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Abstract. Abundances of 12 laboratory populations of the greenbottle blowfly (Lucilia
sericata) were recorded every two days for 776 d, with separate counts for larvae, pupae,
and adults. Half of the populations were exposed to sublethal dosages of the toxic compound
cadmium acetate; the remaining populations were considered controls. Initial density was
low for half of the populations in each group, and high for the other half. In all populations,
the adult abundance underwent sustained fluctuations. However, cadmium-exposed popu-
lations had smaller mean larval and adult densities, and fluctuations in adult abundance
were less regular than for controls. Data from the first and the second half of the experimental
period were analyzed separately in order to assess the effects of possible long-term changes
in the dynamics on the estimates. Nonparametric (generalized) additive modeling (GAM)
was used to investigate time series dynamics and, in particular, to explore the density-
independent components and the structure of the density-dependent components of the
system. Overall, cadmium populations had larger larva-to-adult survival rate and smaller
adult survival rate than control populations, and for the second half of the experimental
period the reproductive rate was smaller for cadmium populations than for control popu-
lations. Estimation of the density-dependent components suggested that survival from larva
to adult depended nonlinearly on larval density and that increased larval density had a
positive effect on larval survival at low densities. Furthermore, cadmium generally de-
creased vital rates. However, the analysis suggested that most of the observed differences
in dynamical behavior between control and cadmium populations are related to differences
in the density-independent components of the demographic rates, rather than differences
in the density-dependent structure.

Key words: additive models; greenbottle blowfly; cadmium; density-dependent and density-in-
dependent components; ecotoxicology; generalized additive model (GAM); Lucilia sericata; nonli-
nearities; nonparametric regression; population model; time series analysis.

INTRODUCTION

Nicholson’s (1954a, 1957) work on the population
dynamics of the sheep blowfly Lucilia cuprina has held
a major position in the development of the field of
population ecology (Gurney et al. 1980, Begon et al.
1996). Nicholson emphasized the role of population-
intrinsic density-dependent factors in determining pop-
ulation dynamic behavior, and his classic laboratory
experiments, reported in Nicholson (1954a, b), were
designed to demonstrate what he regarded as a ‘‘self-
evident truth’’ (J. L. Readshaw, personal communi-
cation). His view has often been contrasted with that
of Andrewartha and Birch (1954), who focused on the
role of population-extrinsic (generally abiotic) density-
independent factors in determining population dynamic
behavior. Today there is general agreement that both
density-dependent and density-independent factors are
important for understanding the overall dynamics of a
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population (Turchin 1995, Leirs et al. 1997). Earlier
interpretations of population data largely equated in-
trinsic population control with stability, and extrinsic,
abiotic control with instability and large fluctuations.
However, it should never be forgotten that some sort
of density dependence is needed for maintaining any
population (Orzack 1997). Focusing on the density-
dependent structure, May (1976) demonstrated in his
pioneering paper that nonlinear density dependencies
may give rise to very complicated dynamical behavior
in rather simple population models.

Extensive studies of time series data from Nichol-
son’s experiments have generated much valuable in-
sight (e.g., May 1976, Oster 1977, 1981, Gurney et al.
1980, 1983, 1999, Readshaw and Cuff 1980, Readshaw
and van Gerwen 1983). In particular, biologically plau-
sible mechanisms capable of explaining the observed
cycles in abundances have been described. Much focus
has been on revealing dynamic properties of the pro-
posed models (including the location of fixed points
and their stability properties), and on relating these
properties to biological processes.
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FIG. 1. Demographic rates with identical density-depen-
dent components (nonlinear in this case) and different den-
sity-independent components.

Daniels (1994) reported on a replicated 2 3 2 fac-
torial experiment with blowfly populations (Nichol-
son’s [1954a, b] experiments were not replicated), with
larval competition as the main density-dependent fac-
tor. Experimental factors were exposure to the toxic
heavy metal cadmium (no exposure or a sublethal dose)
and initial population density (low or high). Our main
interest is in determining whether exposure to cadmium
affects vital rates; the initial density factor may be con-
sidered a ‘‘blocking’’ variable introduced to increase
the sensitivity of the inference for cadmium treatment.
Cadmium, an abiotic density-independent factor, is one
of the most toxic nonessential elements found in the
environment. The main toxic effect is its ability to dis-
place copper and zinc ions from their binding sites in
metalloproteins, which destroys the biological prop-
erties of many enzymes. Cadmium may also substitute
calcium in several physiological processes. Earlier
analyses and modeling approaches using these data
have been reported by Smith et al. (2000). Here, we
report further on the empirical modeling of these pop-
ulation data.

