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Abstract

Counting by weighing is often more efficient than counting manually which is time

consuming and prone to human errors, especially when the number of items (e.g. plant

seeds, printed labels, coins) is large. The published papers in the statistical literature

have focused on how to count, by weighing, a random number of items that is close to a

pre-specified number in some sense. This paper considers the new problem, arising from

a consultation with a company, of making inference about the number of one-penny

coins in a bag with known weight for infinitely many bags, by using the estimated

distribution of coin weight from one calibration data set only. Specifically, a lower

confidence bound has been constructed on the number of one-penny coins for each

of infinitely many future bags of one-penny coins, as required by the company. As

the same calibration data set is used repeatedly in the construction of all these lower

confidence bounds, the interpretation of coverage frequency of the lower confidence

bounds proposed in this paper is different from that of a usual confidence set.

Keywords: Confidence bound; Confidence level; Confidence set; Coverage frequency; Statis-

tical inference.
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1 Introduction

Clients bring in bags of one-penny coins to exchange for bank notes or one- or two-pound

coins. The company needs to know the numbers of coins in the bags in order to pay the

clients. To count the number of coins in a bag manually is time consuming and prone to

human errors, especially when the number is large. Counting by weighing offers an efficient

alternative. The company can weigh the bags and use the (net) weight Wi grams of a bag to

infer the number ni of coins in the bag for infinitely many future bags i = 1, 2, · · ·. Nowadays

weighing scales to the accuracy of one hundredth gram (g) are commonly available, and

electronic scales with sensitivity of 0.01 milligram are not uncommon. Hence it is assumed

throughout this paper that the weight of the coins in a bag can be weighed accurately.

If all the one-penny coins weigh exactly 3.56g as specified by the Royal Mint, then there are

exactly Wi/3.56 coins in a bag with weight Wi. However, due to production variation and

wear and tear and different types or amounts of foreign materials stuck to the coins after

being in circulation, the weights of the one-penny coins cannot be exactly 3.56g and can be

assumed to follow a certain probability distribution. It is assumed throughout this paper, as

most papers on counting by weighing, that the weight of a one-penny coin U has a normal

distribution N(µ, σ2) for some µ and σ2, which is sensible from the information we have on

coin weights.

Due to the randomness in U , the exact number of one-penny coins in a bag with weight Wi can

no longer be pin-pointed. To make inference about the ni’s, information about the unknown

µ and σ2 is clearly required. For this, the company carries out the following calibration

experiment to estimate µ and σ: weigh the jth bag known to contain mj one-penny coins

and record the weight W0j, j = 1, · · · , k. Assume k ≥ 2 in order to be able to estimate

σ2. This includes the special case that each bag contains only one one-penny coin and so
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W0j, j = 1, · · · , k are the weights of a random sample of k one-penny coins. The calibration

data E = {(mj,W0j) : j = 1, · · · , k} is then used to make inference about ni’s for infinitely

many future bags i = 1, 2, · · ·. Specifically, a lower confidence bound on the exact number ni

of one-penny coins in a bag with weight Wi is sought, which provides more useful information

than a point estimate of ni, for i = 1, 2, · · ·.

In this paper, a set of lower confidence bounds L(Wi) on ni using the weightWi (i = 1, 2, · · ·) is

provided. Note that these lower confidence bounds are constructed using the same calibration

data E but different future weights Wi and so treat the two sources of randomness in E and

in a future weight Wi differently. As a result, the coverage frequency interpretation of the

set of confidence bounds proposed in this paper is different from that of a usual confidence

set.

Several statistical papers have discussed counting by weighing (Nelson, 1983, Guttman and

Menzefricke, 1986, Yu, 1989, Mullennix, 1990, Nickerson, 1993). The focus of these papers is

on how to count (by weighing) a random number n̂ of items, e.g. plant seeds, bolts or printed

labels, that is close to a pre-specified number n in a certain sense. This is different from the

problem addressed in this paper in which the number ni is a non-random unknown parameter

and a lower confidence bound on ni is required. The papers Ridout and Suntheralingam

(1997), Ridout and Roberts (1997) and Nickerson (2003, 2008) consider the effect of using n̂

instead of n on some seed testing statistical procedures. Arntzen et al. (1994) uses the weight

to point-estimate the number of eggs in a cyst of nematodes by fitting a linear regression

model of the number of eggs on the weight. It is interesting to note that counting the number

of eggs manually needs to crush the cysts and so is destructive, while counting by weighing

offers a non-destructive alternative.

