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Abstract—It is well known that clustering is an unsupervised
machine learning technique. However, most of the clustering
methods need setting several parameters such as number of
clusters, shape of clusters, or other user- or problem-specific
parameters and thresholds. In this paper, we propose a new
clustering approach which is fully autonomous, in the sense that
it does not require parameters to be pre-defined. This approach
is based on data density automatically derived from their mutual
distribution in the data space. It is called ADD clustering
(Autonomous Data Density based clustering). It is entirely based
on the experimentally observable data and is free from restrictive
prior assumptions.

This new method exhibits highly accurate clustering perfor-
mance. Its performance is compared on benchmarked data sets
with other competitive alternative approaches. Experimental re-
sults demonstrate that ADD clustering significantly outperforms
other clustering methods yet does not require restrictive user- or
problem-specific parameters or assumptions. The new clustering
method is a solid basis for further applications in the field of
data analytics.

Index terms- fully autonomous clustering; data density;
mutual distribution; data analytics.

I. INTRODUCTION

Clustering has long been widely used for finding underlying
groups and patterns within the data. We have already entered
the Era of Big Data. Clustering as an unsupervised machine
learning method is currently a very hot topic in the field of
data processing and considered as one of the most effective
tools for extracting information from data and, thus, one of
the ways to address the Big Data problems.

Traditional clustering methods require user inputs based
on some prior knowledge or different assumptions (including
number of clusters, the shape of clusters, etc.) to work effi-
ciently. In most practical cases, however, the prior knowledge
is very limited and the assumptions made are always too ideal
to be true. The requirement of prior knowledge or assumptions
does, no doubt, limit the traditional clustering methods abilities
in data analytics and information discovery [1].

In this paper, we propose a new autonomous clustering
algorithm named ADD clustering (Autonomous Data Density-
based clustering). The novelty of this new algorithm is that
it is entirely based on the data and their mutual distribution
in the data space. There is no need for predefined spe-
cific thresholds or any kind of user inputs in the proposed
method. Additionally, ADD clustering method works equally

effectively with various types of distance/similarity metrics
and arbitrary number of dimensions of data. It starts from
scratch, self-defines the data pattern in terms of density, and
exhibits a highly accurate clustering performance. To the best
of our knowledge, this is the first clustering method with such
characteristics of real autonomy.

The remainder of this paper is organized as follows:
section II introduces some related published techniques for
further comparison. Section III provides the theoretical ba-
sis of the proposed method. The detailed demonstration of
ADD clustering method is given in section IV. Experimental
results and analysis are shown in section V and section VI is
providing the conclusions.

II. RELATED WORK

The clustering problems has been addressed in different
context in many disciplines such as data mining, information
retrieval or pattern recognition. However, as far as we know,
there is still no clustering method which does not require any
kind of user- or problem- specific parameter. Nonetheless, our
proposed method will be compared with several well-known
methods, such as mean shift clustering, K-means clustering,
as well as with some recent advanced (DDCAR [2] and
eClustering [3]) methods. These four methods need some kind
of prior knowledge. In this section, we will detail their most
important aspects.
• Mean shift clustering [4] method considers an empirical

probability distribution function around the data samples
and the cluster centres or modes of the underlying dis-
tribution are represented by dense regions in the data
space. After each iteration, the candidate solution shifts
closer to the nearest mean and, finally, converges to the
nearest mode or cluster centre. The direction of change is
estimated by the gradient of the kernel density. The Mean
shift clustering method requires the user to pre-define the
kernel size. Clustering results are susceptible to different
kernel sizes. Without any prior knowledge of the data, it
is very hard to decide the kernel sizes.

• The well-known k-means clustering [5] method starts
with k seed data points to be used as cluster centres
and all the remaining data samples are assigned to the
nearest cluster centres. Then, the means of the k clusters
are calculated and set as the new centres. Other data



samples are reassigned again. This process continues
until the clusters do not change any more. The K-means
clustering method supports different types of distances as
well as high dimensional data. Despite of its excellent
performance, k-means clustering algorithm requires a
user input, namely the number of clusters, which is an
impossible task for users without prior knowledge.

