random observation, and

the probability is calculated at θθθ0 such that k0 = k(θθθ0). Then the confidence set is given by

C(YYY ) = {k0 : YYY ∈ A(k0)}. Furthermore, if the acceptance set A(k0) is of exact (1− α) level

for each k0 then the confidence level of C(YYY ) is exactly (1− α).

Neyman’s method can directly be applied to construct an exact (1 − α) confidence set for

a maximum point of f(xxx,θθθ) in a given covariate region Xq. Let kkk = [k1, k2, · · · , kq]′ be a

maximum point of f(xxx,θθθ) in xxx ∈ Xq. Clearly, the value of kkk depends on θθθ. For any given

kkko ∈ Xq, if kkk = kkko, then we have

f(kkko, θθθ)− f(xxx,θθθ) > 0, ∀xxx ∈ Xq.

Therefore, for each kkko ∈ Xq, a (1 − α) level acceptance set for testing the null hypothesis

H0 : kkk = kkko can intuitively be set as

A(kkko) = {YYY : f(kkko, θ̂θθ)− f(xxx, θ̂θθ) > −c(kkko)
√
v̂(kkko,xxx), ∀xxx ∈ Xq} (3)

where θ̂θθ is an estimate of θθθ and v̂(kkko,xxx) is the related estimate of the variance of f(kkko, θ̂θθ)−

f(xxx, θ̂θθ). The critical value c(kkko) is chosen such that the coverage probability of A(kkko) is equal

to (1−α) under H0. Then, according to Neyman’s method, an exact (1−α) level confidence

set for kkk is given by

CE(YYY ) = {kkko ∈ Xq : YYY ∈ A(kkko)}

=
{
kkko ∈ Xq : f(kkko, θ̂θθ)− f(xxx, θ̂θθ) > −c(kkko)

√
v̂(kkko,xxx),∀xxx ∈ Xq

}
. (4)
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The key in the construction of CE(Y) is therefore the computation of the critical value c(kkko)

for each kkko ∈ Xq. As pointed out in Wan et al. (2015), the PCD confidence set has a similar

form, but they use the critical value cα =
√
qfαq,ν in the place of c(kkko) which is supported

by limited simulation results only. In Example 1 of Section 4, we demonstrate that cα can

be substantially smaller than c(kkko) for some kkko ∈ Xq and therefore the PCD confidence set

does not guarantee the nominal (1−α) confidence level. Next, we consider the computation

of the critical value c(kkko).

2.2 Exact Critical Value c(kkko)

Let X be the usual n× (p+ 1) design matrix of the linear model Y = β0 + zzz(xxx)
′
θθθ + e, YYY be

the vector of response and V be a matrix resultant from deleting the first column and first

row of the matrix (X′X)−1. Therefore, V is a p× p symmetric and positive definite matrix

which has a unique square root matrix denoted by P. The least squares method gives an

estimator of θθθ, θ̂θθ, which has a normal distribution θ̂θθ ∼ N(θθθ,Σ) with Σ = σ2V. An estimator

of σ2 is given by σ̂2, the mean residual sum of squares of the linear model, which has the

distribution σ̂2 ∼ σ2χ2
ν/ν with ν = n − p − 1. Hence we have TTT = P−1(θ̂θθ − θθθ)/σ̂ ∼ Tp,ν , a

standard p dimensional t-distribution with ν df (cf. Genz and Bretz, 2009). For two points vvv1

and vvv2 ∈ Xq, define ggg(vvv1, vvv2) = zzz(vvv1)− zzz(vvv2). Then the acceptance set A(kkko) in (3) becomes

A(kkko) = {YYY : f(kkko, θ̂θθ)− f(xxx, θ̂θθ) > −c(kkko)σ̂
√
ggg(kkko,xxx)′P2ggg(kkko,xxx),∀xxx ∈ Xq}.
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The coverage probability of A(kkko) is therefore given by

P{Y ∈ A(kkko)}

= P

{
inf

xxx∈Xq\kkko
f(kkko, θ̂θθ)− f(xxx, θ̂θθ)

σ̂
√
ggg(kkko,xxx)′P2ggg(kkko,xxx)

