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ABSTRACT2

Understanding the factors which affect the age of acquisition (AoA) of words and concepts3
is fundamental to understanding cognitive development more broadly. Traditionally, studies4
of AoA have taken two approaches, either exploring the effect of linguistic variables such as5
input frequency (e.g., Naigles and Hoff-Ginsberg, 1998) or the semantics of the underlying6
concept, such as concreteness or imageability (e.g., Bird et al., 2001). Embodied theories of7
cognition, meanwhile, assume that concepts, even relatively abstract ones, can be grounded in8
the embodied experience. While the focus of such discussions has been mainly on grounding in9
external modalities, more recently some have argued for the importance of interoceptive features,10
or grounding in complex modalities such as social interaction.11

In this paper, we argue for the integration and extension of these two strands of research. We12
demonstrate that the psycholinguistic factors traditionally considered to determine AoA are far13
from sufficient to account for the variability observed in AoA data. Given this gap, we propose14
groundability as a new conceptual tool that can measure the degree to which concepts are15
grounded both in external and, critically, internal modalities. We then present a mechanistic theory16
of conceptual representation that can account for groundability in addition to the existing variables17
argued to influence concept acquisition in both the developmental and embodied cognition18
literatures, and discuss its implications for future work in concept and cognitive development.19

Keywords: Concept grounding; embodiment; developmental linguistics; age of acquisition; SPAa20

1 INTRODUCTION

Within representationalist theories of embodied cognition, the symbol grounding problem has traditionally21
received much attention. The reason for the focus can be understood from a historical perspective: as22
Chemero (2009) notes, these theories developed primarily as a reaction to purely computationalist views23
of cognition1. One of the main criticisms levelled at such views was that they assume amodal symbols24
which are meaningless to the system itself – whatever meaning the symbols might carry was attributed by25

1 In contrast, non-representationalist theories of embodied cognition are an evolution of Ecological Psychology and its precursors.
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external observers. How such symbols could acquire meaning that is intrinsic to the system became known26
as the symbol grounding problem (Harnad, 1990), and the central claim to the solution in embodied terms27
is that the meaning is acquired through sensorimotor interaction with the world.28

This has led to at least two major research strands. On the more experimental end of the spectrum,29
much work has focused on detailing the involvement of sensorimotor areas of the brain in, for instance,30
language processing (see Chersi et al., 2010, for a review). Although such involvement is often taken as31
evidence for a grounded or embodied understanding of concepts, it is worth pointing out that this is not32
uncontroversial: Mahon and Caramazza (2008), for instance argue, that the evidence is not sufficient to33
invalidate disembodied hypotheses.34

On the computational end of the spectrum, researchers are interested in creating models of symbol35
grounding. Eliasmith (2013), for example, details a “semantic pointer architecture”, which provides a36
computational implementation of many aspects of Barsalou’s perceptual symbol system (Barsalou, 1999).37
Other efforts consider robotic implementations of such models (see, for instance, Stramandinoli et al.,38
2012, or, for a review, Coradeschi et al. 2013).39

A particularly interesting aspect of research across the entire spectrum concerns the putative grounding40
of abstract concepts – that is, concepts which do not have a directly perceivable sensorimotor target (see,41
for instance Thill et al., 2014; Dove, 2011, for recent reviews and discussions). While it is relatively42
straightforward to propose accounts of sensorimotor grounding of concrete concepts – which do have43
an observable sensorimotor target in the external world – it is less clear how, if at all, abstract concepts44
should relate to embodied experience. Mahon and Caramazza (2008) give the example of the concept45
“beautiful”, for which they claim that there is no corresponding consistent sensory or motor information46
(their emphasis).47

An early attempt at explanation is given by the conceptual metaphor theory (Lakoff and Johnson, 1980),48
which postulates that metaphors and analogical reasoning (e.g.: an argument is like war; happiness is up)49
mediate grounding of abstract concepts in direct sensorimotor experience. However, Dove (2011) points50
out that the required cognitive mechanisms, such the ability to construct such analogies and metaphors, are51
not likely to develop until relatively late. He further argues that linguistic representations are dis-embodied52
(the specific term he coined, and distinct from disembodied) in the sense that they do not acquire semantic53
content from embodiment, even though they may remain dynamic, multimodal and grounded in linguistic54
experience. Zwaan (2015) also argues that abstract concepts “acquire a specific sensorimotor instantiation55
in a discourse context” while being only weakly associated with sensorimotor representations. Similarly,56
Barsalou et al. (2008) previously proposed the Language And Situated Simulation (LASS) theory, arguing57
that both linguistic forms and situated simulations are used to represent concepts, including abstract ones.58

Other theories imply that the grounding of more abstract concepts can take place in modalities beyond the59
five senses in the strict sense. The Words As Tools theory (WAT Borghi and Binkofski, 2014) sees words60
as social tools, whose use is a “type of experience” (Borghi and Cimatti, 2012, p.22), which provides a61
potential way of grounding abstract concepts in a type of social modality. Similarly, Thill et al. (2014) argue62
that one should not restrict the embodied experience to the “outside” in a theory of concept grounding while63
Wellsby and Pexman (2014a) note that the focus so far has been more on interaction with the external world64
and less on “sensing bodies” (their term). This is also true for theories that try to link abstract concepts to65
embodiment, for instance by grounding them in the sensorimotor representations activated across different66
linguisitc contexts (Barsalou and Wiemer-Hastings, 2005; Zwaan, 2015). As others have noted, the human67
embodied experience is actually very rich and involves many internal processes (see Stapleton, 2011, 2013,68
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for a thorough review and discussion), including homeostatic and affective mechanisms (e.g. Damasio,69
2010; Ziemke and Lowe, 2009) which may directly ground concepts that are considered abstract. As70
noted by Stapleton (2013), the internal body may2 matter to cognition. Of the aspects that comprise this71
internal body, affect and emotion have received the most attention in discussions of concept grounding so72
far. Glenberg and Gallese (2012), for instance, propose an account of language acquisition that includes73
emotional systems as a providing means for grounding in addition to perception and action. Similarly,74
Kousta et al. (2011) argue that abstract words tend to be more emotionally valenced than concrete ones, and75
that emotional content might be an important factor in the representation and processing of abstract words76
in particular. Newcombe et al. (2012) showed a correspondence between emotional experience and speed77
(and accuracy) of classification of abstract – but not concrete – words, and argue that abstract concepts78
may be grounded in emotional features that remain stable across different contexts (see also Siakaluk et al.,79
2014, for a follow-up). The concept of “beautiful”, although having no consistent external sensorimotor80
experience, may thus relate to direct internal experience.81