• DDCAR [2] method is also based on the data density.
By using the data density calculations to estimate the
initial radius, DDCAR can be defined as a data-driven
automated clustering method. Compared with other cur-
rent clustering methods, DDCAR only needs users to set
the minimum size of clusters, which is a great advance.
However, DDCAR is still not totally free of user input.
The minimum size of clusters can still influence the
accuracy of the method. In addition, DDCAR currently
only supports 2-dimensional data with Euclidean type of
distance.

• Evolving clustering (eClustering) uses proximity based
potential value to determine the cluster centres. The
favourite characteristics of eClustering [3] are that it
automatically identifies the number of clusters and also
handles the outliers. Nonetheless, eClustering requires
users to decide the initial radius of the clusters. The initial
radius of clusters will be different with various types of
datasets. As a result, deciding the initial radius will need
users to have prior knowledge on the data, or eClustering
might not achieve the best performance.

III. THEORETICAL BASIS OF THE PROPOSED METHOD

In this section, three cornerstone non-parametric estimators
of data ensemble properties (cumulative proximity, density,
eccentricity, typicality) defined within the TEDA framework
[1], [6], [7] and used within the proposed ADD clustering
method will be described.

First of all, let us define several basic notions. In this
paper, Rp is defined as the real data space consisted of p
dimensional data points.{x1, x2, . . . , xk} is a series of data
points belonging to Rp, k denotes the time instant when the
last data sample arrives.

Within the data space Rp, the distance d(x, y) is defined as
a measurement of dissimilarity between the two data points x
and y. The proposed ADD clustering algorithm can work with
various types of distance metrics including Euclidean, Maha-
lanobis, and a recently introduced, direction-aware distance [6]
metric.

A. Cumulative Proximity

Cumulative proximity, πk is a representation of the close-
ness of a certain data point to all other data points, which
is obtained in a direct way by summing the distance or
dissimilarity measures between all points, see Fig.1 as an
example of the cumulative proximity for a dataset which has
100 data samples per cluster:

πk(xi) = πik =

k∑
j=1

d(xi, xj) (1)

Fig. 1: Example of cumulative proximity

For the case of Euclidean type of distance, we have [1], [6],
[7]:

πk(xi) = k((x− µk)T (x− µk) +Xk − µT
k µk) (2)

For Mahalanobis type of distance, we have [1], [6], [7]:

πk(xi) = k((x− µk)T Σ−1k (x− µk) +Xk − µT
k Σ−1k µk) (3)

where Xk = 1
k

∑k
i=1 x

T
i

∑−1
k xi

Normally, the data points which are close to the centre of
the group will have much lower cumulative proximity than
the data points close to the edge of the group. Thus, naturally,
outliers will have high πk value and a point with minimum
πk is a natural candidate to be a cluster centre.

B. Eccentricity

Eccentricity [1], [7] is another very important indicator of
the ensemble properties of the data. It plays a critical role in
the proposed method.

Eccentricity can be considered as normalized cumulative
proximity πk and is defined as follows [6]:

ξk(x) =
2πk(x)∑k
i=1 πk(xi)

,

k∑
i=1

πk(xi) > 0 k > 1 (4)

where the normalization coefficient 2 is due to the fact that,
in the sum, each distance is counted twice [1], [7]. Obviously,
the range of eccentricity values is from 0 to 1 and it sums to
2 [1], [7].

With the increase of the number of data samples, the value
of eccentricity ξk(x) will fall down quickly to zero, which
is inconvenient for computation. In order to overcome this



problem, the standardized eccentricity is also introduced [6]
as:

εk(x) = kξk(x) =
2πk(x)

E(πk(x))
, E(πk(x)) > 0 k > 1 (5)

where E(πk(x)) = 1
k

∑k
i=1 πk(x) is the mean cumulative

proximity. Correspondingly, the range of possible values for
εk(x) is 1 < εk(x) < k

and the sum of all εk(x) values is

k∑
i=1

εk(xi) = 2k (6)

C. Data Density

Density plays a very important role in the proposed algo-
rithm. Data density is inversely proportional to the eccentricity
and is defined in [6] as:

Dk(xi) =
1

εk(xi)
=
E(πk(x))

2πk(xi)
(7)

Obviously, the closer a particular data point is to other
points, the smaller its cumulative proximity is, and the higher
its density is. Although, cumulative proximity and density
can both provide effective information about the data pattern,
density is comparatively superior because it is: 1) Monotonic;
2) Maximum value is 1; 3) Asymptotically tends to zeros when
πk tends to infinity. Therefore, it has properties similar to a
likelihood and probability [6].

