Pressure drop and velocity simulations in non-stochastic lattice structure for filter applications fabricated using additive manufacturing

Hasib, Hazman and Rennie, Allan Edward Watson and Burns, Neil and Geekie, Louise (2015) Pressure drop and velocity simulations in non-stochastic lattice structure for filter applications fabricated using additive manufacturing. In: Testing, Characterisation and Filter Media 7: Conference, Exhibition and Training Course, 2015-11-302015-12-01, Riverside Innovation Centre.

Full text not available from this repository.

Abstract

This research utilises additive manufacturing technology to fabricate filter mesh designed with non-stochastic lattice structures. Disc filters with 1-layer, 2-layer and 3-layer thicknesses of repeated 1.8 mm lattice unit cell as the filter mesh are modelled in SolidWorks. Computational Fluid Dynamic (CFD) simulation using ANSYS CFX is performed at eight different flow rates (250 lit/min, 270 lit/min, 290 lit/min, 310 lit/min, 330 lit/min, 350 lit/min, 370 lit/min and 390 lit/min) and the results (pressure drop and velocity) are analysed. Simulations are also done for perforated plates with circular-shaped and square-shaped holes with the same aperture size for benchmarking purposes. The outcomes indicate that the pressure drop of the lattice filters is noticeably lower than the perforated plates’. These findings show that several layers of lattice structure could be stacked together as filter mesh to increase filtration efficiency with minimal pressure drop and to create a more tortuous path for the fluid.

Item Type:
Contribution to Conference (Paper)
Journal or Publication Title:
Testing, Characterisation and Filter Media 7: Conference, Exhibition and Training Course
Subjects:
ID Code:
78704
Deposited By:
Deposited On:
14 Mar 2016 11:04
Refereed?:
Yes
Published?:
Published
Last Modified:
19 Jul 2020 23:29