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Abstract

The incremental life expectancy, defined as the difference in mean survival times between two treat-

ment groups, is a crucial quantity of interest in cost-effectiveness analyses. Usually this quantity is very

difficult to estimate from censored survival data with a limited follow-up period. The paper develops

estimation procedures for a time shift survival model which, provided the model assumptions are met,

gives a reliable estimate of incremental life expectancy without extrapolation beyond the study period.

Methods for inference are developed both for individual patient data and when only published Kaplan-

Meier curves are available. Through simulation the estimators are shown to be close to unbiased and

constructed confidence intervals are shown to have close to nominal coverage for small to moderate sample

sizes.

1 Introduction

Traditionally in survival analysis, mean survival is not considered an important summary measure (Hosmer

& Lemeshow, p52) [1]. This is both because survival distributions are often heavily skewed making the

mean survival a poor summary measure, and also because determining mean survival requires knowledge, or
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assumptions, about the whole survival distribution up to some maximum time horizon. However, obtaining

estimates of mean survival is an integral part of the assessment of cost-effectiveness of health technolo-

gies. Specifically, cost-effectiveness analyses require estimation of incremental life expectancy, defined as

the difference in mean survival times between treatment groups. Most trials and studies associated with

an emerging health technology will have follow-up periods much shorter than the time horizon of inter-

est meaning conclusions about cost-effectiveness may be sensitive to the method of survival extrapolation

employed.

An approach which avoids these issues is to compare the restricted mean survival [2], which involves

computing the mean of the minimum of an individual’s survival time and a more limited time horizon,

t∗. While the restricted mean survival can be reliably estimated from right-censored data provided the

follow-up time exceeds t∗, there is no guarantee that differences in the restricted means will translate to

similar differences in the incremental life expectancy. Cost-effectiveness is usually measured on the basis

of incremental cost-effectiveness ratio (ICER) which depends upon the incremental life expectancy (or a

quality-of-life adjusted version thereof). As a consequence, cost-effectiveness analyses usually require some

degree of survival extrapolation.

Health Technology Assessments (HTA), such as those conducted by the UK’s National Institute for Health

and Care Excellence (NICE), involve building a decision-analytic model which encompasses the key events

that may occur to patients and assesses their incidence under different treatments and the associated impact

on cost, health utility and life expectancy. For tractability, a discrete-time Markov economic model is often

adopted. This requires choices regarding the range of distinct health states and also the appropriate unit of

time in the discrete time model (often referred to as the cycle length). In cancer trials or other assessments

where there is a key irreversible intermediate event, such as progression or recurrence, which drives both

quality of life and survival, a partitioned survival analysis approach is more commonly used. This involves

estimating progression-free survival and overall survival separately and determining post-progression survival

via the difference in these curves. In either type of approach it is usually necessary to make assumptions to

allow extrapolation beyond the time span of the supporting studies.

An important concurrent validity check is whether the incremental life expectancy reported by the eco-

nomic model is consistent with direct survival data from the key trial or trials. Substantial discrepancies

between model based estimates and estimates from direct data will raise questions about the appropriateness

of model assumptions or the sensitivity of the results to different forms of survival extrapolation.

Various approaches to survival extrapolation have been proposed in the literature. For instance, Latimer
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[3] proposed a model selection algorithm based on assessment of the proportional hazards assumption and

fitting a wide range of plausible parametric models to provide a sensitivity analysis to possible extrapola-

tion assumptions. Demiris et al [4] considered use of a flexible class of poly-Weibull distributions in order

to facilitate a wide range of hazard shapes including the ‘bathtub’ shaped hazards anticipated for organ

transplantation studies. Bagust and Beale [5] argued against purely data driven approaches and against

over-reliance on standard parametric models. One approach they advocate is the use of a time shift model,

previously used in HTA reviews [6, 7]. If it is anticipated that the benefits of treatment will only last for a

limited period of time it may be biologically plausible and also empirically justifiable to adopt such a model.

The model has the advantage of providing an estimate of incremental life expectancy without requiring

parametric assumptions about survival beyond the observed study period.

