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Abstract

A discussion on the momentum evolution of an impurity interacting via a finite

delta potential repulsion with a non-interacting fermionic background gas is pre-

sented. It has recently been shown that the momentum evolution of this system

displays two interesting features, namely a non-zero thermalised value and a long-

lived quantum mechanical oscillation around this plateau named “quantum flut-

ter” [Mathy, Zvonarev, Demler, Nat. Phys. 2012]. We discuss revivals in the

momentum of the impurity, which have been seen before but not yet thoroughly

investigated. Subsequently it is shown the quantum flutter and revivals are caused

by disjoint sets of eigenstate transitions, and this fact is used to interpret some

of their aspects. This attribution of momentum features to different eigenstate

subsets allows quantitative reproduction of these features with much less com-

putational expense than has so far been possible. Finally some results on the

distribution of the momentum of eigenstates and their relation to the momentum

of the impurity once the system has been thermalised are presented along with

a discussion on the time averaged infinite time value of the momentum and its

comparison to different eigenstate subsets.
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poor, failing to even qualitatively reproduce the progression. As

the initial momentum becomes greater than the Fermi momentum

it gives a better prediction. Note the estimated revival periods for

Q = 38
45
kF are not shown as they are greater than 1000tF , once

again demonstrating this estimate is not useful for a low initial

momentum. As with Figures 2.9 and 2.11, the choice of how to set

γ is important for this prediction. The current plot was created

with L/N = 2 for the red points, and L/N = 3 for the blue ones.

While in Figures 2.9 and 2.11, the choice of L/N = 2 has been

shown to be the most accurate for Q = 4
3
kF , this plot demonstrates
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plateau increases with initial momentum, showing how the interplay

between states becomes more important as the initial momentum
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in [79], the progression of 〈P↓(∞)〉 was not mentioned there. This

plot was created fixing γ = 3 and N = 45. . . . . . . . . . . . . . . 61
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to a high accuracy. The error bars on the period seen show the maxi-
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shows the validity of the representation for the Bethe roots given
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3.2 The plot of eigenstate energy against importance shows some dis-

tinct branches. These branches are comprised of parametric fam-

ilies defined by the pseudo hole each related state shares. For all

branches other than the main one (at the top of the figure), the

branch is composed of a single parametric family where all related

states have the same pseudo hole. The main branch consists of two

families, one where the pseudo hole is on the positive edge of the

pseudo sea, nhole = (N−1)/2, and one where the pseudo hole is on the

negative edge, nhole = −(N+1)/2. Each successive branch consists of

states from a single family whose pseudo hole is further inside the

pseudo sea, as is schematically shown in the top left hand corner.

The most important states shown here have a single pseudo excita-

tion, and as a single parametric family is followed from left to right,

the pseudo particle is increased by one for each element. This can

be understood because the energy of each state is the sum of the

squares of Bethe roots zi where 0 ≤ ni − zi ≤ 1. . . . . . . . . . . . 69
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3.3 The Fourier transform of the impurity’s momentum with inset show-

ing which state pairs cause each small peak. The main plot shows

the Fourier transform of the impurity’s momentum against time.

Each point here is a contribution from a single state pair to the to-

tal 〈P↓(t)〉. There are two strong features: the large peak at ω = 0

and the set of negative amplitude peaks around each integer mul-

tiple of the revival frequency. Inset shows all states with a single

pseudo excitation on the same axis as Figure 3.2 (more clearly show-

ing the branches discussed previously). The coloured arrows show

example state pairs for some of the coloured peaks in the main plot.

