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As I have stated before I believe this manuscript whilst containing very nice 20	

information is very long.  This makes it hard work to read, this may be fine for 21	

reports but reduces your ability to reach and influence a wider audience.  There are 22	

many further ways the discussion could be shortened without undue pain being 23	

caused!  I have done my very best to make the text flow.  The major omission is the 24	

absence of data on the groundwater geology. 25	

ABSTRACT: Perfluoroalkyl acids (PFAAs) can be released to water bodies during 26	

manufacturing and application of PFAA-containing products. In this study, the  27	

contamination pattern, attenuation dynamics, sources, pathways, and risk zoning of 28	

PFAAs in surface and ground water was examined within a 10 km radius from a mega 29	

fluorochemical industrial park. Among 12 detected PFAAs, perfluorooctanoic acid 30	

(PFOA) was the dominant component, followed by shorter-chain perfluoroalkyl 31	

carboxylic acids (PFCAs). PFAA-containing waste was discharged from the 32	

fluorochemical industrial park, with levels reaching 1.8 mg/L in the nearby rivers 33	

flowing to the Bohai sea together with up to 273 µg/L in the local groundwater in the 34	

catchment. These levels constitute a high human health risks for PFOA and other 35	

shorter-chain PFCAs within this location. In addition, an aquatic ecological risk was 36	

predicted in the Dongzhulong River due to these extremely high concentrations of 37	

PFOA.  Concentrations of ∑PFAAs in surface water and groundwater nearby 38	

showed a positive correlation. The dominant pollution pathways of PFAAs included (i) 39	

discharge into surface water then to groundwater through seepage, and (ii) air 40	

deposition from fluorochemical industrial park, then through infiltration to 41	
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groundwater. As the distance increased from the source, the concentration of 42	

∑PFAAs in groundwater showed a sharp initial decrease followed by a more gentle 43	

decline.	The contamination signal of the fluorochemical industrial park on PFAAs in 44	

groundwater existed within the radius of 4 km, while that existed within the lateral 45	

distance of at least 3km from seriously polluted Dongzhulong River. The major 46	

controlling factor in PFAA attenuation processes was likely to be dilution together 47	

with dispersion and adsorption to aquifer solids.	 The	 relative contribution of FPOA 48	

(C8) declined while those of C4-C6 shorter-chain PFCAs increased during surface 49	

water seepage and further dispersion in groundwater.  50	

 51	

KEYWORDS: PFAAs; fluoropolymer; spatial distribution; source identification; risk 52	

assessment 53	

54	
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1. Introduction  55	

Perfluoroalkyl acids (PFAAs) have been widely used in manufacturing processes 56	

and products, such as surfactants and surface protectors, performance chemicals, 57	

lubricants and pesticides, due to their unique properties, including surface activity, 58	

heat and acid resistance, and water and oil repellency (Giesy and Kannan, 2001; 59	

2002). However, concerns have been raised due to the environmental persistence, 60	

toxicity, long-range transport and bioaccumulation properties of PFAAs (Lescord et 61	

al., 2015; Liu et al., 2015; Wang et al., 2015b). Continuous release of these substances 62	

from various products and applications has made them ubiquitous in environments, 63	

such as air	(Taniyasu et al., 2013), water  (Wang et al., 2015a), sediment (Yeung et 64	

al., 2013), wildlife	 (Persson et al., 2013) and even the human body	 (Zhang et al., 65	

2013). In addition, water has become the primary reservoir of PFAAs and the major 66	

medium for their transportation due to the relatively high polarity and solubility of 67	

ionic PFAAs (Prevedouros et al., 2006; Sharma et al., 2015). 68	

PFAAs can be released to the surrounding environment during manufacturing 69	

and the application of PFAA-containing products (Wang et al., 2014b). The presence 70	

of Perfluorooctane sulfonate (PFOS) in the environment is usually associated with 71	

discharge from industries such as metal plating, textile treatment and FPOS 72	

manufacture, while most Perfluorooctanoic acid (PFOA) is derived from PFOA/PFO 73	

production and fluoropolymer manufacturing and processing (Xie et al., 2013b; Li et 74	

al., 2015). Whilst industry is a major source for PFAAs in surface and ground water, 75	

they are also discharged in domestic sewage (Eggen et al., 2010; Xie et al., 2013a). 76	
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The mobility of longer-chain PFAAs is reduced by their sorption potential to organic 77	

carbon in soil and sediment, whilst the less hydrophobic, shorter-chained, PFAAs are 78	

more likely to undergo long-distance transport in surface water or penetrate to 79	

groundwater (Armitage et al., 2009; Murakami et al., 2009). The generally slow 80	

movement of groundwater makes this environment more of a sink, whilst 81	

contamination of surface water can lead to widespread dissemination (Lin et al., 2015). 82	

High concentrations of PFAAs in surface and ground water could represent not only a 83	

potential health risk via drinking water but also a risk to wildlife in aquatic 84	

ecosystems (Giesy et al., 2010; Post et al., 2012). 85	

Although the production of PFAA-related chemicals has been discontinued in 86	

Europe and America, it has continued to increase in China due to the domestic and 87	

international demands. The fluorochemical industrial park in our study is a mega 88	

fluoropolymer production base, with an annual capacity of 50,000 tons of 89	

tetrafluoroethylene (TFE), 37,000 tons of polytetrafluoroethylene (PTFE), 10,000 tons 90	

of hexafluoropropylene (HFP) and more than 200,000 tons of different types of 91	

fluorinated refrigerants (Dongyue Group Limited, 2012). Previous studies 92	

demonstrated that fluoropolymer manufacturers can seriously contaminate surface 93	

water with PFAAs (Wang et al., 2014a; Heydebreck et al., 2015; Shi et al., 2015),  94	

but less is known about local groundwater contamination by such industrial sites? 95	

