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Abstract 17 

Freshwater ecosystems are declining faster than their terrestrial and marine 18 

counterparts because of physical pressures on habitats. European legislation requires 19 

member states to achieve ecological targets through the effective management of 20 

freshwater habitats. Maps of habitats across river networks would help diagnose 21 

environmental problems and plan for the delivery of improvement work.  Existing 22 

habitat mapping methods are generally time consuming, require experts and are 23 

expensive to implement. Surveys based on sampling are cheaper but provide patchy 24 
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representations of habitat distribution.  In this study, we present a method for mapping 25 

habitat indices across networks using semi-quantitative data and a geostatistical 26 

technique called regression kriging. The method consists of the derivation of habitat 27 

indices using multivariate statistical techniques that are regressed on map-based 28 

covariates such as altitude, slope and geology. Regression kriging combines the 29 

Generalised Least Squares (GLS) regression technique with a spatial analysis of 30 

model residuals. Predictions from the GLS model are ‘corrected’ using weighted 31 

averages of model residuals following an analysis of spatial correlation. The method 32 

was applied to channel substrate data from the River Habitat Survey in Great Britain. 33 

A Channel Substrate Index (CSI) was derived using Correspondence Analysis and 34 

predicted using regression kriging. The model explained 74% of the main sample 35 

variability and 64% in a test sample. The model was applied to the English and Welsh 36 

river network and a map of CSI was produced.  The proposed approach demonstrates 37 

how existing national monitoring data and geostatistical techniques can be used to 38 

produce continuous maps of habitat indices at the national scale.  39 

Keywords: habitat mapping, habitat indices, channel substrate, regression kriging, River 40 

Habitat Survey, geostatistics 41 
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1. Introduction 43 

Freshwater ecosystems represent less than 1% of the Earth’s surface and 10% of all 44 

known species, yet they are declining faster and are more endangered than their 45 

terrestrial or marine counterparts, partly because of physical pressures on habitats and 46 

species (Loh et al., 2005; Revenga et al., 2005; Strayer and Dudgeon, 2010; Vorosmarty 47 

et al., 2010; WWF, 2014). 48 

Although research in ecology and environmental management has grown substantially in 49 

the past half-century, it has mainly focused on post-industrial issues such as water 50 

quality, pollution and land use impacts (Vaughan et al., 2009). With gradual improvement 51 

in water quality, other limiting factors such as physical habitat quality (i.e. the naturalness 52 

of the flow of water, and the structure and composition of the river bed and banks) and 53 

connectivity have become prominent.  54 

Globally, degradation of physical habitat quality due to river engineering and associated 55 

activities (e.g. constructions of dams, bridges, concrete banks, dredging) is recognised as 56 

a major conservation issue (Collen et al., 2014; Sala et al., 2000; Tockner and Stanford, 57 

2002; World Conservation Monitoring Centre, 1998). In Europe, as part of the 58 

implementation of the Water Framework Directive (WFD), member states must assess 59 

the ecological condition of rivers and lakes based on the naturalness of a series of 60 

biological elements (European Union, 2000).  Following the first round of River Basin 61 

Management Planning, 56% of water bodies failed to achieve their ecological targets. 62 

Engineered structures and ‘altered habitats’ were the dominant pressures responsible for 63 

the failure, ahead of point and diffuse sources of pollution (European Environment 64 

Agency, 2012). In England and Scotland, the proportion of water bodies failing to achieve 65 

ecological targets because of physical alterations was 49% and 37%, respectively 66 

(Environment Agency, 2012). The WFD requires member states to mitigate or remove 67 
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impacts on habitats and species through the implementation of programmes of measures 68 

including river restoration.   69 

The effective management of habitats at global and local scales should ideally be based 70 

on some knowledge of their distribution and an assessment of their naturalness and 71 

accessibility. At present, in Great Britain, habitats are either surveyed using semi-72 

quantitative methods at randomly selected sites that do not allow for continuous 73 

assessments or using habitat mapping techniques over longer stretches of river 74 