Various statistical approaches have been used to an-
alyze (relatively short) ecological time series, including
computer-intensive methods such as nonlinear fore-
casting and response surface methodology (Sugihara
and May 1990, Ellner and Turchin 1995, K.-S. Chan,
H. Tong, and N. C. Stenseth, unpublished manuscript).
Statistical modeling approaches may broadly be divid-
ed into parametric and nonparametric methods (Bow-
man and Azzalini 1997); the choice between these de-
pends on the purpose of the analysis, as well as on the
amount of data available. For answering specific ques-
tions about well-defined ecological quantities, para-
metric models have the benefits of easy interpretation
and a well-developed inferential theory. At the first
stage of an analysis there may, however, be more em-
phasis on establishing general features of the dynamical
system, like the presence and shape of nonlinearities
in the density-dependent structure. In this part of the
study, nonparametric models are potentially very use-
ful. Making minimal assumptions about the functional
forms, such models allow the data to ‘‘speak for them-
selves’’. Furthermore, nonparametric methods can be
used to test the adequacy of parametric models (Hart
1997). In general, nonparametric estimators may be
expected to have small bias and usually a lower order
of convergence than their parametric counterparts,
hence for small data sets a well-chosen parametric es-
timator will usually outperform nonparametric esti-
mators in terms of mean square error (Hart 1997). How-
ever, it is often difficult to know what an appropriate
parametric model would be for a given problem, and
nonparametric models may therefore be useful even in
situations involving small amounts of data. Here we
use a particular class of nonparametric models known
as generalized additive models (GAM; e.g., Hastie and
Tibshirani 1990; for ecological applications of such

models, see, e.g., Stenseth et al. [1997], Bjørnstad et
al. [1998]).

As an interpretive aid, it is commonly useful to con-
sider population dynamical behavior as an interaction
between a deterministic and a stochastic component
(Stenseth et al. 1998). The relative importance of these
components is closely related to the issue of density-
dependent vs. density-independent control. Typically,
within the field of statistical modeling of ecological time
series data (Stenseth et al. 1997, Bjørnstad et al. 1998),
the skeleton (sensu Tong 1990) represents the deter-
ministic component. The stochastic component is often
further divided into (cf. May 1973) demographic sto-
chasticity (typically related to the density-dependent
components of the model) and environmental stochas-
ticity (typically related to the density-independent com-
ponents of the model). In general, the observed popu-
lation dynamical behavior may be the result of a com-
plex interaction between the deterministic and the
stochastic components (Takens 1994, Tong 1995, Wie-
senfeld and Moss 1995). For example, in a nonlinear
deterministic system generating limit cycles, introducing
stochasticity may alter the dominant period of the at-
tractor (Stenseth et al. 1998). As a consequence, one
should distinguish between studies aimed at understand-
ing general structural features of the system and the more
ambitious task of building a realistic model capturing
all observed population dynamic features. Here we re-
strict ourselves to the former.

Specifically, we aim to elucidate the main charac-
teristics of the demographic rates in the transition be-
tween the different life stages. A demographic rate may
be decomposed into a density-independent component
(a constant for each combination of levels of the den-
sity-independent factors) and a density-dependent com-
ponent (a function of density); Fig. 1 illustrates the
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difference between these two components. The func-
tional shape of the latter component (e.g., whether it
is nonlinear) will be a main target in the analysis we
present. A secondary aim is to discover whether ex-
posure to a density-independent factor (cadmium) has
any effect on the demographic rates. Since cadmium
may affect development and survival, increased larval
mortality may be experienced at high larval densities,
introducing an interacting effect between a density-
independent factor and a density-dependent factor.

THE DATA

Our data represent observations on the temporal fluc-
tuations in 12 laboratory populations of the greenbottle
blowfly Lucilia sericata Meigen, the northern hemi-
sphere sister species of L. cuprina, over a period of
776 d. These experiments, carried out at the University
of Reading during 1989–1992, are described in detail
by Daniels (1994) and Smith et al. (2000). Colonies
were kept in separate plastic tanks at 258C and 60%
relative humidity on a 12 h/12 h light/dark regime. The
diet, provided both in fresh and dried form, consisted
of 20 g/kg agar containing 20% (by volume) horse
blood and 50 g/kg dried brewers yeast (20 g fresh diet
per population, fully replaced every two days). The
fresh diet served both as a medium for oviposition and
as food, primarily for the larvae and to some extent
also for the adults. Larvae were allowed to migrate into
vermiculite surrounding the diet pot for pupating. Su-
crose, water and dried diet were provided ad libitum
for adults.

The blowfly populations were divided into four ex-
perimental groups, each consisting of three replicates.
Cadmium acetate was given through fresh and dried
diet (50 mg cadmium/kg fresh diet) to six treatment
populations; the remaining six populations were con-
sidered controls. The three populations in each low-
density group were initiated with 30 pupae and 30
adults, whereas the three populations in each high-den-
sity group were initiated with 150 pupae and 150 adults.
In the following, we refer to the populations by the
terms control (CON), cadmium (CAD), each subdivid-
ed into low density (L) and high density (H): for ex-
ample, CON(L) refers to all three low-density control
populations, whereas CAD(H3) refers to the third high-
density cadmium treatment population.

