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Abstract 

It is well-established that toddlers can correctly select a novel referent from an 

ambiguous array in response to a novel label. There is also a growing consensus that 

robust word learning requires repeated label-object encounters. However, the effect of 

the context in which a novel object is encountered is less well-understood. We present 

two embodied neural network replications of recent empirical tasks which 

demonstrated that the context in which a target object is encountered is fundamental 

to referent selection and word learning. Our model offers an explicit account of the 

bottom-up associative and embodied mechanisms which could support children’s 

early word learning and emphasises the importance of viewing behaviour as the 

interaction of learning at multiple timescales.  

Keywords: word learning; referent selection; fast mapping; self-organizing maps; 

developmental robotics; iCub; Epigenetic Robotics Architecture; competition; novelty 
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Children’s referent selection and word learning: insights from a developmental 

robotic system  

 Toddlers perform impressively when confronted with the seemingly difficult 

task of choosing the referent of a new word in an ambiguous environment (e.g., Clark, 

1995). A rich empirical literature shows that children from as young as 18 months 

reliably map novel labels to novel referents without being explicitly taught the 

“correct” mapping (Axelsson, Churchley, & Horst, 2012; Carey & Bartlett, 1978; 

Houston-Price, Plunkett, & Harris, 2005). Theories as to the mechanisms underlying 

referent selection range from innate, top-down knowledge to bottom-up associative 

mechanisms. Early accounts proposed pre-existing word learning biases, or 

assumptions (Markman, 1990; Markman, 1994). For example, children’s tendency to 

map novel labels to objects of the same type, rather than the same thematic category 

could be guided by a taxonomic assumption (Markman & Hutchinson, 1984) by 

which the same “kind of things” share a label; hence, a new furry, barking animal is 

called dog, but a new bone-shaped toy is not. Similarly, a whole object assumption 

could explain why children preferentially map new labels to an entire object rather 

than one of its parts (Markman & Wachtel, 1988). Further, when confronted with an 

array of objects, all-but-one of which are familiar, children will reliably map a novel 

label to the novel object. This could be the result of a mutual exclusivity (ME) 

assumption, by which objects have one and only one label (Markman & Wachtel, 

1988; Merriman, Bowman & MacWhinney, 1989). For example, if a child sees a 

furry, barking animal, a scaly, swimming animal, and a pink, feathered animal, an ME 

assumption would prompt him/her to map the new label flamingo onto the feathered 

animal, because the other two objects are called dog and fish.  
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 Although these constraints neatly describe what children do when hearing new 

words, precisely what children need to know in order correctly identify the referent of 

a new label is the subject of some debate. For example, Golinkoff and colleagues 

(1992) argued that children learn flexible lexical principles rather than possessing 

innate, hard-and-fast biases. Indeed, studies showing that word learning biases can be 

overridden by – or even depend on – sociopragmatic cues suggest that referent 

selection is a flexible behaviour (Baldwin, 1993; Tomasello & Akhtar, 1995). The 

source of ME-type behaviour has been particularly controversial. Clark (1990) argued 

for a principle of contrast by which children assume that adults use words 

consistently, so new labels must contrast in meaning to already-known labels and 

therefore refer to previously unlabelled objects. In contrast, Mervis & Bertrand (1994) 

posited a novel-name-nameless-category (N3C) strategy, whereby children make a 

simple novelty-to-novelty mapping, linking new words directly to unlabelled objects. 

Others argue that they use a process of elimination, explicitly ruling out known 

competitor objects before mapping the novel label to the novel object (Halberda, 

2006). Importantly, these accounts differ as to the importance they place on children’s 

well-documented attentional bias towards novel over familiar items, or novelty 

preference (Fantz, 1964; Houston-Price & Nakai, 2004). While attention to novelty is 

fundamental to N3C, its role in ME is less clear. Further, whichever mechanism 

underlies ME-type behaviour, it is disputed whether successful referent selection is 

the result of explicit, metacognitive reasoning about a label’s potential referents, or 

whether it is due to low-level associative processes (e.g., Smith, Jones, Yoshida, & 

Colunga, 2003). 

 Importantly, there is substantial evidence that simply disambiguating the 

referent of a novel word once is not on its own sufficient for word learning (Bion, 
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Borovsky, & Fernald, 2013; Horst & Samuelson, 2008; Kucker, McMurray, & 

Samuelson, 2015; Mather & Plunkett, 2009; McMurray, Horst, & Samuelson, 2012; 

Munro, Baker, McGregor, Docking, & Arculi, 2012; Twomey, Ranson & Horst, 

2014). Rather, word learning is the result of incremental cross-situational learning, in 

which label-referent mappings are gradually strengthened via repeated encounters 

with the mapping (e.g., Fazly, Alishahi, & Stevenson, 2010; Horst, McMurray & 

Samuelson, 2006; Smith & Yu, 2008; Yu & Smith, 2007; Yurovsky, Fricker, Yu, & 

Smith, 2014). For example, a child might learn that a furry, meowing animal with 

four legs is called cat after s/he encounters the label alongside a toy cat at nursery, a 

photograph of a cat in a storybook, and her pet cat at home. However, while there is a 

broad consensus that cross-situational learning is a domain-general learning 

mechanism that can drive word learning, developmental psychologists disagree about 

the mechanisms that allow children to solve the in-the-moment referent selection 

puzzle. 