This study was conducted to advance our understanding of PFAA emissions in 96	

surface and ground water in association with ongoing fluoropolymer production with 97	

particular emphasis on (i) studying contamination pattern and attenuation dynamics, 98	
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(ii) analyzing pollution sources and pathways, (iii) conducting risk zoning to evaluate 99	

surface and ground water safety.  100	

2. Materials and methods 101	

2.1. Sampling design and collection 102	

Beneath the fluorochemical industrial park in Huantai County, Shandong 103	

Province, China groundwater can be found at a depth of 5 m from the surface (Table 104	

S12)???  This is an alluvial sandy aquifer which is unconfined which is typical of 105	

this region?? The groundwater is/isn’t a drinking water source??  The groundwater 106	

samples were collected from a series of boreholes which had been installed five years 107	

previously.  Sampling was done using a submersible pump, with over 100 L being 108	

pumped and discarded before taking the actual sample in 1-L polypropylene bottles.  109	

Surface water samples were collected from the Dongzhulong River and Xiaoqing 110	

River together with groundwater samples from the Dongzhulong River catchment 111	

(Fig. 1).  In October 2014, 10 samples of surface water and 37 samples of 112	

groundwater were collected. Collected samples were stored in an icebox during 113	

transportation, all samples were extracted within 1 week after arrival in the lab, and 114	

the remainder stored at -20°C for long-term reference. Parameters, including pH, 115	

dissolved oxygen, conductance, water temperature and salinity, were determined in 116	

situ using an HQd Portable and Benchtop Meter Configurator (HACH Company, 117	

USA) (Table S1). Before analysis, all the samples were allowed to stand for 24 h to 118	

settle any sediment and then 400 mL of supernatant was taken from each sample for 119	
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analysis. Latest official monitoring data of groundwater level and well depth was also 120	

acquired in the study area (Table S12). 121	

 122	

Fig.1 Map of the sampling locations for surface water and groundwater in Huantai 123	

County 124	

2.2 Standards and Reagents 125	

All samples were analyzed for 12 PFAAs, including perfluorobutanoic acid 126	

(PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), 127	

perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic 128	

acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUdA), 129	

perfluorododecanoic acid (PFDoA), potassium perfluorobutanesulfonate (PFBS), 130	

sodium perfluorohexanesulfonate (PFHxS), potassium perfluorooctanesulfonate 131	

(PFOS). The detailed descriptions on standards and reagents are available in 132	
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Supplementary Material.  133	

2.3 Extraction and cleanup  134	

Water samples were extracted by OASIS WAX-SPE using a previously 135	

described method (Taniyasu et al., 2005) with minor modification and optimization. 136	

Briefly, the Oasis WAX cartridges (6 cc, 150 mg, 30 mm, Waters, Milford, MA, USA) 137	

was preconditioned with 4 mL of 0.1% NH4OH in methanol, 4 mL methanol and 4 138	

mL Milli-Q water. The 400-mL aliquot of water sample was spiked with 5 ng internal 139	

standard (13C4PFBA, 13C4PFHxA, 13C4PFOA, 13C4PFNA, 13C4PFDA, 13C4PFUdA, 140	

13C2PFDoA, 18O2PFHxS and 13C4PFOS)，mixed thoroughly and then loaded into the 141	

cartridge. The cartridge were washed with 4 mL of 25 mM ammonium acetate (pH 4), 142	

air-dried overnight, and successively eluted with 4 mL of methanol and 4 mL of 0.1% 143	

NH4OH in methanol. The eluents were collected and concentrated to 1 mL under a 144	

gentle stream of high-purity nitrogen (99.999%, Haidian District, Beijing, China),	145	

then filtered through a nylon filter (13 mm, 0.2 mm, Chromspec, Ontario, Canada) 146	

into a 1.5-mL PP snap top auto-sampler via with polyethylene (PE) septa.  147	

2.4 Instrumental analysis and quantitation 148	

Individual PFAA were separated and quantified using Agilent 1290 Infinity 149	

HPLC System equipped with an Agilent 6460 Triple Quadrupole LC/MS System 150	

(Agilent Technologies, Palo Alto, CA, USA) in the negative electrospray ionization 151	

(ESI) mode. Quantification was performed using Analyst 1.4.1 software provided by 152	

SCIEX. The detailed descriptions on instrumental analysis were available in 153	
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Supplementary Material. 154	

2.5 Quality Assurance and Quality Control (QA/QC) 155	

Field blanks, transport blanks, procedure blanks and solvent blanks were 156	

conducted with every sample set to examine if any external contamination occurred 157	

during the sampling/extractuin and analytical process. The internal standard 158	

calibration curve consisting of a concentration gradient (0.01, 0.05, 0.1, 0.5, 1, 5, 10, 159	