> −c(kkko)

}
(5)

> P

{
inf

xxx∈Xq\kkko
[f(kkko, θ̂θθ)− f(xxx, θ̂θθ)]− [f(kkko, θθθ)− f(xxx,θθθ)]

σ̂
√
ggg(kkko,xxx)′P2ggg(kkko,xxx)

> −c(kkko)

}
(6)

= P

{
inf

xxx∈Xq\kkko
ggg(kkko,xxx)

′
(θ̂θθ − θθθ)

σ̂ ‖ Pggg(kkko,xxx) ‖
> −c(kkko)

}

= P

{
inf

xxx∈Xq\kkko
[Pggg(kkko,xxx)]

′
[P−1(θ̂θθ − θθθ)]

σ̂ ‖ Pggg(kkko,xxx) ‖
> −c(kkko)

}

= P

{
inf

xxx∈Xq\kkko
[Pggg(kkko,xxx)]

′
TTT

‖ Pggg(kkko,xxx) ‖
> −c(kkko)

}
(7)

where the first inequality in (6) follows from the fact that f(kkko, θθθ)−f(xxx,θθθ) > 0 for all xxx ∈ Xq

since kkko is a maximum point. Also note that

inf
θθθ:kkk=kkko

Pkkk=kkko{Y ∈ A(kkko)} = P

{
inf

xxx∈Xq\kkko
[Pggg(kkko,xxx)]

′
TTT

‖ Pggg(kkko,xxx) ‖
> −c(kkko)

}
,

with the infimum being attained at θθθ = 000. Hence the critical value c(kkko) is the unique solution

of

P

{
inf

xxx∈Xq\kkko
[Pggg(kkko,xxx)]

′
TTT

‖ Pggg(kkko,xxx) ‖
> −c(kkko)

}
= 1− α. (8)

Next we use simulation to compute the critical value c(kkko) from Equation (8).

Let

G(kkko,xxx,TTT ) =
[Pggg(kkko,xxx)]

′
TTT

‖ Pggg(kkko,xxx) ‖
,

then the simulation follows the three steps below.

Step 1. Sample independent TTT i ∼ TTT p,ν , i = 1, 2, · · · , nT , nT is a specified large number.

Step 2. For each TTT i, i = 1, 2, · · · , nT , compute

inf
xxx∈Xq\kkko

G(kkko,xxx,TTT i).

Since the infimum of G(kkko,xxx,TTT i) is difficult to find analytically, we execute this step by

using numerical methods. One approach is first to compute the value G(kkko,xxx,TTT i) at a finite
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grid of points xxx on Xq and then use the minimum of these values as an approximation to

the infimum. If f(xxx,θθθ) is a bivariate quadratic function, we use a set of grid points evenly

spaced in each direction with distance d1 and d2 chosen with respect to the region Xq. If

f(xxx,θθθ) is a multivariate quadratic function, one can sample a set of random grid points

uniformly from the region Xq. When the distance is small or the sample size is large, this

gives a good approximation to the region Xq. An alternative way is to compute the infimum

using some standard numerical minimization algorithms, such as the steepest descending or

simplex methods.

Step 3. Sort the nT values of infxxx∈Xq\kkko G(kkko,xxx,TTT i), i = 1, 2, · · · , nT , in an ascending order,

and use the [α× nT ]th value, −ĉ(kkko), as an approximation to −c(kkko).

It is clear that when nT →∞, we have ĉ(kkko)→ c(kkko). Based on our experience, nT = 20, 000

will produce ĉ(kkko) accurate enough for most applications. See example 1 of Section 4 for

more information.

2.3 Conservative Critical Value c0

Since the computation of critical constant c(kkko) involves simulation, it might be time consum-

ing to construct the confidence set CE(Y) using c(kkko) for each kkko ∈ Xq. Hence we provide a

conservative critical value c0 =
√
pfαp,ν which can be used to construct a (1−α) conservative

confidence set C0(YYY ) for the maximum point kkk. It is noteworthy that if we construct this

conservative confidence set before the exact confidence set, then the computation burden of

the exact confidence set is reduced as we only need to find the critical value c(kkko) for each

kkko ∈ C0(YYY ) rather than for each kkko ∈ Xq. Next, we prove that c0 > c(kkko) for any kkko ∈ Xq.