Computational and robotic insights into development.  

 Recent interdisciplinary research has begun to address this issue by integrating 

insights from developmental psychology with computational and robotic techniques 

to explore the perceptual and cognitive processes underlying empirically observed 

behaviour (Cangelosi, Schlesinger, & Smith, 2015; Gliozzi, Mayor, Hu, & Plunkett, 

2009; McMurray et al., 2012; Morse & Cangelosi, in press; Samuelson, Smith, Perry, 

& Spencer, 2011; Westermann & Mareschal, 2014). Computational models of word 

learning simulate how children behave (e.g., pointing to the flamingo and not the dog 

or the fish) based on what they see and hear (e.g., one novel object, two known 

competitor objects and the novel word flamingo). Just like children, models have 

internal representations that change with learning which in turn give rise to certain 
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behaviours. In sharp contrast to children, however, we can inspect these 

representations as they develop over time to examine the relationship between internal 

representation and external behaviour. Critically, because a model’s cognitive 

mechanisms are explicitly defined, by examining the computations which drive 

representational change in the model, we can build an explicit account of the 

mechanisms that explain cognitive development in the child (Westermann & 

Mareschal, 2012). In all models, simplification is needed to render the work feasible. 

Thus, there are differences between learning in robotic simulations and learning in 

humans. However, these differences are essential to theory development: 

simplification can tell us which components of a system are necessary for capturing a 

given behaviour (McClelland, 2009; Morse & Cangelosi, in press). Thus, simulations 

offer a unique opportunity for developing explicit, mechanistic theories of cognitive 

processes, which make clear predictions for subsequent empirical testing. 

 The goal of the current studies was to examine the potential mechanisms 

driving children’s behaviour in two word learning tasks. Recent work in 

computational developmental psychology suggests that the body’s location in space 

plays an important role in young children’s early word learning (Morse, Benitez, 

Belpaeme, Cangelosi, & Smith, 2015; Samuelson et al., 2011). These studies suggest 

that using an embodied system is important to understand the mechanisms driving 

word learning. Thus, we chose to explore these mechanisms using iCub, a 

developmental robot designed specifically as an embodied platform for 

developmental research (Cangelosi et al., 2015; Metta et al., 2010). The following 

sections describe two robotic replications of recent empirical studies designed to 

explore the mechanisms thought to be at play in referent selection and word learning; 

specifically competition from non-target objects and referent novelty. Finally, we 



WORD LEARNING IN A ROBOTIC SYSTEM  7 

discuss the implications of the modelling work for our understanding of referent 

selection and word learning in children. 

 

Experiment 1:  

The effect of competition on referent selection and word learning 

Target empirical data 

 With the goal of narrowing down the possible mechanisms underlying ME-

type behaviour, a recent empirical study directly tested the predictions of the N3C and 

ME accounts. Horst, Scott and Pollard (Horst, Scott, & Pollard, 2010; henceforth 

HSP) explored which of these accounts best explained children’s word learning by 

manipulating the number of known competitor objects children saw during referent 

selection. N3C predicts that the number of known competitors should not affect word 

learning, because referent selection involves simply mapping novelty to novelty: on 

this account, competitors are irrelevant. In contrast, ME predicts that increasing the 

number of competitors present during referent selection will make the task more 

difficult, because children must rule out all known competitors before making the 

novel label-novel object mapping (see also Halberda, 2006).  

Design and procedure. To test these predictions, HSP presented 36 30-month-old 

children with referent selection trials consisting of an array of 3D age-appropriate 

toys, one of which was novel and the rest of which were known to children. The 

number of competitor objects seen during referent selection varied between 

conditions: trials consisted of a novel object and two, three, or four known 

competitors (see Fig. 1 for an example referent selection trial). In the two-competitor 

condition, for example, a trial might consist of a plastic cone with multicoloured 

strings attached to it, a small plastic horse, and a small plastic block. In the four-
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competitor condition, a trial array might consist of the cone, the horse, the block, a 

spoon and a toy car. All other aspects of the design were held constant. 

[FIGURE 1 ABOUT HERE] 

 During the referent selection phase, children were presented with four sets of 

objects, across eight referent selection trials. Each novel object was presented twice 

and served as a target once. On each trial, children were allowed to look at the objects 

for three seconds before being asked to select either a known or the novel object (e.g., 

known trial: Can you show me the car?; novel trial: Can you show me the fode?; 

target objects were named five times; thus, two trials per set.)  Children therefore had 

an equal amount of experience with each novel target during referent selection, which 

is critical to enable a robust test of word learning (Axelsson & Horst, 2013). After 

referent selection children were presented with four test trials (see Fig. 1). Each of the 

four novel targets appeared on every test trial, and children were asked for each object 

in turn. If children had retained the novel label-object associations formed during the 

referent selection phase, then they should pick the target object at levels greater than 

expected by chance. 