In this article, methodology based upon this time shift model is developed. In particular, formal estima-

tion procedures are proposed and investigated, including construction of confidence intervals. The remainder

of the article is as follows. Section 2 introduces the time shift model, Section 3 develops methods for es-

timation and construction of confidence intervals, Section 4 investigates the small sample properties of the

estimators via simulation. In Section 5, the method is illustrated by an example relating to treatments for

patients with BRAF V600E mutation melanoma. The paper concludes with a discussion.

2 Time shift models

A useful potential model for survival data in contexts where incremental life-expectancy is of interest is a

time shift model [5, 6, 7] where it is assumed that the survivor function for the group receiving the beneficial

treatment converges to a shifted version of the survivor function for the group receiving standard treatment,

after some initial period of survival benefit. We can characterize the model in terms of a time point ω, a

time shift δ < ω, an initial beneficial treatment survival curve S̃2(t), 0 ≤ t ≤ ω and the standard treatment

survival curve S1(t). It is assumed that the overall survival for the beneficial survival group is

S2(t) =


S̃2(t) if t < ω

S1(t− δ) if t ≥ ω.

For continuity it is necessary to assume S̃2(ω) = S1(ω − t). A graphical representation of this model is

given in Figure 1. The parameter ω represents the time by which all survival benefit of the new treatment

will have accrued. Initially this quantity will be assumed to be known, but estimation will be considered in

Section 3.4.
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Figure 1: Graphical representation of a time shift model with a shift of δ and convergence point ω.
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Note that general shift models of the form

F2(t) = F1(t+ δ)

have wide usage in statistics, not least in the arena of quantile regression where a linear model with respect

to a particular quantile implies q = F2(tq) = F1(tq + δ) at the particular time point of interest, tq where

tq = F−1
2 (q). However, a uniform shift model where S2(t) = S1(t+ δ) for all t > 0 is not usually appropriate

for realistic survival models as it must imply a period of time of length greater than or equal to the shift δ

in which no event is possible in the shifted group.

2.1 Estimation of incremental life-expectancy

The principal motivation for adopting a time shift model is to facilitate estimation of the incremental life

expectancy in situations where there is a clinical or biological reason to suspect that the benefits of a new

treatment will be accrued soon after commencement. The incremental life expectancy can be expressed in

terms of the survival functions associated with the two treatments,

∆LE =

∫ τ

0

{S2(t)− S1(t)} dt, (2.1)

where τ is the maximum time horizon, which could theoretically be infinity and is usually much greater than

the maximum follow-up time in available trial data.
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Note that in most standard survival models, including proportional hazards and accelerated failure time

models, in order to estimate (2.1) it is necessary to either make parametric assumptions or else have follow-up

until the maximum time horizon. In contrast for the time shift model

∆LE =

∫ τ

0

{S2(t)− S1(t)} dt

=

∫ ω

0

S̃2(t)dt+

∫ τ

ω

S1(t− δ)dt−
∫ τ

0

S1(t)dt

=

∫ ω

0

S̃2(t)dt−
∫ ω−δ

0

S1(t)dt,

meaning that the incremental life-expectancy depends only on the follow-up to ω. Hence provided the

follow-up time in available trial data exceeds ω, there is scope to estimate the quantity directly without any

additional parametric assumptions. Moreover, in situations where S1(t) ≈ 1 for t < ω − δ the shift, δ, itself

can be used as a good approximation to the total incremental life expectancy.

3 Estimation of shift models

In this section methods for estimating and constructing confidence intervals for the shift parameter δ are

developed. Initially the time by which all survival benefit has accrued, ω, is assumed to be known a priori.

Note that, if the model is correctly specified, choosing any ω∗ > ω will still yield a valid estimate, but would

be expected to give less efficient estimates. Subsequently in Section 3.4 methods for an unknown ω will also

be considered.

3.1 Estimation of δ

A natural estimator of δ can be obtained simply by solving the equation

Ŝ1(ω − δ) = Ŝ2(ω) (3.1)

for δ, where Ŝj(t), j = 1, 2 is the Kaplan-Meier estimator for group j. Hence

δ̂ = ω − Ŝ−1
1 (Ŝ2(ω)). (3.2)

Clearly we would also like to determine whether δ is significantly different from 0 or some other null value

and also obtain a 95% confidence interval for δ.
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The estimator δ̂ can be defined in terms of an estimating equation

D(δ) = Ĥ2(ω)− Ĥ1(ω − δ) (3.3)

where D(δ̂) = 0 and E(D(δ)) = 0 and Ĥj(t) = − log(Ŝj(t)) is the estimated cumulative hazard function.

