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Abstract

This thesis addresses several challenging problems in low-dimensional systems,

which have rarely or never been studied using quantum Monte Carlo methods. It

begins with an investigation into weak van der Waals-like interactions in bilayer

graphene and extends to graphene placed on top of boron nitride at four different

stacking configurations. The in-plane optical phonon frequencies for the latter het-

erostructure as well as the out-of-plane phonon frequencies for both structures are

calculated. We find that the binding energies (BEs) of these structures are almost

within the same range and are less than 20 meV/atom. Although the phonon vi-

brations are comparable within both the diffusion quantum Monte Carlo (DMC)

method and density functional theory (DFT), DFT gives quantitatively wrong

BEs for vdW structures. Next, the BEs of 2D biexcitons are studied at different

mass ratios and a variety of screening lengths. Our exact DMC results show that

the BEs of biexcitons in different kinds of transition-metal dichalcogenides are in

the range 15− 30 meV bound at room temperature.

Besides 2D systems, the electronic properties of 1D hydrogen-terminated oligoynes

and polyyne are studied by calculating their DMC quasiparticle and excitonic

gaps. By minimising the DMC energy of free-standing polyyne with respect to

the lattice constant and the bond-length alternation, DMC predicts geometry in

agreement with that obtained by accurate quantum chemistry methods. The DMC

longitudinal optical phonon is within the range of experimental values. Our results

confirm that DMC is capable of accurately describing Peierls-distorted materials.
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Chapter 1

Introduction

1.1 Electronic structure calculation

The story of electronic structure begins in the 1880s when the electron was discov-

ered as a fundamental constituent of matter [1]. Electrons orbiting nuclei cannot

be treated as classical particles because they are accelerating; a classical analysis

suggests that they would continuously radiate energy, and therefore the radius of

the orbit would shrink with time. On the contrary, the quantum mechanical model

of the atom is based on probability rather than certainty and uses complex shapes

of orbitals. According to this model, when the positions of all nuclei are held fixed

in a system, the electrons reach a steady state and form an “electron cloud” with

a stable charge-density distribution determined quantum mechanically. This basic

idea, together with the quantum description of electron excitations, determines a

variety of electrical, optical, vibrational, mechanical, and magnetic properties of

materials.

To study the electronic structure of materials from first principles, it is essential

that the many-electron Schrödinger equation be solved accurately, which is one

of the great challenges of condensed-matter physics due to the large number of

particles involved. First-principles (ab initio) methods, as a vital computational
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tool in modern condensed-matter physics and molecular quantum chemistry, have

opened a new era in which one can design and investigate new materials with

desired properties. However, first-principles simulations depending on the method

can be expensive for few hundred atoms, even with the fastest supercomputers.

In general, there are four main first-principles approaches to determine the ground

state of many-electron systems in both condensed matter and molecules: A start-

ing point for many-body calculations, as described in Sec. 1.2, is Hartree–Fock

(HF) theory, which can be expanded to establish the Ab initio quantum chemistry

or post–HF methods that are introduced in Sec. 1.3. We have not used HF and

post-HF methods in our calculations; however we briefly discuss their fundamental

theory to show how they can be used in many-body calculations. In Sec. 1.4, we

represent density functional theory (DFT), by which we have provided initial in-

formation for our main calculations using quantum Monte Carlo (QMC) methods,

which are introduced in Sec. 1.6.

Our DFT and QMC calculations are performed within the Born–Oppenheimer

(B–O) approximation, by which we separate the calculation of electronic structure

from that of the ionic motion. This is valid because the electron mass is con-

siderably smaller than nuclear masses and electrons very quickly follow nuclear

motion. Therefore, any change in the electronic state occurs quickly compared to

the nuclear motion. All our results and equations are reported in Hartree atomic

units (a.u.) (|e| = ~ = me = 4πε0 = 1) unless stated otherwise. In atomic units,

the unit of length is the Bohr radius (0.529 × 10−10 m) and the unit of energy is

the Hartree (= 2 Rydberg = 27.2 eV = 4.36× 10−18 J).

We consider the nonrelativistic Hamiltonian of the form

Ĥ = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

Nn∑
I=1

ZI
riI

+
1

2

N∑
i 6=j

1

rij
+

1

2

Nn∑
I 6=J

ZIZJ
rIJ

, (1.1)

where N and Nn are the numbers of electrons and nuclei, respectively. Z is atomic

2



number and r is separation, where the indices i and j refer to electrons while I

and J refer to nuclei. The first term in Eq. 1.1 is the operator for the kinetic

energy; the second term represents the Coulomb attraction between electrons and

nuclei, which can be replaced by a pseudopotential; the third term is the Coulomb

interaction between electrons and the fourth term is the internucleus energy, which

adds a constant value to the electron energy eigenvalue.

The fundamental idea of pseudopotentials is that the tightly bound core elec-

trons are replaced by an effective potential acting on the valance electrons. Since

the core electrons are considered inert, a pseudopotential can be generated in an

atomic calculation and then applied to compute the properties of valance electrons

in molecules and solids. Good pseudopotentials should be reasonably smooth and

should be proportional to 1/r far from the nucleus. They should give the same

orbitals and energies as all-electron calculations at large r. Using pseudopoten-

tials reduces the computational cost and removes singularities in the electron–ion

potential. We have used ultrasoft [2, 3] and Dirac–Fock pseudopotentials [4] in

our DFT and QMC calculations, respectively. The Dirac–Fock pseudopotential

is local outside of the core space and is norm conserving, while ultrasoft pseu-

dopotentials are not norm conserving; inside the core radius, the norm of each

pseudo-wavefunction differs from that of the all-electron wave function.

1.2 Hartree–Fock method

The HF approximation [5] is an important starting point for many-body methods

such as QMC. In the HF method, the time-independent Schrödinger equation is

solved for an independent N -electron system within the B–O approximation. The

3



trial wave function, ΨS, is a Slater determinant, defined as:

ΨS(X1, · · · ,XN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(X1) . . . χ1(XN)

... . . .
...

χN(X1) . . . χN(XN)

∣∣∣∣∣∣∣∣∣∣
=

1√
N !

∑
P̂

(−1)pP̂ [χ1(X1), · · · , χ(XN)], (1.2)

where P̂ is a permutation operator and (−1)p is the corresponding parity, which

is 1 for an even number of swaps and −1 for an odd number of swaps. {χ} are

single-electron spin-orbital wave functions depending on X = {r, σ}, where r and

σ are spatial and spin coordinates, respectively. The spin orbitals {χ} form an

orthonormal set:

〈χi|χj〉 =

∫
χ†i (X)χj(X)dX = δij. (1.3)

The variational principle for the normalised wave function ΨS gives an upper bound

on the exact ground state energy, E0:

〈ΨS|Ĥ|ΨS〉 =

∫
Ψ∗S(X1, · · · ,XN)ĤΨS(X1, · · · ,XN)dX1 · · · dXN

≥ E0. (1.4)

The expectation value of the Hamiltonian using Eqs. 1.1, 1.2 and 1.4 is:

〈ΨS|Ĥ|ΨS〉 =
N

N !

∑
P̂ ′,P̂

(−1)p
′+p

∫
P̂ ′ [χ∗1(X1), · · · , χ∗N(XN)] ĥP̂ [χ1(X1), · · · , χN(XN)] dX

+
N(N − 1)

2N !

∑
P̂ ′,P̂

(−1)p
′+p

∫
P̂ ′ [χ∗1(X1), · · · , χ∗N(XN)]

× r−1
12 P̂ [χ1(X1), · · · , χN(XN)] dX

=
N∑
i=1

〈χi|ĥ|χi〉+
1

2

∑
i,j

[
〈χiχj|r−1

12 |χiχj〉 − 〈χiχj|r−1
12 |χjχi〉

]
, (1.5)

4



where ĥ = −(1/2)∇2
i −

∑
I

ZI/riI corresponds to the first two terms of the Hamil-

tonian defined in Eq. 1.1. The HF interaction energy is the sum of the second and

third terms of the last line of Eq. 1.5, known as the “Hartree” and “exchange”

terms, respectively. The Hartree term is due to the charge density, while the ex-

change term stems from the antisymmetry of the wave function with respect to

two-particle permutation (exchange). The exchange term keeps electrons of like

spin apart and, as a result, each electron has around it a Fermi or exchange hole

containing unit positive charge. To find the eigenvalues of the Hamiltonian using

the variational principle, the Lagrangian L = 〈ΨS|Ĥ|ΨS〉 −
∑
i,j

Eij(〈χi|χj〉 − δij)

should be minimised with respect to variations in {χ} subject to the constraints

〈χi|χj〉 = δij. Here, Eij = E∗ji are hermitian Lagrange multipliers that are unitar-

ily diagonalisable. We therefore vary the spin orbitals an arbitrary infinitesimal

amount {χ} → {χ}+ δ{χ}.

δL = δ 〈ΨS|Ĥ|ΨS〉 −
∑
ij

Eijδ 〈χi|χj〉

=
N∑
i=1

〈δχi|ĥ|χi〉+
∑
i,j

[〈δχiχj|r−1
12 |χiχj〉 − 〈δχiχj|r−1

12 |χjχi〉]

−
∑
ij

Eij 〈δχi|χj〉+ c.c. (1.6)

Requiring δL = 0 leads to the HF equation:

∑
j

Eijχj(X1) ≡ f̂χi(X1) = ĥχi(X1) +
N∑
j=1

(∫
r−1

12 |χj(X2)|2χi(X1) dX2

−
∫
r−1

12 χ
∗
j(X2)χi(X2)χj(X1) dX2

)
. (1.7)

f̂ = ĥ + v̂HF is the Fock operator, where vHF is the sum of the direct and the

exchange terms. The former is the average local potential energy at X1 due to an

electron in χj and the latter is because of the antisymmetry of the wave function

under exchange of electrons 1 and 2 [6].
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Although the HF method often gives qualitatively correct results for the ground-

state energies, it has some important drawbacks; for example, the HF approxima-

tion in metals gives a zero density of states at the Fermi level due to the logarith-

mically divergent derivative of energy bands with respect to k at the Fermi surface

[7]. Also, HF theory overestimates the energy gaps of semiconductors between the

occupied and unoccupied states, because HF theory cannot fully describe electronic

screening or correlation.

1.3 Quantum chemistry methods

Quantum chemistry or post–HF methods include electronic correlations by using

a linear combination of Slater determinants. There are different kind of quantum

chemistry methods [6, 8] such as a full configuration-interaction (full CI), which

constructs all possible Slater determinants of a N -electron system from a set of

2K basis functions {χi} to introduce the many-electron wave function |φ0〉,

|φ0〉 =c0|Ψ0〉+
∑
ar

cra|Ψr
a〉+

∑
a<b;r<s

crsab|Ψrs
ab〉

+
∑

a<b<c;r<s<t

crstabc|Ψrst
abc〉+ · · · , (1.8)

where the set of possible determinants include |Ψ0〉 as the determinant formed from

N lowest energy spin orbitals, |Ψr
a〉 as the singly excited determinants by having

χa replaced by χr, |Ψrs
ab〉 as the doubly excited state, etc, up to the N -tuply excited

determinants. The restrictions on the summation (e.g. a < b, r < s, etc.) ensure

that a given excited determinant is included in the sum only once. The scale of

quantum chemistry methods depends on the basis size. For example, the number

of determinants in full CI methods rises exponentially with N and the current

practical limit for highly accurate calculations is reached for small molecules. An

alternative way to avoid this problem is to truncate the trial wave function in
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Eq. 1.8 at the doubly excited state resulting in the CI singles and doubles excited

(CISD) method, which scales as O(N6). Similar to CISD, coupled-cluster singles

and doubles (CCSD) [9] method is size consistent and Møller–Plesset second-order

perturbation theory (MP2) [10] scales as O(N5).

1.4 Density functional theory

In general, the charge density operator of N interacting electrons in volume Ω with

normalised wave function ψ(r1, · · · , rN) is

ρ̂ =
N∑
i=1

δ(r− r̂i). (1.9)

The expectation value of the charge density gives the electronic charge density

n(r) = 〈ψ(r1, · · · , rN)|ρ̂|ψ(r1, · · · , rN)〉 , (1.10)

which is the probability density of finding an electron at r, normalised to N . For

any system of interacting electrons in an external potential Vext(r), the Hamiltonian

based on Hohenberg and Kohn (HK) [11] approach is defined as

Ĥ = −1

2

∑
i

∇2
i +

1

2

∑
i 6=j

1

rij
+
∑
i

Vext(ri)

= T̂ + Ûee + Ûext. (1.11)

A unique lowest HK energy as a functional of electronic charge density is given by

the variational principle:

EHK[n(r)] = 〈ψ|[T̂ + Ûee]|ψ〉+ 〈ψ|Uext|ψ〉

= FHK[n(r)] +

∫
Vext(r)n(r) dr ≥ E0. (1.12)
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Eq. 1.12 makes calculations cheaper by reducing the 3N -dimensional problem into

a 3-dimensional problem. FHK, the exact form of which is not known, includes

all internal kinetic and potential energies of the interacting electron system. The

most widely used approach to approximate FHK is the Kohn–Sham (KS) Ansatz

[12], which assumes that the exact ground-state charge density of an interacting

system is equal to the ground-state charge density of an auxiliary noninteracting

system of particles with the Slater wave function defined in Eq. 1.2. The kinetic

energy of the auxiliary system as a functional of charge density is

Ts[n(r)] = −1/2
N∑
i=1

〈χi|∇2
i |χi〉 , (1.13)

and the Hartree energy or the electrostatic potential energy of noninteracting elec-

trons is

EH[n(r)] =
1

2

∫ ∫
n(r)n(r′)

|r− r′|
dr dr′. (1.14)

Using Eqs. 1.13 and 1.14, which are uniquely determined by n, we can write HK

functional in Eq. 1.12 as

EHK[n(r)] = Ts[n(r)] +

∫
Vext(r)n(r) dr + EH[n(r)] + EXC[n(r)], (1.15)

where the exchange-correlation functional EXC [n(r)] is the missing energy contri-

bution, which has to be approximated. One can then calculate the ground-state

charge density and energy by minimising the HK energy in Eq. 1.15 with respect

to the KS orbitals subject to the constraint that they remain orthonormal.

A simple approximation to describe the exchange-correlation functional is the

local-density approximation (LDA) [12]

ELDA
XC [n(r)] =

∫
εLDA

XC (n(r))n(r) dr, (1.16)

where εLDA
XC (n) is the XC energy per electron of an interacting homogenous electron
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gas (HEG). This approximation works well when the distribution of electrons is

slowly varying; however, DFT-LDA does not correctly describe long-range nonlocal

correlation [13]. Another widely-used XC energy functional is the Perdew-Burke-

Ernzerhof (PBE) [14] functional with an XC energy of the form:

EPBE
XC [n(r)] =

∫
εPBE

XC (n(r),∇n(r))n(r) dr, (1.17)

where the semilocal εPBE
XC (n,∇n) is not only dependent on the electron density but

also on its gradient. Unlike the LDA, the PBE functional takes into account the

fact that the XC hole in an inhomogeneous system is “off centre” with respect to

the electron it surrounds.

Hybrid functionals are another class of approximations in which the XC energy

incorporates a portion of exact exchange from HF theory with exchange and

correlation parameterised using results from ab initio calculations or empirical

data. Hybrid functionals describe a wide range of molecular properties accu-

rately; however, calculating the exact HF exchange is computationally expen-

sive. Becke, 3-parameter, Lee-Yang-Parr (B3LYP) [15, 16] and Heyd–Scuseria–

Ernzerhof (HSE06) [17, 18] are two common examples of hybrid functionals that

we have used. The B3LYP XC functional is of the form:

EB3LYP
XC [n(r)] =

∫
εB3LYP

XC

(
n(r),∇2n2(r)

)
n(r) dr, (1.18)

where εB3LYP
XC (n,∇2n2) is expressed in terms of the electron density and a Laplacian

of the diagonal element of the second-order HF density matrix n2(r). Unlike

B3LYP, the HSE06 functional,

EHSE06
XC [n(r)] =

∫ {
εPBE

XC (n(r),∇n(r))− εHSE06,SR
XC (n(r),∇n(r))

}
n(r) dr, (1.19)

screens the long-range part of the HF exchange by subtracting εHSE06,SR
XC (n,∇n),

a short-range (SR) screened Coulomb potential, from the PBE XC. The HSE06
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functionals solves the problem of singularities in the derivative of the orbital en-

ergies with respect to k. This singularity is caused by the divergence at k = 0 of

the Fourier transform of the 1/r Coulomb potential.

Currently DFT is the most popular way to include the effects of electron correlation

in first-principles calculations. This method is, in reality, fast but does have a

certain number of well-known limitations and is in principle only valid for ground-

state calculations. If the XC functional were exact, the ground-state energy and

charge density would be exact. But the approximate mathematical form of the XC

functional causes inaccuracy in the method. DFT often gives qualitatively wrong

answers for systems such as excited states, highly correlated and vdW structures.

Moreover, the calculated band gap in DFT is always smaller than its experimental

value in semiconductors or insulators, where the host electrons cannot completely

screen one additional electron in the limit of a large number of electrons because

of the existence of the finite energy gap.

1.5 Basis sets

To solve the HK equation in Eq. 1.15, we need to expand the noninteracting wave

function in a basis set. According to the Bloch’s theorem, the electronic wave

function consists of a wavelike part and a cell-periodic part [19].

χi,k(r) = eik·rui,k(r), (1.20)

where the wave vectors k go over the reciprocal lattice vectors of the primitive

cell. The cell-periodic part of the wave function at each k point can be expanded

in terms of a discrete plane-wave basis set,

ui,k(r) =
∑
G

ci,G(k)eiG·r, (1.21)
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where ci,G are the expansion coefficients and the reciprocal lattice vectors G are

defined by G · l = 2πm for all l lattice vector of the crystal and m integers.

Therefore each electronic wave function can be written as a sum of plane waves,

χi,k(r) =
∑
G

ci,k+G(k)ei(k+G)·r. (1.22)

Plane waves are a kind of basis set appropriate for periodic systems and in prin-

ciple, an infinite number of plane waves is required to expand the electronic wave

functions at each k point. However, the coefficients ci,k+G for the plane waves

with small kinetic energy (1/2)|k + G|2 are typically more important than those

with large kinetic energy [13]. Hence the plane-wave basis set can be truncated

to include only plane waves having kinetic energies smaller than some particular

cutoff energy (1/2)|kmax|2. The truncation at a finite cutoff energy leads to an

error in the computed total energy and its derivatives. It is possible to reduce the

magnitude of the error in a systematic way by increasing the value of the cutoff

energy until the calculated total energy converges within the required tolerance.

In QMC calculations, we use simulation cells, whose translation vectors is m1b1 +

m2b2 +m3b3, where mi are integers and bi are the primitive vectors of the crystal.

If the simulation cell consists of one primitive cell, the first Brillouin zone of the

primitive lattice contains a grid of m1 ×m2 ×m3 points with the same (reduced)

value of k. The grid of k-point becomes finer as the simulation cell is made

larger and is analogous to the k-point sampling grids used in independent-electron

calculations.

Nonlocality of the plane-wave basis set in QMC increases the scaling with system

size, which requires the storage proportional to N2 for electronic orbitals. This

problem can be overcome using a localised basis set such as a B-spline (blip) basis

[20] on a uniform cubic grid spacing a = π/(2kmax). The single particle orbitals

centred on the grid point at position (Xs, Ys, Zs) are therefore represented in terms

11



of blip function using χi(r) =
∑
s

cisφ((x−Xs)/a)φ((y−Ys)/a)φ((z−Zs)/a), where

coefficients cis are evaluated by comparing the relationship between B-splines and

plane-wave and φ(ζ) are

φ(ζ) =

 1− 3
2
ζ2 + 3

4
|ζ|3 0 ≤ |ζ| ≤ 1

1
4
(2− |ζ|)3 1 < |ζ| ≤ 2

.

For any position r, there are only 64 non-zero blips, which increases the efficiency

of calculations.

Another kind of basis functions that can be used in electronic structure calculations

are Gaussian basis sets, which are represented as a linear combination of Gaussian

primitives,

χi(r) = xaybzce−αir
2

, (1.23)

where α as the Gaussian orbital exponent controls the width of orbitals and a, b and

c control angular momentum l = a+b+c. Eq. 1.23 can be combined with a periodic

images modulated by a phase factor to represent the periodicity of the system.

QMC calculations scale better with system size while using Gaussian rather than

plane-wave basis sets. Gaussian basis sets also do not require pseudopotentials and

periodic boundary conditions, even for isolated molecules however they show basis

set superposition errors (BSSE). For example, as two monomers approach each

other, the dimer can be artificially stabilised to describe the electronic distribution

of each monomer using the extra basis functions from the other one. The error

arises from the fact that each monomer accesses additional functions from the

other monomer at shorter intermolecular distances whereas at large intermolecular

distances, the overlap integrals are too small to provide stabilisation. The energy

mismatch due to the short-range and long-range interactions introduces an error.
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1.6 Quantum Monte Carlo methods

Quantum Monte Carlo (QMC) simulation is a powerful tool in understanding the

properties and behaviour of systems with fewer than 1000 electrons because it

involves an explicit treatment of electron correlation and stochastically solves the

many-body Schrödinger equation. QMC methods can be used for quantitative

calculations of important quantities such as total energies, charge densities, pair-

correlation functions and momentum densities for molecules and crystals. These

methods have many attractive features for probing the properties of homogeneous

electron gases, equations of state, phase transitions, lattice defects, surface phe-

nomena, excited states and band structures [21].

There are many different QMC methods, but we concentrate on the two that

we have used: variational quantum Monte Carlo (VMC) and diffusion quantum

Monte Carlo (DMC). The VMC method is the calculation of expectation values via

Monte Carlo integration over the 3N -dimensional space of electron coordinates.

By contrast, the DMC method is a projector approach, in which a stochastic

imaginary-time evolution is used to improve a starting trial wave function. The

VMC and DMC methods are best suited to calculating total energies, because

these have the very advantageous zero-variance property: as the trial wave func-

tion approaches the exact ground state (or any other exact energy eigenstate) the

statistical fluctuations in the energy estimate reduce to zero. The VMC and DMC

methods are less well-adapted to study excited states, but have nevertheless been

used successfully to calculate a wide range of excited-state properties of atoms,

molecules, and solids. These methods are able to simulate only one state at a

time, so determining a spectrum of excited states is expensive [22]. The com-

putational time required to calculate the total energy of a system to some given

accuracy using the fermion VMC and DMC methods effectively scales as N3 [22].

The advantageous scaling with system size means that the attainable accuracy

does not fall off rapidly as the number of electrons N increases.
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In the rest of this section, we describe the general idea of Monte Carlo integration,

the VMC method, the DMC method and backflow transformations.

1.6.1 Monte Carlo integration

Monte Carlo (MC) integration is a robust method for a wide range of high-

dimensional numerical integration problems. MC integration converges at a rate

of M−1/2 independent of the dimension of the integral, where M is the number of

random samples. For example, suppose

I =

∫
Ω

f(R) dR, (1.24)

where R is a multi-dimensional vector, f(R) is a nontrivial function and Ω is the

region in which we are interested. By decomposing f(R) into a product of a real

valued function, g(R) and a probability density function, P (R), I in Eq. 1.24 can

be transformed into an integral of the form

I =

∫
Ω

g(R)P (R) dR ≈ 1

M

M∑
i=1

g(Ri). (1.25)

This transformation is called “importance sampling”, because g(R) is averaged

over sampling points that are determined by a positive probabilistic weight P (R)

that may be chosen to be large when |f | is large. As the number of sampling points

grows, the estimate of the integral becomes increasingly accurate. In general,

considering a function w(R) ≈ |f(R)| and choosing P (R) to be the normalised

form

P (R) =
w(R)∫
w(R) dR

, (1.26)

greatly reduces the fluctuations in g(R) that were originally present in f(R),

because the summand in Eq. 1.25 is almost a constant as can be seen by considering

g(R) = f(R)/P (R). Assuming the samples are independent, the standard error
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in the estimate of Eq. 1.25 is σ/
√
M , where

σ2 ' 1

M − 1

M∑
i=1

(g(Ri)− 〈g(R)〉)2. (1.27)

An efficient way to generate configurations {Ri} distributed according to P (R) is

the “Metropolis algorithm” [23]. This algorithm is based on a random walk in the

space of the dynamic variable R. The Metropolis algorithm starts from a random

position R and takes the following steps:

1. Propose a move, R′ ← R, with the transition probability density T (R′ ←

R), which defines the probability that each particle i moves from {ri} to

{r′i}. The function T (R′ ← R) affects the efficiency of performing the MC

integration. A common choice of T is a Gaussian whose width can be varied

to find the maximum efficiency.