Research into concept grounding tends to focus on adult language and cognition. There are, however, good82
reasons to approach the topic from a developmental perspective (Kontra et al., 2012). Most immediately,83
any mechanistic account of concept grounding makes the direct prediction that whatever mechanism is84
proposed has developed by the time that humans use that concept – recall, for example, Dove’s (2011)85
concern regarding the use of metaphors previously mentioned. Second, bodily and cognitive development86
may be a crucial component for explanatory accounts of cognitive mechanisms: after all, humans acquire87
concepts during a period of dramatic change.88

Concept grounding depends, by definition, on the sensorimotor experience that is meant to provide this89
grounding. The importance of this embodied input has been accepted since Piaget’s classic work on the90
sensorimotor roots of cognitive development (Piaget, 1952). More recently, however, new technology has91
provided striking novel insights into the infant’s embodied experience: that is, what infants experience is92
substantially different from what adults experience. As the body changes – e.g. arms grow longer, walking93
commences – so too do important characteristics of the body-mediated information available for concept94
grounding. Studies using head-mounted eye trackers demonstrate, for example, that the content of the95
infant’s visual field is qualitatively and quantitatively different from that of the adult, because infants’96
shorter arms lead them to hold objects close to their faces (Smith et al., 2011). The precise nature of the97
body (e.g., walking vs. crawling, height) is clearly crucial in shaping this experience (Kretch et al., 2014);98
yet it is also often ignored in the embodied cognitive science literature. For instance, Ziemke (2003) points99
out that “many discussions/notions of embodied cognition actually pay relatively little attention to the100
nature and the role of the body involved (if at all)” (p 1306, emphasis in text) and Borghi et al. (2013)101
similarly argues that “many versions of the [embodied-grounded] view are too brainbound” (p 2).102

The developmental psychology literature also features a substantial body of work concerned with human103
concept and word acquisition. This work is highly relevant to the concept grounding discussion. In104
particular, it illustrates how change over time in the conceptual system reflects change over time in the105
physical system. For instance, conceptual structure changes radically across development (Mandler, 2000;106
Quinn and Eimas, 1997): infants as young as three months form perceptually-based categories (Quinn et al.,107
1993), but begin to show evidence of more abstract representations by around 12 months (Mandler and108
Bauer, 1988), and make conceptually-based category judgements by four years (Keil, 1989). Importantly,109

2 Stapleton (2013) actually omits the “may”, stating that “I argue that recent work in neuroscience and robotics suggests cognitive systems are not merely
superficially embodied in the sense that the sensorimotor interactions with the environment are the only interactions relevant to cognitive behaviour, but that
cognitive systems are ’properly embodied’; the internal body matters to cognition” (p 1–2)
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early perceptual/conceptual structure and language acquisition are intimately linked. For example, by110
drawing attention to invariant, category-relevant features, perceptual variability in the objects children see111
supports category formation and subsequent word learning (e.g. Goldenberg and Johnson, 2015; Twomey112
et al., 2014; Vlach et al., 2008). Relatedly, English-learning children generalize category labels to new113
same-shape items, but only if those items are solid rather than nonsolid (Samuelson and Horst, 2007).114
Further, variation in the physical position of the body can disrupt word learning (Samuelson et al., 2011;115
Morse et al., 2015). Thus, evidence from multiple modalities indicates that the perceptually grounded116
nature of early concrete concepts interacts with children’s ability to learn words. Indeed, the interaction117
between perceptual grounding and early language has been investigated. For example, in a word naming118
study which included school-age children, Wellsby and Pexman (2014b) demonstrated that the extent to119
which the referents of words are easy to physically interact with (as rated by adults) affected 8- to 9-year120
old children’s written word processing. Specifically, children’s naming latencies were shorter for words121
with high body-object-interaction (BOI) ratings. The authors argued that high-BOI words have richer122
semantic representations than low-BOI words, leading to greater activation in the semantic system, which123
in turn facilitates word recognition. Taken together with the adult literature, the developmental embodied124
cognition approach makes the prediction that the sensorimotor experience associated with a concept should125
affect how easy it is to acquire that concept.126

Recent psycholinguistic studies have focused on the age of acquisition (AoA) of words as a marker127
of concept learning, and demonstrate that the semantic features of concepts themselves affect the age at128
which their labels are learned. For example, McDonough et al. (2011) examined the effect of a word’s129
imageability (the extent to which a word generates a mental image Paivio et al., 1968) and class (e.g.,130
noun, verb) on AoA. As well as predicting AoA, imageability accounted for variation that word class did131
not, indicating an independent role of perceptual features in the acquisition of early abstract concepts (for132
crosslinguistic evidence, see Ma et al., 2009). Closely related to imageability is concreteness, or the extent133
to which a concept is perceptible (Brysbaert et al., 2014). Bird et al. (2001) showed that imageability and134
concreteness predicted AoA for children’s early-produced nouns (see also Barca et al., 2002; Smolı́k, 2014).135
In a study in which Dutch adults rated words for emotional valence, arousal, power and AoA, valence136
was negatively correlated with AoA such that more positive words were acquired earlier (Moors et al.,137
2013). In addition, linguistic phenomena also affect AoA, including – but not limited to – iconicity (Perry138
et al., 2015), and in particular, input frequency (Ambridge et al., 2015; Barca et al., 2002; Goodman et al.,139
2008; Naigles and Hoff-Ginsberg, 1998; Storkel, 2004; Roy et al., 2015). Whether sensorimotor experience140
predicts AoA, however, remains to be tested.141

In the following section we bring together in a single analysis variables that have been shown to affect142
AoA, specifically, frequency, imageability and valence. Our goal is not to provide an exhaustive account143
of conceptual and linguistic influences on AoA; indeed, for many of these variables insufficient data144
are available for a reliable analysis. However, to our knowledge this is the first study to bring together145
these variables in analysing the reliable measure of AoA provided by the widely-used MacArthur-Bates146
Communicative Development Inventory vocabulary norms (Fenson et al., 1993). We demonstrate that,147
when taken together, these variables explain only a minority of the variance, highlighting the importance of148
identifying and testing new factors. In a second analysis we test our hypothesis that sensorimotor grounding149
is important to AoA, by adding a measure of body-object interaction. We argue that while existing measures150
take into account conceptual and linguistic effects on AoA, embodied characteristics of concepts may be151
an important missing piece of the puzzle.152
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2 METHODS