The data consist of a panel with 3 3 12 time series,
giving counts every two days for three different life
stages in each population: larva, pupa, and adult (eggs
were not counted). All time series span the same period
and were collected by the same personnel. Counts of
premigratory larvae and adults include all age groups,
whereas pupal counts only include those pupating dur-
ing the last two days (i.e., since the last count). Only
viable pupae (i.e., pupae surviving long enough to be-
come adults) are included in the counts used here
(Smith et al. [2000] included both viable and nonviable
pupae in their analyses).

Time series data for larvae, pupae, and adults are
shown in Figs. 2–4. A qualitative change is seen in
some features when comparing control populations (the
first two columns of Figs. 2–4) with cadmium popu-
lations (the last two columns of Figs. 2–4). Notice that
one cadmium population (CAD[L2]) went extinct be-
fore the end of the experiment; this population is ex-
cluded from our analyses.

In the analyses, combining data from all replicates
proved useful, since it led to substantial reduction in
the variance of the estimators. However, to evaluate
the degree of consistency among the replicates, they
were also analyzed separately.

MODELING STAGE-STRUCTURED INTERACTIONS

Stochastic state transition models (Ebenman and
Pearsson 1988) are frequently used to describe tem-
poral population fluctuations (Caswell 1989a, b). As-
sume for this purpose that the life cycle of the species
under consideration is divided into d age classes of
equal duration; let Nt,1,. . . ,Nt,d denote the population
abundances for each age class at time t.

The model describing the population-dynamic pro-
cess relates the state of the system at time t 1 1, defined
as Nt11 5 (Nt11,1, . . . , Nt11,d)T, to earlier states. Anal-
ogous to a Leslie matrix representation, this may be
expressed as

N 5 A(N , N ,. . . ,N ; n )N .t11 t t21 t2q t t (1)

The transition matrix A(Nt, Nt21, . . . , Nt2q; nt) may
depend on the state of the system at previous time steps
(t, t 2 1, . . . , t 2 q) as well as on a stochastic term
nt. For a given population system, the appropriate form
of Eq. 1 will depend on the chosen time unit. Based
on the approximation that there are four life stages
(larva, pupa, immature adult, and mature adult) each
lasting eight days, Smith et al. (2000) use a time step
of eight days in their statistical modeling of the same
data. Considering the differences in the actual time
span of each life stage (see Table 1), a model based on
a smaller time step than eight days may be able to
capture the dynamics of the system more accurately.
Here, we use a time step of two days (i.e., equal to the
frequency of observation).

One immediate advantage of using a two-day time
step relates to the particular form of our data. In the
modeling, we need to take into account the fact that
pupal counts represent numbers of individuals that pu-
pate in two-day cohorts, whereas larval and adult
counts represent all individuals in a life stage (and thus
involve several two-day cohorts). One approach would
be to recover the approximate total number of pupae
at a given time by summation of several pupal cohort
numbers, thus bringing the pupal counts onto the same
time scale as the other counts. Modeling and subse-
quent estimation can then be based exclusively on the
total counts of larvae, pupae, and adults. Another ap-
proach is to incorporate cohort counts explicitly into
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FIG. 2. Stage-specific abundances of four L. sericata populations, counted every two days over a period of 776 d.
Abbreviations are: CON, control; CAD, cadmium; L, low density; H, high density; ‘‘1’’ denotes first replicate.

the model, at the expense of making the model more
detailed and possibly more complicated. We adopted
the latter approach, since it requires only the recorded
variables for estimation.

The model to be described consists of a number of
equations of the form

N 5 N exp[a 1 g (log N ) 1 g (log N )]t11,k t,k 1 t2t,k 2 t2t,k0 1 2

(2)

where Nt,k denotes the kth element of the state vector Nt,
t $ 0 is a time delay, a is a constant, and g1 and g2 are
smooth functions (see the Appendix for a technical def-
inition of smooth functions), one or both of which may
be absent. The variables correspond to sub-N and Nt,k t11,k0

sequent age groups in the blowfly life cycle; thus the
exponential factor in Eq. 2 represents either rate of sur-
vival or rate of reproduction, depending on the context.
The per-unit-abundance net growth rate is defined as log
Nt11,k 2 and is assumed to be an additive functionlog Nt,k0

of and log plus noise. Density indepen-log N Nt2t,k t2t,k1 2

dence (respectively density dependence) corresponds to
having g1 [ g2 [ 0 (respectively g1 ± 0 for at least one
function). In the case of density independence, the per-
unit-abundance rate is simply a constant. In the case of
density dependence, the per-unit-abundance rate decreas-

es (respectively increases) as a function of
, 0 (respectively .N when g9(N ) g9(log N )t2t,k i t2t,k i t2t,ki i i

0), where the prime indicates differentiation.