2. Accept the move with the following probability

Paccept(R
′ ← R) = min

{
1,
T (R← R′)P (R′)

T (R′ ← R)P (R)

}
, (1.28)

where the normalisation part of P cancels out.

3. Depending on the acceptance or rejection of the new random move, the

new position is respectively R′ or R. This position is added to the set of

configurations Ri. Return to step 1 to propose the next move and repeat

until the required number of samples have been collected.

1.6.2 Slater–Jastrow wave function

The wave function can always be chosen to be real for systems with time-reversal

symmetry, which have real Hamiltonians with appropriate boundary conditions.

An appropriate trial wave function ψT (X) must have the proper symmetry and
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include as accurate a description of correlations as possible. Fermion wave func-

tions must be antisymmetric under the exchange of positions of same-spin electrons

however ground state boson spatial wave function needs a bosonic symmetry. A

single-determinant Slater–Jastrow (SJ) wave function for a fermionic system is

ψT (X) = eJ(X)ΨS(X), (1.29)

where J is the Jastrow factor and ΨS is the Slater determinant shown in Eq. 1.2.

The single-particle orbitals in the Slater determinants come from a HF code or a

DFT code such as castep. The spin variables in Eq. 1.29 can be removed from

X = (r, σ) using a product of determinants of up-spin and down-spin orbitals,

ψT (R) = eJ(R)Ψ↑S(r1, · · · , rN↑)Ψ
↓
S(rN↑+1, · · · , rN), (1.30)

where R = (r1, r2, · · · , rN) is a 3N -dimensional spacial coordinates of electrons.

The Jastrow factor J(R) is a symmetric function of the coordinates and contains

free optimisable parameters. We have used a general form of the Jastrow function,

J(R) =
1

2

N∑
i 6=j

u(rij) +
N∑
i

Nn∑
I

χI(riI) +
1

2

N∑
i 6=j

Nn∑
I

fI(rij, riI , rjI) +
1

2

N∑
i 6=j

p(rij),

(1.31)

where the isotropic functions of u, χ and f are polynomials describing electron–

electron correlations, electron–nucleus correlations, and electron–electron–nucleus

correlations, respectively and p are cusp-less plane-wave expansions for electron–

electron separations.

The SJ wave function in Eq. 1.30 can satisfy the electron–electron “cusp” condition

[24, 25]. When two opposite-spin electrons approach one another, the local energy

ĤψT/ψT diverges due to the divergence in the Coulomb potential. Since the wave

function must remain an eigenstate of Hamiltonian, the divergence of the potential

at the coalescence point must be canceled out by an equal and opposite divergence
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in the kinetic energy. The cusp condition can be imposed on parallel-spin electron

pairs as well because the local energy must be finite when ψT = 0 for two like-spin

electrons. The general Kato cusp condition for two arbitrary particles of charges

qi and qj and masses mi and mj, interacting by the Coulomb interaction, is

dJ(R)

drij

∣∣∣∣
rij=0

=
2qiqjµij
d± 1

, (1.32)

where µij = mimj/(mi+mj) and d is the dimensionality. The minus and plus signs

are used for distinguishable and indistinguishable particles, respectively. Fig. 1.1

shows the effect of cusp correction on the local energy of a biexciton calculated

using SJ wave functions, where the electrons and holes are distinguishable and

interact with the Coulomb interaction: it is clear that the divergence in the local

energy is removed by using the cusp correction in SJ wave function that satisfies

Eq. 1.32. In chapter four, we will describe wave function forms for a biexciton in

a 2D semiconductor.
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Figure 1.1: Local energy of a 2D biexciton against the separation of two like-

spin electrons, r. SJ wave function is used for the particles interacting with

Coulomb interaction.
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1.6.3 Variational quantum Monte Carlo method

Variational quantum Monte Carlo (VMC) is based on the variational principle for

the quantum mechanical zero-temperature ground state. The expectation value of

the Hamiltonian with respect to the trial wave function can be evaluated as

EVMC =
〈ψT (R)|Ĥ|ψT (R)〉
〈ψT (R)|ψT (R)〉

=

∫
|ψT (R)|2EL(R) dR∫
|ψT (R)|2 dR

≥ E0, (1.33)

where EVMC provides an upper bound to the exact ground-state energy, E0.

Eq. 1.33 utilises an importance sampling transformation, where |ψT (R)|2/(
∫
|ψT (R)|2 dR)

can be interpreted as a probability distribution function at R, which is sampled

by the Metropolis algorithm. Since Ĥ is an operator, the quantity that is averaged

will be the local energy

EL(R) = ĤψT (R)/ψT (R), (1.34)

with variance

σ2 =

∫
|ψT (R)|2|EL(R)− EVMC |2dR∫

|ψT (R)|2dR
. (1.35)

The VMC method is based on Eqs. 1.33– 1.35 and the best ψT can be obtained by

minimising σ or EVMC with respect to the wave function parameters. The opti-

misation of wave functions within the VMC method is the most difficult technical

aspect of QMC. Ideally, if ψT is the exact ground-state wave function, the local en-

ergy EL(R) tends to the ground-state energy and σ2 → 0; the trial wave function

should therefore be chosen to make the local energy as constant as possible.

The problem with Eq. 1.35 is that the weight |ψT (R)|2/(
∫
|ψT (R)|2 dR) varies

exponentially between electron configurations as the parameters change, resulting

in instabilities in optimisation procedures. “Unreweighted variance minimisation”

[26, 27] solves this problem by introducing the following variance for a set of

M configurations {R} distributed according to the initial |ψT (R)|2 (we rewrite
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the trial wave function as ψ
{Nopt}
T (R) to denote that it depends on a set of free

parameters {Nopt}):

σ2
u =

1

M − 1

M∑
i=1

(E
{Nopt}
L (Ri)− Ēu)2, (1.36)

where the unreweighted energy Ēu is the mean value of the local energy.

Ēu =
1

M

M∑
i=1

E
{Nopt}
L (Ri). (1.37)

The local energy in Eq. 1.34 with respect to ψ
{Nopt}
T (R), together with Eqs. 1.36

and 1.37 are the fundamentals of the unreweighted variance optimisation method.

We can also use linear-least-squares (LLS) energy minimisation methods [28–30]

to optimise the trial wave function. If we employ N -electron wave functions, which

depend on Nopt variational parameters collectively denoted by α0 = (c, w, q), the

trial wave function for all M configurations {Rm} may be of the form

ψT (α0,Rm) = eJ(w,R)
∑
p

cpΨp(q,Rm), (1.38)

where J is a Jastrow factor including a set of free parameters {w} defined in

Eq. 1.31,
∑
p

cpΨp(q,Rm) is a linear combination of Slater determinants of single-

particle orbitals with coefficients of {cp} and q nonlinear expansion coefficients

of the orbital. It is possible that the trial wave function becomes zero for some

variables q causes local energy to diverge when the nodal surface moves through a

sampled configuration. To solve the divergence problem in the variational wave-

function optimisation, suppose the wave function involves a set of free parameters

α0 which changes to α = α0 + δα in each optimisation cycle. The new wave
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function is a Taylor expansion in terms of δα:

ψ′T (α,Rm) = ψT (α0,Rm) +

Nopt∑
i=1

δαi
∂ψT (α,Rm)

∂αi

∣∣∣∣
α=α0

+O([δα]2)

'
Nopt∑
i=1

aiφi (for small δα), (1.39)

where the coefficients {ai} and the basis functions {φi} are defined as:

ai =

 1 i = 0

δαi i 6= 0
(1.40)

φi =


ψT (α0,Rm) i = 0

∂ψT (α,Rm)
∂αi

∣∣∣
α=α0

i 6= 0.
(1.41)

ψ′T has an (Nopt+1)-dimensional basis formed by the wave function and its deriva-

tives. According to standard diagonalisation on an infinite MC sample, minimis-

ing 〈ψ′T |Ĥ|ψ′T 〉 with respect to a subject to the constraint 〈ψ′T |ψ′T 〉 = constant

results in the general eigenvalue equation (H −ES)a = 0, where Hij = 〈φi|Ĥ|φj〉,

Sij = 〈φi|φj〉 are the elements of the overlap matrix, and E is an eigenvalue. The

lowest eigenvalue gives the lowest-energy state that can be constructed from the

basis functions, and the corresponding eigenvector gives the coefficients for this

state.

In practice, we look for eigenstates of Ĥ on a finite MC sample of configurations

{Rm} by considering the action of Ĥ on basis sets {φi}. Assume that the basis

functions span an invariant subspace of the Hamiltonian, which means the action

of Ĥ on any basis sets leads to a linear combination of all the basis sets.

Ĥ|φi〉 =

Nopt∑
j=0

Eji|φj〉 ∀ i, (1.42)

where Eji are coefficients. Once E is determined, δα can be found by solving

Ea = Ea. To solve Eq. 1.42 and obtain acceptable statistical errors, we use a
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least-squares [28] fit by minimising:

χ2 =
M∑
m=1

Nopt∑
i=0

∣∣∣∣∣∣∣∣∣
Ĥφi(Rm)−

Nopt∑
j=0

Ejiφj(Rm)

ψT (α0,Rm)

∣∣∣∣∣∣∣∣∣
2

, (1.43)

with respect to {Eji}. Suppose φmi = φi(Rm)/ψT (α0,Rm) and φHmi = Ĥφi(Rm)/ψT (α0,Rm).

Then ∂χ2

∂Epq = 0 gives

M∑
m=1

(
φHmi −

Nopt∑
j=0

Ejiφmj

)
φ∗mp = 0, (1.44)

therefore E = (φ†φ)−1φ†φH . In the VMC estimates and the limit of M → ∞,

φ†φ and φ†φH are proportional to S and H, respectively. In the limit of per-

fect sampling, standard diagonalisation and linear-least-squares optimisation solve

the same eigenproblem. By finding δα and optimising the parameters appear in

Eq. 1.39, the trial wave function will be optimised and the energy will converge to

a local minimum.

1.6.4 Theory of diffusion quantum Monte Carlo

The quality of results obtained using the VMC method is entirely determined

by the quality of the trial wave function. By contrast, the diffusion quantum

Monte Carlo (DMC) wave function is generated stochastically, leading to results

that are largely free of errors caused by limited basis sets and so on. DMC is the

most accurate first-principles total-energy method for systems with a few hundreds

of electrons. The aim of using DMC is solving the imaginary-time many-body

21



Schrödinger equation (ITSE):

−∂Φ(R, τ)

∂τ
= [Ĥ − ET ]Φ(R, τ)

= −1

2
∇2Φ(R, τ) + (U(R)− ET )Φ(R, τ), (1.45)

where Φ(R, τ) is a function of configuration R and imaginary time τ = it, U(R)

is the potential energy and ET is an energy offset. A general solution of Eq. 1.45

is

Φ(R, τ) =
∞∑
i=0

ciφi(R)e−(Ei−ET )τ , (1.46)

where Ei and φi(R) are the ith eigenvalue and eigenfunction of the Hamiltonian

Ĥ. In the limit τ → ∞, if ET = E0, and the initial conditions have c0 6= 0, the

ground state is projected out to lim
τ→∞

Φ(R, τ) = c0φ0(R).

Eq. 1.45 without the second term in the second line describes random diffu-

sion of “walkers”; without the first term of Eq. 1.45 results in exponential term.

The simulation of Eq. 1.45 by a random walk is inefficient because of the diver-

gences in the branching rate (U − ET ) due to the Coulomb interaction. These

divergences lead to large fluctuations in the configuration population and hence

large statistical uncertainties in expectation values. These fluctuations can be

reduced by a variant of the MC technique of importance sampling described in

Sec. 1.6.1. In this procedure, one constructs an analytical trial function, ψT (R),

based on any available knowledge of ground-state wave function. Here, ψT (R)

is of the form given in Eq.1.30 with a VMC-optimised Jastrow factor. The trial

function is then used to bias the random walk to produce the probability dis-

tribution function f(R, τ) = Φ(R, τ)ψT (R) rather than Φ(R, τ). Substituting

Φ(R, τ) = ψ−1
T (R)f(R, τ) into Eq. 1.45 results in the importance-sampled imagi-

nary time Schrödinger equation (ISITSE),

− 1

2
∇2f(R, τ) +∇.[V(R)f(R, τ)] + [EL(R)− ET ]f(R, τ) = −∂f(R, τ)

∂τ
, (1.47)
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where V(R) = ψ−1
T (R)∇ψT (R) is the drift velocity, which modifies the diffusion

process. The advantage of having EL(R), the local energy defined in Eq. 1.34, in

the branching term is that the singularities in the potential energy are avoided.

The local energy has both kinetic and potential energy and is much smoother than

the potential energy alone. Eq. 1.47 without the third term in the left hand side is

a Fokker–Planck (FP) equation, which describes the time evolution of the density

of a set of particles under random diffusion in 3N -dimensional fluid of velocity

field V. Eq. 1.47 without the first two terms is the branching factor, which gives

an exponential growth or decay in the density of particles at each point in the

3N -dimensional configuration space. The FP equation is

−1

2
∇2f(R) +∇.[V(R)f(R)] = −1

2
∇2

∫
〈R|P〉 〈P|f〉 dP

+∇.
∫
〈R|P〉 〈P|V(R̂)|f〉 dP

=
1

2
〈R|P̂2|f〉+ i 〈R|[P̂.V(R̂)]|f〉

= 〈R|F̂ |f〉 , (1.48)

where F̂ = (1/2)P̂2 + iP̂.V(R̂) is the FP operator, P̂ is the momentum operator

and 〈R|P〉 = exp(iP.R)/(2π)3N/2 for N particles.

The integral form of ISITSE (Eq. 1.47) is

f(R′, τ + δτ) =

∫
G(R′ ← R, δτ)f(R, τ)dR, (1.49)

where δτ is an interval in imaginary time. The exact form of Green’s function,

G(R′ ← R, δτ)exact = 〈R′|e−δτ(F̂+EL(R̂)−ET )|R〉 , (1.50)

is not explicitly known, however we can construct an approximation using Suzuki–
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Trotter expansion [31]

G(R′ ← R, δτ)exact = 〈R′|e−δτ(F̂+EL(R̂)−ET )|R〉

= 〈R′|e−δτ
EL(R̂)−ET

2 e−δτF̂ e−δτ
EL(R̂)−ET

2 +O(δτ 3)|R〉

≈ e−δτ
EL(R′)−ET

2 〈R′|e−δτF̂ |R〉 e−δτ
EL(R)−ET

2 , (1.51)

which is accurate for δτ → 0. The last line of Eq. 1.51 can be rewritten as

G(R′ ← R, δτ)approx ≈ GD(R′ ← R, δτ)GB(R′ ← R, δτ)

=
1

(2πδτ)3N/2
exp[−|R

′ −R− δτV(R)|2

2δτ
]

× exp[−δτ
2

(EL(R′) + EL(R)− 2ET )], (1.52)

where GD is the drift-diffusion Green’s function and GB is the branching factor.

The DMC Green’s function therefore describes the evolution of the density of a

set of particles drifting and breeding or dying in a 3N -dimensional space. Nev-

ertheless, as δτ → 0, GDGB converges to the exact Green’s function and any

initial distribution of walkers will converge to the ground state [32]. After a cer-

tain number of iterations, the excited state components of f die away; hence

f(R) = φ0(R)ψT (R) has a mixed distribution and the ground-state energy can be

evaluated by the “mixed estimator”,

E0 =
〈φ0|Ĥ|ψT 〉
〈φ0|ψT 〉

= lim
τ→∞

∫
f(R, τ)EL(R) dR∫

f(R, τ) dR
≈ 1

M

M∑
i=1

EL(Ri). (1.53)

1.6.5 Sources of errors in VMC and DMC calculations

Random errors and serial correlations: The error bars in the VMC and

DMC calculations are affected by serial correlations caused by the fact that the

sampling points are not truly independent of each other. To balance the serial
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correlation, the VMC time step is optimised by choosing the VMC transition

probability distribution function such that around 50% of moves are accepted.

The VMC time step is the variance of the probability distribution function used

to generate the random displacement and in principle is a squared length, but can

be considered as a time in a diffusion process. We also keep one configuration for

every 16 proposed VMC moves and use reblocking analysis to analyse our VMC

and DMC data [33]. Reblocking works by grouping the energies of M iterations

into blocks of length X with the mean energy Ē = (1/M)
M∑
i=1

E({Ri}). As an

example, Fig. 1.2 shows how eight elements are transformed into four reblocked

sets with the blocking length X = 2.

E0
1 E0

2︸ ︷︷ ︸ E0
3 E0

4︸ ︷︷ ︸ E0
5 E0

6︸ ︷︷ ︸ E0
7 E0

8︸ ︷︷ ︸
E1

1 E1
2︸ ︷︷ ︸ E1

3 E1
4︸ ︷︷ ︸

E2
1 E2

2︸ ︷︷ ︸
E3

1

Figure 1.2: Reblocking eight elements into three blocking transformations.

The effect of a reblocking transformation on the variance for X = 2 is given by

σ′2Ē =

M/2∑
m=1

(
E2m−1+E2m

2
− Ē

)2

M/2(M/2− 1)
=

M/2∑
m=1

(E2m−1 − Ē + E2m − Ē)2

M(M − 2)

=

M∑
m=1

(Em − Ē)2

M(M − 2)
+

2
M/2∑
m=1

(E2m−1 − Ē)(E2m − Ē)

M(M − 2)

≈ σ2
Ē +

2
M/2∑
m=1

(E2m−1 − Ē)(E2m − Ē)

M(M − 2)
. (1.54)

If there is no serial correlation, the last term in Eq. 1.54 is a sum of numbers

distributed around zero, which leads to σ′2
Ē
≈ σ2

Ē
. When the variance as a func-

tion of reblocking transformation number reaches a plateau, the statistical error

converges to the true variance and the reblocking transformation number beyond
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the plateau is greater than the mean correlation time, which refers to the average

number of MC steps between two uncorrelated values of the energy.

To reduce transient effects due to the initial distribution, the length of equilibration

must be sufficiently large that the root mean square (RMS) distance diffused by a

particle is of the order of the longest length scale in the system. The RMS distance

is
√

2DdANequilδτ , where D = 1/(2m) is the diffusion constant for the particle

mass m, which is 1 for electrons, d is the dimensionality, Nequil is the number of

moves, A is the acceptance ratio, which is close to 1 in DMC and 1/2 in VMC,

and δτ is the time step [34]. The first guess at a DMC time step can be 1/50 of

the optimised VMC time step. In fact, the DMC time step δτ should be such that

the RMS distance diffused over one time step, i.e.
√

2DdAδτ , is small compared

with the shortest length scale in the problem.

Time-step bias: Using the finite imaginary time step δτ in the Green’s function

of Eq. 1.52 is one of the approximations in DMC. These errors can largely be

removed by extrapolating the DMC energy to zero time step.

Pseudopotentials: We have used pseudopotentials in our calculations resulting

in an error which could in principle be removed by using an all-electron approach

and a Gaussian basis set. The DF pseudopotentials used in our DMC calculations

are nonlocal in a core region, which introduces the locality approximation.

Population-control bias: Using a small target configuration population in

DMC calculations can cause biased results. Using a large configuration popu-

lation in DMC has the advantage of reducing population-control bias, but it has

the disadvantage of proportionately increasing the computational expense of equi-

libration, and if the duration of statistics accumulation is reduced, it becomes more

difficult to eliminate the effects of serial correlation when calculating error bars.
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Population-control bias is small in practice and can be removed by extrapolating

the DMC energy to infinite populations.

Finite-size errors: Although the accuracy of QMC for total-energy calculations

reaches 10−2 eV/atom, finite-size errors present a major challenge in studies of

condensed matter. The finite-size errors are due to the limited number of unit cells

in the simulation cell and single-particle finite-size errors because of momentum

quantisation. The former error may be minimised by calculating the DMC energy

for different sizes of supercell and extrapolating the energy to the infinite system

size. The latter can also be reduced by averaging over offset to the grid of Bloch

k vectors.

Fixed-node error: The fermionic nature of many-electron systems imposes pos-

itive and negative regions in the antisymmetric wave function. This simple fact

underlies the fermion sign problem, which troubles all projector QMC methods.

Both Φ(R, τ) and ψT (R) must have the same nodal surface otherwise there would

be regions where f(R, τ) is negative. In the importance sampling algorithm that

we use, f as a probability distribution can never have a negative value. This fact

introduces the DMC fixed-node approximation [35]. Fixed node approximations

for fermionic systems is a consistent source of error, which is positive for fermions

and may be improved by using backflow wave functions, which are briefly discussed

in the next section.

1.6.6 Backflow transformations

The fixed-node DMC algorithm projects out the many-electron wave function with

the lowest possible energy expectation value consistent with the fixed nodal surface.

The nodal surface of a wave function Φ(R, τ) is the (3N − 1)-dimensional surface

on which Φ = 0 and across which it changes sign. The fixed-node method is

27



computationally stable: DMC results are based on variational principle and not

exact unless the trial nodal surface is exact. The Jastrow function eJ(R) defined

in Eq. 1.31 is always positive and does not move the nodes of a wave function.

Backflow (BF) transformation provides a way to move the nodal surface of a

trial wave function by introducing further correlations which allow the orbitals to

depend on the positions of other electrons [36–41]. BF correlations are introduced

by substituting a set of collective coordinates {X(R)} for coordinates R in the

Slater determinants.

ΨBF (R) = eJ(R)ΨS({X(R)}), (1.55)

where Xi(R) is given by

Xi(R) = ri + ξi({R}), (1.56)

in which ri is the position of electron i, ξi(R) is the BF displacement of particle

i that depends on the configuration of the whole system. The form of backflow

displacement in homogenous systems has a form of [40, 41]

ξi =
∑
i 6=j

ηijrij, (1.57)

where ηij = η(rij) is a two-body coordinate transformation and rij=ri − rj.

In addition to the systematic finite-size error in the ground-state total energy of

a system, the VMC and DMC backflow corrections introduces a slowly decaying

source of finite-size error, which would become apparent at large system size if the

statistical error bars are sufficiently small. Since the DMC energy is variational

with respect to the nodal surface, we expect the BF correction to the total energy

is proportional to the RMS displacement of the nodes. For a HEG with the density

ρ(r) = ρ, the BF displacement of electron i using Eqs. 1.55 and 1.57 is

∆ri =
∑
j 6=i

η(rij)rij, (1.58)
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The displaced coordinate ri + ∆ri is then used in the evaluation of the Slater part

of the trial wave function. Hence

∆r2
i =

∑
j,k 6=i

η(rij)η(rik)rij · rik, (1.59)

and the average square electron BF displacement is

∆r2 ≡ 1

N

∑
i

∑
j,k 6=i

η(rij)η(rik)rij · rik. (1.60)

The mean square of the electron BF displacement is

〈
∆r2

〉
=

1

N

〈∑
i

∑
j,k 6=i

η(rij)η(rik)rij · rik

〉

≈ 1

N

〈∑
i

∑
j 6=i

η2(rij)r
2
ij

〉
, (1.61)

supposing that there is no correlation between the BF displacements of electron i

due to electrons j and k, where j 6= k. The angled brackets in Eq. 1.61 denote an

average over configurations generated in the QMC calculation. Hence

〈
∆r2

〉
≈ 1

N

∫ ∫
ρ2(r, r′)η2(|r− r′|)|r− r′|2 dr dr′

=
1

N

∫ ∫
ρxc(r, r

′)ρη2(|r− r′|)|r− r′|2 dr dr′

+
1

N

∫ ∫
ρ2η2(|r− r′|)|r− r′|2 dr dr′

=

∫
ρ̄xc(r)η2(r)r2 dr + ρ

∫
η2(r)r2 dr, (1.62)

where ρ2(r, r′) =

〈∑
i

∑
j 6=i

δ(r− ri)δ(r
′ − rj)

〉
is the pair density, ρxc(r, r

′) = ρ2(r, r′)/ρ(r′)−

ρ(r) is the XC hole and ρ̄xc(r) = (1/N)
∫
ρxc(r + r′, r′)ρ(r′) dr′ is the system-

averaged XC hole.