(Maddock, 1999).  Habitat mapping is geographically limited and generally carried out on 75 

an ad hoc basis by experts during ‘walkover surveys’ where habitat features are recorded 76 

on maps using mobile Geographic Information System (GIS) or hand-drawn sketches and 77 

some broad typologies (Hendry and Cragg-Hine, 1997; Sear et al., 2009). Although such 78 

methods provide valuable information on habitat distributions over relatively small areas, 79 

they are likely to be too expensive to implement across entire networks. The reliance on 80 

expert judgement for assessing habitat types and boundaries may also generate 81 

between-surveyor variability in the outputs produced and, as notions of habitat structure 82 

evolve, data collected at one point in time may not be comparable to maps produced 83 

years later by different experts (Cherrill and Mcclean, 1999). 84 

An alternative approach is to use river typologies based on geomorphological templates 85 

to predict the occurrence of broad river types along the river continuum. The history of 86 

attempts to classify rivers into different types spans at least 125 years, a period over 87 

which perhaps a hundred if not more individual efforts to divide and categorise rivers have 88 

been made (reviews of the extent of such efforts are given by Downs, 1995; Montgomery 89 

and Buffington, 1997; Mosley, 1987; Naiman et al., 1992; Newson et al., 1998; Thorne, 90 

1997).  91 
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Most river classification systems are based on the identification of river types using a few 92 

key variables representing drivers of geomorphological change or river processes such as 93 

stream power, sediment transport and supply (Montgomery and Buffington, 1997; 94 

Newson et al., 1998; Rosgen, 1994).  Although relationships between expert-driven 95 

geomorphic types and GIS attributes such as slope and drainage area can be observed, 96 

there is a considerable amount of overlap between types, reflecting the potential influence 97 

of additional driving elements such as channel, bank and hillslope vegetation, climate, 98 

woody debris, and natural variability in channel process expression (Church, 2002; 99 

Montgomery and Buffington, 1997; Rosgen, 1994). Greater differentiation between river 100 

types can be achieved by introducing attributes recorded in the field such as relative 101 

roughness (Montgomery and Buffington, 1997), shear stress or channel substrate 102 

(Rosgen, 1994), but this implies that extensive field work is carried out, thus reducing the 103 

feasibility of such an approach at national scales.  104 

In this article, we propose an alternative approach for mapping habitat elements across 105 

entire river networks that does not require continuous surveys of river catchments, but 106 

makes use of existing semi-quantitative survey data, GIS and a geostatistical technique 107 

called regression kriging (RK). The principle of the method is to identify and define habitat 108 

indices representing major dimensions in habitat distribution using known equations, 109 

expert systems or multivariate statistical analysis applied to existing habitat data taken 110 

from national surveys or monitoring programmes. The habitat indices are then predicted 111 

using Generalised Least Squares (GLS) linear regression models using GIS map-derived 112 

covariates such as altitude, slope, distance from source, discharge and geology which 113 

represent the known drivers of habitat/geomorphological change. The model residuals are 114 

then analysed using geostatistical functions to identify any remaining spatial correlation 115 

and pattern in their distribution. In the presence of spatial correlation, an interpolation 116 
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method, called kriging, is applied to account for (and, thus remove) any spatially 117 

correlated residual variance such that the interpolated residual predictions can be added 118 

to the GLS regression predictions. The RK model can then be applied to the entire river 119 

network by deriving the GIS covariates at regular spatial intervals (e.g. 500 m). 120 

This paper reports the development and application of the statistical models to a key and 121 

poorly mapped habitat element – channel substrate.  Channel substrate is a key 122 

component of species habitat (Maddock, 1999; Townsend and Hildrew, 1994), and it is 123 

one of three elements defining morphological condition under the WFD (European Union, 124 

2000). Channel substrate is also linked to the wider issues of diffuse pollution and 125 

agricultural impacts and it is key to our understanding of river and catchment processes 126 

(Collins et al., 2014; Rosgen, 1994). 127 

2. Material and methods 128 

2.1. Index derivation  129 

River Habitat Survey (RHS) data was used to derive an index representing channel 130 

substrate. RHS is a CEN-compliant (CEN, 2004) standard methodology for 131 

hydromorphological assessment under the WFD that is used in the UK and across 132 

Europe (Raven et al., 1997).  It is a methodology for recording habitat features for wildlife 133 

that has been implemented at more than 25,000 sites in the UK since 1994.  From 1994 134 

to 1996 and from 2007 to 2008, surveys were carried out at random sites in every 10 km² 135 

in England and Wales, thus, ensuring a wide geographical coverage of the river network.  136 

RHS records the presence of natural and management features at 10 equally spaced 137 

transects or ‘spot-checks’ along a 500 m reach (Raven et al., 1997). A visual estimate of 138 

the dominant channel surface substrate classified into eight categories according to the 139 

