Worthington, John J. and Czajkowska, Beata I. and Melton, Andrew C. and Travis, Mark A. (2011) Intestinal dendritic cells specialize to activate transforming growth factor-β and induce Foxp3+ regulatory T cells via integrin αvβ8. Gastroenterology, 141 (5). pp. 1802-1812. ISSN 0016-5085
1_s2.0_S0016508511009073_main.pdf
Available under License Creative Commons Attribution.
Download (2MB)
Abstract
BACKGROUND & AIMS: The intestinal immune system is tightly regulated to prevent responses against the many nonpathogenic antigens in the gut. Transforming growth factor (TGF)-β is a cytokine that maintains intestinal homeostasis, in part by inducing Foxp3(+) regulatory T cells (Tregs) that suppress immune responses. TGF-β is expressed at high levels in the gastrointestinal tract as a latent complex that must be activated. However, the pathways that control TGF-β activation in the intestine are poorly defined. We investigated the cellular and molecular pathways that control activation of TGF-β and induction of Foxp3(+) Tregs in the intestines of mice to maintain immune homeostasis. METHODS: Subsets of intestinal dendritic cells (DCs) were examined for their capacity to activate TGF-β and induce Foxp3(+) Tregs in vitro. Mice were fed oral antigen, and induction of Foxp3(+) Tregs was measured. RESULTS: A tolerogenic subset of intestinal DCs that express CD103 were specialized to activate latent TGF-β, and induced Foxp3(+) Tregs independently of the vitamin A metabolite retinoic acid. The integrin αvβ8, which activates TGF-β, was significantly up-regulated on CD103(+) intestinal DCs. DCs that lack expression of integrin αvβ8 had reduced ability to activate latent TGF-β and induce Foxp3(+) Tregs in vitro and in vivo. CONCLUSIONS: CD103(+) intestinal DCs promote a tolerogenic environment in the intestines of mice via integrin αvβ8-mediated activation of TGF-β.