Since TTT ∼ TTT p,ν , it can be shown that ‖TTT‖
2

p
∼ Fp,ν where Fp,ν denotes the F-distribution with

degrees of freedom p and ν. Therefore P{‖ TTT ‖6 c0} = 1− α which is equivalent to

P

{
inf
ρρρ∈Rp

ρρρ
′
TTT

‖ ρρρ ‖
> −c0

}
= 1− α.
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Since for any kkko ∈ Xq, Pggg(kkko,xxx) is a vector in Rp for all xxx ∈ Xq, we have

P

{
inf

xxx∈Xq\kkko
[Pggg(kkko,xxx)]

′
TTT

‖ Pggg(kkko,xxx) ‖
> −c0

}
> P

{
inf
ρρρ∈Rp

ρρρ
′
TTT

‖ ρρρ ‖
> −c0

}
= 1− α. (9)

By comparing the probability statements (9) and (8), we conclude c0 > c(kkko).

With the critical value c0 =
√
pfαp,ν , the conservative confidence set C0(YYY ) is given by

C0(YYY ) =
{
kkko ∈ Xq : f(kkko, θ̂θθ)− f(xxx, θ̂θθ) > −c0σ̂

√
ggg(kkko,xxx)′P2ggg(kkko,xxx),∀xxx ∈ Xq

}
. (10)

2.4 Computation of the Confidence Sets

In order to construct the confidence sets given in (4) and (10), we need to check each kkko ∈ Xq

to see whether it is in the confidence set. Since the region Xq is usually continuous and hence

contains infinite number of points, we choose a finite set of grid points S on the region Xq

as an approximation of Xq. If the distance d between the neighbouring grid points is small,

then S gives a fine approximation to the region Xq and the resultant confidence sets give an

accurate approximation to C0(Y) and CE(Y). Therefore, we only check each point in S, but

not each point in Xq, in computing the conservative and exact confidence sets. The choice of

d depends on the data, that is, a smaller d is needed if the covariate region is small and the

plot of response surface suggests there are sharp peaks. One can try different d to see whether

there is a change in the resultant confidence set. In general, we suggest to standardise each

covariate to either interval [0, 1] or [−1, 1] and then use d = 0.01 or d = 0.02 accordingly.

As we pointed out in Section 2.3, the conservative (1 − α) confidence set C0(Y) in (10)

should always be constructed before CE(Y) in order to save computation time. To construct

C0(Y), we need to compute c0 and check each point kkko ∈ S ⊂ Xq to see whether the

inequality in (10) holds. This can be performed by comparing infxxx∈Xq\kkko G(kkko,xxx,P−1θ̂θθ/σ̂)

with (−c0), where the function G is defined in Section 2.2 and infxxx∈Xq\kkko G(kkko,xxx,P−1θ̂θθ/σ̂)

can be computed by using the numerical method as in finding infxxx∈Xq\kkko G(kkko,xxx,TTT i) in Step

2 of Section 2.2. To construct the exact confidence set CE(Y), we further check each grid
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point kkko in C0(Y) to see whether

inf
xxx∈Xq\kkko

G(kkko,xxx,P−1θ̂θθ/σ̂) > −c(kkko).

The computation of CE(Y) takes more time than that of C0(Y) as it involves the compu-

tation of the ‘personalized’ critical constant for each grid point. For a large number of grid

points, the computation can be intensive, as a trade-off for accuracy.

2.5 The Confidence Set of Rao (1973)

Rao (1973, pp473) provides the following (1− α) confidence set for any given function h(.)

of θθθ: {
h(βββ) : βββ ∈ C(θ̂θθ)

}
(11)

where C(θ̂θθ) is a (1 − α) confidence set for θθθ. A well known (1 − α) confidence ellipsoid for

θθθ is given by C(θ̂θθ) =
{
θθθ : (θθθ − θ̂θθ)′P−2(θθθ − θ̂θθ) 6 pσ̂2fαp,ν

}
since θ̂θθ ∼ N(θθθ, σ2P2). Hence a

(1− α) confidence set for a maximum point is given by

Cc(Y) =
{

arg maxxxx∈Xq
f(xxx,θθθ) : θθθ ∈ C(θ̂θθ)

}
. (12)

Note that the computation of Rao’s confidence set Cc(Y) also needs a finite grid of points to

approximate the continuous confidence ellipsoid C(θ̂θθ). A popular approach to approximate

the confidence ellipsoid is by using a set of grid points in polar co-ordinates as in Carter et

al. (1984) and Farebrother (1998, pp.85-86) .