Wentworth scale (Wentworth, 1922) is recorded at each spot-check. The substrate types 140 
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recorded (with acronyms in brackets) are bedrock (BE), boulder (BO), cobble (CO), 141 

gravel-pebble (GP), sand (SA), silt (SI), clay (CL) and peat (PE). When channel substrate 142 

is not visible because of depth, water turbidity or the presence of a culvert, surveyors 143 

record the substrate type as ‘Not Visible’ (NV).    144 

RHS spot-check data on channel substrate was tabulated for all existing sites, each row 145 

representing a site and each column a substrate type (including ‘Not visible’). The 146 

channel substrate spot-check table was analysed using Correspondence Analysis (CA). 147 

CA is a multivariate analytical technique similar to Principal Component Analysis that is 148 

applicable to contingency tables (i.e. tables of counts). CA performs an analysis of the 149 

total table inertia and extracts dimensions (or components) representing linear 150 

combinations of input variables based on the amount of total inertia explained. Only sites 151 

in Great Britain were used as GIS datasets were not available for Northern Ireland at the 152 

time of the analyses. 153 

To derive the index, we used a subset of 2680 semi-natural RHS sites (i.e. sites with few 154 

or no in-channel bank structures or modifications) to reduce the potential influence of 155 

modifications on natural channel substrate diversity (Raven et al., 1997). Missing (‘Not 156 

Visible’) values were added as an additional variable in the analyses to account for 157 

differences in survey counts when present.  The resulting dimensions were investigated 158 

for their ecological and geomorphological significance and for the amount of variability 159 

(i.e. inertia) they explained. One dimension was chosen to represent substrate and 160 

calculate an index score, called the Channel Substrate Index (CSI) for all sites in the RHS 161 

database.  162 
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2.2. Regression kriging 163 

RK was applied following an iterative procedure using both Ordinary Least Square (OLS) 164 

and GLS regression techniques (Bivand et al., 2008; Webster and Oliver, 2007). The CSI 165 

index was first transformed using a Box-Cox procedure and modelled against a series of 166 

GIS attributes: four Principal Component Axes (PCA) combining altitude, slope, distance 167 

to source and height of source that were shown by Jeffers (1998) and Vaughan et al. 168 

(2013) to be strongly correlated to sediment distribution; land use categories from the 169 

Land Cover Map 2000 (Fuller et al., 2002); British Geological Survey solid and drift 170 

geology categories taken from the 1/625,000 scale maps; hydrometric areas 171 

corresponding to large catchment areas; and solid geology age categorised in 11 groups 172 

from the pre-Cambrian to the Neogene.  Solid geology age was included as a surrogate 173 

for hardness as older rocks tend to be harder and display coarser substrate types than 174 

softer and younger sedimentary deposits.     175 

Nominal attributes such as solid geology, hydrometric area and land use were 176 

transformed into binary indicator variables.  Due to the resulting large number of indicator 177 

variables which would have rendered the predictive models difficult to display and 178 

interpret (e.g. there are more than 100 different solid geology types), indicator variables 179 

were grouped based on their relationships to the CSI. Grouping was done by comparing 180 

coefficient values of indicator variables when individually regressed against CSI or 181 

performing ANOVAs. 182 

Only RHS sites with no missing channel substrate spot-check records were retained for 183 

the analysis as their presence introduces a potential bias in channel substrate 184 

representation and prediction. Model selection was performed using the Minitab 16 185 

(Minitab, 2010) linear regression (OLS) best subset selection procedure using Mallows 186 

Cp (all models) on RHS sites from 1994 to 2005 (9473 sites).   187 
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Model residuals were analysed for the presence of spatial correlation using a variogram 188 

(Webster and Oliver, 2007), which plots semivariance (a measure of dissimilarity) against 189 

lag vector (the distance and direction of separation). Spatially uncorrelated data display 190 

no observable change in semivariance with an increase in lag distance and are typically 191 

represented by a flat variogram. Spatially correlated data are typically represented by a 192 

monotonically increasing semivariance as the lag distance between sites increases.  193 

The empirical variogram is first calculated as the average squared difference between 194 

pairs of data points at each of a series of lags. It is fitted with a permissible variogram 195 

model (the model must not result in negative prediction variances) to describe the shape 196 

of the curve and identify the parameters which are required for RK.  Of particular 197 

relevance are the nugget and the range parameters (assuming that a bounded model 198 

such as the spherical or exponential model is fitted). The nugget variance is equal to the 199 

variance for sites re-surveyed or re-sampled at the same location and expresses micro-200 

scale variability and survey error. The range is the distance at which the semivariance 201 

reaches a plateau and beyond which data are no longer spatially correlated (Webster and 202 