50, and 100 ng/mL), spiked with 5 ng internal standard was prepared for 160	

quantification of individual PFAA with coefficients (r2) for all target analytes 161	

exceeding 0.99. Quantification was performed using with a correlation coefficient 162	

greater than 0.99 for each analyte. The limit of detection (LOD) and limit of 163	

quantification (LOQ) were defined as the peak of analyte that needed to yield a 164	

signal-to-noise (S/N) ratio of 3:1 and 10:1, respectively. Matrixes spiked with a 165	

standard solution were analyzed to determine the recovery of each target PFAA and 166	

matrix spike recoveries(MSRs) ranged from 79.00% to 109.07%. Supplementary 167	

Material and Table S2 described detailed QA/QC information . 168	

2.6 Statistical and spatial analyses 169	

Statistical analysis was performed using SPSS Statistics V22.0 (SPSS Inc. 170	

Quarry Bay, HK). During the analysis, concentrations less than the LOQ were set to 171	

one-half of the LOQ, and those less than the LOD were assigned to values of LOD/√172	

2 (Bao et al., 2011). Spatial distributions of PFAAs were analyzed using the Arcmap 173	

module in ArcGIS V10.0 software (ESRI, Redland, CA, USA).  174	
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2.5 Data Representation 175	

Because of the large variation on the orders of magnitude, the accuracy of all 176	

data were presented with three significant figures. Units for concentrations in water 177	

were ng/L, µg/L or mg/L. 178	

3. Results and discussion 179	

3.1 Occurrence and source identification of PFAAs in surface and ground water 180	

Each of the 12 PFAAs were detected in this study (Table S2-S3). The 181	

concentration of sum PFAAs (∑PFAAs) ranged from 55.7 ng/L to 1.86 mg/L in 182	

surface water samples, and from 1.66 ng/L to 273 µg/L in groundwater samples 183	

(Table S3). PFOA was the dominant component with a mean contribution of 81.60%	184	

to ∑PFAAs in surface water and 65.29% to ∑PFAAs in groundwater, followed by 185	

C4-C7 short-chain perfluoroalkyl carboxylic acids (PFCAs) including PFBA, PFPeA, 186	

PFHxA and PFHpA. Long-chain PFCAs (C9-C12) and perfluoroalkane sulfonic acids 187	

(PFSAs) including PFBS, PFHxS and PFOS were only observed in low 188	

concentrations or below the MDL, which were likely due to limited production and 189	

application of these components in this region (Xie et al., 2013b). 190	
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 191	

Fig. 2 PCA results using concentrations of 12 PFAAs in surface water (a) and 192	

groundwater (b) 193	

PCA analysis on the 12 PFAAs in surface and ground water showed that the 194	

concentrations of PFCAs, such as PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, 195	

PFDA and PFDoDA, were strongly associated, indicating that these compounds might 196	

come from similar sources (Fig. 2, S2; Table S4-S7). The fluorochemical industrial 197	

park in our study area included not only PFOA production but also fluoropolymer 198	

manufacturing and processing and these two industries contribute 83.7% and 8.3% of 199	

PFOA in environment, respectively (Li et al., 2015). The increase of most PFAAs, 200	

especially PFOA, nearby or immediately downstream of the fluorochemical industrial 201	

park indicated it was principal source of PFAAs in not only surface water but also 202	

groundwater.  However, other sources of PFAAs in surface and ground water were 203	

inferred to exist based on PCA results. Domestic emission, WWTP effluent and other 204	

industrial emissions were also likely to be potential sources of PFAAs (Bossi et al., 205	

2008; Wang et al., 2014c). The concentration of ∑PFAAs increased to various 206	

degrees after receiving emissions from these sources. 207	
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To the best of our knowledge, the PFOA concentration in surface water (1.71 208	

mg/L) reported in this study is the highest ever found.  Previous studies in this 209	

location reported 0.58 mg/L	 (Heydebreck et al., 2015) and 0.37 mg/L (Shi et al., 210	

2015). The lowest concentration of PFOA in surface water was also at a high level in 211	

Northern China (0.55-82 ng/L) (Wang et al., 2012). Except for 7.09 mg/L caused by 212	

AFFF infiltration in Tyndall Air Force Base(USA)(Moody and Field, 1999), the 213	

concentration of PFOA in groundwater(240 µg/L) in our study was also at the highest 214	

level (reviewed in Table S8-S9). In recent years, studies on PFAAs in groundwater 215	

around fluoropolymer facilities have been reported sporadically. Most of the studies 216	

were conducted in the USA, once the largest country of PFAA manufacturing and 217	

application. PFOA was dominant in groundwater with maximum measured 218	

concentrations of 78µg/L near a fluoropolymer manufacturing facility in Parkersburg	219	

(Davis et al., 2007), 42 µg/L around a 3M facility in Minnesota (Oliaei et al., 2013), 220	

20µg/L surrounding a PFAA-manufacturing facility in Minneapolis St. Paul (Xiao et 221	

al., 2015) and 13.3µg/L around DuPont’s Washington Works facility (Hoffman et al., 222	

2011). However, contamination pattern, attenuation dynamics, transport pathway, and 223	

risk extent of PFAAs in groundwater were not systematically analyzed in these 224	

studies.  225	

3.2 Pollution pathway and attenuation dynamics of PFAAs in surface and ground 226	

water  227	

The Dongzhulong River flows through Zibo City and converges with the 228	

Xiaoqing River, which accepts domestic wastewater and industrial discharge 229	
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including waste from the fluorochemical industrial park. The concentrations of ∑230	

