A coupled thermal and electrochemical study of lithium-ion battery cooled by paraffin/porous-graphite-matrix composite

Greco, Angelo and Jiang, Xi (2016) A coupled thermal and electrochemical study of lithium-ion battery cooled by paraffin/porous-graphite-matrix composite. Journal of Power Sources, 315. pp. 127-139. ISSN 0378-7753

[thumbnail of JPS revised 27Jan2016]
PDF (JPS revised 27Jan2016)
JPS_revised_27Jan2016.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial-NoDerivs.

Download (203kB)


Lithium-ion (Li-ion) battery cooling using a phase change material (PCM)/compressed expanded natural graphite (CENG) composite is investigated, for a cylindrical battery cell and for a battery module scale. An electrochemistry model (average model) is coupled to the thermal model, with the addition of a one-dimensional model for the solution and solid diffusion using the nodal network method. The analysis of the temperature distribution of the battery module scale has shown that a two-dimensional model is sufficient to describe the transient temperature rise. In consequence, a two-dimensional cell-centred finite volume code for unstructured meshes is developed with additions of the electrochemistry and phase change. This two-dimensional thermal model is used to investigate a new and usual battery module configurations cooled by PCM/CENG at different discharge rates. The comparison of both configurations with a constant source term and heat generation based on the electrochemistry model showed the superiority of the new design. In this study, comparisons between the predictions from different analytical and computational tools as well as open-source packages were carried out, and close agreements have been observed.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Power Sources
Additional Information:
This is the author’s version of a work that was accepted for publication in Journal of Power Sources. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Power Sources, 315, 2016 DOI: 10.1016/j.jpowsour.2016.03.018
Uncontrolled Keywords:
?? battery thermal managementelectrochemistryli-ion batteryphase change materialporous-graphite-matrixenergy engineering and power technologyphysical and theoretical chemistryelectrical and electronic engineeringrenewable energy, sustainability and the envir ??
ID Code:
Deposited By:
Deposited On:
18 Apr 2016 08:54
Last Modified:
13 Jun 2024 01:05