Results. In line with existing studies, children were very good at referent selection, 

performing significantly above chance on both known and novel trials regardless of 

the number of competitors present. However, only children in the two-competitor 

condition retained novel labels at levels greater than expected by chance, and did so 

significantly more reliably than children in the three- and four-competitor conditions 

(see black bars, Fig. 3). An analysis of reaction times during referent selection 

revealed that children in the two-competitor condition selected novel objects 

marginally faster than children in the four-competitor condition. Thus, longer reaction 

times during referent selection were related to poorer word learning. The authors 
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reasoned that the disambiguation task in the two-competitor condition was less 

onerous than in the other conditions. Put differently, these children only had to 

identify two known objects before mapping the novel label to the novel referent – a 

quicker and simpler undertaking than identifying three or four known objects.  

Paying attention to what an object is not. The authors concluded that referent 

selection – and eventual word learning – involves paying attention to competitor 

objects in order to establish what the referent is not, as well as paying attention to the 

novel object to establish what it is (see also Fitneva & Christiansen, 2011; Zosh, 

Brinster, & Halberda, 2013). On this account, referent selection is influenced not only 

by novelty, but also by knowing the names of the competitor objects; subsequent 

word learning is therefore the product of learning which associations are correct (e.g., 

novel object-fode), but also of learning which associations are wrong (e.g., cow-fode; 

see also McMurray et al., 2012). The implication, therefore, is that word learning 

emerges from the interaction of multiple timescales of development: in-the-moment 

referent selection, medium-term cross-situational learning, and long-term vocabulary 

learning (McMurray et al., 2012). However, for a full understanding of word learning 

it is critical that we understand not just what children do, but also how. In the 

following simulations we make these mechanisms explicit by using a developmental 

robotic system (iCub; Metta et al., 2010) to implement a connectionist architecture 

(Epigenetic Robotics Architecture; Morse, de Greeff, Belpeame, & Cangelosi, 2010). 

The iCub and the Epigenetic Robotics Architecture 

 iCub’s design reflects the approximate physical proportions of a 3-year-old 

child. iCub has 53 bodily degrees of freedom (neck: 3; eyes: 3; arms: 14; hand: 18; 

leg:12, torso: 3), and sensors (e.g., cameras, microphones), which encode a range of 

naturalistic perceptual input, approximating young children’s perceptual 
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environments (see Fig. 2). Like children, then, iCub integrates visual, auditory, tactile 

and proprioceptive information to generate behaviour, for example auditory and 

visual information in a word learning task (although which modalities contribute to a 

given simulation are decided a priori by the modeller). Thus far, iCub has captured a 

range of developmental phenomena, for example motor development (Tikhanoff, 

Cangelosi, & Metta, 2011), visuomotor development (Shaw, Law, & Lee, 2014), 

intrinsically motivated exploration (Maestre, Cully, Gonzales, & Doncieux, 2015), 

affordance-based verb learning (Marocco, Cangelosi, Fischer, & Belpaeme, 2010), 

and spatially-grounded noun learning (Morse et al., 2015; for a review see Cangelosi 

& Schlesinger, 2015). 

[FIGURE 2 ABOUT HERE] 

 A version of the Epigenetic Robotics Architecture (ERA) served as the 

architecture in both the current simulations, as depicted in Figure 3. The ERA consists 

of a network of Self-Organising Maps (SOMs; Kohonen, 1998): connectionist 

networks that reorganise their internal structure based on a winner-takes-all response 

to input stimuli. At the end of learning, SOMs reflect the structure of the input in their 

own topological structure; that is, neurons that are close together in the network fire in 

response to perceptually similar stimuli (e.g., the colours red and pink). SOMs 

naturally lend themselves to categorisation of complex naturalistic stimuli such as 

inputs generated by iCub’s sensors.  

 The model comprises two visual SOMs that receive processed video 

information from iCub’s cameras. One map receives an HSV (hue, saturation, value; 

Alvy Ray, 1978) spectrogram of each object in view and so represents colour, and the 

other receives shape information about each object (e.g., circleness, squareness, 

convexity, elongation; Montesano, Lopes, Bernardino, & Santos-Victor, 2008). 
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Speech recognition, via the commercial software Dragon DictateTM, is used to provide 

speech-to-text input for the words, where each word dynamically activates a single 

unit in a label field. The visual SOMs are bidirectionally coupled to the field of label 

inputs via Hebbian-like links to form a dynamic spreading activation network. 

Objects that are primed cause iCub to look at them or to reach and point to them. A 

detailed discussion of the ERA is available in Morse et al. (2010). The model is robust 

to parameter variation. Higher (or lower) learning rates, for example, strengthen and 

weaken the response percentage globally, preserving the between group effects. 

However, a summary of the parameters relevant to this particular implementation is 

provided in the Appendix. 

[FIGURE 3 ABOUT HERE] 

 For an object in a particular region, colour information is extracted by 

determining the location in HSV colour space of each pixel in that region. Ignoring 

the white background of the table, pixels with a saturation value greater than a 

threshold of 0.2 are allocated to one of 36 bins each representing 10 degrees of the 

360 degree HSV colour continuum, which generates a histogram-like colour profile 

for each object. Each object profile is unique and based on the entire range of the 

colour SOM. Thus, the model takes into account differences between uniformly and 

multicoloured objects.  