PFAAs in surface and ground water along the river and detailed site information were 231	

showed in Fig.3 and Table S1,S3.  At the upstream of fluorochemical industrial park, 232	

the concentrations of ∑PFAAs in surface water of the Dongzhulong River and 233	

groundwater nearby were negatively correlated with the distance from the 234	

fluorochemical industrial park. PFOA was dominant with concentration of 1.2 235	

ng/L-401 ng/L and a contribution of 47.86%-81.75% to ∑PFAAs (Fig. 3). PFAAs 236	

level at site SD-1 was notable with a total concentration of 55.7ng/L, which suggested 237	

domestic emissions from the Zibo City	 were	 present	 (Wang et al., 2014b). The 238	

concentration of ∑PFAAs at site GD-1 (groundwater adjacent to SD-1) was 2.09 ng/L 239	

was much lower than that in nearby surface water. The concentration of ∑PFAAs at 240	

site SD-2 and GD-2 increased to 73.8 ng/L and 37.8 ng/L respectively，probably due 241	

to effluent from a wastewater treatment plant (WWTP) (Muller et al., 2011; 242	

Eschauzier et al., 2012). With decreasing distance from fluorochemical industrial park, 243	

the concentrations of ∑PFAAs increased up to 368 ng/L in surface water at SD-3 and 244	

410ng/L and 490 ng/L in groundwater at GD-3 and GD-4, respectively. Although 245	

located before the waste discharge point from the fluorochemical industrial park, 246	

these sites might be influenced through diffusion and dispersion of PFAAs from 247	

general industrial activity in the area.  248	
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 249	

Fig. 3. Spatial distribution of PFAAs in surface and ground water adjacent to the 250	

Dongzhulong River 251	

Note: GD: groundwater adjacent to the Dongzhulong River; SD: surface water in the 252	

Dongzhulong River; SX: surface water in the Xiaoqing River; SY: surface water 253	

diverted from Yellow River  254	

Downstream of fluorochemical industrial park, the concentrations of ∑PFAAs in 255	

surface water of the Dongzhulong River and the Xiaoqing River and groundwater 256	

increased to extremely high levels and relative contributions of individual PFAA also 257	

changed. The sharp increase was linked to the fluorochemical industrial park. 258	

Location SD-4 was immediately at the downstream of the effluent from 259	

fluorochemical industrial park into the river. The concentration of ∑PFAAs in surface 260	

water at SD-4 soared to 1.86 mg/L, and that in groundwater at GD-5 also increased up 261	

to 273 µg/L. PFOA at SD-4 exhibited the highest contamination with a concentration 262	
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of 1.71 mg/L, which was 91.8% of ∑PFAAs, followed by PFPeA (51.4 µg/L, 2.77%), 263	

PFHxA (50.3 µg/L, 2.71%), PFBA (28.3 µg/L, 1.52%) and PFHpA (21.3 µg/L, 264	

1.15%).  The concentration of PFOA at GD-5 also increased up to 240 µg/L, which 265	

contributed 87.64% of ∑PFAAs, followed by PFPeA (10.6 µg/L, 2.77%), PFBA (10.5 266	

µg/L, 3.85%), PFHxA (8.88 µg/L, 3.25%), and PFHpA (3.73 µg/L, 1.37%). Although 267	

total contribution of C9-C12 long-chain PFCAs in these two sites were less than 268	

0.04%, they also showed notable concentrations such as PFNA(SD-4:430 269	

ng/L,GD-5:33.5ng/L), PFDA(SD-4:181 ng/L,GD-5:18.7 ng/L) and 270	

PFDoDA(SD-4:83.6 ng/L,GD-5:17.1ng/L). With increasing distance from 271	

fluorochemical industrial park, the concentrations of ∑PFAAs in surface water (SD-5: 272	

380µg/L, SD-6: 671µg/L) as well as groundwater (GD-6: 199 µg/L)  showed a 273	

downward trend, while the relative contributions of individual PFAA had no obvious 274	

change. Seepage to groundwater can be an important source for subsequent 275	

contamination or re-contamination of rivers (Lin et al., 2015; Wang et al., 2015a). The 276	

proportion of surface water seepage in the Northern Plain of China is estimated to be 277	

about 12% (MWR, 2011;2013;2014). Similar source and positive correlation of 278	

PFAA concentrations in surface and ground water indicated that most PFAAs in 279	

groundwater may come from seepage of contaminated surface water (Huset et al., 280	

2008), then transport through diffusion, dispersion and advection (Lin et al., 2015; 281	

Xiao et al., 2015).  282	

After confluence with the Dongzhulong River, the concentration of ∑PFAAs in 283	

the Xiaoqing River (an important source of domestic water and agricultural water) 284	
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increased from 85.6 ng/L at site SX-1 to 34.9µg/L at site SX-2. Previous studies have 285	

shown that the concentrations of PFAAs in the Xiaoqing River can reach 5.07 µg/L at 286	

a  distance of 30 km from the confluence with the contaminated Dongzhulong River, 287	

and 3 µg/L at the estuary 92 km away from the fluorochemical industrial park (Wang 288	

et al., 2014a). Most farmlands in the northern part of the study area are irrigated by 289	

surface water abstraction. To avoid exchange and dispersion of polluted water, 290	

irrigation canals were isolated from the Dongzhulong River, and Yellow River for 291	

irrigation and aquaculture. However, the concentration of PFAAs in diverted Yellow 292	