STAGE STRUCTURE REPRESENTATION

Model assumptions

For modeling purposes, we make the assumption that
the blowfly life history consists of four basic devel-
opmental stages: egg/larva, pupa, immature adult and
mature adult. Approximate length of each stage is
shown in Table 1; some stages have a length that de-
pends on the treatment. Here, we assume that the larval
stage lasts for eight days, the pupal stage lasts for 10
d, and the immature adult stage lasts for four days. As
a consequence, stage durations are assumed to be den-
sity independent. The life span of mature adults has no
specified upper limit. A separate egg stage has not been
included in the model, in part because data are not
available on the number of eggs. Since hatching is com-
pleted within roughly one day (Daniels 1994), omitting
this stage from the model is not in conflict with a time
step of two days. A further modeling assumption is that
the demographic rates are identical for all individuals
within a given age group.

Different age groups within a life stage are assumed



September 2001 2649NONPARAMETRIC MODELING OF BLOWFLIES

FIG. 3. Stage-specific abundances of four L. sericata populations, counted every two days over a period of 776 d. The
population CAD(L2) went extinct after 298 d. See Fig. 2 legend for definitions; ‘‘2’’ denotes second replicate.

to have identical density-dependent structure. The re-
productive rate is assumed to depend only on the den-
sity of mature adults. Assuming that any effects of
density on the larvae manifest themselves on survival
in the transition from larva to (viable) pupa, the sur-
vival probability of a larva from one age group to the
next will be density independent. The proportion of
larvae pupating (to viable pupae) at any given time is
modeled as a function of the total number of larvae
four days before. The latter quantity serves as a proxy
(up to a proportionality factor) for the number of larvae
in the feeding phase at the time the currently pupating
larvae were feeding. This reflects the expectation that
density-dependent effects to be found in the larval stage
are related to the feeding conditions of the larvae.

Note that, since pupal counts include only the viable
pupae, the only way to leave the pupal stage is to
become an adult. Since the immature stage accounts
for only a small part of the whole adult stage (;5 out
of 17 d), we make the assumption that no deaths occur
in the immature adult stage (this greatly simplifies the
estimation process). As long as we do not ask for the
death rate amongst immature and mature adults sepa-
rately, but only the overall death rate within the adult
stage, little harm is done by making this assumption.

The model

A stage-structured model for the population dynam-
ics will now be presented. Let

iL [ population of larvae d ∈ [2i 2 2, 2i] days oldt

at time t

iP [ population of pupae d ∈ [2i 2 2, 2i] days oldt

at time t

iA [ population of adults d ∈ [2i 2 2, 2i] days oldt

at time t

where the range of the superscript i ∈ {1,. . . , 4} in
the first definition, {1,. . . , 5} in the second, and
{1,2,3,. . . } in the third. Superscripts indicate age
groups within a stage (i.e., members differing at most
two days in age within a stage). Abundances of im-
mature adults and mature adults at time t are approx-
imated by

2
I jA 5 A (immature adults at time t)Ot t

j51

`

M jA 5 A (mature adults at time t). (3)Ot t
j53



2650 OLE C. LINGJÆRDE ET AL. Ecology, Vol. 82, No. 9

FIG. 4. Stage-specific abundances of four L. sericata populations, counted every two days over a period of 776 d. See
Fig. 2 legend for definitions; ‘‘3’’ denotes third replicate.

TABLE 1. Approximate time span (in days) of each stage in
the life cycle of L. sericata.

Life stage
Control

populations
Cadmium

populations

Egg and larva
Pupa
Immature adult
Mature adult

8
6–12

5
12

9
6–12

5
9

Note: Some of the numbers in the table depend on larval
density, as well as on other factors.

Furthermore, note that the total size of the larval pop-
ulation at time t is

4
jL 5 L . (4)Ot t

j51

The stage-structured model is given by the following
set of equations:

1 M ML 5 A exp[a 1 f (log A )] (5)t11 t L1 L t

i11 iL 5 L exp(a ) 1 # i # 3 (6)t11 t L2

1 4P 5 L exp[a 1 f (log L )] (7)t11 t P P t21

i11 iP 5 P 1 # i # 4 (8)t11 t

2 1 5A 5 A 5 P (9)t11 t t21

i11 i I MA 5 A exp[a 1 f (log A ) 1 f (log A )]t11 t A A1 t A2 t

2 # i , ` (10)

where the smooth functions ( fL, fP, fA1, and fA2) and the
parameters (aL1, aL2, aP, and aA) correspond to the den-
sity-dependent and density-independent components of
the demographic rates, respectively. When no confu-
sion can arise, we refer to the parameter values simply
as reproduction rate, larval survival rate, and so on.