Through a simple application of Greenwood’s formula and the assumption of independence between the two

samples of patients an estimate of the variance of D(δ) can be obtained

Var{D(δ)} = Var{Ĥ2(ω)}+ Var{Ĥ1(ω − δ)}

V̂ar{D(δ)} =
∑

i:t2i≤ω

d2i

r2i(r2i − d2i)
+

∑
i:t1i≤ω−δ

d1i

r1i(r1i − d1i)

where tji denotes the ith ordered failure time in group j, and dji and rji are the number of failures and

number at risk at the ith ordered event time for group j. The hypothesis test H0 : δ = δ0 against a general

two-sided alternative can be conducted by noting that asymptotically, under the null hypothesis

D(δ0)2

V̂ar{D(δ0)}
∼ χ2

1.

Similarly, a 100(1− α)% confidence interval for δ can be constructed by considering the interval{
d :

D(d)2

V̂ar{D(d)}
≤ χ2

1(1− α)

}
(3.4)

where χ2
1(u) denotes the inverse CDF function of a χ2

1 distribution. The performance of this construction

for realistic sample sizes will be considered via simulation in Section 4.

Superficially, it may appear that an estimator based only on matching survival at ω would be inefficient.

However, as shown in the Appendix, the estimator in (3.3) is in fact optimal among a class of estimators

based on a weighted sum of such terms, at least in the case where S2(t) has a constant hazard for t ≥ ω.

A plug-in estimator of the incremental survival is given by

∆̂LE =

∫ ω

0

ˆ̃S2(t)dt−
∫ ω−δ̂

0

Ŝ1(t)dt. (3.5)

Unfortunately, while asymptotic theory for the standard error of restricted mean survival is relatively

straightforward, see for instance Andersen et al (1993) page 279 [8] , the restriction that δ̂ satisfies Ŝ1(ω−δ̂) =

ˆ̃S2(ω) introduces a substantial complication. Approximate standard errors for ∆LE can be obtained through

bootstrap resampling.
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3.2 Estimation from published survival curves

In some circumstances, particularly if health economic modelling of the data involves secondary data analysis

of previously published trials, it may not be possible to access the full, individual level, survival data. Often

the data can be requested from the product sponsors, but if this is not possible then only the individual

Kaplan-Meier curves plus the counts of numbers of patients at risk at a smaller range of time points, may

be available.

Several authors have considered this issue in the context of fitting models for the purposes of meta-

analysis [9, 10, 11]. The method of Guyot et al (2012) [9] allows estimates of the full set of sufficient

statistics (numbers at risk and number of events) to be reconstructed meaning that the formulae given in

Section 3.1 can then be applied. However, it is necessary to assume that the co-ordinates of the published

survival curve can be extracted to sufficient accuracy to allow all event times can be uniquely identified.

Confidence intervals for δ based on (3.4) only require an estimate of V̂ar{D(t)}. In Appendix 2, a

method for estimating this quantity from published curves is developed, which is substantially simpler

than attempting to reconstruct the full data and only requires an assumption that Ŝ1(t) and Ŝ2(t) can be

determined for a fine grid of points, but not necessarily at all unique event times.

3.3 Goodness-of-fit and model sensitivity

A graphical check of the appropriateness of a time shift model can be obtained by calculating the optimal

shift at a range of possible time points, ω. This corresponds to the shift function, δ̂(t), considered for

general shift models [12]. If the shift model is appropriate then plotting the estimated shift as a function

of time should produce a plot that increases from time 0 until around the originally chosen ω and is then

approximately flat thereafter. Pointwise 95% confidence intervals, computed using the interval in (3.4), can

be included on the plot to aid the judgement.

If desired, and provided patient level data are available, further formal goodness-of-fit testing can be

performed based on testing whether S1(t − δ̂) = S2(t), for all t > ω. The simplest way of doing this is to

perform a log-rank test using the set of transformed survival times, t1j− (ω+ δ) and t2k−ω. Note that since

estimation of δ via (3.3) is independent of the survival beyond ω − δ̂ and ω for groups 1 and 2, respectively,

the log-rank test will have its standard asymptotic distribution. Alternative tests, for instance Renyi-type

supremum tests [13], can also be used to detect deviations that are potentially non-proportional.
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3.4 Estimation with unknown ω

It may not be possible or desirable to pre-specify a suitable value of ω. Estimation of δ in such cases is more

complicated, but can still proceed through a two-step procedure based upon the estimated shift function.