It can be shown that η(r) ≈ cr−5/2 in 2D HEG [40], where c is a positive con-

stant. Substituting η to Eq. 1.62, the finite-size correction to 〈∆r2〉 for long range
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interactions by the second term is

ρc2

∫ ∞
L

r−5r2 2πr dr = 2πρc2/L = O(N−1/2). (1.63)

Therefore 〈∆r2〉 ≈ c1 + c2N
−1/2 with constants c1 and c2. The second term is

small at large N , so the RMS BF displacement of each electron is

〈
∆r2

〉1/2 ≈ c
1/2
1 +

c2

2c
1/2
1

N−1/2. (1.64)

In general, unless we are close to the optimal nodal surface, the VMC and DMC en-

ergies are expected to be linear in changes to the nodal surface. The BF correction

per electron B/N is therefore proportional to the RMS change in the nodal surface

per electron, which we assume is the same as the overall RMS BF displacement of

electrons. Hence

B

N
∝
〈
∆r2

〉1/2
= c

1/2
1 +

c2

2c
1/2
1

N−1/2. (1.65)

The leading-order finite-size error in the BF correction per electron therefore goes

as O(N−1/2). If, on the other hand, the Slater–Jastrow backflow (SJB) nodal

surface is (approximately) optimal, then the SJ DMC (SJ-DMC) energy must be

quadratic in the error in the SJ nodal surface; so the BF correction per electron

would be

B

N
∝
〈
∆r2

〉
= c1 + c2N

−1/2. (1.66)

Again the leading-order finite-size correction in the BF correction per electron is

O(N−1/2). Comparing with the finite size error in the exact energy per electron

for 2D systems which falls off as O(N−5/4) [42], the finite-size error in SJ energy

falls off more slowly as O(N−1/2).

To find the effect of backflow correction on the single-particle finite-size error, we

compare twist-averaged (TA) VMC and DMC energies of a 14-electron paramag-

netic 2D HEG in a triangular cell of density parameter rs = 4 (Table 1.1). The

Jastrow factor and backflow function are optimized at different simulation-cell
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Bloch vectors ks: Γ [fractional coordinates (0, 0, 0)], K is [fractional coordinates

(1/3,−1/3, 0)], M [fractional coordinates (1/2, 0, 0)] and two random Bloch vec-

tors in the simulation-cell BZ. Twist averaging is performed by optimising the wave

function at a particular ks point in the simulation-cell BZ and then the optimised

wave function is used in a set of VMC and DMC calculations with 12000 and

1200 twists, respectively. Our twist-averaging method has the obvious advantage

of avoiding multiple expensive and noise-introducing wave-function optimisations;

however it has the disadvantage that significant momentum-quantisation effects

could still be present in the wave function due to the choice of ks for optimising

the wave function.

Table 1.1: Twist-averaged (TA) VMC and DMC energies of a 14-electron para-

magnetic 2D HEG in a triangular cell of density parameter rs = 4. Random

stands for random Bloch vectors in the simulation-cell Brillouin zone.

TA-VMC energy (a.u./e) TA-DMC energy (a.u./e)
ks for opt. SJ SJB SJ SJB

Γ −0.176397(6) −0.177778(4) −0.177538(2) −0.178195(6)
K −0.176355(6) −0.177681(5) −0.177547(2) −0.178228(7)
M −0.176378(6) −0.177640(5) −0.177535(2) −0.178201(6)
Random (1) −0.176385(6) −0.177656(5) −0.177541(2) −0.178225(8)
Random (2) −0.176386(6) −0.177666(5) −0.177542(2) −0.178247(8)

In Table 1.2 we compare VMC-BF and DMC-BF corrections. The BF correction

EBF = ESJ − ESJB, where ESJ and ESJB are the SJ- and SJB-QMC energies,

respectively. Our results show that the EBF correction in DMC energy is much

smaller than that in the VMC energy however it is considerable and depends on

the ks points where the SJ wave function is optimised.
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Table 1.2: Twist-averaged VMC-BF and DMC-BF corrections of a 14-electron

paramagnetic 2D HEG with rs = 4 at different ks.

ks for opt. EVMC−BF (a.u./e) EDMC−BF (a.u./e)

Γ 0.001381(7) 0.000657(6)

K 0.001326(8) 0.000681(7)

M 0.001262(8) 0.000666(6)

Random (1) 0.001271(8) 0.000684(8)

Random (2) 0.001280(8) 0.000705(8)

32



Chapter 2

DMC binding energy of bilayer

graphene

2.1 Introduction

van der Waals (vdW) interactions play a crucial role in a wide range of physical

and biological phenomena, from the binding of rare-gas solids to the folding of

proteins. Significant efforts are therefore being made to develop computational

methods that predict vdW contributions to energies of adhesion, particularly for

materials such as multilayer graphene. This task has proved to be challenging,

however, because vdW interactions are caused by nonlocal electron correlation

effects. Standard first-principles approaches such as DFT with local exchange–

correlation functionals do not describe vdW interactions accurately. One technique

for including vdW interactions in a first-principles framework is to add energies

obtained using pairwise interatomic potentials to DFT total energies; this is the so-

called DFT-D scheme [43–47]. The development of vdW density functionals (vdW-

DFs) that can describe vdW interactions in a seamless fashion is another promising

approach [48–51]. DFT-based random-phase approximation (RPA) calculations of

the correlation energy [52, 53] provide a more sophisticated method for treating
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vdW interactions; however, RPA atomisation energies are typically overestimated

by up to 15% for solids [54, 55], and hence the accuracy of this approach is unclear.

Symmetry-adapted perturbation theory based on DFT allows one to calculate

the vdW interactions between molecules and hence, by extrapolation, between

nanostructures [56]. Finally, empirical interatomic potentials with r−6 tails may

be used to calculate binding energies [57, 58], although such potentials give a

qualitatively incorrect description of the interaction of metallic or π-bonded two-

dimensional (2D) materials at large separation [59].

A key test system for methods purporting to describe vdW interactions between

low-dimensional materials is bilayer graphene (BLG). Despite a great deal of

theoretical and experimental work, the binding energy (BE) of graphene layers

remains poorly understood. The cleavage energy of graphite has been measured to

be 43(5) meV/atom [57], the BE to be 35(10) meV/atom [60], and the exfoliation

energy to be 52(5) meV/atom [61]. More recent experimental work has found

the cleavage energy to be 31(2) meV/atom [62]. It has been suggested that the

latter result may be substantially underestimated, because the experimental data

were analysed using a Lennard-Jones potential, which gives qualitatively incorrect

interlayer BEs at large separation [63]. Similar difficulties of interpretation may

affect the other experimental results in the literature. The results obtained in

these works are widely scattered. The DMC method has previously been applied

to calculate the BEs of AB- and AA-stacked graphite [64, 65], which were found

to be 56(5) and 36(1) meV/atom, respectively, although these calculations were

performed in relatively small simulation supercells, and finite-size effects may limit

the accuracy of the results obtained. Several theoretical studies have used methods

based on DFT to calculate the BE of BLG [50, 66–70], but there is very little

consensus.

In this chapter we provide DMC data for the BE of BLG and the atomisation

energy of monolayer graphene (MLG), which we have extrapolated to the thermo-
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dynamic limit. The DMC method is the most accurate first-principles technique

available for studying condensed matter. Our data can therefore be used as a

benchmark for the development of vdW functionals.

2.2 Computational details

We have used the VMC and DMC methods as implemented in the casino code [21]

to study MLG and BLG. In the former method, Monte Carlo integration is used to

evaluate expectation values with respect to trial many-body wave-function forms

that may be of arbitrary complexity. In the DMC method [22, 71], a stochastic

process governed by the Schrödinger equation in imaginary time is simulated to

project out the ground-state component of the trial wave function. Fermionic

antisymmetry is maintained by the fixed-node approximation, in which the nodal

surface is constrained to equal that of the trial wave function [35]. DMC methods

have recently been used to study the BE of hexagonal boron nitride bilayers [72].

Our many-body trial wave-function form consisted of Slater determinants for spin-

up and spin-down electrons multiplied by a symmetric, positive Jastrow correlation

factor exp(J) as defined in Eq. 1.29. The Slater determinants contained Kohn-

Sham orbitals that were generated using the castep plane-wave DFT code [3]

within the LDA. We performed test DMC calculations for 3×3 supercells of MLG

and AB-stacked BLG using PBE [14] orbitals. The effect of changing the orbitals

on the DMC total energies (and hence the BE) was statistically insignificant.

We used Dirac–Fock pseudopotentials to represent the C atoms [4, 73] and fixed

the in-plane lattice parameter at the experimental value of a = 2.460 Å. For BLG,

we restrict our attention to the nonretarded regime 1, in which the BE is simply

1At separations larger than few nanometers, the use of the static Coulomb interaction between
electrons in two graphene layers ceases to be valid due to the finite speed of light, resulting in
a crossover to a regime in which the attractive forces arise from photon zero-point energy [74]
(Appendix A).
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the difference between the nonrelativistic total energy per atom in the monolayer

and the bilayer. We used vdW-DF layer separations of d = 3.495 Å and 3.384 Å

[75] for the AA- and AB-stacked configurations, respectively.

To improve the scaling of our DMC calculations and to allow the use of 2D-periodic

boundary conditions, the orbitals were re-represented in a B-spline (blip) basis

[20]. The Jastrow exponent J consisted of polynomial and plane-wave expansions

in the electron–ion and electron–electron distances [76]. The free parameters in

the Jastrow factor were optimised by unreweighted variance minimisation [26, 27]

and the DMC energy was extrapolated linearly to zero time step. The fixed-node

error is of uncertain magnitude, but it is always positive, and should largely cancel

when the BE is calculated.

2.2.1 Finite-population errors in our DMC data

We have carried out calculations to investigate finite-population errors [77] in our

DMC calculations. Figures 2.1(a) and 2.1(b) show the non-twist-averaged DMC

ground-state energy per atom for a 3 × 3 supercell of monolayer graphene and

the DMC energy of an isolated, spin-polarised C atom against the reciprocal of

the target configuration population. The DMC energies have been extrapolated

linearly to zero time step in each case. The function fitted to the DMC data in

Fig. 2.1 is E(Npop) = E(∞) + B/Npop, where Npop is the target configuration

population [77]. For our Slater–Jastrow trial wave function, we find that B =

1.4(6) eV for monolayer graphene in a 3×3 supercell. The gradient B is of marginal

significance. For populations in excess of 512 configurations the expected bias in

the DMC energy is less than 2.7(12) meV/atom. We used target populations of

1024 configurations in our production calculations for supercells of 3× 3 primitive

cells and target populations of 512 configurations for larger supercells. Population-

control biases are always positive and must largely cancel out of the BE of BLG.
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For an isolated C atom, the value of B is not statistically significant. We have

used a target population of 1024 configurations in our calculation for the C atom;

the resulting population-control bias in the DMC energy is less than 1 meV.
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Figure 2.1: (a) Non-twist-averaged DMC ground-state (GS) energy of a 3 × 3

cell of monolayer graphene and (b) DMC GS energy of a C atom as a function

of the reciprocal of the configuration population N−1
pop.

2.2.2 Finite-size errors in our DMC data

The principal source of uncertainty in our BE results is the need to use finite

simulation cells subject to periodic boundary conditions in DMC calculations for
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condensed matter. Finite-size errors in DMC total energies consist of (i) pseudo-

random, oscillatory single-particle finite-size errors due to momentum quantisation

and (ii) systematic finite-size errors due to the inability to describe long-range two-

body correlations and the difference between 1/r and the 2D Ewald interaction

[78, 79] in a finite periodic cell. By dividing the electron–electron interaction en-

ergy into a Hartree term (the electrostatic energy of the charge density) and an

exchange–correlation energy (the interaction energy of each electron with its ac-

companying exchange–correlation hole) and considering the long-range nonoscil-

latory behaviour of the hole predicted by the RPA, it can be shown that the

systematic finite-size error in the interaction energy per electron of a 2D-periodic

system is negative and scales asymptotically with system size N as O(N−5/4) [42].

The leading-order long-range finite-size error in the kinetic energy per electron

behaves in a similar fashion. The finite-size error in the atomisation energy is

therefore positive and scales as O(N−5/4), and the finite-size error in the BE per

atom must also exhibit the O(N−5/4) scaling. We also investigated finite-size errors

in the asymptotic BE using the Lifshitz theory of vdW interactions [80, 81] with

a Dirac model of electron dispersion in graphene. To study finite system sizes, we

introduced a cutoff wavelength that depended on the cell size and layer separation.

However, near the equilibrium separation, short-range interactions are important

and the contribution to the finite-size error from the Lifshitz theory is negligible

(Appendix A). In order to eliminate finite-size effects and obtain the atomisation

and BEs in the thermodynamic limit, we studied simulation cells consisting of ar-

rays of 3× 3, 4× 4, and 6× 6 primitive cells for MLG and BLG at the equilibrium

layer separation and 3× 3 and 5× 5 cells for BLG at nonequilibrium layer separa-

tions. We used canonical-ensemble twist averaging [82] (i.e., averaging over offsets

to the grid of k vectors) to reduce the oscillatory single-particle finite-size errors in

the ground-state energies of MLG and BLG. To obtain the twist-averaged energy

of MLG in a simulation cell containing NP primitive cells, we performed DMC
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calculations at twelve random offsets ks to the grid of k vectors, then fitted

E(NP ,ks) = Ē(NP ) + b[ELDA(NP ,ks)− ELDA(∞)] (2.1)

to the DMC energies per atom E(NP ,ks). The model function has two fitting

parameters: Ē(NP ), which is the twist-averaged DMC energy per atom, and b.

ELDA(NP ,ks) is the DFT-LDA energy per atom of MLG obtained using the offset

k-point grid corresponding to the supercell used in the DMC calculations, and

ELDA(∞) is the DFT-LDA energy per atom obtained using a fine (50 × 50) k-

point mesh. Finally, we extrapolated our total-energy data to infinite system size

by fitting

Ē(NP ) = E(∞) + cN
−5/4
P (2.2)

to the twist-averaged energies per atom, where the extrapolated energy per atom

E(∞) and c are fitting parameters. The atomisation energy of MLG is the differ-

ence between the energy of an isolated, spin-polarised C atom and the energy per

atom of MLG.

2.3 Results and discussion

2.3.1 Atomisation energy of monolayer graphene

Our DMC atomisation energies of MLG as a function of system size are plotted

in Fig. 2.2. We find the static-nucleus DMC atomisation energy to be 7.395(3)

eV/atom with a Slater–Jastrow trial wave function. This is lower than the DMC

result of 7.464(10) eV/atom reported in Ref. [83]. Most of this disagreement arises

from the use of different pseudopotentials in the two works. Table 2.1 compares

the atomisation energies of MLG predicted by DFT with different functionals and

by DMC. Our DFT static-nucleus atomisation energies were obtained using the
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Figure 2.2: Twist-averaged (TA) and non-TA atomisation energies of MLG

against N
−5/4
P as calculated by DMC, where NP is the number of primitive

cells in the simulation supercell.

Table 2.1: Static-nucleus atomisation energy Eatom of monolayer graphene ob-

tained in various DFT and DMC studies. The bond lengths quoted in the table

are the ones used in the calculations, not necessarily the optimised bond length

for the given method.

Method Pseudopotential Bond length (Å) Eatom (eV/atom)
DFT-LDA [84] 1.412 8.96
DFT-LDA [85] 1.420 8.873
DFT-LDA (pres. wk.) Ultrasoft [3] 1.420 8.632
DFT-LDA (pres. wk.) Dirac–Fock [4] 1.420 8.578
DFT-PBE [86] Norm-conserving [87] 1.440 7.847
DFT-PBE [84] 1.424 7.93
DFT-PBE [83] Dirac–Fock [88] 1.421 7.906
DFT-PBE (pres. wk.) Ultrasoft [3] 1.420 7.873
DFT-PBE (pres. wk.) Dirac–Fock [4] 1.420 7.837
DMC [83] Dirac–Fock [88] 1.421 7.464(10)
DMC (pres. wk.) Dirac–Fock [4] 1.420 7.395(3)

LDA and PBE functionals with both ultrasoft [3] and Dirac–Fock pseudopotentials

[4] using a plane-wave cutoff energy of 220 Ry. Our DMC calculations used the

pseudopotential locality approximation [89]. We compare our results with previous

results in the literature [85, 86]. Both DFT-PBE and DFT-LDA calculations

overestimate the atomisation energy, but the error in the LDA result is significantly
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larger.

The DFT results in Table 2.1 show that using different pseudopotentials changes

the calculated atomisation energy of graphene by 40–70 meV/atom, which is very

large on the scale of the BE of graphite. However, DFT-LDA and DFT-D cal-

culations at different layer separations show that both ultrasoft and Dirac–Fock

pseudopotentials give the same value for the BE of AB-stacked BLG: see Ta-

ble 2.2. The cancellation of pseudopotential errors between bilayer and monolayer

graphene is much larger than between monolayer graphene and an isolated C atom,

so our calculation of the BE of BLG is expected to be significantly more accurate

than our calculation of the atomisation energy of graphene. It should be noted

that pseudopotential errors are at least as bad in DMC calculations as in DFT;

although DMC is a highly accurate method, it cannot do better than permitted

by the pseudopotentials used to model atoms. Part of the uncertainties are due to

the locality approximation and primarily caused by using the pseudopotentials.

Table 2.2: Comparison of DFT and DFT-D BEs of AB-stacked BLG at equi-

librium separation 3.384 Å using ultrasoft and Dirac–Fock pseudopotentials.

Method Pseudopotential BE (meV/atom)
DFT-PBE Dirac–Fock [4] 6.03
DFT-PBE Ultrasoft [3] 4.87
DFT-LDA Dirac–Fock [4] 12.39
DFT-LDA Ultrasoft [3] 13.53
DFT-D (TS) [47] Dirac–Fock [4] 38.35
DFT-D (TS) [47] Ultrasoft [3] 38.22
DFT-D (OBS) [90] Dirac–Fock [4] 59.32
DFT-D (OBS) [90] Ultrasoft [3] 59.58
DFT-D (Grimme) [44] Dirac–Fock [4] 27.01
DFT-D (Grimme) [44] Ultrasoft [3] 26.57

The DFT-PBE phonon zero-point energy (ZPE) of MLG was calculated using the

method of finite displacements in a 6 × 6 supercell [91] and found to be 0.165

eV/atom. The ZPE is a correction to be subtracted from the static-nucleus atom-

isation energy. In principle, an accurate first-principles atomisation energy for
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graphene could be used to estimate the BE of graphite by taking the difference of

the experimental atomisation energy of graphite [7.371(5) eV/atom [92]] and the

ZPE-corrected atomisation energy of MLG. However, the spread of DFT atomi-

sation energies resulting from different choices of pseudopotential (of order 40–70

meV/atom) implies that first-principles pseudopotential calculations cannot cur-

rently be used to calculate the BE of graphite by this approach.

2.3.2 Binding energy of bilayer graphene

In Fig. 2.3 we plot the twist-averaged BEs of AA- and AB-stacked BLG as a func-

tion of system size. Non-twist-averaged BEs are shown in the inset to Fig. 2.3

and, as expected, show large oscillations due to momentum-quantisation effects.

For widely separated graphene layers with nonoverlapping charge densities, single-
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Figure 2.3: Twist-averaged (TA) BLG BE against N
−5/4
P as calculated by DMC,

where NP is the number of primitive cells in the simulation supercell. The inset

shows non-twist-averaged BEs. The layer separations are the vdW-DF [75]

equilibrium values of 3.495 and 3.384 Å for the AA- and AB-stacked structures,

respectively.

particle finite-size errors cancel perfectly when the BE is calculated. However,
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when the layers are closer together, the cancellation is no longer perfect. In prac-

tice, near the equilibrium separation, the single-particle errors in the BE correlate

closely with the single-particle errors in the total energy of BLG. To evaluate the

BE in the thermodynamic limit, we twist-averaged the BE using Eq. (2.1) with

the BE per atom in place of E(NP ,ks) and the DFT-LDA total energy per atom

of BLG in place of ELDA(NP ,ks). We then extrapolated the twist-averaged BE to

infinite system size using Eq. (2.2). As shown in Fig. 2.3, the BE of AB-stacked

BLG is larger than that of AA-stacked BLG, confirming that the former is the

more stable structure.

The area of a simulation cell with NP unit cells is A =
√

3NPa
2/2, where a is

the lattice parameter of graphene. If we define the linear size L of the cell via

πL2 = A then we may express the twist-averaged BE per atom as Ēbind(L) =

Ebind(∞) + c′L−5/2, where c′ is −0.31(5) and −0.43(5) eV Å5/2 for the AA-stacked

and AB-stacked geometries, respectively. The BE is reduced at small supercell

sizes L. The use of a finite supercell crudely models the situation where the

Coulomb interaction between electrons is screened by a metallic substrate. Hence

a metallic substrate is expected to weaken the binding of BLG.

In Fig. 2.4 we plot the BE of AB-stacked BLG against the interlayer separation,

as calculated by DFT, DFT-D, and DMC. The layer separations we have studied

are not in the asymptotic regime in which the BE falls off as d−3, where d is the

interlayer separation [93]. We have fitted the function

Ebind(d) = A4d
−4 + A8d

−8 + A12d
−12 + A16d

−16 (2.3)

to our DMC BE data, where the {Ai} are fitting parameters, which we find to be

A4 = −2.9 × 103 meV Å4, A8 = −2.97 × 105 meV Å8, A12 = 6.18 × 107 meV Å12,

and A16 = −1.63× 109 meV Å16. This function fits the DMC data well, with a χ2

value of 0.007 per data point. The BE found at the minimum of the fitting curve

is 17.8(8) meV/atom at the equilibrium separation of 3.43(4) Å. Although the
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Figure 2.4: BE curve of AB-stacked BLG as a function of interlayer distance

calculated using DFT, DFT-D, and DMC methods. Our DFT-D calculations

used the Tkatchenko–Scheffler (TS) [47], Ortmann–Bechstedt–Schmidt (OBS)

[90], and Grimme [44] vdW corrections.

Table 2.3: BE of BLG (both AA- and AB-stacked) obtained in recent theoreti-

cal studies. The layer separations d quoted in the table are the ones used in the

calculations, not necessarily the optimised bond length for the given method.

“SAPT(DFT)” and “DFT-LCAO-OO” denote symmetry-adapted perturbation

theory based on DFT and linear combination of atomic orbitals-orbital occu-

pancy based on DFT, respectively. “MBD” denotes many-body dispersion cal-

culations.

Stacking Method d (Å) BE (meV/atom)
AA vdW-DF [66] 3.35 10.4
AA DFT-D [66] 3.25 31.1
AA DMC (pres. wk.) 3.495 11.5(9)
AB DFT-LCAO-OO [67] 3.1–3.2 70(5)
AB SAPT(DFT) [68] 3.43 42.5
AB vdW-DF [50] 3.6 45.5
AB vdW-DF [66] 3.35 29.3
AB DFT-D [66] 3.25 50.6
AB DFT-D [69] 3.32 22
AB MBD [70] 3.37 23
AB DMC (pres. wk.) 3.384 17.7(9)

separation that minimises our fitted BE curve for AB-stacked BLG is somewhat

larger than the separation used in our calculation of the BE reported in Table 2.3,

the difference between the BEs is not statistically significant. The Tkatchenko–
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Scheffler [47] DFT-D scheme shows roughly the same equilibrium separation as

DMC, but the magnitude of the BE is substantially larger. In general, the three

DFT-D methods studied [44, 47, 90] disagree with each other and with DMC.

Indeed, the magnitude of the BE (if not the shape of the BE curve) is best described

by the LDA. Table 2.3 clearly shows that the DMC BE of BLG is somewhat less

than the BEs predicted by DFT-D, although the latter vary significantly from

scheme to scheme.