Oliver, 2007). 203 

The OLS variogram parameters were used as part of an iterative process to estimate the 204 

regression parameters using GLS.  GLS is preferred to OLS as the latter assumes 205 

independence of observations, an unlikely case given spatial correlation (Bivand et al., 206 

2008).  Model residuals were checked for the presence of trends and outliers. The models 207 

were validated using a leave-one-out cross-validation technique (Bivand et al., 2008; 208 

Vaughan and Ormerod, 2003). 209 

The model was applied to all points using the GSTAT kriging procedure. Kriging linearly 210 

averages the residual values of surrounding points with weights estimated using the 211 

residual variogram (Webster and Oliver, 2007).  To reduce processing time, only points 212 
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within a radius roughly equal to the distance at which no observable correlation exists (i.e. 213 

the range) were selected for kriging.  The kriged residuals were then saved and added to 214 

the cross-validated predictions from the previous model. A pseudo-R2 value for the final 215 

predictions was derived by correlating the predicted and observed values. Residuals were 216 

computed and checked for their distribution and for signs of remaining spatial correlation. 217 

A check of model stability against time was performed by examining the residual 218 

distribution for each year of survey. The model was tested on a sample of 3884 sites 219 

collected from 2006-2011. 220 

The predictive model and kriging procedure were applied to the entire English and Welsh 221 

1:50,000 river network to produce a national map of sediment distribution. To do so, 222 

points were generated every 500 m on the river network using RivEX (Hornby, 2010) and 223 

the GIS map-based covariates required for prediction were derived for each point.  224 

3. Results 225 

3.1. Channel Substrate Index 226 

The first two components of the CA explained 21% and 17% of the total inertia (Table 1). 227 

The first component represented a gradient between sites dominated by fine substrate 228 

such as silt, clay and sand, and sites dominated by coarse substrate such as bedrock and 229 

boulders (Fig. 1). The first component was defined by the relative occurrence of all 230 

substrate types with a greater contribution from silt which explained 35% of the 231 

component inertia (Table 1). The first component explained 42% of silt distribution inertia, 232 

31% of boulder inertia, 23% for cobbles and 20% for gravel pebble and bedrock.   233 
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Table 1: Simple CA on channel substrate types for 2680 semi-natural RHS in Great 234 

Britain.  Only detailed results for the first 2 components are displayed.  The ‘Coord’ 235 

columns contain the principal coordinates for each substrate type and axis. The ‘Contr’ 236 

column expresses the relative contribution of individual substrate types to axis definition 237 

whilst the ‘Corr’ column (or relative contribution) represents the amount of individual 238 

substrate inertia explained by each component (Greenacre, 1993). 239 

Individual axes inertia relative to total inertia 240 

Axis Inertia Proportion Cumulative 
1 0.7767 0.2051 0.2051 
2 0.6442 0.1701 0.3752 
3 0.5991 0.1582 0.5334 
4 0.5632 0.1487 0.6821 
5 0.4317 0.1140 0.7961 
6 0.4134 0.1092 0.9052 
7 0.3589 0.0948 1.0000 
Total      3.7872 241 
 242 
Column Contributions for components 1 and 2 243 
  Component .1    Component  2 244 

Name Coord Corr Contr Coord Corr Contr 
BE 0.793 0.190 0.097 -0.229 0.016 0.010 
BO 0.835 0.307 0.151 -0.230 0.023 0.014 
CO 0.511 0.226 0.097 -0.077 0.005 0.003 
GP -0.532 0.197 0.106  0.394 0.108 0.070 
SA -1.433 0.160 0.125  2.480 0.480 0.449 
SI -2.052 0.423 0.349 -2.119 0.451 0.449 
CL -2.008 0.097 0.074 -0.483 0.006 0.005 
PE  0.067 0.000 0.000  0.039 0.000 0.000 
 245 
Supplementary Columns 246 
  Component  1    Component  2 247 

Name Coord Corr Contr Coord Corr Contr 
NV -0.540 0.014 0.044 -0.084 0.000 0.001 
 248 