Specifically the idea considered in Section 3.3 that, if a shift model is appropriate, the shift function

should increase from δ̂(0) = 0 to reach δ̂(ω) = δ0 and be constant thereafter.

Asymptotically the estimated shift at any point t is normally distributed about the true shift δ(t), where

δ(t) satisfies

S1(t− δ(t)) = S2(t)

for t > 0. This motivates the use of a weighted least-squares approach to jointly estimate δ0 and ω. In order

to proceed it is necessary to make stronger assumptions about the overall shift function than in previous

sections. Previously the relationship between S1 and S2 for t < ω was left unspecified. Since it is guaranteed

that S1(0) = S2(0), the simplest possible specification is to assume the shift increases linearly until ω implying

δ(t; δ0, ω) =

(
t ∧ ω
ω

)
× δ0,

where t ∧ ω = min(t, ω). This specification has the advantage of not requiring any additional nuisance

parameters.

Estimation of δ0 and ω can proceed by finding the (δ0, ω) which minimize

{
δ̂(t)− δ(t; δ0, ω)

}′
W
{
δ̂(t)− δ(t; δ0, ω)

}
where t = (t1, . . . , tk)

′
is a set of times at which δ̂(t) is estimated and W is a (k× k) positive-definite weight

matrix. Choice of W affects the efficiency but not consistency of the estimator. The efficient weight matrix

corresponds to the inverse of the variance-covariance matrix of δ̂(t) = (δ̂(t1), . . . , δ̂(tk))
′
. The theoretical

covariance of δ̂(t) at a pair of times (t, t′)

Var(Ĥ2(t ∧ t′)) + Var(Ĥ1(t∗ ∧ t′∗))
h1(t− δ(t))h1(t′ − δ(t′))

,

where t∗ = t− δ(t). However, this is difficult to reliably estimate due to the dependence on hj(t). Moreover

the resulting matrix will be large and potentially ill-conditioned making inversion difficult.

A pragmatic alternative which avoids these problems while maintaining reasonable efficiency, is to use a

diagonal weight matrix with terms

Wkk =
[
V̂ar{Ĥ2(tk)}+ V̂ar{Ĥ1(tk − δ̂(tk))}

]−1

,
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where V̂ar(Ĥj(t)) is defined as in (6.3).

A plug-in estimate of the incremental life expectancy from the model can be found via

∆̂LE =

∫ ω̂

0

Ŝ1(t− δ(t; δ̂0, ω̂))dt−
∫ ω̂−δ̂0

0

Ŝ1(t)dt, (3.6)

where Ŝ1(t) is the Kaplan-Meier estimator of survival for the control group. Standard error estimates for

ω̂, δ̂0 and ∆̂LE can be obtained via bootstrap resampling.

Note that there are some non-standard properties to the model. In particular, under the null where

δ0 = 0, the convergence point ω is not identifiable. Similarly if the shift function is linear or close to

linearly increasing or decreasing throughout the follow-up period then ω̂ may be unbounded. In this case, a

convention that ω̂ = tk is proposed.

4 Simulation study

In this section, the finite sample properties of the proposed estimators are investigated, both for individual

patient data and from published Kaplan-Meier estimates, using simulation.

A shift model is simulated by assuming patients in the control group have exponential survival times,

such that S1(t) = exp(−λt), while the experimental group has

S2(t) = exp[−λ{t− (t ∧ ω)/ω}].

The rate parameter λ is chosen so that mean survival in the control group is 5 years, The true value of ω is

taken to be 2 months and δ = 0.5 years (183 days). Two censoring scenarios are considered each producing

50% follow-up within one year; exponential censoring with rate log(2)/10 and uniform censoring from a

U [0, 20] distribution. Sample sizes of N = 100, 200, 500 and 1000 per group are considered.