Our fitted BE curve enables us to calculate the out-of plane zone-centre optical

phonon frequency ωZO′ of AB-stacked BLG. The interlayer BE per atom of BLG

can be written as Ebind(d) = E0 + 1
8
mCω

2
ZO′(d− d0)2 +O(d− d0)3, where E0 is the

BE per atom at the equilibrium separation d0, mC is the mass of a carbon atom,

and ωZO′ is the out-of-plane phonon frequency. A comparison of ωZO′ frequencies

obtained by DFT, DMC, and experiment [94] is shown in Table 2.4. Our DFT-

LDA frequency is in reasonable agreement with the result (76.8 cm−1) reported in

Ref. [95]. The difference between the ωZO′ frequency predicted by our fit to our

DMC data and the experimental result is negligible [3(7) cm−1].

Table 2.4: The equilibrium separation d0, static-lattice BE at equilibrium sep-

aration, and out-of-plane zone-centre optical-phonon frequency ωZO′ of AB-

stacked BLG obtained by DFT, DFT-D, DMC, and experiment. The minimum

of the curve fitted to the DMC BE data, which is reported in this table, is in

statistical agreement with the DMC BE obtained using a fixed layer separation

of 3.384 Å, which is reported in Table 2.3.

Method d0 (Å) BE (meV/at.) ωZO′ (cm−1)
DFT-PBE 4.40 1.53 16
DFT-LDA 3.28 13.38 84
DFT-D (TS) 3.35 38.03 111
DFT-D (OBS) 3.15 62.70 133
DFT-D (Grimme) 3.25 27.08 95
DMC (pres. wk.) 3.43(4) 17.8(8) 83(7)
Exp. [94] 80(2)
Exp. [96] 89.7(15)
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2.3.3 Choice of fitting function for the binding-energy curve

We have investigated different fitting functions for our DMC BE data for AB-

stacked BLG. In Fig. 2.5 we compare the following fits to the DMC BE:

Fit 1a The maroon long-dashed line shows a fit of

Ebind(d) = a+ b(d− d0)2 + c(d− d0)3 (2.4)

to the DMC BE data at interlayer separations d = 2.8, 3.384, and 3.84 Å,

where a, b, and c are fitting parameters and d0 = 3.384 Å is fixed at the

vdW-DF interlayer equilibrium separation [75].

Fit 1b The red short-dashed line shows a fit of Eq. (2.4) to the DMC BE data at

interlayer separations d = 2.6, 2.8, 3.384, and 3.84 Å. This time a, b, c, and

d0 are all fitting parameters.

Fit 1c The green dot-dashed line shows a fit of Eq. (2.4) to the DMC BE data at

interlayer separations d = 2.8, 3.384, 3.84, and 4.3 Å. Again, a, b, c, and d0

are all fitting parameters.

Fit 1d The blue dash-double dotted line shows a fit of Eq. (2.4) to all our DMC

BE data. Again, a, b, c, and d0 are all fitting parameters.

Fit 2 The solid black line shows a fit of

Ebind(d) = α exp(−βd) + γd−4 (2.5)

to all our DMC BE data, where α, β, and γ are fitting parameters [64].

Fit 3 The solid magenta line shows a fit of

Ebind(d) = A4d
−4 + A8d

−8 + A12d
−12 + A16d

−16 (2.6)
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to all our DMC BE data, where the {Ai} are fitting parameters.
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Figure 2.5: DMC BE of AB-stacked BLG against interlayer separation using

different fitting curves.

Equation (2.6) has the correct d−4 form of decay for the BE at intermediate range

and has a reasonable model of the hard-core repulsion. The χ2 values obtained

with Fits 2 and 3 are 1.3 and 0.007 per data point, respectively, compared with 0.4

per data point for Fit 1d, which has the same number of fitting parameters as Fit

3. The χ2 value per data point for Fits 1a–1c is zero, because the number of data

points is equal to the number of parameters. Fit 2 shows unphysical behaviour:

the exponential term prefers to be attractive while the d−4 tries to be repulsive.

We have therefore used Fit 3 to obtain the breathing-mode frequency presented in

the Table 2.4.

In Table 2.5 we compare the equilibrium separation d0, the corresponding BE

Ebind(d0), the curvature E ′′bind(d0), and the out-of-plane optical phonon frequency

(the breathing mode ZO′) obtained with the different fits to our DMC BE data.

To evaluate error bars on quantities such as the second derivative of the BE at

the minimum and the corresponding phonon frequency, we used bootstrap Monte
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Table 2.5: Equilibrium separation d0 and corresponding BE Ebind(d0), second

derivative of the BE at the minimum E′′bind(d0), and out-of-plane phonon fre-

quency ωZO′ that are obtained by fitting different curves to our DMC data for

the BE of BLG. Experimental results [94] are shown for comparison.

Fit d0 (Å) Ebind(d0) (meV/atom) E ′′bind(d0) (meV Å−2/atom) ωZO′ (cm−1)
Fit 1a 3.384 −17.7(9) 131(11) 109(4)
Fit 1b 3.45(4) −18(1) 110(17) 100(8)
Fit 1c 3.50(4) −18.6(8) 109(12) 99(7)
Fit 1d 3.48(3) −18.8(8) 122(9) 105(4)
Fit 2 3.55(2) −17.5(7) 58(5) 72(3)
Fit 3 3.43(4) −17.8(8) 76(13) 83(7)
Exp. [94] 70(4) 80(2)
Exp. [96] 89(3) 89.7(15)

Carlo sampling of our data together with repeated χ2 fits. In Fig. 2.6, histograms

of E ′′bind(d0) for Fits 1d, 2 and 3 are shown. The phonon frequencies obtained using

Fits 2 and 3 are in good agreement, although the difference between Fits 1d and

3 is more significant. However, we believe Fit 3 to be more reliable because it is

constructed to have the correct asymptotic behaviour.
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Figure 2.6: Histogram of E′′bind(d0) obtained in bootstrap Monte Carlo sampling

of Fits 1d, 2, and 3 with 10,000 samples.
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2.4 Conclusion

In summary, we have used the DMC method to determine the BE of BLG. Our

approach includes a full, first-principles treatment of vdW interactions. We have

found the static-nucleus atomisation energy of MLG to be 7.395(3) eV/atom, al-

though the uncertainty in this result due to the use of nonlocal pseudopotentials

may be as much as 70 meV/atom. We find the BEs of AA- and AB-stacked BLG

near their equilibrium separations to be 11.5(9) and 17.7(9) meV/atom, respec-

tively. Our results indicate that current DFT-D and vdW-DF methods signifi-

cantly overbind 2D materials.
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Chapter 3

DMC binding energies of G/hBN

moiré heterostructures

3.1 Introduction

Van der Waals (vdW) layered heterostructures are materials formed from a stacked

sequence of various 2D crystals bonded with weak interlayer vdW-like forces [97].

The first step towards fabricating such heterostructures was made by mechani-

cally transferring monolayer graphene onto a single-crystal hexagonal boron ni-

tride (hBN) substrate [98]. HBN has the same crystal structure as graphene, is an

insulator with an atomically flat surface and is free of dangling bonds [98]; hence

it plays the role of a perfect substrate to preserve graphene’s electronic properties.

Double-layer devices based on graphene-on-hBN (G/hBN) have a self-cleaning in-

terface [99] due to the weak vdW interlayer interactions and are of great interest

owing to their electronic [98, 100, 101] and optical [102] applications. They are

also ideal for plasmon lenses, tunable sensors and light absorbers because of their

low plasmon damping [103]. The other properties of such heterostructures is the

ability to tune their electronic and optical properties, specially by appropriate

combining G/hBN with other 2D monolayers [102].
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The peculiar optical and electronic properties of G/hBN distinct from its compo-

nents arises from moiré patterns [104–106]. The moiré superlattice of G/hBN has

a long quasi-periodic hexagonal form due to the small mismatch δ = aBN/aG − 1,

less than 2%, between the lattice constant of hBN aBN and the lattice constant

of graphene aG. Because of the out of plane extension of electron orbitals, which

affect the charge carriers in the adjacent 2D layer [107], G/hBN also exhibits Hofs-

tadter’s butterfly or fractal spectrum of magnetic bands when placed in a magnetic

field whose magnetic length is comparable to the periodicity of the moiré super-

lattice [108, 109].

Despite various experimental and theoretical works on the electronic properties

of G/hBN, few attempts have been made to investigate the interlayer vdW-like

interactions via studying its binding and vibrational properties. The available

first-principles studies have compared the interlayer binding energy (BE) of bilayer

G/hBN for different stacking configurations within the DFT-LDA, DFT-vdW and

DFT-RPA methods [105, 110]. Nevertheless, we have shown in Chap. 2 that

DFT gives qualitatively wrong BE values for bilayer graphene due to the lack of

description of vdW interactions. Here we study the BE and vibrational properties

of bilayer G/hBN using the variational quantum Monte Carlo (VMC) and diffusion

quantum Monte Carlo (DMC) methods.

3.2 Computational details

Due to the moiré patterns in a bilayer G/hBN, different kinds of stacking config-

urations are present, which affect the interlayer vdW interactions. By comparing

the DFT total energies of different possible stacking patterns, we have selected four

configurations with statistically different DFT energies. The stacking patterns of

G/hBN in this work are constructed by translating hBN on top of graphene along

the path O–P as shown in Fig. 3.1(a)–(d):
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Figure 3.1: Four different stacking configurations of bilayer G/hBN, where B,

N and C atoms are shown by green, orange and grey colours, respectively.

Monolayer hBN is translating on top of monolayer graphene along the path O–

P shown in the stacking pattern (a). Translating hBN in pattern I by 3 aC−C

from O to P reconstructs AA-stacked form of G/hBN.

I Starting from AA-stacking, where boron (green spheres) and nitrogen (orange

spheres) atoms are exactly on top of carbon atoms (grey spheres).

II Translating hBN from the AA-stacked structure by a C–C bond length aC−C

along the path O–L to create a Bernal stacked structure (AB), where all

boron atoms are on top of carbon atoms and nitrogen atoms are centred

above graphene hexagons.

III Translating hBN in AA-stacked by 3/2 aC−C along the path O–M.

IV Translating hBN in AA-stacked by 2 aC−C along the path O–N to form another

kind of AB-stacked similar to the pattern II but with the nitrogen and boron

atoms swapped.
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We calculate the BE per atom EBE of bilayer G/hBN by

EBE = EBNG −
1

2
(EBN + EG), (3.1)

where EBNG, EBN and EG are the total energies per atom of bilayer G/hBN,

monolayer hBN and monolayer graphene, respectively. The total energies were

calculated using the VMC and DMC methods as implemented in the casino

code [21]. Our many-body trial wave function contained the antisymmetric Slater

determinant for both spin-up and spin-down electrons multiplied by a symmetric

Jastrow factor [22]. The Slater determinants consisted of Kohn-Sham orbitals,

that were generated using the castep plane-wave DFT code [3].

We choose ultrasoft pseudopotentials [2, 3] and a plane-wave energy cutoff of 50

Ry within the Grimme-PBE functional [44] to let the graphene and hBN layers

be buckled while pinning the mean value of layer separation and fixing the height

of simulation cells at 16 Å. We also fix the in-plane lattice parameters of both

graphene and hBN at the experimental lattice parameter of graphene, a = 2.460

Å, since the strain contribution due to the 2% lattice mismatch largely cancels out

when the difference in the total energies of monolayers and the bilayer is taken;

however, to model the bilayer heterostructure system, the effect of strain should

be included.

We generated Kohn-Sham orbitals using a plane-wave energy cutoff of 220 Ry

and Dirac–Fock pseudopotentials [4, 73] within the LDA although the effect of

changing the functional used to generate the orbitals on the DMC total energies

and the BE is statistically insignificant (Sec. 2.2).

To remove the biases due to the finite time steps and populations of walkers,

we perform DMC calculations using time steps in the ratio 1:2.5 with the corre-

sponding target configuration populations being in the ratio 2.5:1, and we linearly

extrapolated the DMC energies to zero time step and infinite population. The
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fixed-node error is of uncertain magnitude, but it is always positive, and should

largely cancel when the BE is calculated. To reduce the single-particle finite-size

errors caused by momentum quantization and the systematic finite-size errors, we

have evaluated the twist-averaged DMC ground-state energies per atom of simu-

lation cells containing 3 × 3 and 5 × 5 unit cells for graphene, hBN and G/hBN,

then extrapolated them to the thermodynamic limit as described in Sec. 2.2.2.

DFT phonon dispersion curves were calculated using ultrasoft pseudopotentials

and a plane-wave cutoff of 50 Ry within LDA functional, which unlike PBE func-

tional shows the weak binding between bilayer vdW structures as discussed in

chapter 2. We used a 5×5×1 supercell with a Brillouin size sampling k-point mesh

of 35× 35× 1, and displaced the atoms by ±0.04 Å within the finite-displacement

method. To improve the accuracy, the initial equilibrium atomic positions were

relaxed until the forces were less than 5× 10−5 eVÅ−1.

3.3 Results and discussion

3.3.1 Time-step errors in our DMC calculations

In order to test the behaviour of DMC energies at different finite time steps, we cal-

culated the non-twist-averaged ground-state DMC energy of monolayer graphene

and hBN as well as the BE of G/hBN (stacking form II) for a supercell composed

of 3×3 primitive cells. Comparing Figs. 3.2(a)–(c) shows that the time-step errors

in the total energies at time step 0.04 are typically around 30 meV/atom, while the

error in the BE largely cancels out by taking the difference in the total energies.

The DMC total energy of each hexagonal monolayer also behaves linearly up to

a small time step of 0.04 a.u. however, the nonlinear part of time step is largely

eliminated in the BE resulting in linear behaviour up to a much larger time step

of 0.2 a.u. The extrapolated BE using all DMC points at different time steps in
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Figure 3.2: (a) Non-twist averaged DMC ground-state (GS) energy of mono-

layer graphene (MLG), (b) DMC GS energy of monolayer hBN (MLBN), and

(c) DMC BE of stacking pattern II of bilayer G/hBN against time step for a

supercell consisting of 3× 3 primitive cells.
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Fig. 3.2(c) is −8.9(3) meV/atom, which is not significantly different from −11(1)

meV/atom using two time steps 0.04 and 0.1. We therefore extrapolate all DMC

ground-state energies and BEs to zero time step using the latter choice of time

step as it considerably reduces the computational time while retaining quantitative

accuracy.

3.3.2 DMC binding energy of G/hBN

In Fig. 3.3, we plot the BE curves of bilayer G/hBN for four different stacking

configurations as a function of interlayer separation. We fit Eq. 2.3 to the DMC

BEs per atom. Our results show that the stacking pattern II is the most stable

form of G/hBN. The electrostatic attraction of positive charged B to πz electron of

C atoms keeps them on top of each other while the repulsion of negative charged

N by πz electron of C atoms leads N to the centre of graphene hexagons further

from C atoms.
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Figure 3.3: DMC BE curve of bilayer G/hBN against the interlayer separation

for configuration stacks I–IV introduced in Fig. 3.1.

In Table 3.1, we compare our DMC BEs with that of calculated using DFT for

each stacking configuration. The DMC BEs from most to least stable stacks are
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18.7(9), 15.5(5), 13.6(6) and 13.4(7) meV/atom, corresponding to configurations

II, III, I and IV, respectively. In general, DFT-LDA underestimates the BE by up

to 40% while the DFT-vdW overbinds the G/hBN heterostructure by up to 50%.

DFT-RPA [105] slightly overbinds the bilayer system compared with our DMC

results.

Table 3.1: Comparison of BE of G/hBN using DFT and DMC methods. The

DFT-LDA and the first column of DFT-vdW BEs are estimated from the BE

graph of Ref. [110]. BEs in the second column of DFT-vdW are obtained in

the Ref. [111]. The configurations are introduced in Fig. 3.3.

Conf. BE (meV/atom)
DFT-LDA [110] DFT-vdW [110, 111] DFT-RPA [105] DMC

I ∼ 7.5 ∼ 25, 28.50 15.5 13.6(6)
II ∼ 17 ∼ 35, 33.75 20.75 18.7(9)
III ∼ 12.5 ∼ 30 17.75 15.5(5)
IV ∼ 7.5 ∼ 25, 29.50 16.25 13.4(7)

Comparing the relative DMC BEs in Table 3.2 indicates that the most stable stack-

ing configuration II has a 5.1(8) meV/atom larger BE than the least stable stacked

form I. This is similar to the difference of 5.25 meV/atom calculated by DFT-RPA

[105] and DFT-vdW [111]. The difference in the DMC BEs of configurations I and

IV is 0.2(7) meV/atom, which is negligible as predicted by DFT [105, 110, 111].

Although DFT-LDA and DFT-vdW BEs give quantitatively wrong BEs, they pre-

dict the correct trend for the stability of different stacking configurations.

Table 3.2: Relative BE of G/hBN for different stacking patterns (Fig. 3.3) using

DFT and DMC methods. The DFT-LDA and the first column of DFT-vdW

BEs are estimated from the BE graph of Ref. [110]. The BEs in the second

column of DFT-vdW are obtained in Ref. [111]. EXBE denotes the BE of stacking

configuration X.

Type Relative BE (meV/atom)
DFT-LDA [110] DFT-vdW [110, 111] DFT-RPA [105] DMC

EII
BE − EI

BE ∼ 9.5 ∼ 10, 5.25 5.25 5.1(8)
EII

BE − EIII
BE ∼ 4.5 ∼ 5 3.0 3.2(8)

EII
BE − EIV

BE ∼ 9.5 ∼ 10, 4.25 4.5 5.3(8)
EIV

BE − EI
BE ∼ 0 ∼ 0, 1 0.75 0.2(7)
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The DMC equilibrium separations in Table 3.3 are within the range 3.31–3.61 Å,

which is similar to that of 3.2–3.5 Å and 3.35–3.55 Å predicted by DFT-vdW

[110, 111] and DFT-RPA [105], respectively. The DMC equilibrium separation of

most stable configuration II is 3.31(3) Å, which is in excellent agreement with the

experimental value of 3.32(43)Å [99].

Table 3.3: Comparison of equilibrium interlayer separation of G/hBN using

DFT and DMC methods for different stacking configurations introduced in

Fig. 3.3.

Conf. Interlayer separation (Å)
DFT-vdW [110, 111] DFT-RPA [105] DMC

I 3.5, 3.49 3.55 3.61(3)
II 3.2, 3.30 3.35 3.31(3)
III 3.4 ∼ 3.4 3.43(4)
IV 3.4, 3.45 3.5 3.53(5)

3.3.3 Breathing mode optical phonon frequency of G/hBN

In figure 3.4, we plot the DFT-LDA phonon dispersion curves at the relaxed in-

plane lattice parameter 2.47 Å and the relaxed equilibrium separations of 3.5 and

3.2 Å for stacking configurations I and II, respectively. Our results are in agreement

with those obtained using DFT-vdW [111] and different from a recent phonon

dispersion obtained using DFT-LDA [112], in with different lattice parameters

and different method of displacing atoms are used. We calculate the DFT-LDA

out-of-plane zone-centre breathing mode optical phonon (ZO) frequencies to be 72

and 87 cm−1 for stacking arrangements I and II, respectively. ZO frequencies can

be measured using Raman spectroscopy.

To calculate the DMC ZO frequencies, we rewrite the interlayer BE per atom of

G/hBN within the B–O approximation as

EBE(d) = E0 +
1

8
µω2

ZO(d− d0)2 +O(d− d0)3, (3.2)
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Figure 3.4: DFT-LDA phonon dispersions of bilayer G/hBN for stacking con-

figurations (a) I and (b) II. The ZO frequencies are shown by dashed red curves

and the DMC ZO frequencies at Γ point are shown by orange squares.

where E0 is the BE per atom at the equilibrium separation d0, ωZO is the ZO

phonon frequency and µ = 2mc(mB+mN)/(2mc+mB+mN) is the reduced mass of

a primitive cell of G/hBN including the mass of carbonmc, boronmB, and nitrogen

mN . The ZO phonon frequency in Eq. 3.2 is obtained by ωZO = 2
√
E ′′BE/µ, where

E ′′BE is the second derivative of the BE at the equilibrium interlayer separation.

Table. 3.4 shows that although BEs of G/hBN are changing smoothly from one

stack to another, the breathing mode frequencies are 58–84 cm−1, almost the

same within the range of error bars for all stacking arrangements. The average of

breathing modes over four configurations is 70(15) cm−1.
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Table 3.4: DMC equilibrium separation d0, static-lattice DMC BE at equilib-

rium separation, second derivative of the BE at the minimum E′′BE(d0), and ZO

frequency ωZO for four stacks of bilayer G/hBN.

Conf. type BE (meV/atom) E ′′BE(d0) (meVÅ−2/atom) ωZO (cm−1)
I 13.6(6) 38(5) 58(7)
II 18.7(9) 79(18) 84(19)
III 15.5(5) 54(6) 69(8)
IV 13.4(7) 56(17) 71(21)

3.3.4 DMC in-plane shear mode of G/hBN

In Fig. 3.5 we plot the DMC BE of G/hBN as a function of translating path

O–P for different stacking patterns shown in Fig. 3.1. We choose the interlayer

separation to be 3.35 Å and fit

EBE = A+Bcos(2π(x− 1)/3), (3.3)

to the DMC BEs EBE, where A and B are fitting parameters and x is the sliding
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Figure 3.5: DMC BE of bilayer G/hBN against the sliding distance for stacking

configurations I–IV introduced in Fig. 3.1.

distance divided by aC−C. The denominator 3 appears in the argument of cos in the

fitting curve because the stacking pattern repeats after translating hBN by 3 aC−C.

The second derivative of the fitting curve at minimum is 16(3) meV/atom giving
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the in-plane phonon frequency or the shear mode 516(97) cm−1; however the error

bars in the BEs are quite large, around 1 meV/atom; and need to be reduced. In

practice, a large region of G/hBN would feature all types of configurations, which

should be considered in the treatment of shear mode, but here the configuration

II is only considered.

3.4 Conclusion

We have found that the BE of G/hBN is 18.7(9) meV/atom for the most stable

stacking form II, where boron atoms in hBN are right above the carbon atom

of one sublattice of graphene while nitrogen atoms are centred on the graphene

hexagons. Nevertheless, little variation in the BEs of different displacements is

less than 5 meV/atom. Our result consisted with weak coupling of layers that

allows moiré patterns to form and slightly change the interlayer separation within

3.31 − 3.61 (Å). BE of G/hBN is the same as 17.7(9) meV/atom in AB-stacked

bilayer graphene discussed in chapter 2. DFT-LDA considerably underestimates

while DFT-vdW overestimates the BE of 2D bilayers. The breathing phonon

frequencies for different translation of layers are in the range of 58− 89 cm−1 and

the shear phonon frequency for stacking pattern II is 516(97) cm−1.
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Chapter 4

Biexcitons in monolayer

transition-metal dichalcogenides

4.1 Introduction

During the last five years, many researchers have focused on the remarkable prop-

erties of 2D monolayer transition-metal dichalcogenides (TMDCs) such as MoS2,

MoSe2, MoTe2, WS2, WSe2, and WTe2. Monolayer TMDCs are semiconductors

with a hexagonal plane of transition-metal atoms sandwiched between two hexag-

onal planes of chalcogen atoms. Unlike graphene that does not have an electronic

band gap, these crystals exhibit direct band gaps at the K and the K ′ points of

the hexagonal Brillouin zone, opening up potential applications for optoelectronic

devices.

One particular interesting aspect of 2D TMDCs is the strong excitonic effects

that are present in their photoabsorption and photoluminescence spectra. Many-

body GW calculations indicate that TMDCs exhibit substantial (∼ 1 eV) exciton

binding energies [113–115]. A number of experimental works have confirmed that

the exciton binding energy is large and, furthermore, have reported nonhydrogenic

Rydberg lines in the spectra [116, 117]. Experimental works have also found lines
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ascribed to trion (charged excitons) [118–120] and biexcitons [121–125].

The nonhydrogenic nature of the excitonic energy spectrum results from nonlo-

cal screening effects, i.e., the modification of the form of the Coulomb interaction

between charge carriers by the polarisation of the surrounding atoms in the semi-

conductor. There have been some incomplete [126] and approximate [127] attempts

to study biexcitons in TMDCs. A recent study used the DMC method along with

an approximate form of nonlocal screening to provide the binding properties of

biexcitons [128]. Another study using the exact form of nonlocal screening within

path integral Monte Carlo (PIMC) has shown discrepancies between the theo-

retical and experimental properties of these charge complexes [129]. Therefore,

comprehensive and accurate binding-energy data are urgently required to resolve

the discrepancies. In this chapter we provide numerically exact binding-energy

data of biexcitons for a wide range of nonlocal screening strengths.