In all state pairs from the coloured peaks, both states are in the

main family (those not coloured grey). As the states in this family

are defined by a pseudo hole of (N−1)/2, the difference between state

pairs is only in the pseudo particles of each state in the pair. Tran-

sitions which give the contributions in the first negative peak of the

Fourier transform are between states whose pseudo particles differ

by one. Transitions causing the second peak are between states

whose pseudo particles differ by two. This pattern continues for all

peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
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total momentum evolution of the impurity. The colour of each con-

tribution in the inset correlates with the colour of the peak in the

Fourier transform. These partial contributions are plotted on an

axis of the same scale as the total, but are shifted for clarity. Each

peak adds a wave almost harmonic to the revival frequency, and Fig-

ure 3.5 shows that their superposition describes both the plateau
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3.9 Plot comparing the quantum flutter in the total momentum evo-

lution with the contributions to the momentum from transitions

between state branches. Also shown is the contribution from tran-

sitions between states in different branches, but sharing a pseudo

particle as highlighted in Figure 3.10. The total quantum flutter

is reproduced by all inter-branch transitions, and the restricted set
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the set of transitions between states which share a pseudo particle
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in 〈P↓(t)〉. While one family of the type described in Figure 3.2

clearly contributes more to 〈P↓(t)〉 than others, the contributions of
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data in RAM at the same time in the analysis stage is impossible, so

a different method of reading in data was devised (see Figure A.2).

Said method centred around calculating the position in the stored

amplitude matrix where each interesting eigenstate pair will be, and

only reading the data stored in those positions. As this new method

of reading those amplitudes required for partial contributions took

time and required the calculation of each eigenstates’ energies, stor-

ing the frequencies associated with each amplitude became redun-

dant and was removed for storage space concerns. . . . . . . . . . 103

A.2 Schematic of how work is spread over multiple processors. In this

example 3 processors are used. The distribution of work across

multiple processors is done in a simple manner: each processor takes

a block of the amplitude matrix and calculates the contribution to

the RHS of Equation (1.19) for a set of time points. Each of these

contributions is then summed, and taken from the total momentum

Q of the system to find the momentum of the impurity. . . . . . . 105
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tributions are stored ordered by the energy of the eigenstates in

each transition as shown in Figure A.2. If the matrix were ordered

by |〈FS|f〉|2 instead, finding the amplitudes for the highest over-

lap eigenstates would be much simpler and could be done without

recalculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
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Chapter 1

Introduction

1.1 Introduction

When introduced to a new phenomenon, a natural tendency is to attempt to find

the simplest system in which it is exhibited, and use said system as a playground

to explore the phenomenon’s features without unnecessary complexity. An ever-

present danger in this methodology is that a simple system may show qualitatively

different features to more complex ones, for example, because features in the com-

plex system are emergent from some complexity not in the smaller system, or

because the limitation on the degrees of freedom in the smaller system prohibit

the phenomenon. Upon encountering this, the investigator must decide whether

to add complications piecemeal to their original description, focus on those fea-

tures which are shared by the model and observations, or start from scratch with

a different model. It is a rare, but happy, event when the features of said simple

model opens up a new and exciting area of research, from which novel features are

found with regularity. The physics of strongly correlated one-dimensional quan-

tum systems is one such field, revealing numerous phenomena not present in higher

dimensions, both in their mathematical descriptions and their observable nature.

While initially thought of more as a testing ground for methods to apply to the

“real” 3 dimensional world (see the introductions of references [1, 2] for exam-

ples), experimental progress creating 1D systems (both quasi and true) has given
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these “toy models” new-found experimental relevance [3–27], that has significantly

increased the interest in the field.

One of the most important aspects of one-dimensional physics is the Luttinger

liquid universality class. While many different microscopic models have been used

in 1D, for both fermions and bosons, and across a wide range of interaction types

and potentials, [28–30] [2, 31, 32] [33–35] [32, 36, 37] [38] most one dimensional

models share common features at low energy. From this a low energy universality

class, called a “Luttinger Liquid”, has been defined, which is in some ways a

replacement for the Fermi liquid theory in one dimension [39–41]. In one dimension

the dimensional limit imposes an inherently collective nature on the excitations

of a liquid, as one particle must make space to allow another to move. This

breaks the fermionic quasiparticle approximation of a Fermi liquid. The Luttinger

liquid instead uses bosonic quasiparticles of collective excitations. Non-interacting

bosonic quasiparticles are formed by assuming a linear excitation dispersion of the

fermionic particles [29], and a small non-linearity can be accounted for by adding

interactions between them [39]. Initially formulated to describe fermions, the

generality of this description has extended to gases of bosons [42], creating a general

description of low energy one-dimensional systems. Despite the success of this

Luttinger liquid theory, the analogy does not carry over to higher energy systems

which allow excitations past the approximately linear range of the dispersion.