The layout of the paper is as follows. The simple situation where µ and σ2 are assumed to

be known is considered in Section 2 to illustrate the construction method, and to motivate
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the form of confidence sets in Section 3. The more realistic situation where both µ and σ2

are unknown parameters is studied in Section 3. An example is given in Section 4. Finally

Section 5 contains conclusions and discussion.

2 Known µ and σ2

In this section, the values of µ and σ2 are assumed to be known, which helps to motivate and

understand the construction method and form of the confidence sets developed in Section

3 for the more realistic situation that both µ and σ2 are unknown. Note the distribution

(Wi − niµ)/
√
niσ2 ∼ N(0, 1). We construct the following confidence set for ni by using

Neyman’s (1937) method of inverting a family of acceptance sets for testing H0 : ni = n

against Ha : ni > n for each natural number n:

C(Wi) =
{
n : (Wi − nµ)/

√
nσ2 ≤ c

}
(1)

where c is a suitably chosen critical constant whose determination is discussed next.

As pointed out in the introduction, it is desirable that, among the infinitely many confidence

sets C(Wi) for possibly different parameters ni (i = 1, 2, · · ·), at least proportion β will contain

the true ni for the pre-specified β (close to one), that is,

lim inf
N→∞

1

N

N∑
i=1

I{ni∈C(Wi)} ≥ β (2)

where IA denotes the indicator function of set A and so 1
N

∑N
i=1 I{ni∈C(Wi)} is the proportion

of the confidence sets C(Wi) that contain the true ni. Note that

lim
N→∞

1

N

N∑
i=1

I{ni∈C(Wi)} = lim
N→∞

1

N

N∑
i=1

P {ni ∈ C(Wi)} = lim
N→∞

1

N

N∑
i=1

Φ(c) = Φ(c) ,

where the first equality above follows from the classical strong law of large numbers (cf. Chow

and Teicher, 1978, Page 333), and the second from the definition of C(Wi) in (1). Hence we
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set c = zβ, the β-quantile of the N(0, 1) distribution, which guarantees the property in (2)

with equality.

The interpretation of the property in (2) is similar to coverage frequency of a standard

confidence set. Property (2) is not surprising since C(Wi) is a standard β level confidence set

for ni for each i, even though the confidence sets C(Wi) are for possibly different parameters

ni (i = 1, 2, · · ·). The situation for the unknown µ and σ2 in Section 3 is different, however,

due to that the same calibration data E is used repeatedly in the construction of all the

infinitely many C(Wi)’s.

It is straightforward to show that the confidence set C(Wi) in (1) is given by the lower

confidence bound

L(Wi) =
2µWi + c2σ2 − cσ

√
c2σ2 + 4µWi

2µ2
(3)

or, equivalently, all the natural numbers contained in the half interval [L(Wi), +∞).

Note that a sensible point estimator of ni is Wi/µ. Hence the distance between the lower

confidence bound L(Wi) and the point estimator Wi/µ of ni is cσ(
√
c2σ2 + 4µWi−cσ)/(2µ2),

which is an increasing function of σ and β as expected.

3 Unknown µ and σ2

Now we consider the more realistic situation where both µ and σ2 are unknown and so need

to be estimated from the calibration data E independently of the future weights Wi’s.

The calibration data E = {(mj,W0j) : j = 1, · · · , k} can be used to estimate µ and σ2 in the

following way. Note that Yi := Wi/
√
ni ∼ N(

√
niµ, σ

2), i = 1, · · · , k. Express the Yi’s using

the linear regression model Y = Xµ + ε where Y = (Y1, · · · , Yk)′, X = (
√
n1, · · · ,

√
nk)
′,
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and ε = (ε1, · · · , εk)′ with the εi’s being independently and identically distributed N(0, σ2)

random variables. The results for linear regression give immediately the estimators

µ̂ = r(W01 + · · ·+W0k) ∼ N(µ, rσ2) with r =
1

m1 + · · ·+mk

σ̂2 =
1

ν

k∑
j=1

(
W0j −mjµ̂√

mj

)2

∼ σ2χ2
ν/ν with ν = k − 1

and µ̂ and σ̂2 are independent.