IV. ADD CLUSTERING ALGORITHM

ADD clustering is a novel method based entirely on the
empirical observations (discrete data samples) and the density
of this data. The proposed method does not require any user-
or problem- specific threshold to be predefined and can extract
the cumulative proximity, eccentricity and density of the data
samples. Compared with other previously published methods,
the proposed ADD clustering algorithm has the following
advantages:
• No prior knowledge of the dataset is needed;
• No initial user input is required;
• Entirely based on the data and its mutual distribution in

the data space;
• No need to choose a model of the data distribution (e.g.

Gaussian, etc.).
In the remaining part of this section we will explain in

detail the three stages of our method: 1) initial centre and
radius formation; 2) centre and radius updating; 3) clusters
final adjustment.

A. Stage 1. Initial Centre and Radius

The first stage of our method consists in finding out the
initial centre and radius of the new cluster in the particular
datasets {x1, x2, . . . , xk}. The global cumulative proximity
πk(x), eccentricity ξ (or standardised eccentricity εk(x)),
density Dk(x) of every data point are obtained by formulas

(1),(4),(5), and (7). By ranking the global density values of all
data points in descending order, the data point with the highest
density is selected as the initial centre of the newly formed
cluster:

x∗1 ← xj∗, j∗ = argmaxki=1Dk(xi) (8)

(a) Dk

(b) D′
k

Fig. 2: Examples of ranked global density(Dk) and smoothed
differential density(D′k)

Because, the density is higher closer to the cluster centres
and lower towards the edges, there would always be a change
in the gradient of the density when data samples belonging
to different clusters are grouped together. It is well known
that the change of gradient is an indication of an inflexion
point and change of the sign of the second derivative [8]. As
we can see in the example in Fig.2a (based on the dataset
as previously described), there are several inflexion points in
the rate of density reduction, which indicate the end/edge of
a cluster.

However, the density drop is susceptible to small variations.
Therefore, the globally ranked densities of the data points



should be further processed by applying a moving window
average difference operation to zoom in as follows:

D′k(x) =
1

N

N−1∑
i=0

[Dk(x+ i+N)−Dk(x+ i)] (9)

where 2N is the width of the moving window, a value of
N = 6 can be used for all problems and data sets. It has to
be stressed that the value 6 is not a problem- or user- specific
parameter and is the same for all problems. Moreover, its slight
variations do not influence the result. It is merely a way to
zoom in and focus on the changes of Dk.

Compared with regular difference operation [2] , the average
difference operation is less susceptible to the influence of noise
and different data patterns, namely it is more robust.

After the moving window average difference operation is
applied, the smoothed differential density D′k(x) will have
larger drops/jumps as shown in Fig. 2b (based on the same
data as previously).

To ensure the purity [9] of the initial members of the new
cluster, we select the first turning point of D′k(x), which
indicates that there is a change in the speed of the descent
of the densities in the data points shown in Fig. 3.

Then, the initial radius of the new cluster can be defined
by calculating the distance between the initial centre and the
first inflexion point point, Dk(x+2N−1). By finding all data
points within the distance of the initial radius from the initial
centre, the prototype of a new cluster is obtained, and the first
step is finished.

B. Stage 2. Centre and Radius Updating

At the end of the previous stage, a prototype of the newly
formed cluster is built, but the cluster is not fully formed yet;
we should update the centre and radius to let in more samples
belong to the new cluster.

Again, formulas (2), (4), (5) and (7) are used to calculate the
local density and the equation (9) is used for smoothing and
differencing the local density after it is ranked in descending
order. We denote the smoothed differential local density as
D′L(x).