 249 

The first CA axis represented a gradual increase in substrate size with a gradual shift 250 

from sites dominated by fine sediment to sites dominated by larger substrate (Fig. 2). The 251 

second component represented a gradient between silt and sand dominated sites and 252 

explained nearly 50% of the inertias of both substrate types (Table 1). The remaining 253 

components either represented gradients between two or three substrate types or were 254 
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linked to the occurrence of rare types such as peat or clay.  Missing values were not 255 

associated with any particular substrate category and only 1% of the missing values 256 

inertia was explained by the first two components. 257 

 258 

Fig. 1: Symmetrical plot of substrate category profiles for the first two CA axes. 259 
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  260 

Fig. 2:  RHS sites were grouped into 31 bins based on their CSI index values.  The plot 261 

displays for each bin the average occurrence of channel substrate types. 262 

The first component was chosen for its geomorphological relevance as it represented a 263 

well-known dimension in sediment fining and sorting along the river network (Morris and 264 

Williams, 1999) and has habitat significance with regards to species distribution 265 

(Chessman et al., 2006; Gasparini et al., 1999; Rice et al., 2001). The CSI was calculated 266 

for all existing RHS sites using channel substrate standard coordinates for the first 267 

component in the following equation: 268 

CSI = (0.89(AR+BE) +0.95 BO + 0.58 CO + 0.08 PE - 0.6 GP - 1.63 SA – 2.33 SI – 2.28 269 

CL) / Nsc 270 

where each two-letter acronym refers to RHS channel substrate categories and Nsc is the 271 

total number of spot-checks.  Artificial channel substrate (AR) was given the same 272 

coefficient as bedrock substrate. 273 
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3.2. Variable selection   274 

Only attributes selected by the best subset procedure will be presented and discussed.  275 

Land use categories and drift geologies were not selected in any of the models extracted 276 

using the best subset procedure. The attributes retained for the analyses were the PCA 277 

axes, solid geology age and categories and hydrometric areas. 278 

The four PCA variables represent environmental gradients describing site location and 279 

profile (PCA1; i.e. lowland low altitude and slope, and upland high altitude and slope), 280 

catchment area (PCA2), local discontinuities in profile/geology (PCA3) and catchment 281 

slope (PCA4) (Jeffers, 1998).     282 

Solid geologies were split into two groups based on their age. More recent geologies from 283 

the Permian and Triassic to the Neogene had significantly lower CSI values indicating 284 

finer substrate types than geologies from the Carboniferous to the Precambrian (Fig. 3). 285 

The geology age categories were recoded into one indicator variable coding for solid 286 

geology ages younger than the Carboniferous (Fig. 4). Geology age distribution separates 287 

Wales, Cornwall and part of the North and the Lake District from the lowland areas of 288 

eastern and southern England. 289 

Hydrometric areas were recombined into six groups based on their average CSI value 290 

and ordered according to increasing substrate size.  The distribution of hydrometric area 291 

categories follows a pattern separating the uplands from the lowlands of England and 292 

Wales (Fig. 5). Hydrometric area categories represent catchment size and its influence on 293 

substrate with smaller hydrological units displaying coarser substrate types than larger 294 

lowland catchments. Group 4, 5 and 6 represent steeper catchments with higher levels of 295 

hill slope activity and reflect the preponderance of upland controls in the delivery of 296 

sediments. Catchments from the lower groups tend to have a higher proportion of 297 

streams originating and running in low altitude low slope areas compared to higher 298 
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categories. Coarse sediment tends to originate closer to source and is linked to local 299 

erosion of hard rocks generally located in the upland areas. A lack of upland control within 300 

catchments is, therefore, likely to result in lower delivery of coarse sediments within the 301 

river system and a higher proportion of fine sediment arising from downstream attrition 302 

and fining (Werritty, 1992). 303 

 304 

 305 
Fig. 3: One way Anova of CSI value against solid geology age categories derived from 306 

the 1979 BGS solid geological map for all RHS sites. Average CSI values per age 307 

category with 95% confidence intervals based on pooled standard deviation (F=819, 308 

p<0.0001, n=9934). 309 

Solid geologies were grouped into eight classes based on increasing average CSI value 310 

(Fig. 6). Upon examination, solid geology categories reflect two related aspects: 311 

geological age and hardness.  The first class contains recent erodible clay and limestone 312 

formations and displays rivers with predominantly fine sediment material. The following 313 

two solid geology classes comprise slightly older (Jurassic) soft sedimentary formations 314 
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including chalk, clay, limestone, shales and marls that support streams dominated by fine 315 

sediments with some occurrence of gravels and pebbles. Class three is dominated by 316 

sedimentary sand, clay and Oolitic geologies. River channels running on those geologies 317 

tend to display a higher fraction of gravels and pebbles with a lower predominance of fine 318 

sediment. Solid geology class four is constituted of older and harder geologies from the 319 