Since the weight of a future bag Wi and the calibration data E are independent,

Wi − niµ̂
σ̂
√
ni + rn2

i

has a t distribution with ν df. Following Neyman’s (1937) method and the form of C(Wi) in

(1), we construct the following confidence set for ni:

C(Wi) =

{
n :

Wi − nµ̂
σ̂
√
n+ rn2

≤ c

}
, i = 1, 2, · · · (4)

where c is a suitably chosen critical constant whose determination is considered next.

As in Section 2, it is desirable that the proportion of the future confidence sets C(Wi) (i =

1, 2, · · ·) that include the true ni should be no less than the pre-specified β, that is,

lim inf
N→∞

1

N

N∑
i=1

I{ni∈C(Wi)} ≥ β. (5)

While the lower limit above depends on the ni’s in a complicated manner, it is shown in the

appendix that this lower limit is bounded from below by infni∈N EWi|EI{ni∈C(Wi)}, where EWi|E

denotes the conditional expectation with respect to the random variable Wi conditioning on

the calibration data E (or, equivalently, µ̂ and σ̂), and N denotes a set of natural numbers

that contains all the future ni values. Although the future ni values are unknown, it is

sensible to assume that all the future ni values are in a known range [nl, nu]. For example,

all future ni’s must be at least nl, nl = 10 say, since one can easily count the exact number

ni of coins in a bag if ni is smaller than nl. Similarly, one can easily set a conservative upper
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limit nu from the capacity of the weighing scale. Hence it is assumed in the rest of this paper

that all the future ni values are contained in the known N = {n : nl ≤ n ≤ nu}.

It follows therefore that a sufficient condition for guaranteeing (5) is

inf
ni∈N

EWi|EI{ni∈C(Wi)} ≥ β (6)

Now, from the definition of C(Wi) in (4), a few lines of manipulation show that

inf
ni∈N

EWi|EI{ni∈C(Wi)} = inf
ni∈N

Φ
(√

rniZ + c
√

1 + rniX
)

(7)

where Z = (µ̂ − µ)/
√
rσ2 ∼ N(0, 1), X = σ̂/σ ∼

√
χ2
ν/ν, and Z and X are independent

random variables. Since the last expression in (7) depends on the random variables µ̂ and σ̂

(via Z and X), the condition in (6) cannot be guaranteed for all µ̂ and σ̂. For example, if the

values of µ̂ and σ̂ are such that both Z andX are close to zero then Φ
(√

rniZ + c
√

1 + rniX
)

is close to 1/2 and hence smaller than β ∈ (1/2, 1) for each ni ∈ N . We therefore guarantee

(6) with a large probability 1− α with respect to the randomness in µ̂ and σ̂:

PE

{
inf
ni∈N

Φ
(√

rniZ + c
√

1 + rniX
)
≥ β

}
≥ 1− α, (8)

which in turn guarantees that

PE

{
lim inf
N→∞

1

N

N∑
i=1

I{ni∈C(Wi)} ≥ β

}
≥ 1− α. (9)

The interpretation of this statement is as follows. Based on one set of calibration data E only,

one constructs confidence sets C(Wi) for infinitely many future ni’s (i = 1, 2, · · ·) and claims

that at least ‘β proportion’ of these confidence sets do contain the true ni’s. We repeat this

process for a large number of times, say R. Then, for (1− α)R of the times, the claim about

‘β proportion’ is correct.

If one is interested in only one future ni then the critical constant c in (4) can be set as

c = tν,β, the β-quantile of the tν distribution, and the resultant confidence set C(Wi) in (4) is
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a usual β level confidence set for one ni with the following coverage frequency interpretation:

carry out one calibration experiment to collect E and measure the weight Wi of one future

bag, based on which to compute the confidence set C(Wi) for this one ni; then the frequency

of the confidence sets that contain the corresponding ni’s is approximately β among a large

number of confidence sets constructed in this way. Note that, in this construction method,

one calibration data set E is used only once with one future Wi to produce one confidence set,

and so the randomness in one E and the randomness in one future Wi are treated on equal

footing. This is clearly different from what is considered in this section and of interest to the

company: the data E from one calibration experiment only is used repeatedly for inferences

for infinitely many future ni values. Hence our proposed new method treats the two sources

of randomness in E and a future Wi differently.