To explore the effect of conceptual features on AoA we obtained AoA, frequency, imageability and valence153
ratings from a range of open access sources. Data used in the analyses are provided in Appendix A and154
Pearson correlations between variables are presented in Table 1.155

2.1 Age of Acquisition156

Our goal was to explore the extent to which previously identified variables predict the age of acquisition157
of words commonly learned by human infants. We took our target words from the MacArthur Bates158
Communicative Development Inventory (MCDI; Fenson et al., 1993). The MCDI is a well-established,159
normed and validated list of 680 words that infants and toddlers learn to understand and produce up to 30160
months of age, and is widely used in developmental research. We defined AoA as the month in which 50%161
or more of 1,142 infants in the MCDI sample produced a given word. AoA in months ranged from 12 (e.g.,162
mommy) to 30+ (e.g., pretend). AoAs listed as 30+ months were coded as 31 months for the purposes of163
the current analysis.164

2.2 Frequency165

Children’s language environment has been repeatedly shown to influence their language acquisition166
(for a review, see Ambridge et al., 2015). We therefore generated our frequency data from real child-167
directed input, which is representative of the language children hear, rather than relying on corpora of168
non-child-directed spoken or written speech. CHILDES (MacWhinney, 2000) is a large, open-access online169
database of transcribed, naturalistic conversations between adults and children. We searched all Northern170
American corpora for each word in the MCDI, with the exception of some sound effects and routines (e.g.,171
woof, patty cake). Only mothers’ utterances were queried, providing an index of children’s input. This172
resulted in frequency ratings for 638 words with frequencies ranging from 0 (cat) to 128124 (you) tokens173
(M = 2848.82).174

2.3 Imageability and concreteness175

For each MCDI word for which we obtained frequency data we extracted imageability and concreteness176
ratings from the MRC Psycholinguistic Database (Coltheart, 1981; Wilson, 1988). The database is a large,177
open-access collection of 26 psycholinguistic variables for up to 150,000 words (although not all words178
have data for all variables) aggregated from existing studies3. Because imageability and concreteness were179
very highly correlated (r = .91, p < .0001), in line with Ma et al. (2009) and McDonough et al. (2011),180
we used imageability as a predictor variable in the following analyses. Imageability scores ranged from181
195 (low) to 667 (high; M = 495.58).182

2.4 Valence183

Valence ratings for each word were taken from the 2010 version of the Affective Norms for English184
Words dataset (ANEW; Bradley and Lang, 2010). This version of ANEW consists of adult ratings of185
2,476 words for pleasure (i.e., valence), arousal and dominance. Scores ranged from 1.61 (happy) to 8.72186
(unhappy; M = 5.92).187

3 details available at http://www.psych.rl.ac.uk/MRC Psych Db files/mrc2.html
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2.5 Body-object interaction188

To explore our hypothesis that sensorimotor grounding may be important for concept acquisition, we189
took measures of body-object interaction (BOI) from Tillotson et al. (2008) and Bennett et al. (2011), in190
which adults were asked to rate the extent to which they could easily interact with a named item. Scores191
ranged from 1.27 (first; low interactivity) to 6.43 (doll; high interactivity; M = 4.68). Specifically, our192
assumption is that the experience of interacting with concepts that rate highly is more multi-modal than193
that of interacting with low-ranking concepts (if such an experience exists at all), so BOI might serve as a194
proxy to rank concepts by how much they are defined by an external sensorimotor experience.195

3 RESULTS

3.1 The effect of conceptual features on AoA196

To explore the effect of conceptual features on AoA, we first created a conceptual features model. AoA197
for the 398 words with ratings for every variable was submitted to a linear regression with frequency198
(log transformed), imageability (mean centred) and valence (mean centred) as fixed effects. Because199
high frequency function words have little or no semantic content, while rarer nouns have rich semantics,200
we anticipated that frequency and imageability would interact, so included a frequency-by-imageability201
interaction term (cf. Roy et al., 2015).202

Results are presented in Table 2. The principal result is that the interaction between frequency and203
imageability predicts AoA, extending the findings of McDonough et al. (2011) and Ma et al. (2009), who204
each found correlations between CDI AoA and imageability ratings. As illustrated in Figure 1, although205
late-acquired words tend to be lower frequency, function words (e.g., an, the, to) have low imageability and206
are acquired late despite being high frequency. In contrast, high-imageability words for the things infants207
encounter in their everyday environment (e.g., puppy) are acquired early despite occurring infrequently.208
In addition to the interaction between imageability and frequency, main effects of these two variables209
confirmed that as imageability increased, AoA decreased (see also Ma et al., 2009; McDonough et al.,210
2011), and in line with Roy et al. (2015), as frequency increased, AoA decreased. Interestingly, in contrast211
with existing studies (e.g., Bird et al., 2001; Moors et al., 2013), valence did not predict AoA; however212
the adult ratings we used may not capture the effect of a word’s valence on young children. More broadly,213
the differences between our results and existing studies may stem from some important methodological214
differences: while the majority of work uses adult ratings of word AoA and frequency measures taken215
from corpora of adult-directed language, we use parental measures of their own children’s language and216
frequencies taken from child-directed speech (cf. McDonough et al., 2011). This contrast highlights the217
need for child-centric ratings of such predictors, and illustrates the importance of taking seriously the real218
input to infants when investigating developmental phenomena (Smith et al., 2011).219

The goal of this analysis was to illustrate that even well-tested predictors are unable to fully explain220
AoA. As expected, this model accounted for less than half of the variance (adjusted R2 = 0.38), leaving221
substantial scope for the influence of other factors on early concept acquisition. As noted above, our222
analysis focuses on variables which have repeatedly been shown to influence AoA, and ignores those for223
which no data are available. Thus, we do not claim that it is an exhaustive model of the factors affecting224
concept AoA. We do, however, argue that the variance unaccounted for is not simply random variation, but225
rather the result of linguistic and concept-internal variables not typically included in analyses of AoA. In226
particular, this leaves open the possibility that embodied aspects of concepts may contribute to the ease227
with which they are acquired.228
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3.2 The effect of a sensorimotor grounding on AoA229