Carboniferous/Triassic period with sandstone and coal that support rivers with a 320 

significantly higher occurrence of coarse substrate such as gravel-pebbles and cobbles 321 

and little fine sediment. Class five contains geologies from the Cambrian up to the 322 

Carboniferous with a predominance of metamorphic and intrusive rocks such as grit stone 323 

and granite.  Rivers running on these profiles tend to have coarser substrate with cobbles, 324 

boulders and bedrock. Class six is constituted mainly of hard igneous and Palaeozoic 325 

sedimentary rocks.  These are associated with rivers showing a dominance of cobbles 326 

with greater occurrence of boulders and bedrock. The last class represents Cambrian grit 327 

and limestone rocks that are characterised by very coarse substrate types. 328 

Geographically, harder and older geologies are located in the west of England, in Wales, 329 

in the North West and near the Scottish border (Fig. 6).  330 

From the previous three maps, we can observe spatial correlations between geological 331 

age, solid geology classes and hydrometric area categories. Although the three sets of 332 

variables are correlated, they each provide subtle differences in explaining substrate 333 

distribution. 334 
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 335 

Fig. 4: Solid geology age distribution in England and Wales from the 1:625,000 BGS solid 336 

geology map recombined into two classes. ‘Recent geologies’ represent geologies from 337 

the Neogene to the Triassic and ‘older geologies’ from the Carboniferous to the 338 

Precambrian. 339 
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 341 

Fig. 5: Hydrometric area category distribution in England and Wales.  Categories from 1 342 

to 6 represent hydrological units with increasing average CSI values for surveyed RHS 343 

sites.  Low CSI values correspond to fine sediment dominated streams, high CSI to 344 

coarse sediment dominated streams. 345 
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 346 

Fig. 6: Solid geology class distribution in England and Wales. Classes from 0 to 8 347 

represent solid geologies with increasing average CSI value for surveyed RHS sites. Low 348 

CSI values correspond to fine sediment dominated streams, high CSI to coarse sediment 349 

dominated streams. 350 
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3.3. Regression kriging 351 

Following data quality checks, 9473 British RHS sites were retained for the analyses (Fig. 352 

7A). The best model, following selection, included the four PCA axes, two solid geology 353 

categories, geological age and four hydrometric area groups (Table 2). The model 354 

explained 67% of the variability in CSI. 355 

 356 

Fig. 7 : Distribution of A) 9473 RHS sites used for modelling CSI and B) 3884 sites used 357 

for testing. 358 

The best fit for modelling the OLS and GLS residual variograms was obtained using a 359 

combination of spherical and exponential functions (Fig. 8). Spatial correlations were 360 

observable up to 5 km and started to plateau after 13 km. The presence of a nugget can 361 

be explained by between-surveyor variability as well as time of survey, flow condition etc. 362 

The residuals showed a slight tendency for under-prediction, but no great departure from 363 
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normality (Fig. 9A). Kriged residuals were added to the cross-validated linear model 364 

predictions and the estimated R2 for the spatially corrected model was 0.74. The kriged 365 

model residuals showed a marked improvement in prediction with a tighter and more 366 

symmetrical distribution around the mean and figures very close to zero (Fig. 9B).  A 367 

variogram plot of residuals following kriging showed no sign of remaining spatial 368 

correlation. The kriged model residuals were also investigated for different years of 369 

survey to check the validity of the model over time. The residuals showed no clear pattern 370 

of change in distribution between the years of survey with most variability explained by 371 

differences in sample size. 372 

Table 2: OLS model linking transformed CSI values to GIS map-derived covariates 

following a best subset selection procedure. 