We now consider how to compute the critical constant c so that the probability in (8) is equal

to 1− α. Note that this probability is equal to PE { (Z,X) ∈ Ω } where

Ω =
{√

rniZ + c
√

1 + rniX ≥ zβ for all ni ∈ N
}

= ∩nl≤ni≤nuΩni

with Ωni
=
{√

rniZ + c
√

1 + rniX ≥ zβ
}

. Note that Ωni
is given by all the points, in the

(Z,X)-half-plane with X > 0, that are above the straight line
√
rniZ + c

√
1 + rniX = zβ.

Hence Ω is a region in the (Z,X)-half-plane with X > 0 that is bounded by nu−nl+1 straight

line segments. It follows directly that, for a given c > 0, PE { (Z,X) ∈ Ω } can be computed

easily using only one-dimensional numerical quadrature. Note further that PE { (Z,X) ∈ Ω }

is strictly increasing in c > 0. Hence, for a given 1 − α, a routine numerical searching

algorithm can be used to find the c so that PE { (Z,X) ∈ Ω } = 1−α. The Matlab programs

for computing this c and the lower confidence bounds are available from the journal website

as supplementary material.

It is straightforward to show that the confidence set C(Wi) in (4) is given by the lower
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confidence bound

L(Wi) =


2µ̂Wi+c

2σ̂2−cσ̂
√
c2σ̂2+4µ̂Wi+4rW 2

i

2(µ̂2−rc2σ̂2)
if µ̂2 − rc2σ̂2 6= 0

W 2
i

2µ̂Wi+c2σ̂2 otherwise

(10)

and that the distance between the lower confidence bound L(Wi) and point estimator Wi/µ̂

of ni is increasing in σ̂, β and 1−α as expected. Finally, taking into consideration the priori

information that nl ≤ ni ≤ nu, the lower confidence bound should be

L̄(Wi) = min (nu, max (nl, L(Wi))) . (11)

4 An example

In the calibration experiment, eleven bags of one-penny coins of known numbers (m1, · · · ,m11)

= (100, 200, · · · , 1100) have been weighed to give the corresponding weights (grams) (W0,1, · · · ,

W0,11) = (356.97, 716.67, 1060.96, 1427.10, 1781.28, 2130.23, 2489.94, 2849.74, 3223.32, 3575.76,

3907.94). The data give µ̂ = 3.564 with r = 1/6600 and σ̂2 = 0.101 with degrees of freedom

ν = 10.

Let us assume that the number of coins in each future bags ni is known a priori to be

between nl = 100 and nu = 1400, and set β = 0.95 and α = 0.05. Then the critical

constant in (4) is computed by our program to be c = 2.833. Now for any future bag with

weight Wi, one can use the formula in (11) to compute the lower confidence bound L̄(Wi)

on ni. For example, if Wi = 4000 then L̄(Wi) = 1113.3 while the point estimate is 1122.5; if

Wi = 4600 then L̄(Wi) = 1280.9 while the point estimate is 1290.8. These results show that

the lower confidence bounds are pretty close to the point estimates. The advantage of the

lower confidence bounds over the point estimates is of course the confidence statement (9)

associated with the lower confidence bounds.
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If we treat 3.564 and 0.101 as the known values of µ and σ2, respectively, then the formula

in (3) can be used to compute the lower confidence bound L(Wi) on ni, which has nothing

to do with α. For example, if Wi = 4000 then L(Wi) = 1117.5 while the point estimate is

still 1122.5; if Wi = 4600 then L(Wi) = 1285.6 while the point estimate is still 1290.8. The

differences between the two lower confidence bounds in (3) and (11) are therefore small at

least in this example.

To get some idea on how sensitive the critical constant c and the lower confidence bound

L̄(Wi) in (11) are to the bounds nl and nu, we have computed c, L̄(400) and L̄(4000) for

various (nl, nu). From the results given in Table 1, one can see that, while c does change

with (nl, nu), the lower confidence bounds L̄(400) and L̄(4000) are not sensitive to the small

changes in (nl, nu). Hence one may prefer to use more conservative bounds (nl, nu), for

example (nl, nu) = (50, 1500) instead of (nl, nu) = (100, 1400), to make sure that all the

future ni are in the interval [nl, nu].