There are two conditions that can occur in regards to the
smoothed differential local density.

Condition 1. There is a big drop in D′L(x);
Condition 2. There is only a steady drop with normal

fluctuations in D′L(x).
Examples of Conditions 1 and 2 are shown in Fig. 4a and

4b respectively using the same data as the previous.
The well-known Chebyshev inequality [10] describes the

probability that certain data sample x is more than nσ distance
away from the mean value. For Euclidean type of distance it
has the following form:

P (‖µ− x‖2 ≤ n2σ2) ≥ 1− 1

n2
(10)

Here, we use the Chebyshev inequality to help us distinguish
the two conditions:

(a) The first turning point in D′
k

(b) The corresponding changing area in Dk

Fig. 3: Examples of the first turning point in the smoothed
differential density(D′k) and the ranked global density(Dk)

Condition 1: (D′L(xm)− µL)2 ≥ n2σ2
L (11)

Condition 2: (D′L(xm)− µL)2 < n2σ2
L (12)

where xm is the data point having the maximum value in
D′L(xm) in the new cluster, the µL and σL are the mean and
standard deviation of D′L(x1), D′L(x2) . . . D′L(xm−1). n = 3
is used for all problems and is well known from the literature
[10].

If condition 1 is met, it means that the new cluster actually
contains samples from two or more clusters. The transition
between the two clusters is exactly the point when D′L(x)
drops. The centre of the new cluster is updated based on the
points that belong to this cluster, and the radius of the newly
formed cluster is updated by:

r = ‖x1 − xm‖ (13)

If condition 2 is met, it means the cluster is not fully spread,
the centre should not be updated, while the radius should be



(a) Condition 1

(b) Condition 2

Fig. 4: Illustrative examples of the smoothed differential local
density

enlarged letting all samples of this initial cluster to be included
in the new cluster.

After the centre and radius become stable during updating
and the members of the newly formed cluster do not change
any more, we can declare that the centre and radius updating
operation is finished and a new cluster is formally formed.
Then, we can remove all the data points belonging to the new
cluster from the dataset and go back to stage 1 to form another
cluster.

C. Stage 3. Clusters Final Adjustment

When all the possible clusters have already been formed and
the data points left in the dataset are not available to form a
new cluster, stages 1 and 2 are finished, but the clusters formed
are not always ideal. Because of the fact that the clusters
are formed one by one sequentially, and in each time only
one new cluster is formed, sometimes there will be overlaps
between the spreads of influences of some clusters. Therefore,

the clusters should be adjusted before the whole clustering
process is finished.

First of all, we define several conditions:
Condition 3. If the distance between the centres of two

clusters satisfies the following inequality:∥∥x∗i − x∗j∥∥ ≤ min(ri, rj) (14)

Then the two clusters are defined as double-centres-
overlapped.

Here x∗i and x∗i denote the centres of the i-th and j-th
clusters, ri and rj are the radii correspondingly.

Condition 4. If the distance between the centres of two
clusters satisfies the following inequality:

min(ri, rj) <
∥∥x∗i − x∗j∥∥ ≤ max(ri, rj) (15)

Then the two clusters are defined as single-centre-
overlapped.

Condition 5. If the distance between the centres of two
clusters satisfies the following inequality:

max(ri, rj) <
∥∥x∗i − x∗j∥∥ ≤ ri + rj (16)

Then the two clusters are defined as slightly-overlapped.
Condition 6. If more than half of the members of a cluster

are closer to the centres of its neighbouring clusters than to
their own centre, namely for them∥∥xki − x∗j∥∥ < ∥∥xki − x∗i ∥∥ (17)

Then the cluster is defined as a loose cluster. Here xki is
the k-th member of the i-th cluster.

Condition 7. If more than half of the members of a cluster
are in the area of influences of two or more clusters, namely:∥∥xki − x∗j∥∥ < rj (18)

Then we regard this cluster as being group-covered by
others.