The particular form of the model in Eqs. 5–10 is similar
to, e.g., the larva–pupa–adult (LPA) model (Dennis et
al. 1995). However, the latter model is based on only
three stages and assumes linear functions inside the
exponentials rather than general smooth functions.

Statistical methods

To determine the demographic rates in Eqs. 5–10, a
new set of equations is derived, with the purpose of
linking the unknown rates to observed quantities. A
combination of nonparametric regression (GAM) and
nonlinear regression is used to estimate the density-
independent components (constant terms) and the den-
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FIG. 5. Nonparametric trend estimates for all the time series, considered as functions of the observation times. Each curve
was found by smoothing one of the time series with a cubic smoothing spline using seven degrees of freedom.

sity-dependent components (functions); see the Ap-
pendix for more details about the estimation procedure.

To compare parameter values, simple parametric
tests such as the t test are not applicable, due to the
unknown distributional properties of the parameter es-
timates. Instead, we resort to using two nonparametric
tests, one for testing whether two samples could have
come from populations with the same mean (the Mann-
Whitney [MW] U test), and one for testing whether
two samples could have come from identical distri-
butions (the Kolmogorov-Smirnov [KS] test). Both
tests assume that the samples are mutually independent
random samples; since samples correspond to inde-
pendent populations (trials), this is a reasonable as-
sumption. Formal statistical comparison of function
shapes is a difficult problem and will not be treated
here (but see Bowman and Azzalini [1997] for a dis-
cussion of this topic for models involving a single
smooth function). Rather, we emphasize the explorato-
ry nature of our analysis and simply compare function
shapes visually.

All the time series analyzed as part of this study have
long-term trends (Fig. 5), and most show reduced var-
iability in pupal and adult counts towards the end of
the experimental period (Fig. 6). The long-term trends
consist of an initial decline phase lasting for ;200–
300 d (depending on which life stage we consider),

followed by an increase phase lasting an additional
200–300 d. The trends then appear to level off. To
examine the effects of the long-term trends on the es-
timated rates, each time series was split into two halves
of equal length, denoted part I and part II, which were
analyzed separately.

The model in Eqs. 5–10 was first estimated for four
different sets of data, each being the result of combin-
ing data from all three replicates of CON(L), CON(H),
CAD(L), or CAD(H). As a check of consistency be-
tween replicates, we also estimated the model for in-
dividual replicates. We found that estimates derived
from data on single replicates are very similar. Fur-
thermore, the effect on the estimates of initial popu-
lation density seems negligible.

RESULTS

Density-independent components of demographic
rates

Estimated density-independent components of the
demographic rates are shown in Fig. 7, and a compar-
ison of parameter values is shown in Table 2. Visual
examination of Fig. 7 reveals that estimated rates are
quite similar between replicates, and indeed within the
control populations and within the cadmium popula-
tions.
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FIG. 6. Nonparametric standard-error estimates for all the time series. Each curve was found by smoothing one of the
time series (considered as a function of the observation times), then smoothing the time series of squared residuals from the
first smooth, and finally taking the square root. Smooths were computed using a cubic smoothing spline with five degrees
of freedom.

Cadmium populations have significantly larger lar-
va-to-adult survival rate (aP) and smaller adult survival
rate (aA) than control populations ( pMW , 0.01 and pKS

, 0.01 in both cases, both for part I and part II). Cad-
mium populations have significantly smaller reproduc-
tive rate than control populations in part II (pMW 5 0.03
and pKS 5 0.03), but not in part I.

Reproductive rate (aL1) increases significantly from
part I to part II ( pMW , 0.01 and pKS , 0.01, for both
control populations and cadmium populations). For
control populations, larva-to-adult survival rate (aP)
decreases significantly ( pMW , 0.01 and pKS 5 0.03)
and adult survival rate (aA) increases significantly ( pMW

, 0.01 and pKS , 0.01) from part I to part II of the
experiment. A change of parameters from part I to part
II is consistent with the presence of long-term trends.

Density-dependent components of demographic rates

Fig. 8 shows function estimates based on all repli-
cates within each of the four experimental groups.
Functions are quite similar, even when comparing cad-
mium populations and control populations. The larva-
to-adult survival curve ( fP) is markedly nonlinear, il-
lustrating the usefulness of empirical modeling in dis-
covering the nature of functional relationships. The

curve fP is increasing for low larval densities and (ex-
cept for part I of CAD[H]) decreasing for higher den-
sities. On the other hand, there is no apparent effect of
adult density (neither immature nor mature) on the
adult survival rate ( fA1 and fA2). The estimated repro-
duction curve ( fL) decreases markedly with adult den-
sity.