In order to investigate the effect of misspecifying ω on the estimates of δ and the incremental life-

expectancy, ∆LE, estimates of δ̂ using the estimating equation in (3.3) are obtained under four scenarios

where ω is assumed to be 2, 1.5, 3 and 4 months, respectively. In each case, ∆̂LE is also obtained by applying

the estimator in (3.5). In addition, to investigate the properties of the estimators proposed in Section 3.4, δ

and ∆LE are also estimated assuming ω is unknown.

The results for estimates of δ are summarized in Table 1. In the scenario considered, there is evidence of

some negative bias in the estimated shift δ for small to moderate sample sizes when ω is correctly specified.

As we would expect, there is little impact on bias, but a reduction in efficiency if a larger value of ω is
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Table 1: Bias and Standard Deviation (SD) of estimates of the shift δ (measured in days) for different sample

size and censoring scenarios and different assumptions about ω.

Bias SD

N Censoring ω = 2 ω = 1.5 ω = 3 ω = 4 ω̂ ω = 2 ω = 1.5 ω = 3 ω = 4 ω̂

100 Uniform -6.39 -50.02 -4.43 -6.81 67.47 157.99 134.02 218.18 278.59 294.91

100 Exponential 3.07 -45.55 1.52 -10.96 68.41 155.55 132.56 222.39 279.24 310.35

200 Uniform -2.15 -45.28 -2.75 -4.14 54.10 111.07 93.40 154.63 197.08 215.28

200 Exponential -2.94 -44.69 -3.44 -2.02 50.87 112.88 92.60 157.29 200.75 214.66

500 Uniform -0.78 -46.34 -2.29 1.62 32.83 69.65 58.18 97.25 124.80 125.69

500 Exponential -0.94 -45.23 0.17 -1.04 33.95 71.00 60.02 97.25 123.74 126.07

1000 Uniform 0.44 -45.72 -0.17 -0.12 16.32 50.27 42.13 67.86 87.04 81.53

1000 Exponential 0.56 -46.30 -0.42 0.63 16.92 49.89 41.69 68.60 88.57 85.96

2000 Uniform -0.27 -45.51 -0.45 -0.32 2.66 22.00 18.86 30.27 39.41 31.20

2000 Exponential 0.13 -45.64 -0.15 -0.75 2.15 22.01 18.75 30.45 39.39 31.83
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Table 2: Bias and Standard Deviation (SD) of estimates of the incremental life expectancy (∆̂LE) (measured

in days) for different sample size and censoring scenarios and different assumptions about ω.

Bias SD

N Censoring ω = 2 ω = 1.5 ω = 3 ω = 4 ω̂ ω = 2 ω = 1.5 ω = 3 ω = 4 ω̂

100 Uniform -5.03 -38.63 -2.32 -4.09 39.23 138.37 121.39 169.89 194.34 198.07

100 Exponential 3.40 -34.52 2.52 -5.40 38.42 136.77 120.19 173.21 194.15 203.42

200 Uniform -1.44 -34.47 -2.08 -2.81 28.66 97.83 84.94 121.12 138.09 142.34

200 Exponential -2.15 -33.94 -2.40 -0.78 27.11 99.12 84.03 123.23 140.35 142.16

500 Uniform -0.33 -35.55 -1.29 1.39 16.37 61.12 52.81 76.44 88.31 84.45

500 Exponential -0.60 -34.53 0.23 0.24 17.11 62.34 54.46 76.26 86.43 84.56

1000 Uniform 0.69 -35.05 0.06 0.32 7.85 44.23 38.25 53.37 61.30 57.06

1000 Exponential 0.64 -35.56 -0.22 0.41 7.78 43.81 37.90 53.71 62.19 59.14

2000 Uniform -0.08 -34.83 -0.23 -0.05 1.62 19.36 17.15 23.78 27.71 24.83

2000 Exponential 0.25 -34.94 0.00 -0.39 1.10 19.36 17.03 23.86 27.61 25.32
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Table 3: Empirical coverage of nominal 95% confidence intervals under different assumptions regarding

reporting of number of patients at risk assuming ω = 2 months is known.