Table 1: Critical constant c, L̄(4000) and L̄(400) for various (nl, nu)

(nl, nu) (100, 1400) (50, 1400) (150, 1400) (100, 1300) (100, 1500) (50, 1500)

c 2.833 2.846 2.824 2.827 2.840 2.852

L̄(4000) 1113.33 1113.29 1113.36 1113.35 1113.31 1113.27

L̄(400) 109.58 109.56 109.58 109.58 109.57 109.56
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5 Conclusions

This paper considers how to construct lower confidence bounds on infinitely many future

ni’s based on the data E collected from only one calibration experiment. The two sources

of randomness, those in the calibration data E and in a future weight Wi, have therefore to

be treated differently. The proposed construction method guarantees, with confidence level

1 − α about the randomness in E , that the proportion of the lower confidence bounds that

bound the true ni’s, based on one calibration data set E only, is at least β, where α ∈ (0, 0.5)

and β ∈ (0.5, 1) are pre-specified.

If the two sources of randomness are treated on equal footing, then a standard lower confi-

dence bound on one ni, having the usual coverage frequency β, can be constructed by using

(4) with c = tν,β. But this is not of interest due to the repeated use of the same E in the

construction of lower confidence bounds for infinitely many future ni’s.

While the interpretation of the proposed lower confidence bounds is somewhat more involved

than a standard lower confidence bound, they have the same advantage as a standard lower

confidence bound in terms of providing plausible bounds on the ni’s.

It is clear from Section 3 that the accuracy of σ̂2 depends only on the number k of observed

bags in the calibration experiment, and the total number of coins m1 + · · ·+mk in the k bags

only affects the accuracy of µ̂. It is interesting to study the optimal design of the calibration

experiment which not only produces good lower confidence bounds in a certain sense but also

reduces the cost and possible human errors in counting the coins manually. The calibration

experiment given in the example in Section 4 is simply based on the intuition that the mj’s

should have a good spread over the possible range of the future ni values.

While the available information indicates that it is reasonable to assume the weight of a
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one-penny coin has a normal distribution, it is interesting to assess the impact on the lower

confidence bounds developed in this paper and to develop suitable methods if the distribution

is not normal. It seems that non-normality is likely to impact the optimal design of the

calibration experiment too.

Finally, the key structure of the counting by weighing problem considered in this paper is that

the statistical model estimated from one calibration date set is used repeatedly for inference

related to infinitely many future observations and/or parameters. Our approach of treating

differently the two sources of randomness involved have the potential to deal with other

statistical problems that have a similar structure. For example, the statistical classification

of all future cases is usually based on only one training data set. Given that the classification

of a future case can be dealt with by constructing a confidence set on the true class of the

case, our approach can be used to develop a new classification procedure that guarantees the

frequency of correct classification of future cases with a certain confidence level about the

randomness in the training data set. This problem is currently under investigation.

Acknowledgements: We sincerely thank the AE and referees for many constructive com-

ments. Wei Liu would like to thank Professor Dave Nickerson for introducing counting by

weighing to him.

6 Appendix: Mathematical details

We show that

inf
ni∈N

EWi|EI{ni∈C(Wi)} ≤ lim inf
N→∞

1

N

N∑
i=1

I{ni∈C(Wi)} (12)

where EWi|E denotes the conditional expectation with respect to the random variable Wi

conditioning on the calibration data E (or, equivalently, µ̂ and σ̂) and N denotes the set of
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natural numbers known a priori to contain all the future ni (i = 1, 2, · · ·) values.

Note from the classical strong law of large numbers (cf. Chow and Teicher, 1978) that

lim
N→∞

1

N

N∑
i=1

[
I{ni∈C(Wi)} − EWi|EI{ni∈C(Wi)}

]
= 0

and so

lim inf
N→∞

1

N

N∑
i=1

I{ni∈C(Wi)}

= lim
N→∞

1

N

N∑
i=1

[
I{ni∈C(Wi)} − EWi|EI{ni∈C(Wi)}

]
+ lim inf

N→∞

1

N

N∑
i=1

EWi|EI{ni∈C(Wi)}

= lim inf
N→∞

1

N

N∑
i=1

EWi|EI{ni∈C(Wi)}.

The required result in (12) now follows immediately from

1

N

N∑
i=1

EWi|EI{ni∈C(Wi)} ≥ inf
ni∈N

EWi|EI{ni∈C(Wi)}

for any N ≥ 1 since it is known that all the ni ∈ N .
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