3 Extension to other models

The method proposed in Section 2 can be applied to other parametric or semi-parametric

models that involve a quadratic function. For example, in quantile regression (cf. Koenker,

2005), the qth-quantile may be modelled by

Q(q|xxx) = θ0(q) + f(xxx,θθθ(q)).
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Note that the confidence set for a maximum point of Q(q|xxx) is the confidence set for a

maximum point of f(xxx,θθθ). Hence if f(xxx,θθθ) is a quadratic function, then a confidence set can

be constructed using our method.

In generalized linear models, linear mixed models and generalized linear mixed models (cf.

McCulloch and Searle, 2001 and Faraway, 2006), for example, the mean response E(Y) is

often related to a linear function by a given monotonic link function hm(.), that is

hm[E(Y )] = θ0 + f(xxx,θθθ).

Since hm(.) is monotone, a maximum point of E(Y ) is either a maximum point of f(xxx,θθθ)

or −f(xxx,θθθ), depending on whether the function hm(.) is increasing or decreasing. Hence

our construction method of a confidence set can be used for a maximum point of the mean

response E(Y ).

In Cox’s proportional hazard model (cf. Cox, 1972 and Cox, 1975), the hazard function

hcp(t,xxx) is related to a linear function f(xxx,θθθ) by

hcp(t,xxx) = λ(t)exp(f(xxx,θθθ)).

Because hcp(t, .) is an increasing function of f(xxx,θθθ) for a fixed t, the confidence set for a

maximum point of hcp(t, .) is that of f(xxx,θθθ).

It is noteworthy that when the estimates of parameters are normally distributed θ̂θθ ∼ N(θθθ,Σ),

then our method gives an exact (1− α) confidence set. However, when the distribution of θ̂θθ

is asymptotically N(θθθ, Σ̂), our procedure can directly be applied to produce an asymptotic

(1− α) confidence set. Specifically if we let P2 = Σ̂, then P−1(θ̂θθ − θθθ) ∼ N(000, Ip) where Ip is

the p×p identity matrix. Hence in this case, the t-distribution Tp,ν in Section 2 is replaced by

the p-dimensional standard normal distribution N(000, Ip). In particular, the critical constant

c(kkko) is solved from

P

{
inf

xxx∈Xq\kkko
[Pggg(kkko,xxx)]

′
NNN

‖ Pggg(kkko,xxx) ‖
> −c(kkko)

}
= 1− α, (13)

and the conservative critical constant used in C0(Y) should be
√
χ2
1−α,p.
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4 EXAMPLES

Example 1

[Table 1 about here.]

This example is used in PCD and considers the survival data in a murine cancer chemother-

apy experiment that used the drugs 5-Fluorouracil and Teniposide originally given in Stablein

et al. (1983). A series combinations of 5-Fluorouracil (5FU) and Teniposide (VM26) were

given to treat 127 mice with leukaemia. The original data of combinations and survival times

were recorded in Table 1. The respective doses of 5FU and VM26 were scaled to give

x1 =
5FU(mg/kg)− 130

130

x2 =
VM26(mg/kg)− 13

13
.

Following Stablein et al. (1983) and PCD, a cox-proportional hazard model

hcp(t,xxx) = λ(t)exp(f(xxx,θθθ))

is fitted to the data, where f(xxx,θθθ) = θ1x1 + θ2x2 + θ3x
2
1 + θ4x

2
2 + θ5x1x2.

[Figure 1 about here.]