N Censoring Cov1 Cov2 Cov3

100 Uniform 0.953 0.951 0.952

100 Exponential 0.944 0.943 0.944

200 Uniform 0.947 0.946 0.947

200 Exponential 0.952 0.952 0.952

500 Uniform 0.950 0.950 0.950

500 Exponential 0.951 0.949 0.950

1000 Uniform 0.953 0.952 0.952

1000 Exponential 0.945 0.944 0.945

2000 Uniform 0.948 0.948 0.948

2000 Exponential 0.952 0.952 0.952

chosen. Choosing too small a value of ω leads to persistent underestimation of the shift parameter. When ω

is treated as unknown there is a substantial positive bias in the estimates of δ for small to moderate sample

sizes. This is due to instances where the estimated shift function has a linear trend that persists for the

whole period of follow-up leading to positively biased estimates of ω.

For estimates of the incremental life expectancy (∆LE), given in Table 2, there is a broadly similar

pattern to the direction and magnitude of bias in the cases where ω is assumed known. However, it is

noticeable that there is less bias in ∆LE than δ when ω is treated as unknown.

Additionally, in the case where ω = 2 months is assumed known, 95% confidence intervals are constructed

using individual patient data (Cov1), the Kaplan-Meier curves plus numbers at risk every 0.5 years (Cov2)

or every 1 year (Cov3). Table 3 gives the empirical coverage of the constructed 95% confidence intervals in

each case. Confidence intervals derived from intermittently reported numbers at risk displayed very little

difference from those based on individual patient data, with the discrepancy decreasing for large sample

sizes.
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5 Example: Survival of patients melanoma with BRAF V600E

mutation

As an illustrative example, the time shift model is applied to data on patient survival in a randomized con-

trolled trial of patients with unresectable, previously untreated stage IIIc or stage IV melanoma that tested

positive for the BRAF V600E mutation. Patients were randomized to either vemurafenib or dacarbazine.

The original study demonstrated a statistically significant survival benefit in treatment by vemurafenib [14].

Subsequently, approval for use in the National Health Service in England and Wales was sought via a NICE

Single Technology Appraisal (STA). Survival follow-up in the original study was only 10 months [14], but

updated data extending this to 18 months was available for the STA. Nevertheless, in order to estimate the

mean life-years gained between treatments considerable survival extrapolation was necessary.

Survival extrapolation based on an assumption of a shared constant hazard beyond 9 months, produces

an estimated survival difference of around 3.41 months. However, the authors incorporated external evi-

dence from the dacarbazine arm of a previous trial of melanoma patients with unknown BRAF mutation

status [15] which suggested a decreasing hazard for longer term survivors treated with dacarbazine. Once

these considerations were incorporated the estimated survival difference increased around threefold, with a

corresponding improvement in cost-effectiveness.

The Evidence Review Group’s report noted that shifting the Kaplan-Meier curve of dacarbazine by

approximately 97 days, meant it lined up with the curve for vemurafenib and hence deduced that the gain

from vemurafenib was also approximately 97 days. This approach can be formalized by applying the methods

of Section 3.2 based on the data from Figure 13 of the company’s report [16], which gives the number of

patients at risk at monthly intervals. Taking the time of convergence, ω, to be 5 months gives an estimated

shift of 3.13 months (95% CI: 2.31, 3.47). Figure 2 shows the Kaplan-Meier curves with the curve for

dacarbazine shifted. There is seen to be good agreement between the shifted dacarbazine survival and the

vemurafenib survival after 5 months.

The good fit of the shift model is further confirmed through scrutiny of the shift function which remains

stable after 5 months (Figure 3).

If the length of time, ω, before benefit was accrued is not assumed known it is necessary to use the

least-squares method proposed in Section 3.4. Using this method, taking time points at 0.1 month intervals

up to 15 months gives an estimated shift of 3.22 months (95% CI: 2.17, 4.89) occurring from 4.24 months

(95% CI: 3.04, 7.17).
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Figure 2: Kaplan-Meier estimates of survival for vemurafenib and dacarbazine groups, with the estimated

shift of δ = 3.13 months at convergence time ω = 5 months.
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The incremental survival, ∆̂LE, obtained using (3.5) is estimated as 3.04 months (95% CI: 2.44, 3.63) if

ω = 5 is assumed known and 3.17 months (95% CI: 2.21, 4.54) if ω is estimated from the data.