Simulating Referent Selection and Word Learning in a Robotic System 

 Design and Procedure. The procedure in the robot experiment was kept as 

close as possible to the procedure in the empirical task. As in the empirical study, the 

experiment was run 12 times per condition and trial order and counterbalancing were 

the same. The robot was initially provided with background training to simulate 
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infants’ everyday experience with objects prior to the onset of word learning (see 

Appendix). 

 Simulating children’s known vocabulary. To simulate children’s existing 

vocabularies, we taught the robot a “familiar” vocabulary in an initial training session 

(not including the novel words used in the subsequent experiment). The SOMs were 

provided with object and label input for the 18 competitor objects it would encounter 

during the referent selection phase. Based on recent empirical work demonstrating 

that individual objects tend to dominate infants’ visual fields during word learning 

(Smith, Yu, & Pereira, 2011), the experimenter placed each object centrally in the 

robot’s field of vision on a white surface and allowed the SOMs to settle – equivalent 

to allowing children to look at objects before providing the target label. Once the 

SOMs had settled (that is, once the system had formed a representation of that object; 

approximately 3s), the experimenter provided the label SOM with the appropriate 

input, keeping the object in view (reflecting the ostensive labelling shown to facilitate 

word learning in children; Axelsson et al., 2012). Each object received 20 

unambiguous labelling events. Thus, the robot began the experiment with a robust 

known vocabulary. Clearly, this vocabulary is substantially smaller than children in 

the empirical study, who had a mean productive vocabulary of 468.92 words 

according to a UK adaptation of the widely-used Macarthur-Bates Communicative 

Development Inventory (Fenson et al., 1993; Klee, Marr, Robertson & Harrison, 

2001). We made this assumption to render the task tractable, however the relationship 

between vocabulary and performance in word learning tasks is the focus of existing 

research (e.g., Borovsky, Ellis, Evans, & Elman, 2015; Perry & Samuelson, 2011; 

Samuelson, 2002) 
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 Cross-situational learning and referent selection. The robot was presented 

with the same referent selection and test trials as children in the empirical task, again 

across two-, three- and four-competitor conditions. During referent selection the robot 

was presented with four sets of objects on a white tabletop via eight referent selection 

trials. Each set consisted of a novel object and two, three or four known competitors 

selected from the pre-trained set (see Fig. 1 for an example referent selection trial). As 

in HSP, object locations and trial order were pseudorandomised across trials. Thus, 

the same set of objects was never presented on successive trials, known/novel trials 

occurred no more than twice in succession and each novel label/object pair was 

encountered in first, second, third or last position equally often. All objects were 

placed in the robot’s field of vision and the SOMs were allowed to settle (intended to 

reflect the three-second pause before labelling in the empirical study). Then, the 

experimenter labelled the object five times with either a known (pretrained) or novel 

label. Following labelling, the robot moved its head to centre its field of vision on 

each object in turn, activating a node in the label SOM. If the SOM activated the 

appropriate label node for the target object, the robot’s response was scored as 

correct, and if not, the robot’s response was scored as incorrect. For example, on a 

known trial, activation of the horse node in response to the horse object would be 

scored correct, and activation of the yok label would be scored as incorrect. Each 

novel object was presented twice and served as a target once. 

 Testing word learning. After referent selection the robot was presented with 

four test trials that proceeded in an identical manner to the referent selection trials. As 

in the empirical study, each of the four novel targets appeared on each test trial, and 

each served as the target on one trial. If the model had learned and retained novel 

label-object associations during the referent selection phase, then it should activate 
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the appropriate label node in response to each novel object at levels greater than 

expected by chance. Again, retention was scored by monitoring node activation. 

 Results. Results from the referent selection trials are depicted in Figure 4. In 

line with children, the model successfully mapped known labels to known objects 

(100% correct on all known trials). Critically, the robot also mapped novel labels to 

novel objects, and did so at levels greater than expected by chance (two-competitor: 

t(11) = 19.53, p < .0001, d = 7.84; three-competitor: t(11) = 9.93, p < .0001, d = 3.33; 

four-competitor: t(11) = 8.94, p < .0001, d  = 2.83. Note that chance = 0.33, 0.25 and 

0.20 in the two-, three- and four-competitor conditions, respectively, and all t-tests 

reported are two-tailed). Thus, the model captured HSP’s referent selection results, 

mapping novel labels to novel objects without explicit instruction or the ability to 

reason explicitly about its choices.  

[FIGURE 4 ABOUT HERE] 

 Results from the test trials are depicted in Figure 5. Here, the model retained 

novel label-object mappings at levels greater than expected by chance (0.25) in the 

two-competitor condition only (two-competitor: t(11) = 8.86, p < .0001, d = 5.34; 

three-competitor, t(11) = 1.39, ns., d = 0.84; four-competitor, t(11) = 0.56, ns., d = 

0.34). This is the same pattern of results observed in the empirical study. We 

submitted the model’s proportion of correct choices on test trials to an ANOVA with 

condition (two-competitor, three-competitor, four-competitor) as a between-subjects 

factor. The effect of condition was significant, F(1,34) = 34.19, p < .0001, η2G = 0.50; 

planned comparisons revealed that the model made significantly more correct choices 

in the two-competitor condition than in the three- or four- competitor conditions (both 

ps < .0001). The model therefore also captured HSP’s retention results. 