The parameter estimates are given by

θ̂θθ =



−1.2312

−1.5084

0.5467

0.8850

−0.7186


and Σ̂ =



0.0558 0.0409 0.0147 0.0121 0.0531

∗ 0.0552 0.0063 0.0136 0.0538

∗ ∗ 0.0753 −0.0235 0.0337

∗ ∗ ∗ 0.0703 0.0347

∗ ∗ ∗ ∗ 0.1037


.

It is clearly of interest to construct a confidence set for the dose combination kkk at which

the hazard function hcp(t,xxx) is minimized, i.e., f(xxx,−θθθ) is maximized. The method given in

Section 3 allows us to construct a confidence set for the optimal dose combination level within

the constrained region {xxx′xxx 6 1}. Using distance d1 = d2 = 0.02, we have in total 10201 grid

points representing the region {xxx′xxx 6 1}. Let α = 0.05 and simulation number nT = 20, 000,
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the asymptotic confidence regions CE(Y), C0(Y) and the asymptotic confidence set using

PCD’s critical value
√
χ2
1−α,2 = 2.4477 (denoted by CP (Y)) are computed and depicted in

Figure 1. It is clear that CE(Y) is smaller than C0(Y) and larger than CP (Y). In fact,

there are 840 grid points in C0(Y), 451 in CE(Y) and 381 in CP (Y). This indicates CE(Y)

is about 46.31% smaller than C0(Y) and CP (Y) is about 15.52% smaller than CE(Y).

Rao’s confidence set Cc(Y) is computed by using 5 evenly spaced grid points in the radial

coordinate and 16 evenly spaced grid points in each angular coordinate and is depicted

in Figure 1(c). The computation time of each critical constant c(kkko) on an iMac (Core i5

@3.4GHz) is 17 seconds.

To assess the accuracy of the critical constants c(kkk) computed, we use the methods given by

Edwards and Berry (1987, Lemma 2) and Liu et al. (2005). Let

W (TTT ,kkko) = P{ inf
xxx∈Xq\kkko

G(kkko,xxx,TTT ) > −ĉ(kkko)}.

According to Edwards and Berry, W (TTT ,kkko) has a beta distribution with mean (1 − α) and

variance α(1 − α)/(nT + 2). Hence when α = 0.05 and nT = 20, 000, the 3-σ rule indicates

that W (TTT ,kkko) has its value in 1 − α ± 3
√
α(1− α)/(nT + 2) = (0.9454, 0.9546) with a

probability almost equal to one. Because the random variable ĉ(kkko) has an asymptotic normal

distribution, the method provided by Liu et al. (2005) (see also Liu, 2010, pp243-244) assesses

the variation in ĉ(kkko). For nT = 20, 000, ĉ(kkko) varies often only at the second decimal place.

For example, using the data given by Example 1 and eight different random seeds, we com-

puted c(kkko) with kkko = [0.6, 0.7]′ : 2.5526, 2.5521, 2.5531, 2.5751, 2.5520, 2.5449, 2.5738, 2.5646

and c(kkko) with kkko = [0.4, 0.8]′ : 2.5766, 2.5722, 2.5632, 2.5886, 2.5692, 2.5662, 2.5903, 2.5894.

These indicate that the critical constants are accurate to the second decimal place. Based

on these observations, the simulation-based critical constants can be regarded as exact for

practical purpose.

From the values of c(kkko) given in the last paragraph, it is clear that the critical value
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χ2
1−α,2 = 2.4477 used in PCD can be substantially smaller than the exact c(kkko). In fact,

with the PCD acceptance set

Ap(kkk
o) = {YYY : f(kkko, θ̂θθ)− f(xxx, θ̂θθ) > −2.4477σ̂

√
ggg(kkko,xxx)′P2ggg(kkko,xxx),∀xxx ∈ X2},

the size of testing H0 : kkk = kkko is given by

αp(kkk
o) = sup

θθθ

P

{
inf

xxx∈X2\kkko
f(kkko, θ̂θθ)− f(xxx, θ̂θθ)

σ̂
√
ggg(kkko,xxx)′P2ggg(kkko,xxx)

< −2.4477|kkk = kkko

}

= P

{
inf

xxx∈X2\kkko
[Pggg(kkko,xxx)]

′
NNN

‖ Pggg(kkko,xxx) ‖
< −2.4477

}
.