Fig. 9 shows plots of function estimates for each of
the eleven populations that persisted. There is again a
high degree of consistency between the results obtained
for different replicates.

DISCUSSION

The Lucilia sericata data analyzed in this study in-
clude both an experimental contrast (control vs. cad-
mium) and replication, thereby providing an unique
opportunity to evaluate methodology that might be use-
ful in analyzing ecological time series. Our analyses
demonstrate strong consistency between the estimation
results obtained for different replicates of the same
experimental treatment. The strong consistency be-
tween estimates obtained for different replicates not
only emphasizes the effectiveness of the generalized
additive model (GAM) methodology, but also high-
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FIG. 7. Estimate of the density-independent component of the demographic rates, for individual populations (shown as
circles) and for the four experimental groups (shown as filled triangles), for the model in Eqs. 5–10. For each parameter in
each panel, the left-most three (two in the case of the cadmium treatment) circles correspond to the L (low initial density)
replicates, and the right-most three circles correspond to the H (high initial density) replicates. The two filled triangles are
pooled estimates for the entire L group and the entire H group, respectively. Note that parameter values are plotted as exp(a)
for the various replicates.

TABLE 2. Tests for equal location of parameters in control and cadmium populations (testing part I and part II separately)
and in part I and part II (testing control and cadmium populations separately), using a two-sided alternative; entries are
probability values.

Parameter

Control vs. cadmium

Part I

pMW pKS

Part II

pMW pKS

Part I vs. part II

CON

pMW pKS

CAD

pMW pKS

aL1 1.00 0.97 0.03 0.03 ,0.01 ,0.01 ,0.01 ,0.01
aL2 0.79 0.90 0.54 0.69 0.24 0.47 0.15 0.36
aP ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 0.03 0.84 0.87
aA ,0.01 0.03 ,0.01 ,0.01 ,0.01 ,0.01 0.10 0.08

Notes: Probability values are given both for a two-sample Mann-Whitney U test (pMW) and for a two-sample Kolmogorov-
Smirnov test (pKS). Abbreviations are: CON, control; CAD, cadmium.

lights the obvious value of replication (Smith et al.
2000) in ecological time series studies.

General features of the model

There is no significant effect of adult density on the
adult survival rate ( fA1 and fA2). This result is not sur-
prising, considering that adults are fed ad libitum, and
consequently adults supposedly have no need to com-
pete for food. Nevertheless, the estimated reproduction
curve ( fL) decreases markedly with adult density. Pos-

sible explanations for this include reduced fecundity
due to other kinds of stress experienced by adults at
high densities, local mate competition, and the fact that
the total reproduction is limited by the area suitable
for oviposition (the fresh diet). The negative slope of
fL could also be a delayed effect of competition at the
larval stage, which may reduce body size and therefore
fecundity of these individuals as adults (Ullyett 1950,
Nicholson 1954a). Such an effect could easily have
been incorporated into the model, but without appro-
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FIG. 8. Estimate of the density-dependent component of the demographic rates, for each of the four experimental groups,
for the model in Eqs. 5–10. Approximate 95% confidence bands are also shown (dotted lines). Argument values are shown
as rug plots along the abscissas. Functions are centered (see the Appendix) and are plotted on the same range. Estimates for
CAD(L) are based on data for CAD(L1) and CAD(L3) only.

priate data (requiring additional experiments) we can-
not determine whether or not this effect is the real cause
for the decrease in the estimated reproduction rate.

Larval competition is known to be an important com-
ponent of blowfly population dynamics (Nicholson
1950). Based on the observation that reduction in the
amount of food per larva leads to reduced growth and
survival of L. sericata, Simkiss et al. (1993) concluded
that increasing larval densities have negative effects

on larval survival. However, we found that increased
larval density has a positive effect on larva-to-adult
survival ( fP) at relatively low densities (an Allee ef-
fect). This phenomenon, known as facilitation, is com-
mon among dipteran larvae and has been described in
earlier experiments with blowflies (Ullyett 1950, Wu
1978). At low densities, aggregation serves to increase
local temperature and humidity, and thereby the effi-
ciency of external digestion (Ullyett 1950, Hanski
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FIG. 9. Estimate of the density-dependent component of the demographic rates, for all 12 populations, for the model in
Eqs. 5–10. Functions are centered (see the Appendix) and are plotted on the same range. Estimates for CAD(L2) are not
shown.

1987), and may therefore contribute to increased
growth and survival of the larvae. Yet, at higher den-
sities, competition results.