Condition 8. If the average distance of the members of a
cluster to the centre of a nearby cluster is smaller than its
radius, namely:

1

M i

Mi∑
k=1

∥∥xki − x∗j∥∥ < rj (19)

Then we regard this cluster as being single-covered by some
other cluster(s). Here M is the member number of the i-th
cluster.

If there are loose clusters, clusters being double-centres-
overlapped, clusters being single-centre-overlapped by more
than two clusters or clusters being group-covered, we call these
significantly overlapping cases.

If there are clusters being single-centre-overlapped by two
clusters or clusters being single-centre-overlapped and single-
covered by one cluster, we call these moderately overlapping
cases.



If there are clusters being slightly-overlapped or clusters
being single-centre-overlapped by one cluster, we call these
slightly overlapping cases.

The final adjustment is divided into three steps.
Step 1: in this step, we will eliminate all the significantly

overlapping cases.
Firstly, we check Rule 1.
Rule 1: If cluster Ci meets condition 6, and is double-

centres-overlapped or single-centre-overlapped with most
other clusters, then Ci should be split and all its members are
re-assigned to the nearest clusters according to the following
formula:

Cluster label = argmini=1,2,...,K ‖x− x∗i ‖ (20)

where K is the number of clusters.
Then, Rule 2 and Rule 3 are executed:
Rule 2: If clusters Ci, Cj , . . . meet Condition 3 in regard to

them, then clusters Ci, Cj , . . . should merge together.
Rule 3: If cluster Ci meets condition 3 with Cj , Ck, . . .

while Cj , Ck, . . . only meets condition 4, then the largest one
in Ci, Cj , Ck, . . . should be split and all its members are re-
assigned to the nearest clusters using equation (20).

Because of the execution of the three rules above, the
original structure of existing clusters is being changed largely,
most of the significantly overlapping clusters have been split
or merged, Rule 4 is used further to clear the remaining cases.

Rule 4: If cluster Ci meets Condition 6 or Condition 7, or
is single-centre-overlapped by more than three clusters, then
cluster Ci should be split and all its members are re-assigned
to the nearest clusters using equation (20).

Once Rules 1-4 are not used any more, Step 1 is finished
and the final adjustment comes to Step 2.

Step 2: Since the significantly overlapping cases have been
resolved, the moderately overlapping cases are eliminated in
this step, here, Rule 5 and Rule 6 are used.

Rule 5: If cluster Ci is single-centre-overlapped by two
clusters then cluster Ci should be split and all its members
are re-assigned to the nearest clusters using equation (20).

Rule 6: If cluster Ci is single-centre-overlapped and single-
covered by cluster Cj , then Ci and Cj should be merged
together.

Once there is one cluster that meets Rules 5 and 6 any more,
all the moderately overlapping cases have been removed and
the final adjustment comes to the last step.

Step 3: In this step, we simply find all the slightly over-
lapping cases and reassign the members of the overlapping
clusters, which meet equation (18), to the nearest clusters using
equation (20).

Finally, for the remaining data points, we assign them to
the nearest clusters using equation (20), which concludes the
final adjustment.

D. Overall Clustering Process

The overall clustering process is summarised as follows
Algorithm ADD clustering:

• A. While remaining data points in the dataset are available
(or able to form a new cluster):

1) Calculate the global density, Dk of each data point
by equation (7);

2) Rank the global density, Dk in descending order and
smooth the ranked densities by equation (8);

3) Detect the first inflexion point, see Fig.3a;
4) Declare the initial centre x∗i and radius ri and find

the initial cluster members;
5) While the members of the new cluster are still

changing their allocation
– Calculate the local density, DL, of the new clus-

ter;
– Rank the local density in descending order and

smooth the ranked densities;
– If (Condition 1 or Condition 2 is met) Then:
∗ Update the radius and all data points that

belong to the new cluster;
– End If

6) End While
7) A new cluster is formed;
8) Remove from the dataset the data points that belong

to the new cluster;
• End While
• B. While the existing clusters exhibit overlaps

1) While there are significantly overlapping cases
– If (Rule 1 is met) Then
∗ Split the cluster and reassign the members to

the nearest cluster by equation (20);
– End If
– If (Rule 2 is met) Then
∗ Merge the clusters;