The time shift model fits the available direct trial data very closely. In addition, unlike other models

which could be applied, it produces an incremental life expectancy estimate that is independent of particular

assumptions about the shape of the long-term hazard in the dacarbazine arm. In particular, it is still

consistent with the possibility of a long-term decreasing hazard for both groups. In the absence of information

about long-term survival, the assumption used in the time shift model that the hazards in the two treatment

arms are the same up to the specified fixed shift cannot be empirically tested. Therefore a definitive estimate

of the difference in mean survival between treatments cannot be obtained. However, the estimate from the

shift-model does raise considerable doubt about the credence of more favourable estimates based on other

methods which also required, potentially stronger, untestable assumptions about long-term survival.

6 Discussion

The time shift model is useful in situations where it is expected that the benefits of a treatment will be

short-term. It is straightforward to efficiently estimate the shift and obtain valid 95% confidence intervals.

Good statistical properties can be demonstrated if ω can be pre-specified in advance. There is also scope to

jointly estimate ω and δ from the data, but much larger sample sizes are required to ensure estimates are

close to unbiased.

A limitation of the time shift model is that it does not give a direct estimate of the mean survival in

each individual treatment group. Moreover, it does not fully indicate at what time points the difference

in mean survival is accrued. This restricts the direct use for cost-effectiveness analysis, where some form

of discounting is usually applied, meaning survival accrued far in the future is given lower weighting. For

these quantities it is still necessary to make some assumptions about the form of S1(t) beyond the range

of the data. In practice, the majority of the benefit occurs by time ω and within the follow-up period,

making the results relatively insensitive to any sensible choice for the long-term hazard. The restriction that

S1(t− δ) = S2(t) can also be built into a more general decision-analytic model.

The shift-model should be considered as a possible approach to survival extrapolation in an HTA, but

only if it is biologically plausible and there is empirical evidence of its appropriateness. Assuming biological

plausibility, a practical strategy would be to first scrutinize the shift-function; if this shows evidence of

the characteristic flattening required then we would proceed to formally estimate the shift model using the
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methods in Section 3. If there is no evidence of convergence then alternative extrapolation methods, such as

fitting exponential or other parametric models to the tails of the respective survival curves on the basis of

the trend in the cumulative hazard functions [5], should be used. Such an approach should yield estimates

of incremental life expectancy that are less prone to bias than the procedure used in Section 4 where the

shift-model was applied regardless of evidence of a convergence point within the follow-up period. However,

fully formalizing this approach and therefore assessing its statistical properties requires additional work.

In the BRAF V600E example considered, the shift model represents a very good fit to the data. Sub-

sequent clinical experience also seems to have confirmed its appropriateness, with acknowledgement that

most patients develop a resistance to vemurafenib within 6-7 months [17]. Similarly, in the application of

the model in an STA relating to non-small-cell lung cancer the apparent time-shift observed in the overall

survival was supported by additional information on post-progression survival requested by the Evidence

Review Group which revealed the new treatment provided no post-progression survival benefit [7].

In other situations, even if the underlying process does broadly adhere to such a pattern and even if

the sample size of the study is reasonably large, there may be variation away from this pattern particularly

towards the end of the follow-up period. The necessity to have empirical justification for the shift model is

likely to preclude its use in studies with small sample sizes. The simulation results suggests that the approach

should be avoided or the estimates viewed with caution for data with less than 200 patients per treatment

group. In such cases it may be safer to fix a conservatively large ω, rather than attempt to estimate it, in

order to limit the possibility of bias.
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Appendix 1: Efficiency of the estimator for δ

In this appendix it is shown that the shift estimator based on the estimating equation in (3.3) is the most

efficient amongst a class of weighted estimators in the case where the hazard functions are constant after

time ω.