[FIGURE 5 ABOUT HERE] 
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 To compare the robot and empirical data, we submitted proportion correct 

choices for both datasets to an omnibus ANOVA with data (empirical, robot) and 

condition (2-competitor, 3-competitor, 4-competitor) as between-subjects factors and 

trial (referent selection, retention) as a within-subjects factor, and their associated 

interactions. Results are reported in Table 1; critically, as highlighted in bold, whether 

data were empirical or robotic had no effect on responses. Thus, word learning in this 

embodied simulation can emerge from the interaction between long-term vocabulary 

learning, and in-the-moment referent selection, without the need for top-down 

reasoning. 

[TABLE 1 ABOUT HERE] 

 

Discussion 

In Experiment 1 we used an embodied neural network model (Metta et al., 2010; 

Morse et al., 2010) to replicate 30-month-old children’s behaviour in a word learning 

task (Horst et al., 2010). Children in the empirical task were presented with a referent 

selection phase in which they were asked to select novel objects in response to novel 

labels, from an array in which all other objects were known. When tested on retention 

of novel label-object mappings, only children who had initially encountered novel 

objects alongside two competitors successfully retained those mappings; children who 

saw more competitors did not retain novel labels. We taught the model a known 

vocabulary and then presented it with a maximally similar task. The model correctly 

mapped known and novel labels to target objects during referent selection – that is, it 

exhibited the same in-the-moment referent selection as the children. At test, only 

when novel objects had initially been encountered alongside two (but not three or 
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four) competitors did the model successfully retain label-object mappings, again 

replicating children’s behaviour in HSP. 

“Mutual exclusivity” can emerge from simple associations  

 By implementing the ERA in iCub we demonstrate that a behaviour some 

have argued to depend on complex, top-down inferential reasoning (Markman, 1990; 

Markman, 1994) can emerge from low-level associative processes. Word learning in 

the two-competitor condition demonstrates that simply reinforcing newly-formed 

label/object associations via cross-situational learning allows these associations to be 

reactivated without supporting context, that is, known competitor objects (cf. Smith & 

Yu, 2008). Finally, we capture the effect of competition seen in the empirical task, 

demonstrating that the complex world learning phenomena seen in HSP can emerge 

from the simple associative mechanisms governing the model’s behaviour. We return 

in detail to these mechanisms in the General Discussion. 

 Overall, then, Experiment 1 demonstrated that ME-type behaviour can arise 

from simple associative learning across situations without the need for a top-down, 

metacognitive reasoning system. Importantly, in both Experiment 1 and HSP novelty 

was controlled: children and the model encountered every novel object and every 

novel label an equal number of times during the referent selection phase. Indeed, if 

novelty had been driving behaviour during this phase, the novel object would have 

been chosen even in response to known labels. Clearly, novel objects were not so 

salient to children or iCub that ME-type behaviour during referent selection was 

overridden. Nonetheless, children’s novelty preference is well-documented in a range 

of paradigms (e.g., Fantz, 1964; Golinkoff, Ma, Song, & Hirsh-Pasek, 2013; Houston-

Price & Nakai, 2004), and it remains possible that increased attention to novelty may 

affect children’s referent selection when relative novelty between referents is 
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manipulated. Horst, Samuelson, Kucker & McMurray (2011; henceforth HSKM) 

therefore explored the extent to which relative referent novelty affects children’s 

choices during referent selection.  

Experiment 2: 

The effect of novelty on referent selection 

Target empirical data 

 HSKM presented 12 24-month-old children with referent selection trials 

consisting of three known or three novel objects, presented in the same manner as in 

HSP with similar stimuli. Critically, children had been allowed to play with a subset 

of the novel objects before the experiment began. Thus, on novel trials, one 

“supernovel” object had never been seen before, and none of the three objects had 

been labelled. On each trial, the experimenter asked the child to retrieve an object 

with a known label on known trials (e.g., Which one is the cow?) or a novel label on 

novel trials (e.g., Which one is the fode?). If the small amount of engagement with the 

objects before referent selection was sufficient to render them “familiar,” on novel 

trials children should systematically reject these just-seen objects as candidate 

referents and map the label to the supernovel object. However, if object novelty plays 

no part in referent selection, children should respond at chance levels. 

 Again, as expected, children selected the known object in response to the 

known label at rates greater than expected by chance. Critically, on novel object trials, 

children systematically chose the supernovel object. Thus, just two minutes’ 

experience with objects before referent selection was sufficient to trigger children’s 

novelty preference. Critically, HSKM demonstrated that referent selection, hitherto 

assumed to be a linguistic mechanism, is affected by nonlinguistic factors, and 

specifically, object salience as mediated by novelty. Nonetheless, the question of how 
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children solved the novel referent selection trials remains unanswered – is this 

behaviour the result of children explicitly reasoning about what they had or had not 

previously seen, or could it emerge from low-level associative learning? We explored 

this by using the same robotic system in a similar task to replicate HSKM’s empirical 

results. 

Design and procedure. 

 Model architecture and model parameter were the same as in Experiment 1. 

 Simulating children’s known vocabulary. We pre-trained the robot with 12 

known objects using the same procedure as in Experiment 1.  