Effects of cadmium

Although cadmium has a significant effect on some
demographic rates (larva-to-adult survival rate [aP] and
adult survival rate [aA], and for part II also reproduc-
tion rate [aL1]), the effect on the density-dependent
components appears (by visual examination) to be rath-

er small. Examining Fig. 8, the estimates of fP have a
peak that is shifted to the left by ;20% when cadmium
is present, indicating an increased effect of larval com-
petition at high larval densities in cadmium popula-
tions. Overall, there is lower reproduction and lower
survival in the cadmium populations, but also higher
larva-to-adult survival. Lower fecundity in cadmium
populations may reduce population growth such that
larval density does not exceed carrying capacity as
much as in controls. The higher larva-to-adult survival
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may thus be a result of reduced density-dependent lar-
val mortality.

Concluding comments

Nonparametric regression has allowed us to dis-
entangle the density-dependent effects, as well as the
density-independent effects, at different stages under
various environmental conditions (for another ex-
ample, see, e.g., Leirs et al. [1997]). Indeed, the non-
parametric approach is a very valuable first step in
the development of data-based population models. It
is by taking such an open-minded view that we are
able to detect new (i.e., not previously appreciated)
patterns in the way different stages interact. This
novel insight provides a basis for more detailed ex-
perimental studies (aiming at verifying or rejecting
the patterns suggested on the basis of this kind of
time series modeling). Analysis that incorporates
greater detail of the emerging dynamics will be fur-
ther facilitated by having a parameterized model,
since we then more easily can study the effect of
changing the strength of, e.g., the density-dependent
effects.

Further work suggested by these results falls into
two categories. On the statistical side, the model could
be extended to include interaction terms, the signifi-
cance of which should then be tested in the treatment
and the control group. The statistical significance of
the effect of cadmium on the population dynamics
should be tested formally, following formal testing of
common structures for panels of time series (Tong
1990, K.-S. Chan, H. Tong, and N. C. Stenseth, un-
published manuscript). The current results can then
be used to develop simpler, parametric models that
are easier to analyze mathematically (cf. Smith et al.
2000).

On the experimental side, short-term experiments are
needed in order to test hypotheses about model struc-
ture. In particular, one may investigate the modeling
assumption that different age groups within a life stage
have identical density-dependent structure. Forrest
(1996) investigated the density dependence from larvae
to pupae using even-aged cohorts. However, compe-
tition between different larval instars is likely to be
asymmetric, and future experiments should examine
the effects of both larval age structure and density on
adult emergence.

Finally, we argue that this sort of experimental and
analytical approach can yield new insights into areas
of applied ecology such as ecotoxicology. We noted
above that flies in cadmium populations overall have
lower fecundity than control flies, hence the cad-
mium populations do not rise to such high densities
and are not as strongly affected by nonlinearities as
are the control populations. One consequence of this
is that the mean biomass production at the pupal
stage is higher for the cadmium than for the control
populations (Daniels 1994), even though conven-

tional ecotoxicology dogma would predict the op-
posite: the simple prediction would be that individ-
uals exposed to a toxin such as cadmium should have
less energy available for growth and reproduction
(i.e., reduced ‘‘scope for growth’’), hence contrib-
uting to a lower average biomass per population. In
practice, the interaction of the toxin with the strongly
nonlinear density dependence produced an emergent
property at the population level that is at variance
with the simple scope-for-growth prediction. This
highlights the importance of dissecting out the struc-
ture of population processes using experimentation
and nonparametric regression techniques in order to
be able to understand and to predict effects at the
population level.
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APPENDIX

Nonparametric curve estimation

The model in Eqs. 5–10 involves several unobserved state
variables (e.g., , i 5 1,2,3,4), which makes the individualiLt11

equations unsuitable for estimation of unknown parameters
and functions. Here, we derive a new set of equations in-
volving observed state variables only (i.e., actual counts).
Nonparametric additive regression and nonlinear regression
can then be used to estimate unknowns. We first prove the
following result.

Theorem.—Suppose Eqs. 5–10 hold. Then we have

1 M MP 5 A exp(a 1 f (log A ) 1 f (log L )) (A.1)t11 t24 L t24 P t21

M M 1A 5 (A 1 P )t11 t t26

I M3 exp(a 1 f (log A ) 1 f (log A )) (A.2)A A1 t A2 t

3
1L 5 exp(2a ) POt11 P t1s12

s50

3 exp(2sa 2 f (log L )) (A.3)L2 P t1s

where
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a 5 a 1 3a 1 a .L1 L2 P

Proof.—1) Eq. A.1 follows by applying Eq. 6 repeatedly
to the right hand side of Eq. 7, and then applying Eq. 5 to
the result.