Model Summary  

Model  R  R²  Adjusted R²  RMSE  
1   0.818   0.670   0.669   1.103     373 

 Sum of Squares  df  Mean Square  F  p  
Regression   23345   11   2122.265   1743   < .001   

 Residual   11522   9466   1.217         
Total   34867   9477            374 

 Unstandardised Standard 
Error  Standardised  t-value  p  

intercept   5.978  0.029       209.358   < .001   

 

PCA1   0.566  0.011   0.425   53.725   < .001   
PCA2   0.443  0.011   0.262   39.218   < .001   
PCA3   0.158  0.021   0.048   7.487   < .001   
PCA4   0.062  0.028   0.015   2.240   0.025   
Geological age  -0.886  0.048   -0.231   -18.386   < .001   
Solid Geology 2   0.301  0.038   0.073   7.831   < .001   
Solid Geology 3   0.585  0.072   0.053   8.094   < .001   
Hydrometric group 1   -1.525  0.072   -0.158   -21.032   < .001   
Hydrometric group 2   -1.073  0.046   -0.272   -23.284   < .001   
Hydrometric group 3   -0.558  0.062   -0.068   -9.075   < .001   
Hydrometric group 4   -0.540  0.032   -0.124   -16.712   < .001   

 375 
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The model was then tested on 3884 independent sites surveyed in 2006-11 mainly in 376 

England and Wales (Fig. 7B). The model explained 64% of the variability in the new 377 

data. The residual distribution was centred around zero and showed no tendency for 378 

over- or under-prediction (Fig. 9C). Histograms of residuals per year of survey showed no 379 

significant pattern. 380 

The model and test data were then joined and the regression kriging model was applied 381 

to the entire river network. The resulting map (Fig. 10) shows a clear gradient between 382 

the uplands in the West and North of England and Wales dominated by harder, older 383 

geologies and coarser substrate types, and the East and South, where sedimentary rocks 384 

predominate and channels are dominated by finer sediments. 385 

 386 

Fig. 8: OLS model residual variogram fitted with a combination of exponential and 387 

spherical functions.  388 
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  389 

 Fig. 9: Distribution of model residual values with fitted curves for the cross-validated GLS 390 

linear regression model (A) before and (B) after kriging; and (C) for the test sample. 391 
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  392 

Fig. 10: Map of predicted values of CSI using regression kriging at every 500m across the 393 

1:50,000 river network on a gradient from bedrock/boulder (blue) to gravel-pebble (green) 394 
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and silt-sand-clay (brown). White reflects areas of low drainage density where fewer 395 

streams are present. 396 

4. Discussion 397 

Using existing data and geostatistical modelling techniques, it was possible to identify and 398 

predict channel substrate and apply the model to the entire river network in England and 399 

Wales thus, providing environmental practitioners and managers with the first 400 

comprehensive national scale map of channel substrate distribution across the network. 401 

Traditionally, substrate is characterised using some quantification of sediment size 402 

distribution; generally statistics taken from a distribution such as D50 or D84 (median size 403 

or 84th percentile size). Sediment sizing is based on field survey where substrate is either 404 

sampled manually or using mechanical techniques (Kondolf et al., 2003). Sampling efforts 405 

can be intensive and, therefore, expensive (Bunte et al., 2009) and there are no existing 406 

national datasets of substrate size available at present. Davenport et al (2004) attempted 407 

to derive estimates of substrate size using RHS data. The Sediment Calibre Index (SCI) 408 

was calculated by multiplying substrate occurrence by Wentworth category median size in 409 

phi units and averaging over 10 spot-checks. We produced a modified version of the SCI, 410 

the SCIm by adding one category including bedrock and artificial substrate using the 411 

following equation and correcting some of the mistakes that were introduced in the 412 

original publication for sand and silt phi values (Angela Gurnell, pers. comm.): 413 

SCIm = (-12(AR+BE) - 8 BO - 7 CO - 3.5 GP + 1.5 SA + 6 SI + 9 CL) / Nsc 414 

The SCIm was applied to 10,135 RHS British sites and compared to the CSI. The 415 

correlation between the two indices was extremely high (Pearson correlation coefficient = 416 

-0.985, n=10,135) suggesting that the CSI and the SCIm both represent average channel 417 

substrate size. It is important to note that CSI and SCIm are unlikely to represent D50 418 
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unless the substrate size distribution follows a unimodal symmetrical distribution. Further 419 

studies involving comparisons with more traditional sediment sizing techniques and RHS 420 

would help identify the relevance and significance of the CSI with regards to 421 

characterising channel substrate across a 500 m reach but these data currently do not 422 

exist. 423 

One strong advantage of using multivariate techniques is in the identification of major 424 

patterns and dimensions that can be related to biological gradients of species distribution. 425 