 Cross-situational learning and referent selection. Procedure on referent 

selection trials was identical to the procedure used in Experiment 1. The experimental 

design followed HSKM, and we ran the simulation 12 times to reflect the 12 

participants in the empirical study. Specifically, over the course of the experiment, the 

robot saw 12 known and 18 novel toy objects. However, before referent selection the 

experimenter prefamiliarised the robot with eight of the objects by presenting each 

object centrally in the robot’s field of vision on a white surface and allowing the 

SOMs to settle, in line with the two-minute prefamiliarisation phase in HSKM. 

Critically, no object was labelled during this phase. During referent selection the 

robot was presented with four known and eight novel trials. Each known trial set 

consisted of three different objects from the set of pre-trained known objects. Each 

novel trial consisted of two prefamiliarised novel objects and one supernovel object 

labelled with a different novel word. Each supernovel object appeared once, and pre-

familiarised objects were counterbalanced such that each trial consisted of a different 

combination of objects. 
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 Results. Results are depicted in Figure 6. As anticipated, the model 

successfully mapped known labels to known objects (t(11) = 16.43, p < .0001, d = 

6.51), replicating the results of the known referent selection trials in the current 

Experiment 1. Critically, on novel trials, the model mapped novel labels to supernovel 

objects at rates greater than expected by chance (t(11) = 15.27, p < .0001, d = 6.36). 

To compare the robot and empirical data we submitted proportion correct choices for 

both datasets to an omnibus ANOVA with data (empirical, robot) as a between-

subjects factor, trial (known, novel) as a within-subjects factor, and a data-by-trial 

interaction term. Overall, there were more correct responses on known than novel 

referent selection trials. Critically, however, whether data were empirical or robotic 

had no effect on responses. Thus, Experiment 2 captured the empirical data presented 

in HSKM, and specifically, the remarkable effect of novelty on referent selection by 

which even brief familiarisation with novel objects prior to the referent selection task 

leads children – and iCub – to systematically map novel labels to never-before-seen, 

supernovel objects. 

[FIGURE 6 ABOUT HERE] 

 

[TABLE 2 ABOUT HERE] 

 

Discussion 

Experiment 2 extended the findings of Experiment 1 by exploring the effect of 

novelty on children’s referent selection reported by Horst and colleagues (HSKM; 

2011). HSKM presented children with multiple three-object referent selection trials. 

On known trials, children systematically choose the correct target referent from an 

array of three known objects. On novel trials, children were asked to choose a referent 
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from an array of three novel objects; however, two of the novel objects were more 

familiar than the third, having been briefly presented to children before the task 

(without labelling). Children systematically mapped novel labels to the “supernovel” 

object. We presented the same embodied robotic system described in Experiment 1 

with HSKM’s referent selection task and replicated the novelty effect seen in 

children’s responding – and again, without building in a mechanism for reasoning 

about whether it had encountered objects previously. Convergent with McMurray et 

al. (2012), the current studies demonstrate that apparently complex word learning 

behaviour can emerge over time from the dynamic interaction of multiple timescales. 

Specifically, long-term vocabulary acquisition facilitates medium-term cross-

situational learning by supporting in-the-moment referent selection (McMurray et al., 

2012). In the following section we discuss these timescales and their interactions with 

the mechanisms driving word learning in our system. 

 

General Discussion 

 The current simulations capture children’s ability to learn words in the widely-

used referent selection tasks described by HSP and HSKM (Faubel & Schoner, 2008; 

although for a pilot study, see Twomey, Horst, & Morse, 2013). Like referent 

selection and word learning in children, these phenomena in the current simulations 

are affected by competition and novelty during initial disambiguation. As such, this 

work supports associative accounts of word learning: referent selection and word 

learning in the current simulations can emerge bottom-up from simple associations, 

without recourse to a complex, top-down reasoning system (Smith, 2000). Critically, 

because computational models in general make mechanisms explicit (Westermann & 

Mareschal, 2012), our embodied neural network simulations not only capture what 
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children in the empirical tasks did, but also suggest how they did it. As with all 

computational and robotic models, however, this account needs to be tested: if the 

assumptions of this model reflect the mechanisms underlying learning in human 

children, it should be possible to use an experimental task to capture the predictions 

our model makes about children’s behaviour. These predictions and related empirical 

work are discussed in more detail below. 

Referent selection via cross-situational associative learning.  

 The referent selection task in Experiment 1 supports the ME account of the 

processes underlying children’s referent selection and word learning, demonstrating 

that referent selection involves attention to known competitor objects as well mapping 

the novel label to the novel object (see also Fitneva & Christiansen, 2011; Zosh et al., 

2013). Specifically, because inhibition from the strong known label-known object 

connections prevents the formation of new known label-novel object connections, 

meaning that the only mapping not subject to inhibition on novel label trials is that 

between the novel label and the novel object. Thus, in line with McMurray et al. 

(2012), Experiment 1 points to an account of referent selection not as a bias towards 

novel, unlabelled referents, but as a bias away from known, labelled referents.  