4.2 Electrostatic interactions

Suppose a free-standing 2D semiconductor sheet of zero thickness z = 0 contains

a continuous charge density ρ(x, y)δ(z). The electric displacement field is defined

as D = ε0E + P, where E is the electric field, ε0 is the electric permittivity of

free space and P = P2D(x, y)δ(z) is the polarisation field or the density of induced

electric dipole moments with the in-plane polarisation P2D(x, y). By using Gauss’s

law ∇ ·D = ρ(x, y)δ(z),

−∇ · E = ∇2φ(r) =
−ρ(x, y)δ(z) + [∇ ·P2D(x, y)]δ(z)

ε0
, (4.1)

where the 2D polarisation in terms of the induced charge density ρind is

[∇ ·P2D(x, y)]δ(z) = −ρind(x, y, 0) = −χ2D∇2φ(x, y, 0)δ(z), (4.2)
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considering the fact that P2D(x, y) is proportional to the in-plane component of E

and χ2D is the 2D electric polarisability. Substituting Eq. 4.2 into Eq. 4.1 gives

∇2φ(r) = −ρ(x, y)δ(z) + χ2D[∇2φ(x, y, 0)]δ(z)

ε0
. (4.3)

The Fourier transform of Eq. 4.3 gives the electrostatic potential due to a 2D

semiconductor

φ(q, k) =
ρ(q)− χ2Dq

2φ(q, z = 0)

ε0(q2 + k2)
, (4.4)

where q and k are the in-plane and z components of the wavevector, respectively.

The in-plane electrostatic potential is

φ(q, z = 0) =
1

2π

∫
φ(q, k) dk

=
1

2ε0q
[ρ(q)− χ2Dq

2φ(q, z = 0)]. (4.5)

Then by rearranging, we find the in-plane electrostatic potential to be

φ(q, z = 0) =
2πρ(q)

4πε0 q(1 + 2πχ2Dq/4πε0)

=
2πρ(q)

4πε0 q(1 + r∗q)
, (4.6)

where r∗ = 2πχ2D/4πε0 is the screening length and 1 + r∗q in the denominator is

q-dependent dielectric function ε(q) in the directions parallel to the plane of the

2D system [130]. The polarisability χ2D has SI units of C2J−1 and 4πε0 has units

of C2L−1J−1; therefore r∗ has units of length L.

If the 2D semiconductor contains a point charge qi at the origin, then the Fourier

components of the interaction between a point charge qj living in the 2D semicon-

ductor in the presence of qi are

w(q) =
2πqiqj

4πε0 q(1 + r∗q)
. (4.7)
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By the inverse Fourier transform of Eq. 4.7, we can determine the effective po-

tential w(r) =
qiqj

4πε0r∗
V (r/r∗) between the two point charges, which is the Keldysh

potential

V (
r

r∗
) =

π

2

[
H0(

r

r∗
)− Y0(

r

r∗
)
]
, (4.8)

where Hn(x) is a Struve function and Yn(x) is a Neumann function (Bessel function

of the second kind) [131]. The interaction energy at small r∗ (r � r∗) is a Coulomb

interaction: w(r) ≈ qiqj/(4πε0r); while it is approximately logarithmic at large r∗

(r � r∗) : w(r) ≈ qiqj[log(2r∗/r) − γ]/(4πε0r
∗)], where γ ≈ 0.5772 is Euler’s

constant. Once w(r) is known, the Schrödinger equation can be solved for charged

particles in a 2D semiconductor

[
−
∑
i

~2

2mi

∇2
i +

1

2

∑
i 6=j

qiqj
r∗

V (
rij
r∗

)

]
ψ(r) = Eψ(r), (4.9)

where mi is the mass of particle i with charge qi, rij is the the separation of

particles i and j, and E is the energy eigenvalue.

4.3 Units and scaling for different interactions

The Schrödinger equation for an exciton with the logarithmic interaction (r � r∗)

is [
− ~2

2µ
∇2

eh −
e2

4πε0r∗

{
log

(
2r∗

reh

)
− γ
}]

ψX = EXψX, (4.10)

where EX is the total energy of the exciton and µ = memh/(me + mh) is the

reduced mass of the electron-hole pair. Let

r0 =

√
4πε0r∗~2

2e2µ
, (4.11)

and

E0 =
e2

4πε0r∗
. (4.12)
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Using the dimensionless exciton energy EX = EX/E0,

[
−r2

0∇2
eh + log

(
reh

r0

)
+ γ − log(2)− log

(
r∗

r0

)]
ψX = EXψX, (4.13)

and introducing dimensionless coordinates r̃ = r/r0,

[
−∇̃2

eh + log (r̃eh) + γ − log(2)− log

(
r∗

r0

)]
ψX = EXψX. (4.14)

EX in Eq. 4.14 depends on r∗ and the reduced mass via the constant term log(r∗/r0)

in the Hamiltonian. In our calculations, we use the rescaled exciton energy

EX = EX0 −
1

2
log(2µr∗), (4.15)

where the energy EX0 = 0.41057739(7) is obtained by DMC [132]. The Schrödinger

equation for the biexciton with the logarithmic interaction is

[
− ~2

2me

∇2
e1
− ~2

2me

∇2
e2
− ~2

2mh

∇2
h1
− ~2

2mh

∇2
h2

+
e2

4πε0r∗

{
− log

(
2r∗

eγre1h1

)
− log

(
2r∗

eγre2h2

)
− log

(
2r∗

eγre1h2

)
− log

(
2r∗

eγre2h1

)
+ log

(
2r∗

eγre1e2

)
+ log

(
2r∗

eγrh1h2

)}]
ψXX = EXXψXX, (4.16)

where me(h) is the mass of the electrons (holes) and EXX is the total energy of the

biexciton. Rescaling the biexciton energy EXX = EXX/E0 and using Eqs. 4.11 and

4.12,

[
− µr2

0

me

∇2
e1
− µr2

0

me

∇2
e2
− µr2

0

mh

∇2
h1
− µr2

0

mh

∇2
h2

+ log
(re1h1

r∗

)
+ log

(re2h2

r∗

)
+ log

(re1h2

r∗

)
+ log

(re2h1

r∗

)
− log

(re1e2

r∗

)
− log

(rh1h2

r∗

)
+ 2(γ − log(2))

]
ψXX = EXXψxx. (4.17)
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Then the Schrödinger equation of the biexciton using dimensionless r̃ = r/r0,

[
− µ

me

∇̃2
e1
− µ

me

∇̃2
e2
− µ

mh

∇̃2
h1
− µ

mh

∇̃2
h2

+ log(r̃e1h1) + log(r̃e2h2) + log(r̃e1h2) + log(r̃e2h1)

− log(r̃e1e2)− log(r̃h1h2) + 2(γ − log(2))− 2log

(
r∗

r0

)]
ψXX = EXXψXX. (4.18)

To find the binding energy (BE) of the biexciton with the logarithmic interaction

and its scaling at different r∗, we rewrite the total energy of the exciton in Eqs.

4.14 as

ẼX + γ − log(2)− log

(
r∗

r0

)
= EX, (4.19)

and the total energy of the biexciton in Eq. 4.18 as

ẼXX(µ) + 2(γ − log(2))− 2log

(
r∗

r0

)
= EXX. (4.20)

The rescaled BE of biexciton in the logarithmic limit is therefore given by

Elog
BE(µ) = 2EX − EXX = 2ẼX − ẼXX(µ). (4.21)

Eq. 4.21 shows that the BE of biexciton with the logarithmic interaction is inde-

pendent of r∗ in these units and is constant for a given µ (Fig. 4.1).

The BE of the biexciton at finite r∗ in the 2D Keldysh interaction, including the

Coulomb interaction (r∗ = 0) is dependent on r∗ and µ:

E2D
BE(µ, r∗) = 2Ex(µ, r∗)− Exx(µ, r∗), (4.22)

where Ex = Ex/R
∗
∞ and Exx = Exx/R

∗
∞ are the dimensionless energies of the

exciton Ex and the biexciton Exx defined in Eqs. 4.10 and 4.16, respectively. R∗∞

is the exciton Rydberg:

R∗∞ =
µe4

2(4πε0)2~2
, (4.23)
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Figure 4.1: The rescaled DMC BE of a biexciton with the logarithmic inter-

action against r∗ at two different mass ratios me/mh = 0.2 and me/mh = 1.

and the length can be scaled by using the exciton Bohr radius

a∗0 =
4πε0~2

µe2
. (4.24)

Sometimes we have used the Bohr radius

a0 =
4πε0~2

mee2
, (4.25)

to rescale r∗. Excitonic units eliminate the mass ratio dependence from exciton

energy.

4.4 Excitons and biexcitons with distinguishable

particles

The ground-state wave functions of excitons and biexcitons with distinguishable

particles (opposite-spin electrons and holes) are nodeless and symmetric under

exchange of electrons and under exchange of holes, leading to the fixed-node DMC
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energy being exact. Our trial wave functions for the biexciton are of the form

ψ(R) = exp[J(R)] with the Jastrow form

J(R) =
1

2

∑
i 6=j

u(rij) +
∑
i 6=j;k

H(rij, rik, rjk) + ueh(reh) + uee(ree) + uhh(rhh) (4.26)

where u and H are, respectively, two-body and three-body cuspless polynomials in

the interparticle distances, which are truncated smoothly at finite range [76, 133].

ueh, uee and uhh are pairwise terms

ueh(reh) = c1r
2
ehlog(reh)e−c2r

2
eh − [1− e−c2r2eh ]c3reh, (4.27)

between electrons and holes (reh) and

uee(ree) = c4r
2
eelog(ree)e

−c5r2ee , (4.28)

between electrons (ree) and

uhh(r) = c6r
2
hhlog(rhh)e−c7r

2
hh , (4.29)

between holes (rhh). The Jastrow form of an exciton only includes u and ueh terms

corresponding to the two-body interactions of an electron–hole pair. In Eqs. 4.27–

4.29, we require c1 = e2µ/[2(4πε0)~2r∗], c4 = −e2me/(4(4πε0)~2r∗) and c6 =

−e2mh/(4(4πε0)~2r∗) in order to satisfy the analogue of the Kato cusp conditions

[24, 25], which ensure that the local energy is nondivergent at coalescence points.

c2, c3, c5 and c7 are optimisable parameters but restricted to be positive in order

to keep our wave functions normalisable.

Instead of using individual forms ueh, uee and uhh (Eq. 4.26) for later QMC cal-

culations such as heavy-hole limit and biexcitons with either identical holes or
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identical electrons, we introduce a more general and compact form u0

∑
i 6=j

u0(rij) =
a1r

2
ijlog(rij) + a2r

2
ij + a3r

3
ij

1 + a4r2
ij

, (4.30)

where

a1 =

 pipjmimj/[2(4πε0)~2r∗(mi +mj)] Distinguishable e and h,

pipjmimj/[4(4πε0)~2r∗(mi +mj)] Indistinguishable e or h,
(4.31)

is determined by the analogue of the Kato cusp conditions for antiparallel- or

parallel-spin particles [22]. a2 to a4 in Eq. 4.30 are optimisable parameters while

we restrict a3 < 0 and a4 > 0 to make the wave functions normalisable. All the

free parameters in our trial wave functions for biexcitons containing distinguishable

particles are optimised by unreweighted variance minimisation [26, 27] and energy

minimisation [28–30].

By calculating the pair distribution function (PDF) we can find some additional

information about the system. The electron–hole PDF at r = 0 is proportional to

the rate of electron–hole recombination. When charge carriers are present at the

same point of space, there is likely to be an energy penalty. This effect may be de-

scribed by introducing an additional contact interaction, which includes electron–

electron, electron–hole and hole–hole pair densities that can be evaluated by the

PDF. It gives the form of ueh and uee pairwise terms in the Jastrow function, also

indicates the size of the biexciton and whether particles are localised. The PDF

is the normalised probability of finding a particle at radial distance r given that

there is one at the origin. The PDF between particles i and j in an exciton or a

biexciton is,

gij(r) =
1

2πr
〈δ(r − |ri − rj|)〉 . (4.32)

g(r) is accumulated in QMC simply by binning the interparticle distances through-

out the simulation. We evaluated the extrapolated estimate of the PDF, which
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is twice the DMC mixed estimate minus the VMC estimate. The error in the

extrapolated estimate is quadratic in the error in the trial wave function [22].

In Fig. 4.2, we show the PDF of biexcitons with distinguishable particles in the

logarithmic interaction for two different mass ratios me/mh = 0.4 and me/mh =

1. Our results show that the long-range biexciton wave functions are relatively

independent of mass ratios changing between 0.4− 1.
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Figure 4.2: The PDF of a biexciton with distinguishable particles against the

interparticle separation in the logarithmic limit (r∗ → ∞) and two different

mass ratios me/mh = 0.4 and me/mh = 1.

4.5 Biexcitons with indistinguishable particles

The ground-state wave function of biexcitons composed of indistinguishable par-

ticles (e.g., same-spin electrons or same-spin holes) is antisymmetric. Here, we

consider a biexciton consisting of same-spin electrons and opposite-spin holes and

approximate its wave function by the form ψ(R) = See(R)exp[J(R)], where J

is the Jastrow form contained the first two terms of Eq. 4.26 and u0 defined in

Eq. 4.30. The polynomial term See is antisymmetric under the exchange of elec-
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trons and is symmetric under the exchange of holes,

See(R) = xee + ηee(ree)xee + ηe1h1(re1h1)xe1h1 + ηe1h2(re1h2)xe1h2

− ηe2h1(re2h1)xe2h1 − ηe2h2(re2h2)xe2h2 , (4.33)

where ree is the electron–electron distance, reihj (i, j = 1, 2) are the electron i–

hole j distance and xee = reecos(θee), in which θee is the polar angle of ree. In

Eq. 4.33, ηee =
∑
n6=0,1

anr
n
ee and ηeihj =

∑
m6=1

bmr
m
eiej

are cuspless polynomials in r

with optimisable parameters a and b. The restrictions in the summands insure

that η change smoothly by increasing the order of expansion.

By relabeling See for biexcitons consisting of opposite-spin electrons and same-

spin holes, we can similarly write the charge conjugation of See, Shh, which is

antisymmetric under the exchange of holes and symmetric under the exchange of

electrons. Therefore, the total energies of biexcitons that we have calculated using

See for relatively heavy electrons are equivalent to the total energies obtained using

Shh for the relatively heavy holes.

See for electrons and similarly Shh for holes introduce a correct form of fixed-node

wave function by introducing xee or xhh. Allowing η to vary is effectively backflow

transformation of that simple wave function, which introduces some variation of

freedom into the node without damaging the topology of the nodal surface. DMC

energy of such a system would be variational with respect to the nodal surface.

We optimise our antisymmetric wave function using unreweighted variance min-

imisation, which gives a lower variance of the VMC energy than the energy minimi-

sation method; however, optimising the free parameters in η is the most difficult

part of our calculations. It may be due to the non-truncated form of wave function

at the finite range of interparticle distances. However our wave function generates

correct results as the Jastrow term tends to zero at large particle separations and

the variational calculations prevent the energy being large.
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For different polynomial order of η in Eq. 4.33, we compare the VMC ground-

state energy, variance and DMC energy of biexcitons with same-spin electrons for

the logarithmic interaction (Table 4.1) and the 2D Keldysh interaction defined in

Eq. 4.8 (Table 4.2). Our results show that increasing the order of η decreases the

variances indicating that our wave functions are well-behaved; nevertheless, the

VMC and DMC energies are independent of the polynomial order of η. There-

fore, we expand η in the antisymmetric wave function to third order to simplify

optimisations.

Table 4.1: Order of η in the VMC ground-state energy (EVMC), variance and

DMC energy (EDMC) of biexcitons with identical electrons in the logarithmic

interaction limit. The mass ratio is mh/me = 0.125 and the reduced mass is

µ = 8/9. DMC energies are extrapolated to zero time step.

r∗(a∗0) η order EVMC (E0) Variance (E0) EDMC (E0)

8/9

2 0.2051(4) 0.0093 0.2001(3)
3 0.2041(1) 0.0091 0.2005(6)
4 0.207(2) 0.0083 0.1999(4)
6 0.2073(4) 0.0081 0.2010(3)

Table 4.2: Order of η in the VMC ground-state energy (EVMC), variance and

DMC energy (EDMC) of biexcitons with identical electrons interacting via the

2D Keldysh interaction. Here, mh/me = 0.1, µ = 1/2, and r∗ = 0 corresponds

to the Coulomb interaction. DMC energies are extrapolated to zero time step.

r∗(a∗0) η order EVMC (R∗∞) Variance (R∗∞) EDMC (R∗∞)

0

2 −8.603(1) 0.0676 −8.6112(4)
3 −8.605(2) 0.0497 −8.6100(4)
4 −8.605(2) 0.0439 −8.6112(4)
6 −8.606(2) 0.0425 −8.6120(4)

4

2 −1.0012(1) 0.00022 −1.0030(2)
3 −1.0013(1) 0.00021 −1.0032(2)
4 −1.0013(1) 0.00021 −1.0045(2)
6 −1.0015(1) 0.00020 −1.0030(2)
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4.6 Time-step and population-control biases

We choose the DMC time step such that the RMS distance diffused by each particle

in one time step is� r0 for the logarithmic interactions and� min{r0, a
∗
0} for the

2D Keldysh interactions at finite r∗. In Fig. 4.3 for example, we compare the DMC

energies of a biexciton with distinguishable particles at different time steps. The

results for the logarithmic interaction and r∗ = r0 shows that the DMC energy

behaves linearly for time steps up to 0.04~/E0.
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Figure 4.3: DMC ground-state (GS) energy of the biexciton with distinguishable

particles against the DMC time step for µ = 1/2 in the logarithmic limit.

To remove the biases due to the finite time steps and populations of walkers, we

perform DMC calculations using time steps in the ratio 1:4 with the corresponding

target configuration populations being in the ratio 4:1 and linearly extrapolate the

DMC energies to zero time step and infinite population.

4.7 Limit of heavy holes

In the limit that the hole mass is large, a biexciton resembles a 2D H2 molecule,

and we may use the B–O approximation [134]. The biexciton total energy is given
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by the minimum of the B–O energy curve U(r), where r is the exciton-exciton

separation, plus the harmonic zero-point energy of the exciton-exciton vibrations.

Higher-order corrections to the energy arise from vibrational anharmonicity.

Consider a biexciton in which the charge carriers interact via the Keldysh in-

teraction. Let U(r̃) be the B–O curve in Rydberg units, for the case that the

electron mass me is finite but the hole mass mh is infinite. Then, at finite elec-

tron and hole masses, the B–O potential is U(r) = U(r/a0)R∞ where R∞ =

mee
4/[2(4πε0ε)

2~2] = (me/µ)R∗∞ is the Rydberg energy and a0 = 4πε0~2/(mee
2) =

(µ/me)a
∗
0 is the Bohr radius. Note that U(r̃) does not depend on the electron or

hole mass.

Near the minimum of the potential,

U(r) = U(req) +
1

2
U ′′(req)(r − req)2 +O(r − req)3

≡ U(req) +
1

2

mh +me

2
ω2(r − req)2, (4.34)

where U(req) is the minimum total energy of the biexciton at the equilibrium

separation r = req and U ′′ is the second derivative of U with respect to r, and

(me +mh)/2 is the reduced mass of the two excitons.

Then, the total ground-state energy E within the harmonic approximation can be

written as

E ≈ U(req) + ~ω/2

= U(req)R∞ +

√
~2R∞U ′′(req)

2a2
0(mh +me)

=

[
me

µ
U(rmin) +

√
U ′′(rmin)m3

e

(me +mh)µ2

]
R∗∞

≈

U(req) +

√
U ′′(req)me

mh

R∗∞, (4.35)
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suggesting that the ground-state energy of heavy-hole biexcitons increases as
√
me/mh.

The equilibrium separation req between heavy holes can be found by direct min-

imising the B–O ground-state energy with respect to the hole separation.

To find req in the logarithmic interaction, we fit

e(r) = e0 + a e−r/req + b log(r), (4.36)

to our QMC biexciton B–O ground-state energies e(r), where e0, req, a and b

are fitting parameters. Fig. 4.4 shows that the DMC ground-state energy e0 is

considerably lower than the VMC ground-state energy, as we expect, while the

value of req obtained by DMC is slightly higher than that obtained by VMC.
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Figure 4.4: DMC ground-state (GS) energy of a heavy-hole biexciton with the

logarithmic interaction as a function of hole separation r at r∗ = r0. The

minimum DMC energy is e0 = −0.11828(6)E0 at the equilibrium separation

req = 1.6265(7)r0 with U ′′(req) = 0.3281820(4)E0/r
2
0. The VMC equilibrium

separation is at req = 1.604(1)r0 with U ′′(req) = 0.350490(2)E0/r
2
0.

To find req for the 2D Keldysh interaction, we fit a polynomial function

e(r) = e0 + α
√
r + βr + ξr2, (4.37)
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to the QMC B–O ground-state energies e(r), where e0, α, β and ξ are fitting

parameters. The comparison of ground-state energies against the heavy-hole sep-

arations at different r∗ in Fig. 4.5 and Table 4.3 shows that by increasing r∗ in the

2D Keldysh interaction, the equilibrium separation between heavy holes increases,

resulting in a reduction of the total energies of biexcitons in excitonic units.

The comparison of U ′′ and the corresponding req calculated using VMC and exact

DMC in Table 4.3 shows that VMC gives slightly smaller req and slightly larger

U ′′ than DMC for all ranges of r∗ in the 2D interaction (similar to the case with

logarithmic interaction).

Table 4.3: U ′′(req) and req of a heavy-hole biexciton with distinguishable elec-

trons calculated using QMC and the exact DMC ground-state energy e0 at

different finite r∗ in the 2D Keldysh interaction defined in Eq. 4.8.

r∗(a∗0) VMC DMC

req (a∗0) U ′′(req) (R∗∞/a
∗2
0 ) req (a∗0) U ′′(req) (R∗∞/a

∗2
0 ) e0 (R∗∞)

0.5 1.050(1) 1.52(2) 1.0648(5) 1.410(8) −3.5640(1)
1 1.3863(9) 0.526(6) 1.4050(6) 0.496(4) −2.49356(8)
2 1.854(1) 0.1774(6) 1.888(1) 0.1634(6) −1.66770(6)
4 2.526(3) 0.0524(4) 2.570(2) 0.0490(4) −1.07312(2)
6 3.041(3) 0.0254(1) 3.095(3) 0.0397(1) −0.81646(4)
8 3.472(3) 0.0151(1) 3.5538(8) 0.0138(2) −0.66832(4)
60 9.05(2) 0.00033(2) 9.22(8) 0.00036(4) −0.14678(2)

4.7.1 Binding energy of biexcitons

We calculated the BE of biexcitons at different mass ratios and then fitted the

polynomial

EBE(x) = EBE(0) + A1x
1/2 + A2x+ A3x

3/2 + A4x
2, (4.38)

to our DMC binding energies EBE(x), where x = me/mh, and EBE(0) and Ai (i =

1− 4) are fitting parameters.

Fig. 4.6 in the limit of logarithmic interaction shows that the BE of a biexciton
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Figure 4.5: VMC and exact DMC ground-state (GS) energies of heavy-hole

biexcitons with the 2D Keldysh interaction as a function of hole separations

at (a) r∗ = 0.5a∗0, (b) r∗ = a∗0, (c) r∗ = 2a∗0, (d) r∗ = 4a∗0, (e) r∗ = 6a∗0, (f)

r∗ = 8a∗0 and (g) r∗ = 60a∗0.
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Figure 4.6: DMC BE of a biexciton with the logarithmic interaction against

mass ratio me/mh.

with distinguishable particles has the maximum value 0.24629(6)E0 at me/mh = 0

and gradually falls to 0.0756(1)E0 at me/mh = 1. However, the BE of biexcitons

with indistinguishable holes falls to zero for me/mh < 0.2, implying that they are

unstable at large mass ratios in 2D TMDCs. The B–O approximation in Fig. 4.6 is

obtained using Eq. 4.35, which is in excellent agreement with our DMC calculations

in the limit of heavy holes.