The probability can be approximated accurately by using Monte Carlo method with a

large number Nsim of random samples NNN ∼ NNN(000, I5). With Nsim = 1, 000, 000, we have

αp([0.6, 0.7]′) = 6.56% and αp([0.4, 0.8]′) = 6.52%, both substantially larger than α = 5%.

Hence the confidence level of PCD confidence set CP (Y), which is 1 − maxkkko∈χ2αp(kkk
o), is

substantially smaller than the nominated (1− α) = 95%.

Example 2

[Table 2 about here.]

This example considers the formulation of a controlled-release drug substance to aid in

obtaining more uniform blood levels (Frisbee et al., 1994). The formulation components are

recorded in Table 2, where x1 is the percentage of Pluronic F68, x2 is the percentage of

polyoxyethlene 40 monostearate, x3 is the percentage of polyoxyethylene sorbitan fatty acid

ester NF and x1 + x2 + x3 = 1. The response Y is the observed glass transition temperature

(OC) for which a smaller value is better. The response surface model that gives a good fit

was a Becker’s H1 model (Becker, 1968; Becker 1978):

Y = β1x1 + β2x2 + β3x3 + β12min(x1, x2) + β13min(x1, x3) + β23min(x2, x3) + e (14)

where β = [β1, β2, β3, β12, β13, β23]
′

is the unknown parameter vector and e ∼ N(0, σ2) is the
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random error. Let xxx = (x1, x2) and f(xxx,θθθ) = zzz(xxx)′θθθ, where

θθθ =



β1 − β3
β2 − β3
β12

β13

β23


and zzz(xxx) =



x1

x2

min(x1, x2)

min(x1, 1− x1 − x2)

min(x2, 1− x1 − x2)


,

then the Becker’s H1 Model can be written as

Y = β3 + f(xxx,θθθ) + e (15)

by replacing x3 by 1− x1 − x2. The parameter estimates are given by

 β̂3

θ̂θθ

 =



36.2719

−17.6436

−20.8057

−2.8033

−18.0089

9.7532


and Σ̂ =



0.7936 −0.8008 −0.8008 0.1624 −0.6384 −0.6384

∗ 1.6013 0.8006 −0.7999 0.0007 0.8014

∗ ∗ 1.6013 −0.7999 0.8014 0.0007

∗ ∗ ∗ 4.0156 −0.7844 −0.7844

∗ ∗ ∗ ∗ 4.0170 −0.7837

∗ ∗ ∗ ∗ ∗ 4.0170


.

[Figure 2 about here.]

The interest lies in constructing a confidence set for the formulation factors that minimize

the response in the covariate region constrained by x1 + x2 + x3 = 1 and x1, x2, x3 > 0, that

is, a maximum point of function f(xxx,−θθθ), in the constrained region

Rcons = {xxx = (x1, x2) : x1 + x2 6 1, x1, x2 > 0} .

Using α = 0.05, distance d = 0.01 and simulation number nT = 20, 000, the confidence

regions C0(YYY ), CE(YYY ) and CP (Y) using PCD’s critical value
√
fα2,5 = 3.4018 have been

computed and depicted on the x1 + x2 + x3 = 1 plane in Figure 2. It is clear that CE(Y)

is smaller than C0(Y) and Cc(Y) but larger than CP (Y). In fact, among the total 5151

grid points in Rcons, there’re 2601 fell in C0(Y), 1864 in CE(Y) and 810 in CP (Y). This

indicates that CE(Y) is about 28.34% smaller than C0(Y) and the set CP (Y) is 56.55%

smaller than CE(Y). CP (Y) is smaller than CE(Y) because it uses an unduly small critical
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constant which does not guarantee the (1− α) confidence level. It is also worth noting that

f(xxx,θθθ) is not of the form (2) exactly but our method works just as well.

5 CONCLUSION AND DISCUSSION

In this paper, the construction of confidence sets for the optimal factor levels of response

surfaces is discussed. The only confidence set available in literature that guarantees the (1−α)

confidence level is Rao’s confidence set Cc(Y), but it is usually conservative. In this paper

one exact confidence set CE(Y) and one conservative confidence set C0(Y) are constructed.