To explore whether the extent of sensorimotor grounding might play a role in concept acquisition (as230
discussed in section 2.5), we added a measure of body-object interaction as a predictor in the conceptual231
features model to create a BOI model. Because fewer of our target words had ratings for this variable, the232
final dataset for this analysis consisted of complete ratings for 151 words.233

As illustrated in Table 3, when the additional BOI term is included, the frequency-by-imageability234
interaction and main effect of imageability predict AoA, while the main effect of frequency does not.235
Critically, in line with our predictions, BOI does predict AoA, such that as words are rated as more difficult236
to interact with, AoA increases. Importantly, this model also explained a greater proportion of the variance237
in AoA, with an increase in adjusted R-squared from 0.38 to 0.40. To compare the fit of our two models,238
we first refit the conceptual features model to the smaller dataset; this resulted in a similar pattern of239
results (see Table 4). Including the BOI term resulted in a reduction in AIC from 788.43 to 770.80. Taken240
together with the increase in adjusted R-squared, this confirms that the BOI model fits the data better,241
explaining more variance than the conceptual features model and supporting our claim that the extent to242
which concepts are grounded in the body affects AoA.243

Although including BOI improved the fit of the model, it nonetheless again left a majority of the variance244
unaccounted for – as expected, given that it did not include linguistic effects on AoA, for example iconicity245
(Perry et al., 2015), ease of pronunciation (Jorm, 1991) and contextual diversity (Hills et al., 2009), and the246
fact that these ratings came from adults. Thus, it is, for example, possible that using child ratings of BOI247
could improve the model fit further. What drives concept AoA is far from being fully understood; however248
the above analyses strongly suggest that grounding in sensorimotor experience could be a critical piece in249
this puzzle.250

4 WHAT ARE CONCEPTS MADE OF?

To summarise the results, we first showed that semantic features and linguistic phenomena such as frequency251
are not sufficient to explain AoA data. Our main hypothesis is that this is because such features do not take252
into account grounding in a rich or proper sensorimotor experience. We then demonstrated that including253
predictors related to such a grounding improve on the initial results.254

There is clearly much work to be done to validate the hypothesis further. First and foremost, there are255
currently no major corpora of data that relate to relevant measures other than BOI as used above. Second,256
the measure of BOI used above takes no account of interoceptive aspects of the sensorimotor experience,257
which, as noted, are likely to play a part in conceptual structure. How to tap into such interoceptive aspects258
is not trivial. Although valence ratings may seem like a good starting point (since valence itself is part259
of the internal sensory experience), they do not provide a measure of how diverse (or multi-modal) the260
internal sensory experience associated with a concept is4. Instead, they quantify the strength of one aspect261
(which is clearly relevant, as argued for instance by Kousta et al., 2011, but not necessarily sufficient262
since there are other internal modalities as discussed, for example, by Stapleton 2011). Together with the263
limitations of BOI mentioned before, there is therefore still a need for designing new types of measures264
that address both internal and external sensorimotor experience more explicitly.265

The purpose of the remainder of this paper is therefore to outline a mechanism of concept learning266
which explicitly takes into account embodied features beyond simple sensorimotor interaction (for instance,267

4 in PAD space (Mehrabian and Russell, 1974), for example, valence ratings do not relate to the A or the D

Frontiers 7

Provisional



Thill et al. A grounded account of concept acquisition and development

interoceptive features) whilst incorporating the variables which have been repeatedly shown to affect AoA,268
and by extension, conceptual development and structure. In doing so, we will generate testable predictions269
for future work and lay the groundwork for future research into novel measures that can validate our270
hypothesis.271

To provide this characterisation, we cast our discussion in terms of a cognitive architecture since these272
necessarily formally specify the mechanisms underlying concept use. Specifically, we base our discussion273
on the semantic pointer architecture (SPA, see Eliasmith, 2013). It would of course be equally possible274
to formulate these ideas in frameworks other than SPA; the Neural Blackboard Architecture framework275
(van der Velde and de Kamps, 2006), for example, is also concerned with the creation of combinatorial276
structures, such as concepts, that might underlie human cognition. For the present purposes, however, we277
think SPA well-suited: it is inspired by human semantics and syntax in that its “semantic pointers” can be278
interpreted as perceptually grounded symbols in the sense of Barsalou (1999). SPA can also incorporate279
mechanisms necessary for concept grounding in terms of a rich sensorimotor experience (see Thill, 2015,280
for a longer discussion).281

The question of when children acquire concepts can therefore be reformulated, for the present purposes, as282
asking at what age the corresponding semantic pointer forms. In the following, we first give a brief overview283
of the main computational principles in SPA (we refer the interested reader to Eliasmith, 2013, for a much284
more thorough discussion, including various demonstrations of cognitive and biological plausibility). We285
then provide the aforementioned characterisation of concepts, which finally allows us to highlight directions286
for future work.287

4.1 Brief overview of semantic pointers288

Semantic pointers, in SPA, are vectors in a high-dimensional5 space. For example, the concept of a289
robin would thus be described by a vector robin. To specify how such a vector might be obtained, SPA290
takes inspiration from hierarchical structures in the human brain such as the visual cortex (Felleman291
and Van Essen, 1991). For example, the retinal image of a robin is successively compressed through the292
different layers of the hierarchy for object recognition (V1→ V2→ V4→ IT) into a representation with293
significantly lower dimensionality than the original retinal input. This resulting representation at the top of294
the hierarchy would be a semantic pointer robVis encoding the visual appearance of a robin.295

Multiple representations can then be bound together to form a new concept. In SPA, the binding operator
is circular convolution, denoted by ~, a vector operation which takes two vectors as an input and returns a
vector of the same length as an output. To give an example from Eliasmith (2013), one could construct a
semantic pointer for perceptual features of a robin:

robinPercept = visual~ robVis+ auditory ~ robAud+ tactile~ robTact+ . . .

where each element in bold represents a semantic pointer. robin could then be defined as:

robin = perceptual~ robinPercept+ isA~ bird+ indicates~ spring + . . .