River water at site SY-2 which is 20 m away from the Dongzhulong River was up to 293	

102 µg/L, and it was still 60.1 µg/L at the site SY-1 350 m away from the river. The 294	

pollution pathway might be water exchange between diverted Yellow River water and 295	

contaminated shallow groundwater.  296	

 297	

Fig. 4. Attenuation dynamic of PFAAs with the increase in distance from swage river 298	
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[(a) and (b)]; Concentration change of ∑PFAAs (c) and relative contribution of 299	

individual PFAA to ∑PFAAs (d) with the increase in distance 300	

Along the lateral direction from the Dongzhulong River (1.86 mg/L, max) which 301	

received sewage from the fluorochemical industrial park, the concentration of 302	

∑PFAAs in groundwater decreased with an exponential trend, showing a sharp initial 303	

decrease followed by a more gentle decline (Fig. 4a, 4b, 4c). Moving west from the 304	

from the fluorochemical industrial park (transverse A) (Fig. 4a), the concentration of 305	

∑PFAAs in groundwater sharply decreased by 99.13% (from 273 µg/L to 2.39 µg/L) 306	

within a distance of 200-700 m, and then declined by 0.73% to 348.3 ng/L within the 307	

distance of 700 m-1.5 km.  Once the distance had increased to 1.5 km to 3 km from 308	

the factory complex the concentration of ∑PFAAs was 27.0 ng/L. To the East of the  309	

fluorochemical industrial park(transverse B)) (Fig. 2b), the concentration of ∑PFAAs 310	

in groundwater rapidly decreased by 99.16% (from 199 µg/L to 1.67 µg/L) within the 311	

distance of 50-700 m, slowly attenuated by 0.73% to 221 ng/L within the distance of 312	

700 m-1.5 km, and then gently declined by 0.09% to 34.8 ng/L within the distance of 313	

1.5 km-3km. The concentrations of ∑PFAAs at the distance of 3 km in sample groups 314	

(a) and (b) were both an order of magnitude higher than most sites further from the 315	

sewage river (Fig. 5a and 5b). Based on these findings, the contamination signal of 316	

PFAAs in groundwater existed within the lateral distance of at least 3 km from 317	

seriously polluted Dongzhulong River.	Since most of PFAAs are resistant to chemical 318	

decomposition and biochemical attenuation, adsorption to aquifer solids and the 319	

dilution caused by dispersion were major controlling factor in PFAA attenuation 320	
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processes.  321	

The contribution of PFOA(C8) decreased in the process of surface water seepage 322	

and further dispersion in groundwater relative to the short-chain (C4-C6) PFCAs . For 323	

example, after seepage of PFAAs from the Dongzhulong River to the local 324	

groundwater the average contributions of PFBA, PFPeA and PFHxA increased by 325	

8.04%, 5.05%, and 3.92% respectively while percentage of PFHpA and PFOA 326	

decreased by 0.96% and 15.64%. During surface water seepage, relative contributions 327	

of individual PFAA at upstream of fluorochemical industrial park showed more 328	

significant changes than those at downstream of fluorochemical industrial park, which 329	

may be due to extremely high concentrations of PFOA in surface water and limited 330	

saturated adsorption by sediment and soil. In the process of PFAAs dispersion in the 331	

aquifer, the relative contributions of PFBA, PFPeA, PFHxA, PFHpA increased by 332	

14.19%, 7.65%, 8.65% and 0.06%, respectively while the percentage of longer chain 333	

PFOA deceased by 34.17% in transverse A; the relative contributions of PFBA, 334	

PFPeA, PFHxA, PFHpA increased by 16.4%, 8.04%, 6.15% and 1.73% respectively, 335	

while percentage of PFOA deceased by 32.71% in transverse B(Fig. 4d, S1). Thus, 336	

the relative contribution of PFBA(C4) showed the largest increase with distance/time 337	

from the contamination source, followed by PFPeA(C5) and PFHxA(C6).  The 338	

relative contribution of PFHpA(C7) varied little, while relative contribution of 339	

PFOA(C8) decreased significantly in the process of surface water seepage and further 340	

dispersion in aquifer. This phenomenon supports the observation that the removal 341	

efficiency increases with the chain length (Murakami et al., 2009). Shorter-chain 342	
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PFAAs with a higher aqueous solubility and a lower adsorption affinity showed better 343	

transportability and filterability and poor sorption to sediment, soil and aquifer solids 344	

during surface water seepage and dispersion in groundwater (Eschauzier et al., 2012).  345	