 Experiment 2 elaborates this account. Here, we see that referent selection is 

not a purely linguistic phenomenon, but rather an interplay between linguistically- 

and visually-mediated information – when labelling is controlled for, the novelty of 

the objects themselves affects whether children (or the model) learn the names for 

those objects (Kucker & Samuelson, 2011). Further, these data make a strong 

prediction for future empirical work. On a given novel trial, the model’s mapping of 

novel labels to the supernovel objects hinged critically on the characteristics of the 

three potential targets – only when all three objects shared some visual characteristic 
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(e.g., colour) were label/just-seen object mappings inhibited sufficiently for the model 

to map the novel name to the novel referents. Thus, Experiment 2 makes the novel, 

testable prediction that referent selection should be affected by the degree of 

perceptual similarity between objects. An empirical test of this prediction is 

underway. 

Multiple timescales and the effect of embodiment 

  The current work shows that word learning can emerge from the interaction 

of knowledge across multiple timescales (cf. Horst et al., 2006; Smith, Colunga, & 

Yoshida, 2010; Thelen & Smith, 1994). The longest timescale relates to vocabulary. 

Participants began these experiments with a pre-existing vocabulary; in the model’s 

case, a pre-trained set of robust label-object mappings, and in children’s case, a set of 

known words built up over the preceding 24 months. The intermediate timescale 

relates to cross-situational learning during the course of the study. The robot learns 

words by forming and strengthening associations between the label node and the 

representations in the colour and shape SOMs on every novel label trial, while 

children formed and strengthened associations between novel labels and novel objects 

by completing multiple referent selection trials. The in-the-moment timescale relates 

to the disambiguation task itself. Here, long-term vocabulary knowledge interacts 

with online information in the visual scene: labels for the known objects are activated 

when their referents are recognised. Using a robotic system allows us to watch this 

mechanism unfold, and shows that label activation (in the absence of hearing that 

label) is critical for this ME-type behaviour. While 18-month-old infants have been 

shown in a visual priming task to activate labels when their referents are seen in 

silence (Mani & Plunkett, 2010), testing this prediction in a word learning task 

remains an important challenge for future empirical work.  
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 Importantly, the current work illustrates an additional timescale: the micro-

level temporal dynamics of activation decay during the time taken to look from one 

object to another. During referent selection the robot was provided with a label, which 

caused a spike of activation in the relevant label node. The robot then “looked” at 

each object in turn to establish whether the current label was associated with each 

object. Note that because “looking” involved a physical turn of the robot’s head, 

looking at all objects took less time in the two-competitor condition than in the four-

competitor condition (this was also the case for children in the empirical study). In 

addition, activation in the label node decayed over time. Thus, since learning was 

applied at the end of the trial, label-object mappings were weaker in the three- and 

four-competitor conditions than in the two-competitor condition; so weak, in fact, that 

the model was unable to reactivate them sufficiently to form correct mappings at test. 

In line with existing embodied explorations of word learning, which show that the 

spatial orientation of the body can affect the formation of label-object mappings 

(Morse et al., 2015; Samuelson et al., 2011), the current work demonstrates that the 

layout of the task environment entrains the spatial location of the robot’s head, which 

in turn affects the amount of time required to encode all objects in the array. Our 

model therefore predicts that children’s performance in similar tasks can be boosted 

or impaired by reducing or increasing the amount of time it takes to scan all possible 

referents of the novel words by increasing the spatial distance between them. 

Critically, this prediction would not have emerged from a non-embodied system 

without building in a timing mechanism a priori (e.g., look at the first object at 2s, the 

second at 4s, and the third at 5s). Thus, this prediction emerged “for free” from the 

interaction between the SOMs’ learning mechanism and the iCub’s body. Capturing 

this prediction empirically would strongly support the current hypothesis that the 
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body affects word learning via micro-level temporal interactions. An experiment with 

two-year-old children is planned to provide the critical test of this account.  

 Both the empirical and robotic studies discussed here involved a simplified 

learning environment and a highly structured task relative to the real-world learning 

environment children experience outside the lab (Horst & Simmering, 20145; 

Oudeyer & Smith, in press). It is therefore possible that while low-level associative 

learning can account for the results of HSP and HSKM, additional information such 

as sociopragmatic cues  (e.g., Brooks & Meltzoff, 2005; Moore, Mueller, Kaminski, 

& Tomasello, 2015; Schulze & Tomasello, 2015), distributional information (e.g., 

Gillette, Gleitman, Gleitman, & Lederer, 1999; Medina, Snedeker, Trueswell, & 

Gleitman, 2011; Twomey, Chang, & Ambridge, 2014; Yuan, Fisher, & Snedeker, 

2012) or existing semantic category representations (e.g., Borovsky et al., 2015; 

Borovsky & Elman, 2006) may play a part in iCub’s – and children’s – word learning 

in more complex environments, pointing to further fruitful work in the rapidly-

expanding field of developmental robotics. Overall, however, the current studies 

represent the first full experimental replication of the results of a widely-used word 

learning paradigm using an embodied robotic system. As such, they contribute in a 

broader sense to the emerging interdisciplinary literature in the cognitive sciences that 

in recent years has begun to apply mathematical, computational and robotic 

innovations to some of the decades-old enigmas of developmental psychology. In 

parallel, the current work helps us build an explicit account of the complex and subtle 

temporal, environmental and physiological interactions that drive word learning and 

cognitive development. 
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Appendix 

Input SOMs were initialised with random connection weights. To provide an 

approximation of the developmental history children accumulate prior to learning 

their first words (that is, via encounters with multiple objects simultaneously), the 20 

objects used in this study were simultaneously placed in view and the SOMs trained 

using standard equations 1 (SOM activity) & 2 (SOM learning rule; Kohonen, 1998): 

(1)   BMU = 𝑎𝑟𝑔𝑚𝑎𝑥 1− Σ 𝑎! − 𝑤!"  