In Fig. 4.7(a), we plot the BE of a biexciton with the 2D Keldysh interaction

at different finite r∗, including the Coulomb interaction (r∗ = 0). The BEs at

me/mh = 0 are obtained using the BE curves as a function of heavy-hole separation

plotted in Fig. 4.7(b), where we fitted polynomial curves as a function of
√
r similar

to Eq. 4.38 to our DMC data. The BE at r∗ = a∗0 is almost twice as large as that

at r∗ = 2a∗0 and three times as large as that at r∗ = 4a∗0 while the BEs for r∗ > 4a∗0

are less than 0.09R∗∞.

We have compared the stability of biexcitons with distinguishable particles and

indistinguishable holes in the limit of Coulomb interaction (Fig. 4.8(a)) and r∗ =

8a0 (Fig. 4.8(b)). We find that biexcitons with identical holes are unstable, except

for me/mh < 0.3, while biexcitons consisting of distinguishable particles are stable
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Figure 4.7: (a) DMC BE of biexciton with distinguishable particles against mass

ratio me/mh at finite r∗ in the 2D Keldysh interaction, where the Coulomb

interaction is denoted by r∗ = 0. The DMC BE is defined by subtracting

the total energy of the biexciton from twice of the total energy of the exciton

(Eq. 4.22). r∗ here are represented in terms of Bohr radius a0 as defined in

Eq. 4.25 (b) The minus DMC BE of heavy-hole biexciton with distinguishable

particles against the hole separation for r∗ = 1, 2, 4, 6 and 8a∗0. The BE is

defined by subtracting twice of the total energy of the exciton from the total

energy of the biexciton.

for different range of mass ratios. The B–O approximation in Fig. 4.8(b) for heavy

holes is again in agreement with our DMC calculations.

The BE of biexcitons with distinguishable particles interacting via the Keldysh

interactions are plotted in Fig. 4.9 using a polynomial fitting function as a function
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Figure 4.8: Comparison of DMC BE of biexcitons with both distinguishable

electrons and holes and biexcitons with indistinguishable holes against mass

ratio me/mh with the 2D Keldysh interaction at (a) r∗ = 0 and (b) r∗ = 4a∗0.

of
√
r∗/(1 + r∗) to the fifth order. Our results are in agreement with PIMC data

at finite r∗ [126]. However, the PIMC data obtained by Velizhanin and Saxena

present much larger statistical errors and they quoted a previous DMC result at

r∗ = 0 [135] due to the infeasibility of PIMC.

Fig. 4.10 shows the DMC BEs for biexcitons with distinguishable particles inter-

acting via the 2D Keldysh interaction as a function of mass ratio y = me/mh/(1 +
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Figure 4.9: Comparing the BE of biexcitons with distinguishable electrons and

holes in the 2D Keldysh interaction obtained by DMC and PIMC [126] methods

at mass ratio 1.

me/mh) and x = r̃∗/(1 + r̃∗), where r̃∗ = r∗/a∗0. The fitting function was

EBE =
8∑
i=0

8−i∑
j=0

Bijx
i√yj, (4.39)

containing 43 fitting parameters Bij with a quite large χ2 = 651.042 because some

error bars are smaller than 10−2 meV.

Our DMC results show that the BEs of 2D TMDCs only dependent weakly on the

mass ratios as can be seen in Table 4.4. DMC BEs are in good agreement with

PIMC BEs [129] and to a lesser extent the previous DMC study [128]; however

the latter work used an approximation to the 2D Keldysh interaction, which is

not correct at finite r∗. Despite the agreement between our DMC BEs of biexci-

tons and the previous theoretical works, our results are up to three times smaller

than experiment. DMC method is exact for biexcitons of distinguishable parti-

cles. Table 4.4 shows that different mass ratios and r∗ give BE in the range of

15 − 26 meV, therefore it is unlikely that uncertainty in these parameters cause

such a large disagreement with experiment. There is a possibility that there are

misclassifications of donor-bound biexcitons in the experiment, which needs more
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Figure 4.10: DMC BE of biexcitons with distinguishable particles against
me/mh

1+me/mh
and r̃∗/(1 + r̃∗), in which r̃∗ = r∗/a∗0. The DMC BE unit is

R̃∗ = e2/(4πε0(r∗ + 2a∗0)).

investigations.

Table 4.4: BEs of biexcitons with distinguishable particles for different mono-

layer transition-metal dichalcogenides using DFT me, mh and r∗ reported in

Ref. [129]. The first and second rows in BE (R̃∗) and DMC BE (meV) are cal-

culated using the values in the first and second rows of mass ratio, respectively.

Where a citation is not given in the table, the data were obtained in the present

work.

Material MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

r∗ (Å) [129] 44.7 53.2 73.6 40.2 47.6 53.9

me/mh [129]
0.77 0.80 0.92 0.91 0.94

0.40
0.87 0.93 0.76 0.65 0.64

DMC BE (R̃∗)
0.074 0.074 0.074 0.073 0.073

0.082
0.073 0.073 0.074 0.074 0.075

DMC BE (meV)
23.1 19.6 14.2 25.3 21.6

21.4
23.0 19.4 14.4 26.0 22.2

DMC BE (meV) [128] 22.7(3) 17.7(3) 23.3(3) 20.2(3)
PIMC BE (meV) [129] 22.7(5) 19.3(5) 14.4(4) 23.9(5) 20.7(5)

Exp. BE (meV)
60 [125]

65 [124] 52 [123]
70 [121]
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4.8 Conclusion

The formation of 2D biexcitons within the Keldysh interactions are calculated

for different mass ratios and nonlocal screening lengths. Biexcitons consisting

of distinguishable particles are always stable while indistinguishable electrons or

holes make biexcitons stable close to the heavy electron or heavy hole regions,

respectively. The DMC BEs of biexcitons containing distinguishable particles are

exact and are obtained to be 15− 26 meV for different monolayer TMDCs, whose

screening lengths are 40− 70 Å and a variety of mass ratios 0.4− 0.9. Despite the

agreement between our results and other theoretical studies, the BEs are around

three times less than that reported by experiment. This discrepancy may be caused

by the misclassifications of other possible charge complexes such as trion bound

exciton in the experiment and needs more investigations.
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Chapter 5

Quasiparticle and excitonic gaps

of one-dimensional carbon chains

5.1 Introduction

Carbon is the fourth most abundant element in the universe and is fundamental

to life as we know it. Carbon exists in a number of strikingly different forms,

including famous examples such as sp3-bonded diamond and two-dimensional sp2-

bonded graphene. A less well-known form of pure carbon is polyyne, which is

a one-dimensional sp-bonded chain of carbon atoms with alternating single and

triple bonds. The observed presence of carbon chains in interstellar space and cir-

cumstellar shells [136, 137] has inspired considerable effort to synthesise polyyne

in the laboratory, leading among other things to the discovery of fullerenes [138].

Recent experiments have shown that it is possible to produce a long linear chain

of more than 200 carbon atoms inside a protector such as a double-walled carbon

nanotube (DWCNT) [139] and also to synthesise stable oligoynes (short polyyne

molecules) with up to 44 carbon atoms [140] and a variety of terminal groups [141–

147]. Polyyne is of particular interest as the ideal interconnect in single-molecule

nanoelectronic circuitry, including spintronic devices [148–151], and has potential
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applications in nanomechanical devices [152–154]. Unfortunately, the characteriza-

tion of the optical and electronic properties of polyyne continues to present many

challenges. Our aim in this work is to address the source of experimental and

theoretical discrepancies by establishing the structural and electronic properties

of polyyne with quantitative accuracy.

The band gap of polyyne is strongly dependent on the bond-length alternation

(BLA) that arises from the so-called Peierls distortion of the linear carbon chain

[155]. A carbon chain has a half-filled band structure with degenerate π orbitals;

therefore a small distortion can reduce the translational symmetry and introduce

gaps into the energy bands at or near the Fermi energy, thereby lowering the to-

tal energy. Estimating the gap of extended polyyne by extrapolating from the

measured absorption spectra of oligoynes has been attempted in several studies

[140, 142, 145, 146, 156–158]; however, long oligoynes are needed to minimise

the effects of terminal groups, and the interpretation of the absorption spectra

of oligoynes is not always straightforward. Most first-principles studies of the

electronic structure of polyyne to date are based on DFT with different exchange–

correlation functionals [159–163]. The local LDA and PBE functionals substan-

tially underestimate the gap. Hybrid exchange–correlation functionals such as the

B3LYP [15, 16] and HSE06 [17, 18] functionals, which include a fraction of exact

exchange, perform significantly better, but the predicted gaps still underestimate

the range of gaps indicated by experiment [140, 142, 145, 146, 156–158, 164]. On

the other hand, HF theory significantly overestimates gaps. Post-HF quantum-

chemistry methods such as Møller–Plesset second-order perturbation theory (MP2)

and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] of-

fer a different and potentially far more accurate theoretical approach [165]; how-

ever the gap of polyyne has to be obtained by extrapolating the gaps of small,

hydrogen-terminated oligoynes to infinite chain length, introducing significant un-

certainty into the results. Previous theoretical studies have reported the BLA of

polyyne based on HF [160, 165], nonhybrid DFT [160, 165], hybrid DFT [160],
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MP2 [160, 165, 166], and CCSD(T) [165, 167] calculations. However, there is

no consensus over either the BLA or the band gap of polyyne in the literature

[168, 169].

In this chapter, we use highly accurate QMC methods [22, 71] to calculate ground-

state and excited-state total energies of isolated hydrogen-terminated oligoynes

(C2nH2) and supercells of polyyne subject to periodic boundary conditions. The

structure of polyyne is defined by just two parameters, the lattice constant and

the BLA, enabling us to carry out a brute-force optimisation of the structure by

minimising the QMC total energy. To the best of our knowledge this is the first

QMC study of polyyne. We compare our data with experimental and theoretical

results in the literature.

5.2 Computational methodology

5.2.1 DFT calculations

Our DFT calculations were performed using the castep plane-wave-basis code

[3]. We relaxed the geometries of hydrogen-terminated oligoynes consisting of up

to twelve pairs of carbon atoms using DFT-PBE and DFT-HSE06, and we relaxed

the geometry of extended polyyne using DFT-HSE06. The widths and heights of

our periodic unit cells were fixed at 20 Bohr radii and, for oligoynes, the length

was varied so that a constant amount of vacuum (20 Bohr radii) was maintained

between images of the molecule. In our DFT calculations for polyyne we used a grid

of 30 k points. We used ultrasoft pseudopotentials in our DFT-PBE calculations

and norm-conserving pseudopotentials in our DFT-HSE06 calculations. The plane-

wave cutoff energy in our DFT geometry optimisations was 25 Ha.

The DFT-PBE zero-point energy and the DFT-LDA and DFT-PBE phonon dis-
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persion curves of polyyne were obtained using density functional perturbation

theory in a primitive cell with 100 k points in the Brillouin zone for both the elec-

tronic calculation and the phonon calculation. The DFT-HSE06 zero-point energy

and phonon dispersion curve of polyyne were calculated using 32 primitive-cell k

points and the method of finite displacements in supercells of up to 16 primitive

cells.

5.2.2 QMC calculations

For our QMC calculations we used the static-nucleus variational and diffusion

quantum Monte Carlo (VMC and DMC) methods implemented in the casino

code [21]. The DMC method has previously been used to study the excitation

energies of a variety of molecules and solids [170–174]. The many-body trial wave

function was composed of Slater determinants multiplied by a Jastrow correlation

factor [22]. We used DFT-PBE orbitals, which were generated by castep using

a plane-wave cutoff energy of 120 Ha, and we used Dirac–Fock pseudopotentials

[4, 73]. The plane-wave orbitals were re-represented in a blip (B-spline) basis

before they were used in the QMC calculations [20], allowing the use of aperiodic

(for oligoynes) and 1D periodic (for polyyne) boundary conditions in our QMC

calculations.

For each oligoyne the DFT highest occupied molecular orbital (HOMO) and HOMO−1

are degenerate, as are the lowest unoccupied molecular orbital (LUMO) and LUMO+1.

We have therefore studied the effect of multideterminant (MD) Slater–Jastrow trial

wave functions for excited, cationic, and anionic states of oligoynes with 4, 6, 8,

10, and 24 carbon atoms as well as a supercell of polyyne composed of 8 primitive

cells. The Slater determinants in the MD wave functions contained all the orbital

occupancies that are degenerate at the single-particle level. In Table 5.1 we specify

the occupancy of the orbitals in the determinants used in our trial wave functions.
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We used linear-least-squares energy minimisation [28–30] and unreweighted vari-

ance minimisation [26, 27] to optimise the MD coefficients and the Jastrow factor,

respectively. Using variance minimisation rather than energy minimisation for the

Jastrow factor improves the stability. A test for C4H2 showed that the effects of

additional determinants containing promotions to the LUMO+2 are negligible.

Table 5.1: Number of MD terms and orbital occupancies in each determinant for

the neutral ground state, singlet and triplet excited states, cationic and anionic

states in each of our calculations. “H” and “L” denote the HOMO and LUMO,

respectively. Note that the HOMO and HOMO−1 orbitals are degenerate,

as are the LUMO and LUMO+1 orbitals. All orbitals up to HOMO−2 are

occupied in each determinant.

Orbital occupancy
State No. determinants Spin-up Spin-down

H−1 H L L+1 H−1 H L L+1

Neutral ground state 1 • • • •

Singlet excited state 8

• • • •
• • • •

• • • •
• • • •

• • • •
• • • •
• • • •
• • • •

Triplet excited state 4

• • • •
• • • •

• • • •
• • • •

Cationic state 2
• • •

• • •

Anionic state 2
• • • • •
• • • • •

The free parameters in the Jastrow factor were optimised by unreweighted variance

minimisation [26, 27] and the determinant expansion coefficients were optimised by

energy minimisation [28–30]. The DMC energy was linearly extrapolated to zero

time step and we verified that finite-population errors in our results are negligible.

Fermionic antisymmetry in DMC is imposed by the fixed-node approximation [35],

in which the nodal surface is pinned at that of the trial wave function. The fixed-
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node approximation allows us to study excited states by using trial wave functions

with the same nodal topology as non-interacting electrons. Because the Jastrow

factor is strictly positive, the nodal topology is purely determined by the Slater

determinants.

Twist-averaging is less important in one-dimensional systems than two- or three-

dimensional systems; for example momentum quantisation in a one-dimensional

homogeneous electron gas simply introduces a smooth, O(n−2) error in the energy

per particle [175].

5.2.3 DMC quasiparticle and excitonic gaps

A crucial quantity that characterises the electronic structure of polyyne is the

quasiparticle gap, which is the difference between the electron affinity and the first

ionisation potential. The quasiparticle gap is the energy required to create an

unbound electron–hole pair and was computed by the DMC method [22]. Quasi-

particle gaps are evaluated as

∆qp = EI − EA = E+ + E− − 2E0, (5.1)

where EA = E0 − E+ and EI = E− − E0 are the electron affinity and ionisation

potential, respectively. E+ and E− are the total energies of the system with one

more electron and one fewer electron, respectively, than the neutral ground state

and E0 is the ground-state total energy. For each oligoyne we separately relaxed

the geometries of the neutral ground state, the cation, and the anion using DFT-

HSE06 before evaluating the DMC ionisation potential and electron affinity and

hence quasiparticle gap, i.e., we use the adiabatic definition of the quasiparticle

gap. For polyyne, where there are just two structural parameters, we relaxed the

ground-state geometry using DMC, and then used that geometry to obtain the

vertical quasiparticle gap; it was verified that the difference between the vertical
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and adiabatic quasiparticle gaps is small for large oligoynes (see Sec. 5.3.3).

Similarly, the excitonic gaps are evaluated as

∆exc = Epr − E0, (5.2)

where Epr is the DMC total energy when a single electron is promoted from the

valence-band maximum to the conduction-band minimum (without changing its

spin for a singlet excitonic gap; swapping its spin for a triplet excitonic gap). In

the ground-state geometry, the singlet excitonic gap is equivalent to the optical

absorption gap, i.e., the energy at which the onset of photoabsorption occurs.

The excitonic gaps are smaller than the quasiparticle gap due to the attraction

between the excited electron and the hole left in the valence band. The exci-

ton binding energy is the difference between the quasiparticle and excitonic gaps.

Fixed-node errors in the DMC total energies are positive and cancel to a significant

extent when energy gaps are calculated.

5.2.4 Finite-size effects

The BLA of polyyne in the ground state was evaluated for three supercells con-

sisting of 8, 12, and 16 primitive unit cells. To remove finite-size effects in the

energy we fitted

E(n) = E(∞) + An−2, (5.3)

where E(∞) and A are fitting parameters, to our DMC ground-state energies per

primitive cell E(n) in supercells of n primitive cells [175].

The DMC quasiparticle and excitonic gaps ∆(n) of polyyne were calculated for

supercells of n = 8, 10, 12, and 16 primitive cells, and then extrapolated to infinite
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length by fitting

∆(n) = ∆(∞) +Bn−1 (5.4)

to the data, where ∆(∞) and B are fitting parameters. When a single particle

is added to a finite simulation cell subject to periodic boundary conditions, a

periodic lattice of quasiparticles is formed. The energy of this unwanted lattice of

quasiparticles goes as the Madelung constant of the supercell lattice and results

in a significant finite-size error in the electron affinity and ionisation potential.

The one dimensional Madelung energy in Hartree atomic units is given by vM =

[−0.2319− 2log(an)]/(an), where a is the lattice constant and n is the number of

primitive cells. Ignoring logarithmic corrections in one-dimensional systems, the

Madelung constant falls off as the reciprocal of the linear size of the supercell, i.e.,

as 1/n. Additional finite-size effects in the exciton energy arise from the fact that

the energy is evaluated using the Ewald interaction rather than 1/r. However, by

calculating the ground-state energy of an exciton modelled by a single electron

and a single hole moving strictly in one dimension in a periodic cell as a function

of cell length (Fig. 5.1), we find that these finite-size errors fall off more rapidly, as

1/n3. Equation (5.4) is therefore an appropriate fitting function for extrapolating

gaps to the thermodynamic limit. The finite-size error in the quasiparticle gap is

significantly larger than the finite-size error in the excitonic gap, because we do

not change the number of electrons in the simulation cell when calculating the

latter. The Madelung constant is negative, and hence the finite-size error in the

quasiparticle gap is large and negative, resulting in a negative exciton binding

energy at finite system size. Physically this is caused by the fact that, when

a charged particle is added to or removed from a finite, periodic cell in which

particles interact via the Ewald potential, a neutralising background is implicitly

introduced. This neutralising background charge density vanishes in the infinite-

system limit, and hence our quasiparticle gaps are only physically meaningful in

the infinite-system limit. For a finite molecule, by contrast, the 1/r Coulomb

interaction is used, and hence no additional neutralising background is introduced
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when a charged particle is added to or removed from a neutral molecule.
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Figure 5.1: Finite-size error in the total energy of a one dimensional exciton

against the periodic cell length L = an, where a is the lattice constant and n is

the number of primitive cells. R∗∞ = µ/2 is the exciton Rydberg and a∗0 = 1/µ

is the exciton Bohr radius. µ = memh/(me + mh) is the reduced mass of the

electron–hole pair.

5.2.5 Test of our method: benzene molecule

DMC has proven to be a highly accurate method for calculating excitation energies

within the static-nucleus approximation [170–174]. For the case of diamondoids,

the DMC excitonic gap was found to be 0.5 eV higher than the experimentally

determined optical absorption gap [174, 176]. However the difference with experi-

ment was subsequently shown to be caused by the vibrational renormalization of

the gap [177].

As a brief test of our methodology, we have calculated the static-nucleus DMC

ionisation potential and singlet and triplet optical-absorption (excitonic) gaps of a

benzene molecule in vacuum. The geometry was relaxed in both the neutral ground

state and the cationic state using DFT-PBE exchange–correlation functional. The

resulting DMC ionisation potential is 9.24(2) eV, which is in excellent agreement

with the experimental value of 9.24384(6) eV [178]. If the ground-state geometry
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is used for both the ground state and the cation then the static-nucleus DMC

ionisation potential is 9.39(3) eV. This illustrates that, when calculating ionisation

potentials and electron affinities (and hence quasiparticle gaps) for small molecules,

it can be important to relax the geometry in the neutral, cationic, and anionic

states.

Static-nucleus DMC predicts the singlet and triplet excitonic gaps of benzene to

be 5.63(4) and 4.56(4) eV, respectively, which may be compared with the experi-

mental values of 4.9 eV [179] and 3.9 eV [180], respectively. The DFT vibrational

renormalisation of the excitonic gap of benzene ranges from −0.45 eV to −0.50 eV,

depending on the choice of exchange–correlation functional[181]. This correction

enormously improves the agreement between theory and experiment, as observed

in diamondoids [182]. This indicates that we can expect our DMC gaps to be

accurate to within 0.2–0.3 eV.

5.3 Results and discussion

5.3.1 Atomic structures and atomisation energies of linear

hydrogen-terminated oligoynes

The ground-state BLAs at the centres of oligoynes have previously been calculated

using a variety of theoretical methods [162, 167, 183, 184]; some of the results

are compared with our DMC and DFT data in Fig. 5.2. The PBE functional

completely fails to describe the BLA for long chains, while spin-restricted HF

theory predicts a very large BLA. Our DFT-HSE06 BLAs are in agreement with

the values previously obtained using the B3LYP functional [162, 183], and are

close to the MP2 results wherever the latter are available [184]. However, none of

these BLA curves tends to the DMC BLA of polyyne as the chain length increases.

By contrast, the CCSD(T) BLAs [167] of oligoynes appear to tend to a limit only
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slightly less than the DMC result for polyyne. Our DMC results for the BLA of

extended polyyne provide benchmark data with which the results of other theories

may be compared.
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Figure 5.2: Optimised BLA at the centre of a hydrogen-terminated oligoyne

in the ground state against the reciprocal of the number n of pairs of carbon

atoms.

The DMC static-nucleus atomisation energy of the oligoyne C2nH2 is defined as

2n times the DMC total energy of an isolated, spin-polarised carbon atom plus

two times the DMC total energy of an isolated hydrogen atom minus the DMC

static-nucleus total energy of C2nH2. The DMC atomisation energies of oligoynes

obtained using geometries relaxed in DFT-HSE06 and DFT-PBE calculations are

compared in Fig. 5.3. For oligoynes consisting of up to five pairs of carbon atoms,

the difference between the DMC atomisation energies with the DFT-PBE and

DFT-HSE06 geometries is negligible.

5.3.2 Atomic structure and atomisation energy of polyyne

As the number of carbon atoms goes to infinity, the effects of the terminal groups

become negligible; therefore polyyne can be considered to be a one-dimensional
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Figure 5.3: Static-nucleus DMC atomisation energies of hydrogen-terminated

oligoynes as a function of the reciprocal of the number n of pairs of carbon

atoms. “DMCX” indicates a DMC atomisation energy calculated using the

geometry optimised by method X. The inset shows the relative atomisation

energies of hydrogen-terminated oligoynes as a function of the reciprocal of the

number n of pairs of carbon atoms.

periodic chain with a primitive cell composed of two carbon atoms with alternating

triple and single bonds.

In order to obtain the BLA of an infinite chain, we considered supercells subject

to periodic boundary conditions, in which the lattice constant was fixed at the

DFT-BLYP [160] value of 2.58 Å. We calculated DMC energies at different BLAs

ranging between 0.09 and 0.18 Å and fitted a quadratic to our DMC data, as

shown in Fig. 5.4(a), to locate the minimum.