3.3 Distribution and transportation of PFAAs in groundwater from the 346	

fluorochemical industrial park 347	

Radiated distribution of fluorochemical industrial park in groundwater was 348	

showed in Fig. 5. There is has a relatively developed industry system in Huantai town, 349	

which mainly covers four industrial areas as follows: A: fluorochemical industry; B: 350	

petrochemical, fine chemicals and paper industry; C: petrochemical, metallurgical 351	

machinery and agricultural processing; D: tourism and village group.  352	

 353	

Fig. 5. Distribution of ∑PFAAs in the groundwater with increasing distance from 354	

fluorochemical industrial park(a); Change of ∑PFAAs levels (b) and relative 355	

contribution of individual PFAA to ∑PFAAs (c) with the increase in distance 356	

With increasing radius from the fluorochemical industrial park, the concentration 357	
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of ∑PFAAs in groundwater also showed a similar tendency, exhibiting a sharp and 358	

then gentle decline (Fig. 5). Within a 1 km radius, the groundwater concentration of 359	

∑PFAAs was extremely high (31.4 µg/L); then dropping to a low level (86.3 ng/L) 360	

within the distance of 1-4 km; before a further decline to 5.35 ng/L within the distance 361	

of 4-7 km (Fig. 5b). The concentrations of ∑PFAAs at site G-1 (18.1 µg/L), G-2 (1.70 362	

µg/L), G-3 (147 µg/L) and G-4 (20.7 µg/L) south and west from the fluorochemical 363	

industrial park were much higher than those on the east side at sites GD-3 (410 ng/L) 364	

and GD-4 (490 ng/L).  Perhaps the Dongzhulong River, which is east of the site, is 365	

intercepting much of the PFAAs on this side (Fig. 5a).  In contrast to this trend, the 366	

concentration of PFAAs at on the south eastern side at site G-6 (406 ng/L) was 367	

particularly high despite not being within the factory grounds. This G-6 site was near 368	

staff apartments of the fluorochemical industrial park in the county town, which might 369	

be affected by passing traffic or staffs from fluorochemical industrial park and 370	

domestic waste (Fig. 5a). Interestingly, the proportion of short-chain PFCAs (the 371	

more mobile and persistent of the PFAAs) at site GD-3 was much higher than those 372	

on the west side of the river (Fig. 5c). The concentration of ∑PFAAs in groundwater 373	

usually decreased sharply within a very short distance from the point source. In 374	

Minneapolis St. Paul, (USA), the concentration of PFOA in groundwater also 375	

decreases from 20 µg/L near a former fluoropolymer production facility to <100 ng/L 376	

within the distance of 1.4 km from the facility (Xiao et al., 2015). These results show 377	

that the groundwater pollution radius of this fluorochemical industrial park was at 378	

least 4 km. The pollution scope was larger than that of a PFAA manufacturing facility 379	
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(<2 km) in Wuhan, China, which might be due to the sheer scale of the manufacturing 380	

site here (Wang et al., 2010). Location G-7 was located near many chemical plants, 381	

such as corrugated paper plants and cable plants, which may be major users of PFAAs 382	

leading to 58.6 ng/L PFAA here (Fig. 5a). Compared with those within the distance of 383	

4-7 km, the concentration and proportion of PFOA was slightly higher within the 384	

distance of 7-10 km, which was probably due to small discharge of PFAAs from the 385	

industries and villages in B, C and D areas (Fig. 5a, 5c).  386	

As the radial distance from the fluorochemical industrial park increased, the 387	

relative contributions of shorter-chain PFCAs also increased while the proportion of  388	

PFOA reduced as observed previously (Fig. 5c). Compared with those within the 389	

distance of 1km, mean contributions of PFBA, PFPeA, PFHxA, PFHpA increased by 390	

4.41%, 0.36%, 3.51% and 0.43% within the distance of 1-4km while proportion of 391	

PFOA decreased by 14.03%. Mean contributions of PFOA within the distance of 392	

4-7km continued to decline by 20.14%, however mean contributions of C4-C7 393	

short-chain PFCAs showed irregular changes, which was due to proportion changes of 394	

C9-C12 long-chain PFCAs and PFOS(C8). Normally longer-chain PFAAs are more 395	

easily removed during dispersion in groundwater, the relative contributions would 396	

decrease faster. However, the total proportion of C9-C12 long-chain PFCAs and 397	

PFOS(C8) increased from 0.2% within the distance of <1km to 24.21% within the 398	

distance of 4-7km, which implied a different external input of longer-chain PFAAs to 399	

groundwater, not the factory complex. 400	

Dispersion from the areas with extremely high concentrations and atmospheric 401	
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deposition then further infiltration were dominant pollution pathways of PFAAs in 402	

groundwater around the fluorochemical industrial park. Similar change tendency of 403	

PFAAs levels and contribution of individual PFAAs with those in transverse 404	

directions from the Dongzhulong River suggested dispersion from seriously polluted 405	

areas was a major pollution pathway of PFAAs around the fluorochemical industrial 406	

park. Previous studies have assessed the fate and transport pathways of longer-chain 407	

PFAAs emitted from direct sources (i.e., manufacturing and use) (Armitage et al., 408	

2009), and atmospheric transport makes an important contribution to transport 409	

potential for longer-chain PFAAs. Relatively high concentrations of C9-C12 410	

long-chain PFCAs in surface and ground water within the radius of <1 km indicated 411	

that fluorochemical industrial park was the dominant source, while PFAAs can also 412	

be released into air with exhaust gas from fluorochemical industrial park (Wang et al., 413	

2013; Li et al., 2015). Based on the information and analyses	presented above, it is 414	

suggested the external input of longer-chain PFAAs to groundwater came from air 415	

emission of PFAAs from fluorochemical industrial park (Liu et al., 2009; Kwok et al., 416	