2) Eq. A.2 holds because
M i11A 5 AOt11 t11

i$2

i I M5 A exp[a 1 f (log A ) 1 f (log A )]O t A A1 t A2 t
i$2

M 2 I M5 (A 1 A )exp[a 1 f (log A ) 1 f (log A )]t t A A1 t A2 t

M 1 I M5 (A 1 P )exp[a 1 f (log A ) 1 f (log A )].t t26 A A1 t A2 t

3) To show Eq. A.3, observe first that
3 3

42s 4L 5 L 5 L exp(2sa ). (A.4)O Ot11 t11 t1s11 L2
s50 s50

By using Eq. 7 we find that
4 1L 5 P exp[2a 2 f (log L )]t1s11 t1s12 P P t1s (A.5)

and by substituting for in Eq. A.4 using Eq. A.5, we4Lt1s11

arrive at Eq. A.3.
Eqs. A.1–A.3 refer only to actually observed state variables

(Lt, , At, and quantities that can be derived from these). The1Pt

number of immature adults can be computed fromIAt11

I 1 2 1 1 1 1A 5 A 1 A 5 A 1 A 5 P 1 Pt11 t11 t12 t11 t t24 t25

and the number of mature adults can be found from 5MAt11

At11 2 .At11

Log-transforming Eqs. A.1 and A.2 and imposing an ad-
ditive noise structure, we have

1Pt11 Mlog 5 a 1 f (log A )L t24M1 2At24

(1)1 f (log L ) 1 « (A.6)P t21 t

MAt11 Ilog 5 a 1 f (log A )A A1 tM 11 2A 1 Pt t26

M (2)1 f (log A ) 1 « (A.7)A2 t t

where , t 5 1,2,. . . , is a white noise process, i.e., a se-(i)«t

quence of zero-mean uncorrelated random variables with a
common variance , for i 5 1, 2. By imposing noise on the2si

model, we acknowledge that the original Eqs. 5–10 should
only be considered approximate relationships, due to envi-
ronmental and demographic stochastic forces.

Eqs. A.6 and A.7 are additive models (see, e.g., Hastie and
Tibshirani [1990]) for which unknowns can be estimated by
minimizing a penalized least-squares problem. For example,

in Eq. A.6 the estimates for a, fL, and fP can be found by
minimizing

2
1Pt11 Mlog 2 a 2 f (log A ) 2 f (log L )O L t24 P t21M5 1 2 6At t24

` `

2 21 l { f 0(t)} dt 1 l { f 0(t)} dt1 E L 2 E P
2` 2`

(A.8)

over a and all functions fL and fP such that the integrals exist.
The result is an estimate for the level and estimates f̂P(x)â
and f̂L(x) for the density-dependent effects fP(x) and fL(x).
Technically, function estimates may be shown to be natural
cubic smoothing splines (two-times continuously differentia-
ble piece-wise cubic polynomials); see Hastie and Tibshirani
(1990) for details.

The nonnegative penalty terms (i.e., the integrals) are zero
only for functions with no curvature (i.e., linear functions),
and they attain increasingly larger positive values with in-
creasing curvature of the functions. The smoothing param-
eters l1 . 0 and l2 . 0 determine the trade-off between
goodness-of-fit (represented by the sum-of-squares term) and
smoothness (represented by the penalty terms). As li → `,
the corresponding function estimate approaches a linear fit.
A useful reparameterization of a smoothing parameter l is in
terms of the degrees of freedom df(l). In general, df(l) is a
strictly decreasing function of l, and we have df(l) $ 2 and
df(l) → 2 as l → `.

S-PLUS was used to estimate Eqs. A.6 and A.7, using five
degrees of freedom for each function. Each equation was
fitted by a call to the GAM software of the form gam(z ; 1
1 s(x, 5) 1 s(y, 5)), where z is the vector of responses (the
left-hand side of Eq. A.6 or A.7) and x, y are the vectors of
covariates (log and log Lt21 for Eq. A.6, and similarly forMAt24

Eq. A.7).
For identifiability, the functions in these equations are as-

sumed to be centered, i.e.,
Mf (log A ) 5 0 f (log L ) 5 0O OL t24 P t21

t t

I Mf (log A ) 5 0 f (log A ) 5 0.O OA1 t A2 t
t t

Estimates for a and aA in Eqs. A.6 and A.7 are simply the
sample averages of the corresponding left-hand sides. In order
to estimate the remaining parameters aP, aL1 and aL2, we min-
imized the squared difference between the two sides of Eq.
A.3 with respect to aP and aL2. This is a nonlinear (deter-
ministic) regression problem, and we used the routine nls()
in S-PLUS to obtain the estimates. Finally, aL is determined
from the given estimates and the relation aL1 5 a 2 3aL2 2
aP. S-PLUS code is available as Supplementary Material.

SUPPLEMENTARY MATERIAL

The S-PLUS code used to obtain the estimates presented in the paper is available in ESA’s Electronic Data Archive:
Ecological Archives: E082-027.