There are several aspects of semantic pointers that we do not discuss here. It is, for example, possible to296
“read out” particular components of a semantic pointer (such as what the visual percept RobinVis within297
the overall concept of Robin is), and to recall the visual image(s) used in forming that particular pointer –298

5 Eliasmith (2013) suggests that 500 dimensions are sufficient for human cognition
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a process that can be interpreted as a type of simulation of previous sensorimotor experience as proposed299
by Barsalou (Barsalou, 1999; Barsalou and Wiemer-Hastings, 2005; Barsalou, 2009). Further discussions300
of the underlying neural structures, necessary neural mechanisms, and biological plausibility can be found301
in Eliasmith (2013).302

For the present purposes, it is also worth emphasising that, although it is capable of symbolic manipulation,303
SPA is not a symbolic account of cognition; the semantic pointers related to any concept are not arbitrary304
symbols but a compressed combination of perceptual features that make up the concept. As such, the305
sensorimotor experience of a given concept by an agent plays a fundamental role in forming the concept306
and shaping computations that use it.307

4.2 Characterisation of richly grounded concepts308

In essence, we argue throughout this paper that sensorimotor concept grounding requires a rich perspective309
of what the term “sensorimotor” actually entails: it is not merely sufficient to consider basic sensorimotor310
interaction with the external world; internal percepts (including affect, emotional components and other311
aspects of interoception as discussed in more detail, for example, by Stapleton, 2011) are equally important312
(Thill et al., 2014; Wellsby and Pexman, 2014a). We therefore postulate that the sensory features of a313
concept, directly perceived at a given time t, can be described as follows:314

SD
t =

∑
i

∑
j

Modalityext
i ~ featurej +

∑
k

∑
l

Modalityint
k ~ featurel (1)

where we omit an explicit mention of time on the RHS. Eqn. 1 simply captures the idea that concepts315
are multimodal and made up of any number of features from any number of modalities (notably, this316
number can also be low: constructs are not necessarily complex. In particular, a concept could consist of a317
single modality, for example the concept “yellow”). What matters is the direct nature of these features; by318
which we mean that they are not time-dependent. They could for instance relate to a colour or the shape319
of a solid object, as acquired by the visual modality, the smoothness of a surface from a tactile modality,320
or an affordance elicited by a given object. They could equally relate to direct visceral feelings elicited321
when experiencing, for example, surprise, pleasure, or to the proprioceptive feeling of an extended arm.322
Affective mechanisms or emotional components (as highlighted by many, e.g. Glenberg and Gallese, 2012;323
Newcombe et al., 2012; Kousta et al., 2011) of concepts can be included by representing the different324
dimensions as internal modalities. For example, in PAD Space (Mehrabian and Russell, 1974), one might325
posit the following: Pleasure~ valuep +Arousal~ valuea +Dominance~ valued.326

Other sensorimotor perceptions, on the other hand, are time-dependent: movements are, for example, by327
definition expressed over time. We sketch such percepts as:328

ST = f
(
SD
t=1,...,n

)
(2)

where the notation again chooses simplicity over being explicit since it is merely meant to be a sketch of a329
process that would capture temporal aspects of percepts. Here, f (·) is therefore a simply placeholder for a330
temporal function (see, for example, Pack and Bensmaia, 2015, for a discussion of neural sensitivity to331
temporal stimuli, and underlying computations, in both the visual and touch modalities).332

We argue that Eqns. 1 and 2 provide a reasonable characterisation of the sensorimotor experience that333
may ground concepts and provides a starting point for analysing concept acquisition. To address word334
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acquisition proper, we also need to recognise that verbal labels can be attached to concepts. This gives us335
the first expression for a concept grounded in rich sensorimotor experience:336

C = SD + ST + Label~ name (3)

Next, we note that pointers in SPA can be constructed from other pointers, as in the previous example of337
the robin. We can introduce a similar idea here by noting that a given concept can be made up by more338
than just direct sensory features; it can equally include existing concepts:339

C = SD + ST +
∑
i

∑
j

Includesi ~Cj + Label~ composite (4)

where we highlight that other concepts are not merely added by summation (see Eliasmith, 2013); it340
is rather the compressed vector that is added as a property (that we refer to as Includes here). Eqn. 4341
also captures how some researchers, (particularly those primarily interested in robotic models of concept342
grounding) believe abstract concepts can be grounded (see Stramandinoli et al., 2012, for an example and343
Thill et al. 2014 for a larger discussion). In such theories, rather than being grounded in direct sensorimotor344
features, abstract (or higher order) concepts are instead grounded in other concepts, possibly with no direct345
sensorimotor component at all, meaning the first two terms on the RHS of Eqn. 4 would be empty.346

In sum, we argue that Eqn. 4 describes the general form of a grounded concept, can accommodate347
current views on concepts, can account for abstract concept acquisition, and allows us to incorporate a rich348
embodied experience without positing a separate mechanism. For example, the modalities that provide349
features can extend to the social domain, in line with claims that more abstract words go beyond the simple350
sensorimotor to include a stronger social component (Borghi and Binkofski, 2014; Borghi and Cimatti,351
2009, 2012). It is also worth highlighting that the characterisation does not require all components to352
be related to some form of sensorimotor experience (even if rich). The use of Includes allows for the353
inclusion of purely linguistic features (Kousta et al., 2011), which in turn allows for dis-embodied concepts354
in the sense of Dove (2011). Indeed, in any of the above, the left-hand term of the ~ operator in SPA355
could in principle refer to anything and does not necessarily need to be itself something that has a direct356
sensorimotor grounding (as is clear from the robin example above). This therefore also allows for the357
construction of metaphors in the sense of Lakoff and Johnson (1980) – as a crude example, one could for358
instance postulate the following:359

Happiness ≈Modalityint ~Up (5)

which is meant to express that happiness causes interoceptive feelings that are somewhat akin to the360
grounded concept of “Up”. Up, here is a concept as described by Eqn. 4.361

Finally, it is worth pointing out that this characterisation is open to the use of purely amodal symbols,362
perhaps even in conjunction with grounded ones. Exploring this further would require a theory of how such363
semantic pointers are formed, but once they are, they could be used at the appropriate places in Eqns. 1 – 4364
(where one could for instance imagine a dedicated modality for amodal symbols). We do not pursue this365
here since our main aim is to discuss the grounding of concepts.366
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5 DISCUSSION