– End If
– If (Rule 3 is met) Then
∗ Split the cluster and reassign the members to

the nearest cluster by equation (20);
– End If
– If (Rule 4 is met) Then
∗ Split the cluster and reassign the members to

the nearest cluster by equation (20);
– End If

2) End While
3) While there is no significantly overlapping case any

more
– If (Rule 5 is met) Then
∗ Split the cluster and reassign the members to

the nearest cluster by equation (20);
– End If
– If (Rule 6 is met) Then
∗ Merge the clusters;

– End If
4) End While



5) While there is no significantly overlapping case or
moderately overlapping case any more
– If (slightly overlapping case is found) Then
∗ Reassign the overlapping members to the near-

est clusters by equation (20);
– End If

6) End While
• C. Assign remaining unclustered data points to the nearest

clusters by equation (20);
• End ADD clustering

V. EXPERIMENTAL RESULTS AND ANALYSIS

In order to test the performance of the newly proposed
ADD clustering method, several artificial and benchmark
datasets were used in numerical experiments. The artificial
datasets were used to test the accuracy of the method, and the
benchmark datasets were used to ensure that the method is
applicable to real cases.

A. Datasets

Two artificial and two benchmark datasets were used in
experiments with Euclidean type of distance:

1) The first dataset contained 5 clusters with 250 samples
per cluster.

2) The second dataset had 7 clusters with 100 samples in
each one.

3) Climate Dataset [11].
4) Iris Dataset [12].
The datasets include clusters with very close proximity and

chains of noise. The clustering results and the data density
values are shown in Fig. 5.

B. Results

For further comparing, the quality of the proposed
ADD clustering method with different existing methods in-
cluding Mean-shift clustering, K-means clustering, DDCAR
and eClustering, a number of measures of the performance
were considered:

1) Input: the parameters that have to be predefined.
2) NoC: is the number of clusters in the result.
3) Accuracy: is a measure of the number of samples that

are correctly assigned to their original clusters.
4) AverPurity: is a measure of the average purity of the

clusters but can disguise poor results [9].
5) MaxPurity: is the maximum cluster purity [9].
6) MinPurity: is the minimum cluster purity [9].
In this paper, the quality of clustering and the number of

clusters in the results together directly decide the correctness
and effectiveness of the proposed ADD clustering method. In
order to get the most accurate result, the number of clusters
should be exactly the same with the original dataset, and the
clustering accuracy should be as high as possible. Therefore,
clustering accuracy and NoC both are the most important
measures. In this paper, the focus is on a new method for data

analytics, which is based entirely on the empirical observations
of data samples and the cumulative proximity of these data.

The comparative results for the artificial and benchmark
datasets with Euclidean type of distance are shown in Table I,
where ks denotes the kernel size in the mean shift clustering
method; mcs denotes the minimum cluster size in DDCAR
method; r denotes the initial radius in eClustering method; N
denotes the number of clusters in the K-means algorithm.

Analysing the results, we can compare ADD clustering
method with the other techniques listed above as follows:

• Mean shift clustering method: Although, there are no re-
quirement regarding the prior information of the number
of clusters and the embedded assumptions on the shape
of the clusters, Mean shift clustering method actually
needs users to predefine the kernel size. As we can
see from the table, different kernel sizes can largely
influence the clustering result. To exhibit good clustering
performance using the mean shift clustering method,
users have to decide the kernel size first either based on
prior knowledge or trying many times before finding the
ultimate one.

• K-means clustering method has quite high accuracy com-
pared with other algorithms, and can additionally work
with different types of distance metrics. However, the
high accuracy is based on the prior knowledge of the
number of clusters in the datasets, which normally is
unknown for users. With enough prior-knowledge, K-
means clustering is quite accurate.