The DMC energy minima of supercells consisting of 8, 12, and 16 primitive cells

are at BLAs of 0.152(5), 0.145(2), and 0.144(1) Å, respectively. When the BLA is

0.15 Å, the C≡C triple-bond length is 1.215 Å and the ratio of the C≡C triple-

bond length to the lattice constant is 0.471. We then computed the ground-state

DMC energy of polyyne at several lattice constants, from 2.4 to 2.7 Å, holding

the ratio of the C≡C bond length to the lattice constant at 0.471 for the supercell

composed of 8 primitive cells and holding the C≡C bond length at 1.215 Å for
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Figure 5.4: (a) Ground-state (GS) DMC energy of polyyne as a function of BLA

for lattice constant 2.58 Å in different sizes of simulation supercell. The inset

shows the ground-state DMC energy of polyyne against the lattice constant at

a fixed ratio of C≡C bond length to lattice constant for 8 primitive cells (p.c.)

and a fixed C≡C bond length for 16 p.cs. (b) GS DMC energy of polyyne as a

function of BLA for lattice constant 2.5817 Å in different sizes of supercell. The

minimum of the DMC energy, −306.901(3) eV per p.cs, is at BLA b0 = 0.136(2)

Å. The inset shows the square modulus |ψ0|2 of the longitudinal optical phonon

ground-state wave function for a supercell composed of 16 p.cs as a function of

BLA.

the supercell consisting of 16 primitive cells. The quadratic fits to the DMC data

in the inset of Fig. 5.4(a) are in good agreement, and the ground-state energy is

minimised at lattice constants of 2.5817(9) Å and 2.5822(5) Å for supercells of
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8 and 16 primitive cells, respectively. Finally, the DMC energy was calculated

at lattice constant 2.5817 Å for different BLAs as shown in Fig. 5.4(b) together

with quadratic fits. The DMC energy minima for supercells consisting of 8 and

16 primitive cells occur at BLAs of 0.142(2) and 0.136(2) Å, respectively, which

are in reasonable agreement. Furthermore, the BLA obtained in a supercell of 16

primitive cells does not differ significantly from the BLA 0.133(2) Å obtained by

minimising the DMC energy extrapolated to infinite system size using Eq. (5.3).

We therefore report the BLA obtained in a supercell of 16 primitive cells [0.136(2)

Å] as our final result.

The DMC data shown in Fig. 5.4 for the ground-state energy per primitive cell

e(b) against BLA b can be used to calculate the longitudinal optical (LO) phonon

frequency of polyyne at Γ. Near the minimum of the energy we may write

e(b) = e0 +
1

2

mC

2
ω2

(
b

2
− b0

2

)2

, (5.5)

where b is the bond-length alternation, b0 and e0 are constants, mC/2 is the reduced

mass of the two carbon atoms in polyyne’s primitive unit cell, and ω is the LO

phonon frequency at Γ. In terms of the BLA b, the ground-state wave function of

the zone-center LO phonon mode of polyyne in Hartree atomic units is

ψ0(b) =
(mCω

2π

)1/4

exp

[
−mCω

2

(
b

2
− b0

2

)2
]
. (5.6)

Fitting Eq. (5.5) to the static-nucleus DMC energy of a supercell composed of 16

primitive cells of polyyne gives ω = 2084(5) cm−1. The standard deviation of b in

the ground state is σb =
√

2/(mCω) = 0.052 Å. The square modulus of the LO

phonon ground-state wave function is plotted in the inset of Fig. 5.4(b).

In Fig. 5.5 we show the DFT-LDA, DFT-PBE, and DFT-HSE06 phonon dispersion

curves of polyyne. Our DFT-PBE phonon dispersion curve is in good agreement

with previous DFT-PBE results in the literature [185]. By calculating the DMC
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Figure 5.5: Phonon dispersion curve of polyyne calculated using DFT-LDA,

DFT-PBE, and DFT-HSE06. The DMC LO frequency at Γ is shown by the red

square. “T,” “L,” “A,” and “O” stand for transverse, longitudinal, acoustic,

and optical, respectively. We believe the slight instability of the TA branch in

the DFT-HSE06 dispersion curve is a numerical artifact.

energy as a function of BLA, we have determined the DMC longitudinal optical

(LO) phonon frequency at Γ, which we find to be 2084(5) cm−1. This is signifi-

cantly higher than the frequencies of 1162, 1223, 1723, and 1844 cm−1 obtained

using DFT-LDA, DFT-PBE, DFT-HSE06, and DFT-B3LYP [186], respectively.

It is clear that DFT provides a poor description of both the Peierls distortion

and the related LO phonon behaviour. The LO phonon frequencies of oligoynes

with up to 40 carbon atoms have been measured by Raman spectroscopy to be in

the region of 1900–2300 cm−1; the precise value depends on the terminal groups,

solvent, and the number of carbon atoms in the chain [187].

To evaluate the quasiparticle gap of polyyne, the atomic structure should be in

principle be relaxed when an electron is added to or removed from a supercell.

Although the effect on the structure becomes vanishingly small as the supercell

becomes large [falling off as O(n−1), where n is the number of primitive cells in

the supercell], the effect on the gap remains finite, because the gap is a difference

of total energies, which increase as O(n) with supercell size and depend on the
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atomic structure. However, the re-optimisation of the geometry at each system

size adds noise that affects the extrapolation to the limit of infinite system size and,

as shown in Fig. 5.8, the effect of relaxing the geometries of cations and anions

on the quasiparticle gap (i.e., the difference between the vertical and adiabatic

quasiparticle gaps) is small for large oligoynes.

In Table 5.2 we compare the equilibrium BLAs and lattice constants of polyyne

obtained using different methods. DFT-LDA, PBE, and HSE06 functionals un-

derestimates the BLA of polyyne, while HF theory predicts a larger BLA than

DMC. The DMC BLA happens to be in agreement with the Becke–half-and-

half–Lee–Yang–Parr (BHHLYP) and Kang–Musgrave–Lee–Yang–Parr (KMLYP)

results [160]. The BLA of extended polyyne within a DWCNT has been measured

to be 0.1 Å [139], which we expect to be different from our results for free-standing

polyyne due to the effects of charge transfer between the polyyne and the DWCNT.
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Figure 5.6: Ground-state (GS) DMC energy of polyyne against the reciprocal

of the square of the number n of primitive cells (p.c.) in the supercell. “DMCX”

indicates a DMC energy calculated using the geometry optimized by method

X.

In Figure 5.6 we compare the ground-state DMC energy of polyyne calculated using

BLAs obtained by DMC and DFT-HSE06 as a function of system size. To reduce
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Table 5.2: BLA and lattice constant a of polyyne as calculated or measured by

different methods. r1 and r2 are the C–C and C≡C bond lengths, respectively.

“PBC” indicates that periodic boundary conditions were used; otherwise results

were obtained by extrapolation from a series of oligoynes. Where known, the

number n of pairs of carbon atoms in the longest chain for which calculations

were performed is given. Where a citation is not given in the table, the data

were obtained in the present work. The experimental result is for polyyne

encapsulated in a DWCNT.

Method n a (Å) r1 (Å) r2 (Å) BLA (Å)
DFT-LDA [160] PBC 2.566 1.297 1.269 0.028
DFT-LDA [165] PBC 2.532 1.286 1.246 0.040
DFT-PBE PBC 2.565 1.300 1.265 0.035
DFT-PBE1PBE [160] 36 0.093
DFT-HSE06 PBC 2.56 1.323 1.237 0.086
DFT-KMLYP [160] 36 0.135
DFT-BHHLYP [160] 36 0.134
DFT-B3LYP [160] 36 0.088
DFT-O3LYP [160] 36 0.067
DFT-BLYP [160] PBC 2.582 1.309 1.273 0.036
HF [160] 36 0.183
MP2 [160] 20 0.060
MP2 [165] 2.554 1.337 1.217 0.120
MP2/CO [166] 2.6 1.346 1.254 0.092
CCSD [165] 2.559 1.362 1.197 0.165
CCSD(T) [165] 2.565 1.358 1.207 0.151
CCSD(T) [167] 9 2.586 1.357 1.229 0.128
DMC PBC 2.5817(9) 1.359(2) 1.223(2) 0.136(2)
Exp. in DWCNT [139] ∼ 200 2.558 1.329 1.229 0.100

finite-size errors, we considered supercells consisting of 8, 12, and 16 primitive

cells, with the BLA and lattice constant fixed as a function of cell size, and we

fitted a curve of the form Eq. 5.3. The extrapolated DMC energies with the DFT-

HSE06 and DMC geometries are −306.875(2) and −306.895(2) eV per primitive

cell, respectively, confirming that DMC is needed for geometry optimisation.

DMC atomisation energies of extended polyyne obtained using DMC and DFT-

HSE06 geometries are compared in Table 5.3. The DMC static-nucleus atomisation

energy with the DMC geometry is 12.55(1) eV, which is outside the range 10.7–11.4

eV estimated by MP2, CCSD, and CCSD(T) methods in Ref. 165; however the
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latter were calculated by extrapolating results obtained for hydrogen-terminated

oligoynes of up to eight pairs of carbon atoms to infinite chain length, whereas

our polyyne calculations use periodic boundary conditions. DFT phonon zero-

point energies are reported in the caption of Table 5.3. As shown in Fig. 5.3, the

difference between DMC atomisation energies with DFT-PBE and DFT-HSE06

geometries is negligible for small oligoynes.

Table 5.3: Static-nucleus atomisation energy Ec of polyyne as obtained by dif-

ferent methods. “DMCDMC” and “DMCHSE06” indicate that the DMC energy

of polyyne was calculated using the DMC- and DFT-HSE06-optimised geome-

tries, respectively. (The DFT-PBE and DFT-HSE06 phonon zero-point energies

of polyyne are 0.260 and 0.264 eV per primitive cell (p.c.), respectively. The

zero-point energy is a correction that should be subtracted from the atomisation

energy before comparison with experiment.)

Method Ec (eV/p.c.)
DFT-PBE 13.71
DFT-HSE06 12.47
MP2 [165] 11.375
CCSD [165] 10.678
CCSD(T) [165] 11.053
DMCHSE06 12.53(1)
DMCDMC 12.55(1)

5.3.3 Quasiparticle and excitonic gaps of hydrogen-terminated

oligoynes

Figure 5.7(a) shows that using a MD trial wave function reduces the DMC singlet

and triplet excitonic gaps of small oligoynes (by up to 1.3 eV for C4H2). The

reduction in singlet gaps is larger than the reduction in triplet gaps. However,

Fig. 5.7(b) shows that using a MD wave function does not significantly affect the

quasiparticle gaps of oligoynes. As the length of the molecule increases, the effects

of using multiple determinants on the excitonic gaps decreases, becoming negligible

for polyyne.
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Figure 5.7: (a) Difference (∆MD
exc −∆SD

exc) of the DMC excitonic gaps of oligoynes

obtained using MD and single-determinant Slater–Jastrow trial wave functions

as a function of the reciprocal of the number n of pairs of carbon atoms. (b) Dif-

ference (∆MD
qp −∆SD

qp ) of the DMC quasiparticle gaps of oligoynes obtained using

MD and single-determinant Slater–Jastrow trial wave functions as a function

of the reciprocal of the number n of pairs of carbon atoms. DMCX indicates a

DMC gap calculated using the geometry optimised by method X. “X(all)” in

the subscript indicates the use of geometries separately optimised using method

X for the neutral ground state, cationic state, and anionic state.

The DMC quasiparticle gaps of oligoynes are compared with other theoretical

results in Fig. 5.8. The HF method overestimates the quasiparticle gap, while

DFT with various functionals considerably underestimates the gap. The DMC

quasiparticle gaps calculated using DFT-HSE06 and DFT-PBE geometries are in

agreement for oligoynes consisting of fewer than ten carbon atoms, but gradually

start to differ from each other for longer oligoynes, with the difference in the DMC
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gaps reaching 0.8(1) eV for C24H2. This demonstrates that, not only the method

used to calculate the gap, but also the method used to optimise the geometry of

polyyne must be highly accurate. Using the ground-state geometry rather than

separately optimised geometries for the ground, cationic, and anionic states in-

creases the quasiparticle gap by less than 0.15 eV for oligoynes longer than C8H2.

The DMC quasiparticle gap of polyyne, evaluated using DMC geometries, is 3.6(1)

eV.
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Figure 5.8: Static-nucleus quasiparticle (QP) gaps of hydrogen-terminated

oligoynes against the reciprocal of the number n of pairs of carbon atoms.

“DMCPBE” and “DMCHSE06” denote DMC gaps calculated using DFT-PBE

and DFT-HSE06 ground-state geometries, respectively. “DMCX(all)” denotes

DMC quasiparticle gaps calculated using geometries optimised by method X

separately for the neutral ground state, cationic state, and anionic state.

We plot the singlet and triplet excitonic gaps of different oligoynes in Fig. 5.9.

Singlet–triplet splitting (the difference of singlet and triplet excitonic gaps) against

the reciprocal of the number n of pairs of carbon atoms in oligoynes is small about

0.1–0.2 eV as shown in Fig. 5.10. Using DFT-HSE06 geometries instead of DFT-

PBE geometries typically increases the DMC gaps by around 0.2 eV for small

oligoynes.
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gap calculated using the geometry optimised by method X.
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Figure 5.10: DMC singlet–triplet splitting for oligoynes obtained with DFT-

PBE and DFT-HSE06 geometries. The polyyne limit was obtained using the

DMC geometry.

5.3.4 Quasiparticle and excitonic gaps of polyyne

Figure 5.11(a) shows the finite-size behaviour of the DMC static-nucleus triplet ex-

citonic gaps of polyyne obtained using the DFT-HSE06 and DMC ground-state ge-

ometries. In the infinite-system limit, the DMC triplet gaps with the DFT-HSE06

and DMC geometries are 2.29(7) and 3.17(7) eV, respectively. Figure 5.11(b) shows
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the static-nucleus triplet and singlet excitonic gaps and the quasiparticle gap of

polyyne calculated using the Ewald interaction and the DMC-optimised geometry

in different supercells, together with DFT-PBE gaps. The singlet excitonic gap of

polyyne is slightly larger than the triplet gap. The DFT-PBE quasiparticle and

excitonic gaps are calculated using the DMC-optimised geometry and Eqs. (5.1)

and (5.2) at different k-point samplings (which may be unfolded to correspond

to supercells of n primitive cells). The triplet excitonic gap calculated by DFT

is relatively close to the DMC triplet excitonic gap, while the DFT quasiparticle

gap is far too large. The DFT gap predicted by the ground-state band-structure

calculation is (as expected) significantly underestimated. The fluctuations in the

DFT gaps as a function of supercell size (i.e., k-point grid) are small, suggesting

that single-particle errors in the DMC gaps are negligible. However, it is clear

that there is a systematically varying finite-size error in the DMC gap. We have

reduced the systematic finite-size errors in our DMC gaps by calculating both exci-

tonic and quasiparticle gaps for supercells composed of 8, 10, 12, and 16 primitive

cells and then extrapolating to infinite cell size using Eq. (5.4). The finite-size er-

rors in the quasiparticle gaps are larger than the finite-size errors in the excitonic

gaps, as discussed in Sec. 5.2.4. The DMC singlet and triplet excitonic gaps of

polyyne calculated using the DMC-relaxed geometry are 3.30(7) and 3.17(7) eV,

respectively, while the DMC quasiparticle gap is 3.6(1) eV.

To estimate the unscreened exciton binding energy within the Wannier–Mott

model, we have calculated the DFT-HSE06 band structure of polyyne (shown

in Fig. 5.12). In Hartree atomic units the band effective masses m∗e and m∗h of the

electrons and holes at the X point of the Brillouin zone are given by

m∗e(h) =

∣∣∣∣∣ 1(
d2EC(V)/dk2

)
X

∣∣∣∣∣ , (5.7)

where EC(k) and EV(k) are the conduction and valance bands, respectively. Nu-

merically differentiating the DFT-HSE06 bands, we find that m∗e = 0.046 a.u. and
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Figure 5.11: (a) DMC excitonic gaps of polyyne against the reciprocal of the

number n of primitive cells in the supercell as calculated using the DFT-HSE06

and the DMC ground-state geometries (DMCHSE06 and DMCDMC, respec-

tively). (b) Quasiparticle (QP) and excitonic energy gaps of polyyne against

the reciprocal of the number n of primitive cells in the supercell as obtained us-

ing different methods. The results simply labelled “DFT-PBE” show the band

gap obtained in a ground-state band-structure calculation. The results labelled

DMCDMC used the DMC ground-state geometry. The DFT calculations used

the DMC geometries in the same way as the DMC calculations. At finite size

the quasiparticle gap is smaller than the excitonic gap due to the introduction

of a neutralising background when a charged particle is added to or removed

from a periodic cell, as explained in Sec. 5.2.4.

m∗h = 0.050 a.u. In Hartree atomic units the exciton Bohr radius is a∗0 = 1/µ∗,

where µ∗ = m∗em
∗
h/(m

∗
e + m∗h) is the reduced mass of the electron–hole pair and
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we have assumed that the electron and hole interact via the unscreened Coulomb

interaction. In this case, the exciton Bohr radius is a∗0 = 22 Å, which is slightly

smaller than the exciton Bohr radii of about 30 Å estimated for various other

1D conjugated polymers [188], and is similar to or smaller than the lengths of

the simulation cells used in our calculations (21–41 Å). Within the Wannier–Mott

model, the unscreened exciton binding energy of polyyne is 1R∗∞ = µ∗/2 = 0.3 eV.

In fact we find the DMC static-nucleus exciton binding energy to be 0.3(1) eV,

which is consistent with the small measured exciton binding energies of a range of

π-conjugated polymers [189, 190].
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Figure 5.12: DFT-HSE06 band structure of polyyne. The dashed line shows

the Fermi energy.

In Table 5.4, we compare the quasiparticle and excitonic gaps of polyyne obtained

by different methods. The spread of theoretical results in the literature is remark-

able. The static-nucleus DMC gaps were calculated using the DMC ground-state

geometry. The DMC static-nucleus singlet excitonic gap is 3.30(7) eV. By extrap-

olating experimental absorption gaps of oligoynes to infinite chain length, various

estimates of the gap of polyyne have been made, ranging from 1.24–2.56 eV. We

note that experimental gaps are strongly affected by finite chain length, solvent,

and terminal groups, and that the more recent experimental results on longer
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oligoynes (e.g., Ref. 140) are closer to our results.

Table 5.4: Singlet excitonic gaps ∆exc and quasiparticle gaps ∆qp of polyyne

obtained by different methods. Most of the gaps were obtained by extrapolation

from a series of oligoyne molecules; the number n of pairs of carbon atoms in the

largest oligoyne considered in each work is shown where known. The DFT-LDA

and DFT-BLYP calculations for polyyne using periodic boundary conditions

(PBC) were performed using 133 k points [160]. Where a citation is not given

in the table, the data were obtained in the present work.

Method n ∆exc (eV) ∆qp (eV)
DFT-LDA [160] PBC 0.246
DFT-LDAx [159] 20 0.70
DFT-PW91 [191] PBC 1.17
DFT-PBE PBC 1.277
DFT-PBE1PBE [160] 36 1.801
DFT-B88 [159] 20 0.72
DFT-HF [159] 20 6.31
DFT-HF [160] 36 8.500
DFT-LHF [159] 20 0.92
DFT-BLYP [159] 20 0.72
DFT-BLYP [160] PBC 0.320
DFT-B3LYP [164] 13 1.49
DFT-B3LYP [159] 20 1.50
DFT-B3LYP [160] 36 1.487
DFT-B3LYP [161] 12 1.59
DFT-KMLYP [160] 36 4.438
DFT-BHHLYP [160] 36 3.946
DFT-BHHLYP [161] 12 4.04
DFT-O3LYP [160] 36 0.895
DFT-CAM-B3LYP [161] 12 4.33
DFT-HSE06 PBC 1.301
GW [192] PBC 0.407
GW [168] PBC 2.15
MP2 [160] 20 5.541
DMCDMC(all) PBC 3.30(7) 3.6(1)
Experiment [158] 10 2.20
Experiment [142] 10 2.20
Experiment [145] 12 2.18–2.36
Experiment [164] 10 2.33
Experiment [156] 10 2.18
Experiment [157] 12 2.16
Experiment [146] 12 1.24–1.88
Experiment [140] 22 2.56

The vibrational correction to the gap is not as large as in benzene, and the zero-
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point correction linearly extrapolated to the thermodynamic limit is −0.11(2)

eV[181].

5.4 Conclusions

In summary we have used DMC to calculate the BLA together with the quasi-

particle and excitonic gaps of hydrogen-capped oligoynes and extended polyyne.

We have found that simpler levels of theory, such as DFT, do not predict either

the BLA or the gap with quantitative accuracy. Our DMC calculations show the

Peierls-induced BLA of polyyne to be 0.136(2) Å, which is significantly higher

than DFT predictions. The DMC quasiparticle gap of extended polyyne obtained

using the DMC-optimised BLA is 3.6(1) eV. The static-nucleus DMC singlet ex-

citonic gap of polyyne is 3.30(7) eV. The DMC-calculated zone-centre LO phonon

frequency of polyyne is 2084(5) cm−1, which is significantly higher than those ob-

tained by DFT, but is consistent with experimental Raman measurements. Our

work represents the first direct evaluation of the structural and electronic proper-

ties of extended one-dimensional carbon chains using a high-accuracy method.
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Chapter 6

Overall conclusions

QMC methods are accurate many-body approaches that can be applied for a wide

range of extended condensed materials or molecules. They provide accurate zero-

temperature ground-state and excited-state energies. Using QMC methods in this

work, we have studied the electronic, vibrational and optical properties of several

low dimensional materials.

VdW heterostructures or stacked forms of various 2D layers are powerful platforms

to design new electronic and optoelectronic devices with engineered properties due

to the weak interlayer coupling. Modeling such devices requires the correct form

of weak vdW-like interactions between each 2D layer or between the layers and

their substrates. VdW interactions make the main contribution to the interlayer

BEs, but are wrongly described by the available DFT methods. Our DMC BEs

for key test systems such as bilayer graphene and graphene-on-boron nitride can

be used as benchmarks to develop vdW functionals in DFT, hopefully enabling

the broad applicability of DFT-D or DFT-vdW methods to 2D materials.

The interlayer interactions in vdW heterostructures also create a set of shear modes

and layer-breathing modes, corresponding to lateral and vertical displacement of

individual layers, respectively. In general, Raman spectroscopy is a key technique

for classifying and characterising samples of 2D materials in terms of their point
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groups and in particular defining the interlayer vdW and in-plane shear forces.

Within the B–O approximation, DMC phonon vibrations are in excellent agree-

ment with experiment wherever they are available. In DFT, the LDA functional

produces phonon vibrations closer to experiment than other functionals. Our study

shows how first-principles method can be widely used to classify 2D materials. This

work could also be extended to study, for example, the phonon properties of vdW

structures under the strain.

Another category of 2D materials beyond graphene are TMDCs, which have ex-

tensively been studied in the last few years. Around 40 kinds of TMDCs are

reported so far, but very limited numbers of studies have reported their optical

and electronic properties. Due to the direct band gap in many 2D TMDCs and

the bound charge complexes interacting via the strong Coulomb interaction in a

reduced dielectric screening environment, they exhibit strong photoluminescence

emission compared to the bulk forms, offering innovative opportunities in future

2D optoelectronic devices such as light-emitting diodes and photodetectors. Our

exact DMC results for biexcitons show that they are considerably bound in mono-

layer TMDCs however more investigations needed to classify and model different

kinds of bound charge complexes. Our model could be developed to study the

optical properties of TMDC heterostructures.

Besides 2D materials, 1D materials such as carbon chains are prospective candi-

dates for nanoelectronic and nanomechanical devices. Due to the Peierls distor-

tion, the electronic and optical properties of 1D carbon chains (polyyne) is very

controversial and considerably affected by the geometry. Unlike DFT, the DMC

method can be applied to calculate accurately the bond length alternation, the

optical phonon frequency and the electronic gaps of extended 1D chains. Based on

these experience, the electronic and optical properties of other 1D Peierls-distorted

structures such as trans-polyacetylene can be predicted accurately by the DMC

method.
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Appendix A

Interlayer vdW forces of bilayer

graphene

A.1 Introduction

The Lifshitz or vdW theory [193, 194] is valid for the small bodies, whose distances

are small comparing with the size of bodies. The fundamental idea is that the in-

teraction between bodies is treated as a fluctuating electromagnetic field and all

properties of long range fluctuations and also their contribution to all thermody-

namic quantities are explained entirely in terms of the complex dielectric constant

of the body. In quantum mechanics, the electromagnetic field is usually described

by the Schrödinger operators of the vector potential A(r) and scaler potential

φ(r). Four dimensional notation of these operators is denoted by {Aα} = (A, φ)

where α = 0 − 3. The time dependent operators Aα(r, t) are also defined by the

Heisenberg operators

Aα(r, t) = eiĤtAα(r)e−iĤt. (A.1)
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The electric and magnetic fields can be expressed as the choice of gauge, where

the scaler potential is zero.