Where the Best Matching Unit (BMU; i) is the unit whose weight vector w is closest 

to the current input vector a.   

(2)   Δ𝑤!" =   𝛼exp − !"#$!

!!"#$
𝑎!𝑤!"  

The weights of each unit j in the neighbourhood of the BMU are then modified to 

move closer to the current input vector, with changes scaled according to the distance 

of that unit from the BMU (dist) in the SOM (i.e., not in terms of the input space) and  

neighbourhood size (size). 

 As is typical of SOMs (Gurney, 1997), the neighbourhood size and learning 

rate (α) decrease monotonically until the neighbourhood size is 1 to allow the 

network to settle into a stable state, at which point both the neighbourhood size and 

the learning rate of the SOM are fixed to allow learning to continue at a low rate. 

 The two SOMs and the label field are fully connected via Hebbian-type links 

(Hebb, 1949; Munakata & Pfaffly, 2004), which propagate activation as in equation 3 

(IAC spreading activation; cf. McClelland & Rumelhart, 1981) and learn as in 

equation 4 (Hebb-like learning rule): 

(3)   𝑛𝑒𝑡! =   Σ𝑤!"𝑎! +   𝛽𝐵𝑀𝑈 

If  𝑛𝑒𝑡!> 0  ∆𝑎! =    max−  𝑎! 𝑛𝑒𝑡! − 𝑑𝑒𝑐𝑎𝑦 𝑎! − 𝑟𝑒𝑠𝑡  

Else   ∆𝑎! =    𝑎! −𝑚𝑖𝑛 𝑛𝑒𝑡! − 𝑑𝑒𝑐𝑎𝑦 𝑎! − 𝑟𝑒𝑠𝑡  
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The net input (𝑛𝑒𝑡!)  to each unit in the whole network is either 

• the sum of spreading activation  

• or, the sum of spreading activation plus external activation if this node 

happens to be the BMU of a SOM or a currently active word.  

Parameter values for both robotic tasks were as follows:  External Input Bias (𝛽)  = 

0.5; Max = 1; Min = -0.2; Decay = 0.5; Rest = -0.01. 

(4) If 𝑎!   > 0 OR 𝑎! > 0:   

 if 𝑎!𝑎!   > 0  ∆𝑣!" =   𝜆𝑎!𝑎! 1−   𝑣!"  

 else     ∆𝑣!" =   𝜆𝑎!𝑎! 1+   𝑣!"  

else ∆𝑣!" = 0  

The Hebb-like learning rule increases the strength of a weight (v) between SOMs if 

both units connected by this weight are positively active, or reduces its strength if 

only one is positively active. This change is scaled according to the product of the 

units’ activity and how close the weights are to 1 or -1, respectively, for positive and 

negative weight changes. Finally each field is fully connected by fixed inhibitory 

connections. The experiment reported here used the learning parameter value λ = 

0.005. 

 Note that adaptive connections exist only between the SOMs and label field, 

while constant-valued (-0.8) inhibitory spreading activation connections exist within 

each SOM and within the label field. 

 All other model parameters are the same as reported by Morse et al. (2015). 

The architecture itself differs in that it includes separate shape and color SOMs, but 

does not include a SOM receiving postural input. 
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Table 1. Results from omnibus ANOVA, Experiment 1. 
 
Effect df F p η2G 

Data (1,66) 0.021 0.89 .00010 

Condition (2,66) 25.99 < .001*** .20 

Trial (2,132) 228.70 < .001*** .70 

Data x condition (2,66) 0.44 0.65 00042 

Data x trial (2,132) 0.71 0.49 .0073 

Condition x trial (4,132) 8.72 < .001*** .015 

Data x condition x trial (4,132) 0.50 0.74 .010 
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Table 2. Results from omnibus ANOVA, Experiment 2. 
 
Effect df F p η2G 

Data (1,22) 1.38 .25 .022 

Trial (1,22) 6.05 .022 .15 

Data x trial (1,22) 0.25 .62 .0071 
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Figure 1. Example referent selection and test trials for the empirical and robot tasks. 
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Figure 2. Model architecture 
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Figure 3. iCub during referent selection. 
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Figure 4. Proportion correct of children’s (grey bars) and the model’s (black bars) 

correct choices on novel trials during referent selection, Experiment 1. ***p < .001 

(compared to chance, as stated in the figure). 
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Figure 5. Proportion correct of children’s (grey bars) and the model’s (black bars) 

correct choices (dark blue bars) on test trials, Experiment 1. ***p < .001 (compared to 

chance; 0.25). 

  

*** 
*** 

chance 
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Figure 6. Proportion correct of children’s (grey bars) and the model’s (black bars) 

correct choices on known and novel referent selection trials, Experiment 2. ***p < 

.001 (compared to chance; 0.33). 

 

 