It is shown in the examples that the confidence set CE(Y) is always, and can be substantially,

smaller and so better than C0(Y) and Rao’s confidence set Cc(Y). This is not surprising

because CE(Y) is proved to have an exact (1−α) confidence level theoretically, while C0(Y)

and Cc(Y) are conservative. In both the examples, PCD’s confidence set CP (Y) is smaller

than CE(Y). This is due to that the critical constants used in CP (Y) are too small and

hence the resultant confidence set CP (Y) do not guarantee the nominal (1− α) confidence

level.

Bootstrap method is versatile and it is not too difficult to devise a bootstrap method for

constructing a confidence set. The problem with a bootstrap confidence set is that its true

confidence level is difficult to pin down for a finite sample size; the best one can claim is

that the confidence level is approximately (1−α). While one can assume a specific model in

terms of the β and σ and apply the bootstrap (sampling) method from this specific model to

assess the coverage probability of the confidence set, the conclusion is only for this particular

model. This is characteristically different from the CE(Y) proposed in this paper: so long

as the model in (1) is true and the critical constants c(kkko) are computed accurately then

CE(Y) has (1− α) confidence level.

As shown in Section 3, the construction method is readily applied to other regression models

where the parameter estimators have an approximate multivariate normal distribution.
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Examples include generalized linear models, semi-parametric proportional hazard models and

quantile regression models. Therefore the method proposed in this paper is widely applicable.

One possible future work is to construct confidence set for the ridge of a response surface,

a problem that has considered by many researchers (cf. Gilmour et al., 2003 and Peterson,

1993). A ridge is the path of the minimum or maximum point in the response when varying

the radius of the locus of factors. Hence each point on the ridge represents the optimal factor

levels of the response on a certain ellipse of the factors, that is, a constrained experimental

region. Our work in this paper can be extended to construct confidence sets for the ridge

of a response surface. It would also be useful to explore other maximization/minimization

methods to reduce the computation time in computing the critical constant for each grid

point kkko.

6 Supplementary Materials

Matlab code implementing our method is available with this paper at the Biometrics website

on Wiley Online Library.
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(a) Confidence set C0(Y) (b) Confidence set CE(Y)

(c) Confidence set Cc(Y) (d) Confidence set CP (Y)

Figure 1. The 95% confidence sets in Example 1. The asterisks represent the observation
and the dot points represent the confidence sets.
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(a) Confidence set C0(YYY ) (b) Confidence set CE(YYY )

(c) Confidence set Cc(YYY ) (d) Confidence set CP (Y)

Figure 2. The 95% confidence sets in Example 2.
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Table 1
5FU+VM26 combination experiment (Stablein et al., 1983)

Treatment levels Days of survival
5FU(mg/kg) VM26(mg/kg)

0.0 0.00 8,9(2),10(5)
0.0 9.71 10,13(5),14(2)
0.0 19.40 8,10,13,14(4),15
0.0 25.90 9,14(4),15(3)
35.6 9.71 13,14(3),15(3),17
48.5 4.85 9,13(2),14(3),15(2)
48.5 19.40 14(2),15(2),16(4)
97.1 0.00 8(2),10,11,12(2),14,16
97.1 3.56 8,9(2),11(2),13(2),16
97.1 9.71 8,10,11,16(2),17(2),18
97.1 25.9 16(3),17,18(3),19
194.0 0.00 10, 13(6),14
194.0 4.85 11(2),14(3),16,17
194.0 19.40 8,14,16,20(4),21
259.0 0.00 9,11,12(3),13(3)
259.0 9.71 16(2),17,18(2),19(2),20

The number in the parentheses indicates the number of animals dead on that day.
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Table 2
The formulation components (%) and the response (Frisbee et al., 1994)

x1 1 0 0 0.5 0.5 0 0.333 0.666 0.167 0.167 0.333

x2 0 1 0 0.5 0 0.5 0.333 0.167 0.666 0.167 0.333

x3 0 0 1 0 0.5 0.5 0.333 0.167 0.167 0.666 0.333

Y 18.9 15.2 35.0 16.1 18.9 31.2 19.3 18.2 17.7 30.1 19.0