E(r, t) = −∂A(r, t)/∂t,

H(r, t) = ∇×A(r, t).
(A.2)

The average value of the electric and magnetic fields in the Fourier transformation

and in the presence of an external current jext(r, t) satisfy the equations:

∇× 〈H(r, ω)〉 = 4πjext(r, ω)− iωε(r, ω)〈E(r, ω)〉,

∇× 〈E(r, ω)〉 = iω〈H(r, ω)〉,
(A.3)

where ε is the dielectric constant of the region. The statistical or Gibbs average

of electric and magnetic fields can be taken using

〈· · · 〉 = tr{e(F−Ĥ)/T · · · }, (A.4)

in which T is the temperature, the free energy F is used instead of the chemical

potential because the chemical potential of electromagnetic field is zero. Eq. A.3

using Eq A.2 can be rewritten as

[ε(r, ω)ω2δil −∇im ×∇ml×]〈Al(r, ω)〉 = −4πjexti (r, ω). (A.5)

The solution of Eq. A.5 can be found using the Green’s function method:

〈Aexti (r, ω)〉 = −
∫

Dil(r, r
′;ω)jextl (r′, ω)dr′, (A.6)

where the Green’s function D can be found by solving

[ε(r, ω)ω2δil −∇im ×∇ml×]Dlk(r, r
′;ω) = 4πδikδ(r− r′). (A.7)
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Replacing ω by i|ωn|, the Green’s function satisfies

[ε(r, i|ωn|)ω2
nδil +∇im ×∇ml×]Dlk(r, r

′; i|ωn|) = −4πδikδ(r− r′). (A.8)

It is possible to find a general form for the vdW part of the thermodynamic

quantities for an arbitrary inhomogeneous medium based on the quantum field

theory. In quantum field theory, physical quantities are described in perturbation

series whose terms can be described by an appropriate Feynman diagram and

computed based on Feynman technique. The advantage of the diagram technique

is that the terms in the perturbation series can be infinite and the problem can

be solved easily by taking a summation over all the infinite sequences which is

called “principal diagrams”. Every interline of the diagram are associated with a

temperature Green’s function for the free particle or a free photon Green’s function

D and each intersection of lines (vertex) is related to an interaction operator.

Finally, an integration is carried out over the four dimensional coordinates of each

vertex in the diagram. The average value of any quantity in the field theory

is computed by the equations of motion for the field operators. To preserve the

formal similarity with the usual equations of motion, the time t from the real value

shifts to the imaginary value of τ which varies from [−1/T, 1/T ]. The natural unit

system ~ = c = KB = 1 is used here. In a perturbed system, the Hamiltonian is

defined as

H = H0 +Hint, (A.9)

where H0 is the Hamiltonian of the free particles and photons while Hint is the

interaction operator:

Hint = −
∫
Aα(r).jα(r)d3r,

Hint(τ) = −
∫
Aα(r, τ).jα(r, τ)d3r.

(A.10)

Aα(r, τ) and jα(r, τ) are defined by using Eq. A.1 with an imaginary time. The
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free energy of the thermodynamic system is determined by the relation

F = −T ln(tr(ρ)), (A.11)

where ρ is statistical matrix expressed as

ρ = e−
H
T ,

ρ(τ) = e−τH = e−τH0G (τ).
(A.12)

where the matrix G (τ) is the analogue of the S-matrix in the field theory. It

satisfies the equation:

− ∂G (τ)

∂τ
= Hint(τ)G (τ), G (0) = 1, (A.13)

whose solution is

G (τ) = Tτexp(−
∫ τ

0

Hint(τ) dτ), (A.14)

where Tτ is the time-ordering operator which orders the operator H in order of

increasing time τ . By using Eqs. A.11– A.14, free energy is written as

F = F0 − T ln(tr(e(F0−H0)/TG )) = F0 − T ln〈G 〉0, (A.15)

where F0 is the free energy of noninteracting particles which defined as F0 =

−T ln(tr(e−H0/T )) and 〈G 〉0 = tr(e(F0−H0)/TG ). In diagram technique, the total

temperature Green’s function is defined by the sum of all possible coupled diagrams

with two external photon lines. An analytic expression for that is

Dαβ(r1, τ1; r2, τ2) = −〈Tτ{Aα(r1, τ1)Aβ(r2, τ2)G }〉
〈G 〉

. (A.16)
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The total temperature Green’s function can be written as

Dαβ(r1, τ1; r2, τ2) =


−tr(e(F−H)/T eH(τ1−τ2)Aα(r1)e−H(τ1−τ2)Aβ(r2)), if τ1 > τ2

−tr(e(F−H)/T eH(τ1−τ2)Aβ(r2)eH(τ1−τ2)Aα(r1)), if τ2 > τ1

(A.17)

by which The Green’s function have the property D(τ < 0) = D(τ + 1
T

) where

τ1− τ2 = τ . It is useful to expand the temperature Green’s function Dαβ(r1, r2, τ)

in a Fourier series of Green’s function.

D(τ) = T
∑
n

e−iωnτD(ωn),

D(ωn) =
1

2

∫ 1/T

−1/T

eiωnτD(τ)dτ, ωn = nπT. (A.18)

Transferring τ < 0 to positive τ , the above equation can be rewritten as

D(ωn) =
1

2
(1 + eiωn/T )

∫ 1/T

0

eiωnτD(τ)dτ, non zero for ωn = 2πnT. (A.19)

Next, the Fourier series expansion Eq. A.18 is substituted into the all appropriate

terms of the perturbation series and taken Fourier transforms with respect to the

space variables.

D(r) = 1
(2π)3

∫
eip.rD(p)dp,

D(p) =
∫
e−ip.rD(r)dr.

(A.20)

As mentioned before, the vertices in the diagram technique are related to the

interaction operators in the system. An even number of fermion lines meet at

every vertex, whose coordinates are considered as an integration, which means the

117



sum of frequencies
∑
n

ωn = 2NπT , where N is an integer.

∫ 1/T

0

dτeiτ
∑
ωn =

1

T
δ∑ωn , δ∑ωn


1, for ωn = 0.

0, for ωn 6= 0.

(A.21)

Integration over the space-time coordinates of the vertices gives rise to Kronecker

δ of momentum
∑

p = 0 and frequency
∑
ωn = 0 expressing conservation of the

energy and momentum. The correction for the Green’s function at T = 0 can

be obtained by replacing all the frequency ω in D by iωn (ωn = 2nπT ). As

T → 0 the main role in the sums over the frequencies ωn is played by large values

of n and therefore, these sums can be replaced by integrals. By noticing that

∆ω = ωn+1 − ωn = 2πT , then

T
∑
ωn

· · · → 1

2π

∫
dω · · · . (A.22)

Suppose all the integrals over the momenta of the virtual photons have a cut-off

at value k0 which is much smaller than the reciprocal of the interatomic distances

1/a. The corresponding expression for the free energy in the approximation where

k0a� 1 is

F = F0 −
T

2

∞∑
n=−∞

[∫
Πik(r1, r2;ωn)D (0)

ki (r2, r1;ωn) dr1 dr2

+
1

2

∫
Πik(r1, r2;ωn)D (0)

kl (r2, r3;ωn)

× Πlp(r3, r4;ωn)D (0)
pi (r4, r1;ωn)dr1 dr2 dr3 dr4 + · · ·

+
1

m

∫
Πik(r1, r2;ωn)D (0)

kl (r2, r3;ωn) · · ·

× Πqs(r2m−1, r2m;ωn)D (0)
si (r2m, r1;ωn)

dr1 · · · dr2m + · · · ] , (A.23)

where D (0) is the Green’s function of free photon. F0 as the unperturbed free

energy of the body, includes all the corrections related to the short-range forces
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and Π is the polarisation operator which can be obtained by multiplying Eq. A.8

from the left by ω2
nδij +∇il ×∇lj,

Πij(r1, r2;ωn) =
1

4π
[ε(r1, i|ωn|)− 1]ω2

nδijδ(r1, r2). (A.24)

It is not easy to calculate Eq. A.23 directly, but it can be calculated indirectly by

the correction to the stress tensor that includes the interaction between the medium

and long wavelength electromagnetic field. Consider the body is subjected to a

small deformation with displacement vector u(r). The change in the free energy

δF is equal to −
∫

f .udV where f is the force acting on a unit volume of the

deformed body. The corresponding change in the unperturbed free energy F0 is

δF0 =

∫
u.∇p0 dV, (A.25)

where p0 is the pressure at a given density and temperature without any correction.

If the system is isolated and homogenous, D depends on the coordinate differences

r1 − r2 and time difference τ1 − τ2. Hence, by a small change of the displacement

on the free energy in Eq. A.23, only polarisation operator changes, whose variation

is found by Eq. A.24:

δΠik(r1, r2;ωn) =
1

4π
ω2
nδε(r1, i|ωn|)δikδ(r1, r2). (A.26)

By several implementation, the variation of Eq. A.23 by using Eq. A.26 is

δF = δF0 −
T

8π

∞∑
n=−∞

ω2
n

∫
Dli(r, r;ωn)δε(r, i|ωn|)dr. (A.27)

As is mentioned before,D is an even function of ωn = 2nπT , then

δF = δF0 −
T

4π

∞∑
n=0

′ω2
n

∫
Dli(r, r;ωn)δε(r, i|ωn|)dr, (A.28)
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where the prime on the summation means that the term with n=0 is given only a

weight of 1/2. The variation δε is connected with two terms of transport by the

medium and change in the density due to deformation.

δε = −u · ∇ε− ρ ∂ε
∂ρ
∇ · u. (A.29)

Substituting A.29 and A.25 into A.28, the force f is

f = −∇p0−
T

4π

∞∑
n=0

′ω2
nDii(r, r;ωn)∇ε(r, iωn)

+
T

4π

∞∑
n=0

′ωn∇[Dii(r, r;ωn)ρ
∂ε(r, iωn)

∂ρ
]. (A.30)

Next, we need to calculate the stress tensor by the force fi = −∂σik
∂xk

. We first

introduce two functions:

DE
ik(r, r

′;ωn) = −ω2
nDik(r, r

′, ωn),

DH
ik (r, r′;ωn) = rotil rot′kmDlm(r, r′;ωn).

(A.31)

The components of the force using A.30–A.31 and calculating ε(r′, iωn) ∂
∂xi

DE
kk(r, r

′;ωn)+

ε(r, iωn) ∂
∂xi

DE
kk(r, r

′;ωn) and at the end, setting r = r′ and some manipulations

are

fi =− ∂p0

∂xi
+
T

4π

∞∑
n=0

′ ∂

∂xi
[DE

kk(r, r;ωn)ε(r, iωn)−DE
kk(r, r;ωn)ρ(r)

∂ε(r, iωn)

∂ρ
]

− T

2π

∞∑
n=0

′[
∂

∂xk
ε(r, iωn)DE

ik(r, r;ωn) +
∂

∂xk
DH
ik (r, r;ωn)− 1

2

∂

∂xi
DH
kk(r, r;ωn)].

(A.32)

Finally, the stress tensor is given by fi = −∂σik
∂xk

.

σik = −δikp0(ρ, T )− T

2π

∞∑
n=0

′
[
−1

2
δik

(
ε(r, iωn)− ρ(r)

∂ε(r, iωn)

∂ρ

)
DE
``(r, r;ωn)

− 1

2
δikD

H
`` (r, r;ωn) + ε(r, iωn)DE

ik(r, r;ωn) + DH
ik (r, r;ωn)

]
. (A.33)
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Stress tensor in A.33 involves DE(r, r′) and DH(r, r′) which becomes infinite at

r = r′. This is because of the fact that the short wavelength electromagnetic os-

cillations make an infinite contribution to Dik, unless we introduce an appropriate

cutoff. The vdW contribution that we are going to find is for the long wavelength

oscillations and independent of the character of the cutoff. Therefore, the vdW

contribution can be obtained from A.33 by a suitable subtraction in the Green’s

function

lim
r′→r
{D(r, r′)− D̄(r, r′)}, (A.34)

where D̄ is the Green’s function of a homogenous unbounded medium, whose di-

electric constant coincides with that for inhomogeneous medium at the point at

which the vdW force is computed. If the chemical potential in the system is con-

stant, part of the total stress tensor A.33,−δikp0(ρ, T )+ T
4π

∑∞
n=0

′ρ(r)∂ε(r,iωn)
∂ρ

DE
``(r),

turns to be constant uniform pressure in the system and make no contribution to

the total force acting on the body. Finally, if the surface of the bodies 1 and 2 are

at the planes x = 0 and x = `, the region between the bodies is `, then the force

f acting on a unit area of the surface of body 2 equals to

f(`) = σ′xx(`) =
T

4π

∞∑
n=0

′ (ε3[DE
yy(`, `;ωn) + DE

zz(`, `;ωn)−DE
xx(`, `;ωn)]

+ DH
yy(`, `;ωn) + DH

zz(`, `;ωn)−DH
xx(`, `;ωn)

)
, (A.35)

where ε3 is the dielectric constant of the region between the bodies. A positive

and negative forces respectively correspond to attraction and repulsion between

the bodies.

A.2 vdW forces between two slabs

Consider two slabs are located perpendicular to x axis in different media as is shown

in Fig. A.1. ε1, ε3 and ε5 are dielectric constant of media surrounding the slabs and
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ε2(r, ωn) and ε4(r, ωn) referring to the dielectric function of two anisotropic slabs.

Figure A.1: Two slabs are placed in three different media.

The force f acting on unit area of the surface of the second slab at a distance of

` from the first one depends on the Green’s function Dik(r, r
′) that is in terms of

the differences y − y′ and z − z′ due to the homogeneity of the problem along the

y and z axes. The Fourier transformation of the Green’s function can be written

as

Dik(x,x
′,q;ωn) =

∫∫
e−iqy(y−y′)−iqz(z−z′)Dik(r, r

′;ωn) d(y − y′) d(z − z′). (A.36)

Photon Green’s function which is defined in Eq. A.8 is recalculated for i = k = y.

ε(r, iωn)ω2
nDyy(r, r

′;ωn) +
∑
ynm

∂

∂n

∑
mpl

∂

∂p
Dly(r, r

′;ωn) = −4πδ(r− r′)

⇒ ε(r, iωn)ω2
nDyy(r, r

′;ωn)− ∂2

∂x2
Dyy(r, r

′;ωn) +
∂2

∂x∂y
Dxy(r, r

′;ωn)

+
∂2

∂z∂y
Dzy(r, r

′;ωn)− ∂2

∂z2
Dyy(r, r

′;ωn) = −4πδ(r− r′).

Taking the Fourier transformation of the above equation by using Eq. A.36, moving

the y axis along the vector q and using the fact that F [ d
dr

D(r, r′)] = −iqD(x,x′),
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the Green’s functions changes to

ε(q, iωn)ω2
nDyy(x,x

′,q;ωn)− ∂2

∂x2
Dyy(x,x

′,q;ωn) +
∂2

∂x∂y
Dxy(x,x

′,q;ωn)

+
∂2

∂z∂y
Dzy(x,x

′,q;ωn)− ∂2

∂z2
Dyy(x,x

′,q;ωn) = −4πδ(x− x′)

⇒ (w2 − q2 − d2

dx2
)Dyy(x,x

′,q;ωn)− iq d

dx
Dxy(x,x

′,q;ωn) = −4πδ(x− x′),

(A.37)

where w =
√
ε(q, iωn)ω2

n + q2. Similarly, for the other components of the Green’s

function we can obtain the following equations.

(w2 − d2

dx2
)Dzz(x,x

′,q;ωn) = −4πδ(x− x′),

w2Dxy(x,x
′,q;ωn)− iq d

dx
Dyy(x,x

′,q;ωn) = 0,

w2Dxx(x,x
′,q;ωn)− iq d

dx
Dxy(x,x

′,q;ωn) = −4πδ(x− x′),

(w2 − q2 − d2

dx2
)Dxy(x,x

′,q;ωn)− iq d
dx

Dxx(x,x
′,q;ωn) = 0.

(A.38)

The components of the Green’s function Dxz and Dyz are equal to zero. The

solution of this system reduces to the solution of just two equations:

(w2 − d2

dx2
)Dzz(x,x

′,q;ωn) = −4πδ(x− x′),

(w2 − d2

dx2
)Dyy(x,x

′,q;ωn) = − 4πw2

ε(q,iωn)ω2
n
δ(x− x′),

(A.39)

and then Dxy and Dxx are defined by the following equations.

Dxy(x,x
′,q;ωn) = iq

w2
d
dx

Dyy(x,x
′,q;ωn),

Dxx(x,x
′,q;ωn) = iq

w2
d
dx

Dxy(x,x
′,q;ωn)− 4π

w2 δ(x− x′).
(A.40)

The solution of the Green’s function, can be found from the conditions that D and

dD/dx are continuous on the boundary. By using the boundary conditions and

A.35, together with the inverse Fourier transformation at r = r′ = `:

f(`) = −T
π

∞∑
n=0

′
∫ ∞

2π/λ

q dq w3(
1

∆
+

1

∆̄
), (A.41)
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where λ is the screening length. If The thickness of both slabs are equal to a, ε1

and ε5 equal to ε3 as well as ε2(q, ωn) = ε4(q, ωn), ∆ and ∆̄ are:

∆ = 1− e2w3`

[
(w2 − w3)2 − (w2 + w3)2e2w2a

w2
2 − w2

3 − (w2
2 − w2

3)e2w2a

]2

, (A.42)

∆̄ = 1− e2w3`

(w2 − ε2
ε3
w3)2 − (w2 + ε2

ε3
w3)2e2w2a

w2
2 −

ε22
ε23
w2

3 − (w2
2 −

ε22
ε23
w2

3)e2w2a

2

.

The force f acting on unit area of each two bodies in media 2 and 4 can be obtained

by substituting A.42 into A.41

f(`) =
T

π

∞∑
n=0

′
∫ ∞

2π/λ

qw3 dq {

[
e2w3`

(
(w2 − w3)2 − (w2 + w3)2e2w2a

w2
2 − w2

3 − (w2
2 − w2

3)e2w2a

)2

− 1

]−1

+

e2w3`

(w2 − ε2
ε3
w3)2 − (w2 + ε2

ε3
w3)2e2w2a

w2
2 −

ε22
ε23
w2

3 − (w2
2 −

ε22
ε23
w2

3)e2w2a

2

− 1

−1

},

(A.43)

where w2 =
√
ε2ω2

n + q2 and w3 =
√
ε3ω2

n + q2 depend on ωn and ε and λ is the

screening length which depends on the system size by

λ =
√
`2 +D2. (A.44)

in which D is the length of the system. ωn in the usual unit is ωn = 2πnKBT/~.

At large n, the summation in A.43 changes to integral with respect to the value

dn = ~
2πKBT

dω therefore the temperature drops out of A.43. By transforming to

a new integration variable p by substitution q = ωn
√
ε3(p2 − 1) and changing the

unit system from natural to the usual unit, the force per unit area of A.43 changes

to:

f(`) =
KBT

π

∞∑
n=0

′
∫ ∞

2π√
`2+D2

wq dq

{
1

r2
TE e2`w − 1

+
1

r2
TM e2`w − 1

}
, (A.45)

where rTE and rTM are reflection coefficients on the slabs for two independent
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polarization of the electromagnetic field, p-polarised transverse electric (TE) and

s-polarised transverse magnetic (TM), respectively.

rTE =
(s2

2 − p2)(1− e2
√
ε3ωs2a/c)

(s2 − p)2 − (s2 + p)2
√
ε3ωs2a/c

, (A.46)

and

rTM =
(s2

2 −
ε22
ε23
p2)(1− e2

√
ε3ωs2a/c)

(s2 − ε2
ε3
p)2 − (s2 + ε2

ε3
p)2e2

√
ε3ωs2a/c

, (A.47)

where w =
√
εω2

n/c
2 + q2, c is the speed of light, ε is the relative permittivity of the

media surrounding the layers, D is the length of the system, ωn is the Matsubara

frequencies ωn = 2πnKBT/~. The prime near the summation sign means that the

term of n = 0 has the weight of 1/2.

A.3 vdW forces in bilayer graphene

The same approach can be used for two pristine graphene sheets separated by

a distance `. In the framework of the Dirac model, the reflection coefficients are

expressed in terms of the polarisation tensor calculated in ref [195]. At large n, the

summation in A.45 changes to integral with respect to the value dn = ~
2πKBT

dω

therefore the temperature drops out of it.

f(`) =
~

2π2

∫ ∞
0

dω

∫ ∞
2π√
`2+D2

wqdq

{
1

r2
TE e2`w − 1

+
1

r2
TM e2`w − 1

}
(A.48)
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For un-doped bilayer graphene at zero temperature, the energy per unit area is

obtained as [81].

E =
~

2π2

∫ ∞
`0

d`

∫ ∞
0

dω

∫ ∞
2π√
`2+D2

wq dq

{
1

rTE(q, ω)2 e2`w − 1
+

1

rTM(q, ω)2 e2`w − 1

}
,

rTE(q, ω) =
απ

2
√
υ(q, ω) + απ

, (A.49)

rTM(q, ω) =
απ
√
υ(q, ω)

2 + απ
√
υ(q, ω)

,

υ(q, ω) = v2
f + (1− v2

f )
ω2

w2c2
,

where vf = 1/300 is the dimensionless Fermi velocity, α = e2/(~c) = 1/300 is the

fine-structure constant. In this model, two layers are interacting via the zero-point

and thermal fluctuations of the electromagnetic field using the Dirac model. The

short wavelength electromagnetic oscillations make an infinite contribution to Dik,

leading the stress tensor tends to infinity therefore we find vdW interactions for

long wavelength oscillations. Here, it is supposed that the separation between

sheets is big enough so that the wave functions in different layers do not overlap

and also the interband transitions are negligible as the layers are narrow enough

so that only one level is occupied in each layer and the closest unoccupied level is

far enough up.

Another study has reported the Casimir energy between two un-doped graphene

layers embedded in a dielectric medium calculated by using Coulomb coupling

method between density fluctuations[80, 196]. The force per unit area of each

graphene layer is calculated by considering just the interlayer correlation energy

as follows:

f(`) =

∫
d2q

4π2
fc(q, `)〈ρ1

qρ
2
−q〉

=
~

2π2

∫ ∞
0

dω

∫ ∞
2π√
`2+D2

q2 dq
1

e2q`
(

1 + 16
gβ

√
1 + ω2/(vq)2

)2

− 1
(A.50)

126



where the Coulomb coupling between density fluctuations ρ1
q and ρ2

q are given by

vc(q, `) = e2e−q`/(2ε3q) with elementary charge e and the relative permittivity of

media surrounding the layers ε3. fc(q, `) = −∂`vc(q, `) is the Coulomb force. v is

the carrier velocity 106 m/s in graphene, g is the degeneracy parameter with the

value of 4 (2 for spin and 2 for the cone degeneracy) and β = e2/(2ε3~v) ∼ 13.6 is

effective coulomb coupling constant of graphene. Then the vdW energy per unit

area of each layer is given by:

E =
~

2π2

∫ ∞
`0

d`

∫ ∞
0

dω

∫ ∞
2π√
`2+D2

q2 dq
1

e2q`
(

1 + 16
gβ

√
1 + ω2/(vq)2

)2

− 1
(A.51)

To solve A.49 and A.51, the parameters are considered as follows: the speed of

light c = 3 × 1018 Å/s, ~ = 6.58211928 × 10−16 eV.s, relative permittivity of the

media between two layers ε3 = 1, Initial interlayer separation `0 = 3.384 Å and

the length of a graphene layer composed of N unit cells D =
√

2.462N
√

3
2π

where

2.46 is graphene lattice constant. The vdW energy per unit area of the layers

multiplied by the area of the graphene unit cell 2.462
√

3/2 = 5.241Å2 and divided

by 2 (the number of atoms per primitive cell) gives energy in terms of eV/atom.

The vdW energy for two infinite length free standing graphene layers using both

A.49 and A.51 are obtained 8.8 meV/atom, which is almost twice smaller than

that calculated using DMC method for limited system length (Fig. A.2).
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Figure A.2: Comparison of vdW energy of bilayer graphene obtained by

Coloumb coupling method A.51, thermal free energy A.49 method and binding

energy of AA-stacked and AB-stacked obtained by DMC for bilayer composed

of 9, 16 and 36 unit cells which is extrapolated to infinite system size.
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