• DDCAR algorithm is comparable with ADD Clustering
in terms of user input, but needs users to predefine the
minimum size of clusters, which requires some prior
knowledge about the datasets compared with other tech-
niques. However, ADD Clustering is totally free of any
user input. The results of DDCAR algorithm normally
contain many clusters with few members. The distribution
of the datasets can be misrepresented largely. In contrast,
ADD Clustering can give clustering results with fewer
and much more accurate clusters, which effectively reflect
the distribution of datasets. In addition, DDCAR is not
applicable for clustering the datasets with more than 2 di-
mensions, which is also a serious disadvantage compared
with ADD Clustering.

• eClustering algorithm requires users to select the original
radius of clusters. As we can see in the Table 1, the
selection of the initial radius can influence the clustering
results largely. Choosing the most suitable initial radius
can be a very hard task for users without any prior
knowledge of the datasets. In addition, accuracy and
purity is not as high as all other methods.

From the comparisons we can see, that ADD Clustering
method can achieve extremely high accuracy without any prior
knowledge. This feature makes the ADD clustering method a
very effective algorithm when it is applied in the field of data
analysis.



(a) 5 x 250 Gaussian Dataset

(b) 7 x 100 Gaussian Dataset

(c) Benchmark Data - Climate Dataset

(d) Benchmark Data - Iris Dataset

Fig. 5: The four datasets (two artificial, Climate and Iris) used in the experimentation.

VI. CONCLUSION

A novel, fully autonomous clustering method,
ADD clustering, is introduced in this paper. The proposed

method is totally data-driven and free of any kind of user
inputs. This method starts ”from scratch”, and automatically
defines all the clusters on the basis of the data density alone.



TABLE I: Clustering Results Comparison with Euclidean Type of Distance

Methods Data Inputs NoC Accuracy AverPurity MaxPurity MinPurity
ADD Clustering 5*250 None 5 0.9928 0.9928 1.0000 0.9690

Mean Shift ks=0.1 9 0.9640 0.9864 1.0000 0.9394
ks=0.2 5 0.9928 0.9928 1.0000 0.9690

DDCAR mcs=10 24 0.9125 0.9152 1.0000 0.5000
eClustering r=0.05 2 0.2712 0.2712 0.6692 0.2238

r=0.01 2 0.2712 0.2712 0.6692 0.2238
Kmeans N=5 5 0.9928 0.9928 1.0000 0.9840

ADD Clustering 7*100 None 7 0.9986 0.9986 1.0000 0.9615
Mean Shift ks=0.1 11 0.9029 0.9914 1.0000 0.9709

ks=0.2 5 0.7114 0.7114 1.0000 0.4975
DDCAR mcs=10 17 0.9571 0.9786 1.0000 0.9259

eClustering r=0.05 5 0.4771 0.5129 1.0000 0.3636
r=0.01 1 0.4771 0.5300 1.0000 0.3636

Kmeans N=7 7 0.7929 0.8529 1.0000 0.5025
ADD Clustering Climate None 2 0.9824 0.9824 0.9883 0.9764

Mean Shift ks=4 7 0.7141 0.9741 1.0000 0.9474
ks=6 2 0.9474 0.9474 0.9976 0.9773

DDCAR mcs=10 7 0.5141 0.5224 1.0000 0.5149
eClustering r=0.5 1 0.5071 0.5071 0.5071 0.5071

r=0.01 1 0.5071 0.5071 0.5071 0.5071
Kmeans N=2 2 0.9824 0.9824 0.9883 0.9764

ADD Clustering Iris None 3 0.8933 0.8933 1.0000 0.7742
Mean Shift ks=0.8 5 0.6867 0.8133 1.0000 0.5455

ks=1.2 2 0.6667 0.6667 1.0000 0.5000
DDCAR mcs=10 Not applicable

eClustering r=0.5 4 0.6067 0.6733 1.0000 0.5797
r=0.01 4 0.5533 0.6733 1.0000 0.5246

Kmeans N=3 3 0.8933 0.8933 1.0000 0.7742

Numerical experiments show that, without any user input,
this method can exhibit excellent clustering performance
compared with other methods that use various kinds of prior
knowledge or assumptions. Because of the advantages of no
requirement for user inputs and self-generating the estimators
of ensemble data properties of the clustered datasets, this new
method is a very attractive and effective tool in the field of
data analytics.
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