2010) and then leached by precipitation to groundwater(Davis et al., 2007). In fact, 417	

about 18.4% of the total PFOA/PFO environmental releases is emitted into air, and 418	

most of them reached to the ground through atmospheric deposition(Li et al., 2015). 419	

Due to many PFAA using facilities, concentrations of ∑PFAAs, dominated by PFOA, 420	

were up to 152 ng/L in precipitation in Weifang, China. Therefore, this pollution 421	

pathway might also explain some high concentrations in groundwater samples around 422	

PFC but not adjacent to the sewage river and waste. PCA results and correlation 423	
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matrix also indicated the PFAAs at these sites had similar sources as those located 424	

nearby the sewage river. 425	

3.4 Risk zoning of PFAAs in surface and ground water 426	

As groundwater is an important source for drinking water (UGWA, 2013), risk 427	

zoning was made in the study area to evaluate groundwater safety. The concentrations 428	

of PFOS in all sites were much lower than reported health and ecological risk 429	

threshold. Risk zoning was mainly based on PFOA concentrations and corresponding 430	

drinking water standards. Preliminary Health-Based Guidance (PHBG) of 40 ng/L for 431	

PFOA in New Jersey, US is the lowest reported assessment threshold for drinking 432	

water and expected to be protective for both non-cancer effects and cancer at the one 433	

in one million risk level	 (Post et al., 2011). Provisional health advisory (PHA) of 434	

400ng/L for PFOA, USEPA is widely used to assess the potential risk from short-term 435	

exposure through drinking water, above which actions should be taken to reduce 436	

human exposure(USEPA, 2014). These two typical standards were used to divide 437	

different levels of potential risk areas: the areas where the concentrations of PFOA 438	

were comparable to or higher than 400 ng/L were defined as high risk areas; the areas 439	

where the concentrations of PFOA were between 40 ng/L and 400 ng/L were defined 440	

as medium risk areas; and the areas where the concentrations of PFOA were lower 441	

than 40 ng/L were defined as low risk areas (Fig. 6). 442	
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 443	

Fig. 6. I don’t understand the legend!  Where can I find groundwater depth?  Are 444	

these wells for drinking water? Please be more explicit!  Risk zoning of PFAAs in 445	

surface and ground water 446	

High risk areas in groundwater including the area within the radius of 1 km from 447	

the fluorochemical industrial park were found within a distance of 1.5 km from the 448	

polluted river. Extremely high concentrations was detected at more than half of the 449	

sites (62.5%), which exceeded almost all reported drinking water quality standards, 450	

being 2.57 to 598 times higher than PHA, USEPA limits; and some of them even 451	

exceeded Notification of Events(45 µg/L) in UK, which may result in acute health 452	

impacts from short-term exposure	 (Inspectorate, 2009)(Table S10). For short-chain 453	

PFAAs including PFPeA, PFHxA, PFHpA and PFBA, the concentrations in 454	

groundwater sites along the river and nearest to the PFC were also mostly higher than 455	

their Health-Related Indication Values (HRIV) in Germany of 3µg/L, 1 µg/L, 300 456	

ng/L and 7µg/L, respectively (Table S11) (Wilhelm et al., 2010). Due to this health 457	

risk, untreated groundwater in these areas must not been used as drinking water. 458	
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Dispatching clean tap water and increasing well depth may be viable options for these 459	

areas. Two main areas were classified as medium risk areas. The first one was within 460	

the radius of 1-4 km from the fluorochemical industrial park, and the concentrations 461	

of PFOA at half of the sites in this area were comparable to PHBG in New Jersey, US. 462	

The concentration of PFOA at site G-6 near staff apartments of the fluorochemical 463	

industrial park was comparable to the Chronic Health Risk Limit (300 ng/L) in 464	

Minnesota, US (MDH, 2011). The other one was within the lateral distance of 1.5-3 465	

km from the sewage river, the concentration of PFOA deceased from 299 ng/L to 15.3 466	

ng/L in transverse A and from 125 ng/L to 20.6 ng/L in transverse B, most of which 467	

were also comparable to or higher than PHBG in New Jersey, US. Groundwater in 468	

these areas was also not suggested to be used as drinking water directly, unless a 469	

percolation device, for example granular activated carbon, were applied	(Wilhelm et 470	

al., 2010). Concentrations of PFOA in other areas were lower than PHBG in New 471	

Jersey, US and defined as low risk areas (MECDC, 2014). The concentrations of 472	

PFOA in these areas ranged from 0 to 7.15 ng/L, which were comparable to or even 473	

lower than those in tap water of most countries (Fujii et al., 2007; Jin et al., 2009).  474	

The shallow groundwater level and well depth may contribute to groundwater 475	

contamination by the polluted river and precipitation leaching, and result in higher 476	

risks through drinking water and contaminated food. According to official annual data 477	

from 20 monitoring sites in Huantai county, groundwater depth and well depth 478	

showed gradual decrease trend from south to north (Fig 6). The shallow groundwater 479	

level implies more frequent water exchange between groundwater and surface water 480	
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contaminated by sewage from fluorochemical industrial park, and the more shallow 481	

well depth means that groundwater people got is more vulnerable to PFAA 482	

pollution(Xiao et al., 2015) (Table S12). This area is a major grain-producing zone 483	

and surface water and groundwater were dominant irrigation water for large tracts of 484	

farmland and vegetable plots. Heavily polluted surface and ground water used for 485	

irrigation might pose risks due to PFAAs in soils and subsequent accumulation into 486	

crops and vegetables and eventual accumulation in humans	(Blaine et al., 2014; Wen 487	

et al., 2014). Local surface water and groundwater are believed to be also used for 488	

poultry farming and aquaculture. Poultry and aquatic products were inclined to 489	

accumulate long-chain PFAAs with higher toxicity and accumulation	(Gewurtz et al., 490	