Having characterised concepts in terms of the semantic pointer architecture, we now turn to ways in which367
it can contribute to our understanding of concept acquisition. The first thing to note is that this new account368
is strongly developmental. As mentioned in the introduction, concepts evolve over time – a five year old’s369
concept of love is unlikely to be identical to that of a 15-year-old, which in turn is likely to be different from370
the concept the individual will have at age 35. For any given concept, its characterisation in Eqn. 4 therefore371
changes over time. In particular, concepts may initially be formed from partial information and additional372
terms added as the modalities that provide such features develop, or other types of information becomes373
available, reflecting the rapid development of conceptual structures seen in early childhood (Mandler, 2000;374
Quinn and Eimas, 1997). The characterisation given by Eqn. 4, for any given concept, is therefore also375
subject to development. Thus, it is possible to predict a developmental timeline given a hypothesis of376
necessary constitutents – that is, a concept can only be acquired once its constituent semantic pointers have377
been acquired. It is worth pointing out that any theory of concept acquisition implicitly makes at least one378
prediction in this sense: that the proposed cognitive mechanisms exist by the time children begin to acquire379
the concepts in question. As noted previously for example, Dove (2011) has argued that the ability to form380
metaphors develops too late to adequately be positioned at the core of abstract concept grounding (although381
metaphors can contribute to such concepts once available). Similarly, the idea that concepts might be made382
of contextualised simulations (Barsalou, 1999; Barsalou and Wiemer-Hastings, 2005; Barsalou, 2009)383
predicts that the necessary mechanisms to develop such simulations develops in a manner consistent with384
AoA. Conversely, if a developmental timeline for simulation mechanisms is given6, it is then possible to385
sketch how a concept develops from AoA onwards as the simulations it relies on mature.386

A historic problem for theories of embodied cognition is how to account for acquisition of concrete and387
abstract concepts in a single mechanism. For example, while concrete yellow can be directly acquired from388
the external world, the more abstract lonely requires interoceptive features, while whatever is arguably389
linguistically mediated. Here, Eqn. 4 provides a starting point since it can form the basis for a measure of390
how much of a given concept is grounded in simple, directly perceivable sensorimotor modalities in the391
sense of Eqns. 1 and 2. In other words, how abstract a concept is is a function of how much of its substance392
goes beyond simple sensorimotor grounding. This is essentially very similar to the previously mentioned393
claims from the WAT theory (Borghi and Binkofski, 2014), which argues that more abstract concepts are394
made up of more social aspects that are not related to an individual’s sensorimotor experience. At the395
same time it extends this to include any source for aspects that are not of a simple external sensorimotor396
type, including not only more complex sensorimotor experiences related to linguistic usage of the concepts397
(Zwaan, 2015; Dove, 2011; Barsalou et al., 2008) but also interoceptive (Thill et al., 2014) features.398

Because our characterisation in Eqn. 4 incorporates interoceptive features, the conceptual structure399
it entails is subtly different from that of the commonly and often interchangeably used, adult-rated400
concreteness or imageability scales (Reilly and Dean, 2007). By trying to provide a way to quantify how401
much of a concept is grounded in a rich but direct sensorimotor experience, we measure the “groundability”402
of a concept: the degree to which a concept is directly grounded in embodied processes. Importantly,403
these embodied processes include internal modalities, including affect and other interoceptive aspects: a404
concept can thus be directly grounded even if it has no perceivable aspect in the external world. Rather than405
distinguishing between “concrete” and “abstract” concepts, then, we distinguish between concepts that406

6 Thill and Svensson (2011) discuss the current lack of such a timeline in more detail and speculate that simulations may co-develop with dreams, with the
implication being that the quality of dreams (which do not reach adult-levels of sophistication until the late teens) may serve as an indicator of the sophistication
of internal models underlying simulations.
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have a larger or smaller proportion of directly grounded components. Developing a groundability scale, in407
particular one that can account for development, will be key to empirical tests of this account.408

The mechanisms provided by SPA also raise important questions for subsequent work: for example,409
since SPA uses vectors for the underlying representations, what might the distribution of these vectors be410
when constructed in a bio-realistic fashion, and to what degree does this relate directly to our measure of411
groundability? Further, a developmental process that enriches concepts over time with newly accessible412
information from existing or new modalities effectively modifies the direction of the vector in space. This413
might provide a quantitative measure for the amount of change that the introduction of a new cognitive414
mechanism can induce in a concept.415

Importantly, this approach is also consistent with the developmental literature. Sloutsky (2010), for416
example, provides such an account of the neural mechanisms underlying concept learning, distinguishing417
between statistically “dense” and “sparse” categories (the difference being the amount of redundant418
information that a concept carries). Sloutsky relates these to different learning mechanisms – compression419
mechanisms for dense, and selection mechansisms for sparse categories. Where abstract concepts (which,420
in his terms are concepts that have no sensory target, such as “love”) are concerned, Sloutsky posits421
an important role for the executive function, and therefore PFC. Taken together, these insights combine422
into a developmental hypothesis of category learning: dense categories are easier to learn than sparse423
because the required compression mechanisms develop earlier while the involvement of the executive424
function in abstract concepts would predict a late acquisition due to the late maturation of the PFC (for a425
much more detailed reasoning, see Sloutsky, 2010). The account we have provided here includes these426
considerations in the precise neural mechanisms that SPA postulates to underlie semantic pointer formation427
(Eliasmith, 2013), but it also extends them with a more explicit inclusion of embodied mechanisms428
that have their own developmental timeline. Our account also ties in with Barsalou’s idea of situated429
conceptualisation (Barsalou, 2009) and the suggestion that concepts are a “large collection of situational430
representations” (Barsalou and Wiemer-Hastings, 2005, p. 156) since, as previously noted, SPA can431
be seen as a computational implementation of Barsalou’s (1999) perceptual symbol system. A situated432
conceptualisation could be achieved by decompressing some of the semantic pointers (thus activating433
simulations of the corresponding sensorimotor experience) that make up a given concept. Conversely a434
theory of what situated conceptualisations for a given concept need to contain can in turn provide insights435
into what aspects of (internal and external) sensorimotor experience might make up that concept, thus436
contributing to insights into the nature of Eqn. 4 for that concept.437