The assumption is that species distribution and community composition adapt to 426 

dominant habitat gradients. In the present case, the main dimension extracted was a well-427 

known substrate fining gradient (Werritty, 1992).  Another advantage is that dominant 428 

gradients are likely to be influenced by drivers of geomorphological change and are, 429 

therefore, more predictable. CSI was correlated and explained by a series of attributes 430 

acting at different scales that can be related to known drivers of geomorphological 431 

change. At the local (site) scale, Jeffers’ PCA1 and PCA3 represent ground slope whilst 432 

PCA2 acts as a surrogate for discharge. Slope and discharge are the main drivers of 433 

stream power which is strongly related to sediment transport and sorting (Rice and 434 

Church, 1998). Solid geology classes and PCA4 provide a wider catchment scale context 435 

of geomorphological influence on stream energy and sediment supply. The geology 436 

categories reflect the age and hardness of geological types whilst PCA4 represents 437 

upstream catchment slope (Jeffers, 1998). Wider scale influences were represented by 438 

attributes such as geological age and hydrometric area groups that provided a greater 439 

spatial and climatic context for predicting channel substrate. 440 

The geostatistical analysis of model residuals revealed the presence of remaining 441 

unexplained spatially correlated variance with a relatively short range. This suggests the 442 

presence of local random factors influencing substrate distribution, potentially linked to 443 
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sediment transport, sediment supply from the surrounding landscape (Church, 2002), 444 

riparian land use or human-made impacts. They could also represent non-linear spatial 445 

responses to geomorphic drivers or local discontinuities in substrate caused by 446 

confluences, landslides/bank erosion or the presence of lakes or reservoirs (Rice et al., 447 

2001). 448 

The kriging process greatly reduced the spatial correlation in the residuals and increased 449 

the model predictive power. The model was also tested for its ability to predict substrate 450 

for different surveys. Channel substrate and geomorphological forms tend to be quite 451 

stable over decadal timescale and evolve slowly unless significant changes occur such as 452 

channel modification or catastrophic events (Knighton, 1998). Therefore, we expected to 453 

see no large decrease in predictive power across the years of survey. This was confirmed 454 

for both the modelling and the test samples which showed very little deviation in 455 

predictive power across survey years. 456 

The overall predictive power of the model on the test sample was satisfactory with 64% of 457 

the site variability explained by the model. An examination of model residuals for the 100 458 

sites with the largest residual values showed no discernible patterns apart from under-459 

prediction of artificial, bedrock (22 % of the sites) and peat substrates (2% of sites). Other 460 

sources of error were investigated. For the 2007-8 RHS baseline survey, one third of sites 461 

were surveyed on parts of the 1:50,000 river network not covered by the previous 462 

sampling strategy which was based on the 1:250,000 river network. A comparison of 463 

residual values between sites located on the 1:250,000 and 1:50,000 networks using 464 

ANOVA showed a significant difference between sample means (F=384; p<0.001; 465 

n=2772). The model tended to predict slightly coarser substrate size on the 1:50,000 466 

sample than observed. This could be linked to stream size and management regime. 467 

Sites selected on the 1:50,000 sample tended to be narrower, with an average bankfull 468 
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width of 4.1 m (n=1692), compared to 9 m (n=3134) for the 1:250,000 sites, with a strong 469 

presence of agricultural ditches and artificial channels. It is possible that the model 470 

parameters do not fully account for small artificial channels and this shows some of the 471 

limitations of using the predictive model on sites collected at different scales. The overall 472 

impact of scale on predictive accuracy was, however, small and produced only a slight 473 

decrease in overall predictive accuracy.  A practical advantage of RK is that it honours 474 

field data. Thus, predictions using RK will always fit perfectly the observed values at 475 

surveyed sites. This is important from a predictive accuracy viewpoint, but also on an 476 

operational viewpoint as it reinforces the credibility of the model in the eyes of users 477 

(Naura, 2014). 478 

5. Conclusion 479 

We proposed an alternative approach for mapping habitat elements across entire river 480 

networks that makes use of existing semi-quantitative survey data, GIS map-based 481 

covariate data and RK. A new national scale substrate index has been developed, which 482 

is accurate from 500m up to national scales. This application shows the potential power of 483 

using spatially explicit techniques for modelling river attributes at the national scale. The 484 

analyses presented in this article are part of a broader effort to characterise and map river 485 

habitats, identify river reaches for environmental management and develop practical tools 486 

for impact assessment, diagnostics and management planning that will be demonstrated 487 

in subsequent publications. 488 
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