2013; Gebbink et al., 2015) and intake of these products may also lead to potential 491	

human health risk	(Domingo, 2012).  492	

According to the above standards for risk zoning, high risk areas in surface water 493	

were downstream of the fluorochemical industrial park in the Dongzhulong River and 494	

Xiaoqing River, where concentrations of PFOA ranged from 79.74 to 4,267.23 times 495	

more than PHA, USEPA; while medium risk areas were at the upstream of the 496	

fluorochemical industrial park in the two rivers, where concentrations of PFOA were 497	

comparable to or higher than PHBG in New Jersey, US. Extremely high 498	

concentrations of PFOA in the seriously polluted Dongzhulong River were 499	

comparable to criteria continuous concentration (CCC) of 2.9 mg/L, and even triple of 500	

the predicted non-effect concentration (PNEC) of 570 µg/L in China, indicating the 501	

potential aquatic ecological risk (Table S10) (Giesy et al., 2010; Cao et al., 2013). 502	
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4. Conclusions and perspectives 503	

Overall, the results of this study indicated that: 504	

l High concentrations of ∑PFAAs were observed in the Dongzhulong River, 505	

downstream of fluorochemical industrial park effluent, including 1.71 mg/L in 506	

surface water and 240 µg/L in groundwater, respectively. The concentrations of 507	

∑PFAAs in surface water and groundwater nearby showed a positive correlation.  508	

l Emission from fluorochemical industrial park was principal source of PFAAs in 509	

surface water and groundwater. Discharge through waste into surface water and 510	

air emission from fluorochemical industrial park, were considered the two 511	

dominant pollution pathways. Surface water may also be polluted by 512	

contaminated groundwater through water exchange. 513	

l PFOA was the predominant PFAA with average contribution of 81.60% in 514	

surface water and 65.29% in groundwater, followed by short-chain PFCAs such 515	

as PFBA, PFPeA, PFHxA, PFHPA. The relative contribution of FPOA (C8) 516	

declined while percentage of C4-C6 shorter-chain PFCAs increased during 517	

surface water seepage and further dispersion in groundwater. 518	

l As the distance from a point source increased, the concentration of ∑PFAAs in 519	

groundwater sharply decreased and then declined more gently. The clear 520	

contamination signal from the fluorochemical industrial park on PFAAs in 521	

groundwater existed within a radius of 4 km, while that existed within the lateral 522	
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distance of at least 3km from seriously polluted Dongzhulong River. Adsorption 523	

to aquifer solids and the dilution were considered the major controlling factors in 524	

PFAA attenuation processes.  525	

l High human health risks for PFOA and other shorter-chain PFCAs existed in 526	

surface water as well as groundwater within a radius of 1 km from the 527	

fluorochemical industrial park and within a distance of 1.5 km along the river. 528	

Intake of drinking water, grain and vegetables, chicken and aquatic products, 529	

which associated with the contaminated surface and ground water, were potential 530	

exposure pathways for health risk. Aquatic ecological risks exist in the seriously 531	

polluted the Dongzhulong River due to the extremely high concentrations of 532	

PFOA.  533	

l As industry shifts toward the manufacture of fluorinated alternatives including 534	

short-chain PFAAs, PFOA and also shorter-chain PFAAs so continued vigilance 535	

on the health and ecological risks are needed. In particular, more consideration is 536	

required into the potential hazards aquatic products, livestock and poultry, and 537	

crops from these chemicals.  538	

Management options 539	

For fluoropolymer manufacturers, non-fluorinated alternatives that are neither 540	

persistent nor toxic should be developed while PFAA removal facilities, for example 541	

granular activated carbon system, could be considered for wastewater treatment 542	

system (Rumsby et al., 2009; Blum et al., 2015). Management of staff uniforms and 543	
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shuttle buses should be strengthened, and staff suits, trucks and shuttle buses should 544	

be regularly cleaned to avoid PFAA pollution during transport.  545	

For government, powerful legislation and policy enforcement should be 546	

implemented to extend producer responsibility and strictly control PFAAs emissions. 547	

Emerging contaminant monitoring system including PFAAs is necessary to ascertain 548	

pollution level in time. Advanced tap water systems and supporting purification 549	

device are also vital to ensure the safety of drinking water.  550	

With the collaboration between government and farmers, irrigation and crop 551	

safety should be improved using measures such as avoiding sewage irrigation; 552	

increasing well depth, dispatching clean irrigation water, and converting land use 553	

pattern of the seriously polluted area. Poultry farming and aquaculture should also 554	

avoid contaminated water. For communities around the fluorochemical industrial 555	

park, they should assist regulatory authorities to supervise illegal discharge of PFAAs 556	

and refuse contaminated drinking water and food associated with seriously 557	

contaminated water. 558	
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