6 CONCLUSION

In sum, we have shown how developmental accounts of concept acquisition can include embodied theories438
of cognition, without being forced to claim that all aspects of all concepts are necessarily grounded in some439
sensorimotor experience. We have also highlighted the importance of understanding the term “sensorimotor”440
experience as going beyond sensorimotor interaction with the external world: the inside matters just as441
much. We refer to the extent to which a concept is richly embodied in this way as its groundability. Using442
empirical data, we have shown both that the semantic features typically considered in developmental443
studies are not sufficient to explain variability in AoA and, critically, that including BOI as a measure444
which can be related to sensorimotor experience improves the results.445

Our account unifies existing theories of embodied cognition in a single mechanism by highlighting how446
cognitive mechanisms that develop comparatively late can enrich existing concepts. It also makes it clear447
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that concepts which have no components that are available early on can only develop later. It also suggests448
that additional factors in AoA cover a range of attributes: (a) the complexity of the underlying concepts449
in terms of how many modalities and features they aggregate, (b) the proportion of directly groundable450
features, (c) the degree to which such features refer to aspects of the external sensorimotor experience,451
(d) the development of necessary sophisticated mechanisms, and (e) the ability to communicate about452
them. Thus, this theoretical account integrates research in embodied cognition and cognitive development,453
paving, we hope, the way for future empirical tests of the interaction between groundability and concept454
acquisition.455
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A LIST OF DATA USED IN THE REGRESSION ANALYSES

Word AoA (months) CHILDES Frequency Imageability Valence BOI

animal 23 396 575 6.48
ankle 30 21 613 5.27
apple 17 973 637 6.41 5.26
arm 21 354 593 5.34 5.7
aunt 24 196 567 6.39 4.73
baby 15 6227 608 8.22 5.59
bad 23 634 388 2.56
banana 16 536 644 6.61 4.89
basement 31 77 571 4.67 3.29
basket 25 410 560 5.45 5.07
bath 17 492 601 7.33 4.8
beach 23 377 667 8.03 4.3
bear 19 2201 572 4.78
bed 20 1663 635 7.51 6.27
bench 23 54 555 4.61 5.9
bib 20 216 488 5.57 3.9
bird 16 1128 614 7.27 5.17
black 29 665 589 5.39
blanket 19 262 582 6.94 5.78
blue 22 2068 569 6.76 1.55
boat 18 389 631 7.79 5.7
book 16 4936 591 5.72 6.33
bottle 16 718 619 6.15 5.59
bowl 21 603 579 5.33 5.93
boy 20 3383 618 6.32 5.67
break 23 647 398 4.59
broken 22 410 469 3.05
broom 21 109 608 4.83 6.31
brother 28 242 589 7.11
bucket 26 252 586 5.1 5.11
bunny 19 1379 585 7.24
butter 22 421 603 5.33 4
butterfly 23 302 624 7.17 2.52
button 20 474 580 5.21 4.96
cake 22 519 624 7.26 5.9
candy 22 266 601 6.54
car 25 2529 638 7.73 6.4
cereal 22 439 576 7.35
chair 19 2016 610 5.08
chalk 30 58 601 4.89 5.6
cheese 18 986 592 6.33
chicken 22 749 619 6.87 3.67
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Word AoA (months) CHILDES Frequency Imageability Valence BOI

child 28 153 619 7.08 6.07
chin 22 124 608 5.29 4.4
chocolate 19 438 611 6.88 5.49
church 26 58 616 6.28 4.36
circus 31 155 586 7.3
clean 23 1361 454 7.23
clock 20 208 614 5.14 5.47
closet 26 174 525 5.21 2.96
clown 23 310 589 5.39 4.67
cold 19 992 531 4.02
cook 23 309 504 6.16
cookie 16 1300 600 7.6 5.15
corn 23 276 601 6 5.93
couch 23 272 536 6.78 5.86
country 31 64 539 5.93
cow 19 848 632 5.57
cup 19 1033 558 5.44 5.79
cut 26 701 460 3.64
dance 22 349 510 7.38
dark 25 274 586 4.71
day 29 1793 526 6.66 1.87
dinner 22 627 570 7.16
dirty 19 876 485 3.08
doctor 23 357 600 5.2 3.37
dog 14 1385 636 7.57 6.4
doll 20 315 565 6.09 6.43
door 19 1250 599 5.13
dress 23 366 595 6.41
dump 30 289 528 3.21
eat 19 5076 563 7.47
egg 21 674 599 5.29
elephant 31 593 616 6.48 1.93
eye 16 543 603 5.86 5.47
face 23 1299 581 6.39 5.8
fall 22 933 547 4.09
farm 27 346 560 5.53 4.1
finish 29 830 437 7.8
first 27 1927 388 6.89 1.27
fish 21 1175 615 6.04 5.73
flag 26 51 607 6.02
flower 19 424 618 6.64 4.33
food 23 1149 539 7.65 6.4
foot 19 899 597 5.02 5.73
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Word AoA (months) CHILDES Frequency Imageability Valence BOI

fork 21 205 598 5.29 6.13
friend 27 591 587 7.74 5.53
frog 31 417 617 5.71 5.03
game 27 664 521 6.98 3.97
garbage 23 278 596 2.98 4.07
garden 30 191 635 6.71 5.22
gentle 30 268 422 7.31
girl 22 2264 634 6.87 5.13
give 22 3477 383 7.13
glass 23 255 585 4.75 5.83
good 22 11108 374 7.47
grass 22 293 602 6.12 5.3
green 25 1869 609 6.18 1.43
hair 19 1515 580 5.56 5.8
hammer 23 284 618 4.88 5.37
hand 19 1607 598 5.95 5.87
happy 23 983 511 8.21
hard 28 1049 460 5.22
hat 18 1479 562 5.46 6.07
hate 31 58 462 2.12
head 21 1719 593 6.63 6.03
heavy 23 335 495 3.69
hen 30 85 597 5.1 4.31
hide 25 312 430 4.32
high 27 469 463 6.62
home 22 1770 599 7.91 4.23
horse 19 646 624 5.89
hose 25 60 572 5.25 4.47
house 22 2458 606 7.26
hungry 23 706 503 3.58
hurt 24 922 465 1.9
ice 22 413 635 5.92 5.79
jar 30 109 571 5.21
jelly 25 134 590 5.66
juice 16 1845 593 6.79 5.9
kick 23 205 551 4.31
kiss 21 896 633 8.26
knee 21 131 597 5.03 5.17
knife 30 145 633 3.62 6.07
lamb 26 181 614 5.89 5
lamp 28 56 575 5.41 5.48
leg 22 385 601 5.71 5.96
like 25 17537 352 7.52
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Word AoA (months) CHILDES Frequency Imageability Valence BOI