The estimating equation in (3.3) can be extended to a case where δ is chosen based on the weighted

discrepancy in shifted cumulative hazards at a series of evaluation times tj ≥ ω such that

D∗(δ) =

J∑
j=1

w(tj)
{
Ĥ2(tj)− Ĥ1(tj − δ)

}
, (6.1)

for some weight function w(t) ≥ 0. The asymptotic variance of an estimator δ̂ satisfying D∗(δ) = 0 is given

by Var(D∗(δ0))/E(∂D̄(δ0)
∂δ ) where D̄(δ) is (6.1) with Ĥj(t) replaced by Hj(t) for j = 1, 2 and δ0 is the true
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shift. It is convenient to note that D∗(δ) can be rewritten in terms of increments of the estimated cumulative

hazard, which are independent. Specifically

D∗(δ) =

J∑
j=1

w∗(tj)
(

∆Ĥ2(tj)−∆Ĥ1(tj − δ)
)

where w∗(tj) =
∑J
k=j w(tj), ∆Ĥk(t1) = Ĥk(t1) and ∆Ĥk(tj) = Ĥk(tj) − Ĥk(tj−1) for j > 1. Under this

representation it can be shown that

Var(D∗(δ)) =

J∑
j=1

w∗(tj)
2
{

Var(∆Ĥ2(tj)) + Var(∆Ĥ1(tj − δ))
}

and

E

{
∂D̄(δ0)

∂δ

}
= w∗(t1)h2(t1) +

J∑
j=2

w∗(tj) {h2(tj)− h2(tj−1)} . (6.2)

In the case where the hazard function h2(t) is constant beyond ω, all the terms in the summation in (6.2)

are equal to zero. It therefore follows that minimizing Var(δ̂) is achieved by setting w∗(tj) = 0 for j > 1. In

addition, since Var(Ĥj(t)) are increasing functions in t, it follows that the most efficient consistent estimate

is achieved when tj = ω. In other situations it may be possible to get slightly more efficient estimators

through judicious use of weighting, but this would require knowledge of the shape of the hazard function

and also the censoring distributions.

Appendix 2: Estimation of Var(D(δ)) from published survival curves

In this section, a simplified method for obtaining an estimate of Var(D(δ)) from published survival curves

is developed.

It is assumed that Ŝj(t) is known at a set of points {tjl, l = 1, . . . , L} but, unlike the approach of Guyot

et al [9], these do not necessarily coincide with the exact set of event times. In addition it is assumed that

the number of patients at risk in group j, Rj(t), is known at a set of points {ujk, k = 1, . . . ,K}, which is a

subset of {tjl, l = 1, . . . , L}.

For mathematical convenience it is assumed that the number of events at any event time is small compared

to the number at risk such that the asymptotic variance estimator for the Nelson-Aalen estimate of the

cumulative hazard,

V̂ar(Ĥj(t)) =
∑
i:tji≤t

dji
r2
ji

, (6.3)

is appropriate.
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It is then assumed that the hazard function hj(t) is piecewise constant between consecutive evaluation

times tl−1j , tlj and that the censoring hazard gj(t) is constant between consecutive evaluation times of the

number at risk, uk−1j , ukj .

A natural estimator for hlj , the constant hazard assumed between times tl−1j and tlj is then

log{Ŝj(tl−1j)} − log{Ŝj(tlj)}
tlj − tl−1j

.

Similarly since Rj(t) = Rj(0)Sj(t)Gj(t) where Gj(t) is the survivor function of the censoring distribution, a

natural estimator for gkj , the constant censoring hazard assumed between times, uk−1j and ukj is then

log{Ŝj(uk−1j)Rj(uk)} − log{Ŝj(ukj)Rj(uk−1j)}
ukj − uk−1j

.

Based on this construction, an estimate of the number at risk at the evaluation times tlj can be established

via

R̂j(tlj) = Rj(0)Ŝj(tlj)Ĝj(tlj)

where

Ĝj(tlj) = exp

− ∑
k:ukj<tl+1j

gkj(min(ukj , tlj)− uk−1j)

 ,

which is the survivor function resulting from the estimated piecewise constant censoring hazards.

The increment in (6.3) between evaluation times, tl−1j and tlj can then be estimated by

Îlj =
1

R̂j(tl−1j)

∫ tlj

tl−1j

hlj exp{(g∗lj + hlj)(t− tl−1j)}dt

=
hlj

[
exp{(g∗lj + hlj)(tlj − tl−1j)} − 1

]
R̂j(tl−1)(g∗lj + hlj)

where g∗lj = gk∗j where k∗ is the unique k satisfying uk−1j ≤ tlj < ukj .

The estimate for Var{D(d)} to be used in (3.4) is then

V̂ar{D(d)} =
∑

i:t2i≤ω

Î2i −
∑

i:t2i≤ω−d

Î1i.
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