lion 23 412 626 5.57 1.93
listen 29 504 378 5.93
loud 27 317 448 4.77
love 23 1434 569 8.72 2
lunch 24 751 602 7.21 4.8
mad 29 293 479 2.44
man 22 1161 567 6.73 6.3
me 20 14537 430 8.06
meat 24 250 618 6.66 6
medicine 23 200 551 5.67 4.8
milk 19 1346 638 5.95 5.3
money 22 748 604 7.59 5.1
moon 21 512 585 6.74 2.33
mouth 19 1790 613 5.46
movie 29 316 571 6.86 3.1
nail 27 72 588 5.14 5.97
napkin 23 248 582 4.84 5.39
necklace 24 95 606 6.39 5.19
nice 25 3259 375 6.55
night 23 1114 607 6.06 1.53
noisy 28 133 215 5.02
nose 16 1674 605 4.71 5.43
nurse 31 195 617 6.08 5.3
old 30 977 478 3.31
orange 22 1114 626 6.47 5.15
oven 27 157 599 5.71 4.78
owl 22 258 595 5.8 4.17
paint 26 263 567 5.62 5.3
paper 21 1354 590 5.2 5.93
party 25 422 596 7.86 4.39
pencil 25 297 607 5.22 5.96
penny 25 85 609 5.06
people 26 1404 548 7.33
person 31 338 562 6.32
pig 19 670 635 5.07 5.23
pillow 21 215 624 7.92 5.78
plant 25 198 605 5.98 5.63
plate 23 351 527 5.3 5.5
play 23 5885 498 8.1
pony 26 106 642 6
pool 20 200 577 7.7 5.37
poor 31 468 447 2.28
porch 31 37 586 6.14 4.57
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Word AoA (months) CHILDES Frequency Imageability Valence BOI

present 23 281 481 6.95 3.93
present 23 281 481 6.95 3.93
pretty 22 2185 520 7.75
puppy 19 693 635 7.56
quiet 25 295 426 5.58
radio 26 86 613 6.73 4.04
rain 20 322 618 5.08 4.27
red 23 2097 585 6.41 1.61
refrigerator 25 221 612 6.14 4.48
rock 21 360 612 5.56
roof 30 101 604 5.4 3.14
room 23 1548 545 5.52 4.93
sad 27 399 419 1.61
salt 22 101 570 5.56 5.4
school 23 1550 599 4.36 4.69
scissors 25 143 609 5.05 5.48
sheep 23 438 596 6.44 5.31
shower 22 102 615 7.04 4.33
sick 26 316 456 1.9
sing 25 953 527 6.77
sister 29 270 613 7.46
skate 31 28 563 6.6 4.1
sky 23 361 618 7.37 1.53
sleep 22 863 530 7.2 3.1
slow 30 213 377 3.93
smile 27 123 615 8.16 2.73
snow 23 650 597 7.08
soap 20 193 600 5.97 6.27
sofa 31 49 597 6.53 5.27
soft 26 300 476 7.12
soup 23 342 604 6.25 5.7
spoon 19 784 584 5.93 5.97
star 24 390 623 7.27 2.23
stop 24 1600 452 3.96
store 22 801 506 5.93 4.23
story 23 1205 491 6.63 2.56
stove 26 123 592 4.98
street 25 348 577 5.22 4.2
sun 23 569 639 7.55 2.13
table 23 1391 582 5.22 5.04
taste 29 397 425 6.66
teacher 29 189 575 5.68
think 31 10902 384 6.41
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Word AoA (months) CHILDES Frequency Imageability Valence BOI

thirsty 25 236 482 3.61
tickle 22 412 492 6.86 4.19
tiger 23 240 606 5.89 1.67
time 31 3382 413 5.31 2.03
tired 25 751 419 3.28
tooth 19 169 624 5.19 5.9
touch 26 912 456 6.31
towel 22 380 570 5.75 6.22
toy 19 885 569 7 6.17
train 20 1120 593 5.59 5.14
trash 29 196 599 2.67 5.2
tray 31 179 550 5.1 5.29
tree 19 1011 622 6.32 5.53
truck 18 1239 621 5.47
turtle 23 308 564 6.78 2.93
watch 25 1789 525 5.78
water 19 2570 632 6.61
wet 21 597 509 5.57
white 27 873 566 6.47 1.5
window 23 568 602 5.91 3.52
wish 31 177 399 7.09 1.87
wolf 27 116 610 5 4.7
work 23 1266 458 3.96 2.7
yellow 25 1429 598 5.61
zipper 22 162 632 5.39 5.04

466
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TABLES

Table 1. Pearson correlations between regression predictors. *p < .05, ***p < .001.

BOI Imageability Frequency

Imageability 0.44***
Frequency 0.18 -0.45***
Valence -0.21* 0.23*** 0.22***

Table 2. Conceptual features model parameters and significance tests (N = 239). **p < .01, ***p < .001.

β t p F df p

Overall model 37.73 (4,234) < .0001***
Log frequency −1.48 −6.74 < .0001***
Imageability −0.022 −7.33 < .0001***
Valence 0.055 0.34 .74
Log frequency x imageability −0.0065 −3.18 .0017**

R2 0.39
Adjusted R2 0.38

Table 3. BOI model parameters and significance tests (N = 151). *p < .05, **p < .01, ***p < .001.

β t p F df p

Overall model 21.32 (5,145) < .001***
Log frequency −0.93 −1.78 .078
Imageability −0.013 −2.22 .028*
Valence −0.19 −0.76 .45
Body-object interaction −0.88 −4.49 < .001***
Log frequency x imageability −0.010 −1.99 .049*

R2 0.42
Adjusted R2 0.40
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Table 4. Conceptual features model parameters and significance tests fit
to dataset used for BOI model (N = 151). **p < .01, ***p < .001.

β t p F df p

Overall model 19.11 (4,146) < .001***
Log frequency −0.59 −1.07 .28
Imageability −0.022 −3.59 < .001***
Valence 0.037 0.27 .14
Log frequency x imageability −0.014 −2.62 .0099**

R2 0.39
Adjusted R2 0.38
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