Given such a widely encompassing description of low energy physics in one-

dimension, an interest in systems outside the Luttinger liquid paradigm has emerged.

These systems either have a higher energy, or some other feature breaking the lin-

ear approximation of the dispersion relation [43–48]. One method of probing these

regimes is by going back to the microscopic models that have been formed, and

finding how they behave as excitations move them away from the Luttinger liquid

paradigm. It is one of the miracles of one dimension that many of these models

can be solved exactly using the ansatz proposed by Bethe to find a solution of

the Heisenberg spin-1/2 chain [49]. This ansatz gives exact eigenstates of many
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systems, and enables numerical calculation of their energy and momentum [41,

50].

This thesis works on one particular Bethe Ansatz soluble system, modelling the

dynamics of a high energy spin impurity quenched in a spin polarised fermionic

gas. We present a discussion on the features of the impurity’s momentum evolution

and the describe patterns in the eigenstate transitions that determine individual

features. An impurity in one-dimensional systems has been an active area of re-

search for some time [20, 25, 26, 51–68], and modelling how a system behaves with

a high energy impurity breaking the Luttinger liquid requirement is an interesting

variation on a theme that has already provided qualitatively new phenomena [69,

70]. The interaction between our impurity and background particles is described

by a delta function potential. The system is hence modelled by the fermionic

Yang-Gaudin model [36, 71, 72], spin polarised but for a single impurity, as used

in references [69, 73–77]. As a consequence of yet another quirk of a single di-

mension, this system behaves similarly whether the particles are free fermions or

infinitely repulsive bosons, so could also be described with the Lieb-Liniger model

of interacting bosons [33] in the limit of infinite potential and with added terms

for an impurity. This fermionisation of bosons has been directly observed in ref-

erences [10, 12], and while no exact realisation of this system has been created

as yet, reference [20] has demonstrated many necessary ingredients measuring the

velocity of a single impurity accelerated with a constant force via time-of-flight

measurements.

This thesis is structured in the following way: Chapter 1.2 describes the model

used to probe the system and its solutions, some terminology for different equa-

tions, and the difficulties faced when calculating the impurity’s momentum. The

time dependent features of this momentum are presented in Chapter 2, which

adds to the existing literature with a deeper analysis of the momentum revivals

in the system. Further original work is presented in Chapter 3, which attributes

each momentum feature to a subset of eigenstate transitions, and Chapter 4 which
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presents the results of a preliminary look at the structure inherent in the eigen-

states themselves. Finally, Chapter 5 summarises the main results of this work

and presents some proposed topics of further work. A discussion on the technical

aspects of the code written for this work is presented in Appendix A.
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1.2 Method and Model

1.2.1 Model

The system we work within has two valid representations: one of hard-core bosons,

and one of free fermions. In the bosonic case, our Hamiltonian, in units of ~ = 1

and m = m↑ = m↓ = 0.5 is

H = P̂↓
2

+
N∑
i=1

P̂i
2

+ g

N∑
i=1

δ(xi − x↓) + a

N∑
i,j=1

δ(xi − xj). (1.1)

Here P̂↓ is the momentum operator of the impurity, the sums are over all particles in

the background gas, P̂i is the momentum operator for a single background gas par-

ticle, g defines the interaction strength between the impurity and the background

gas, and a sets the interaction strength between two particles of the background

gas.

For the specific case of our system, a = ∞, and it is this infinite potential

which is the root cause of the equivalence between representations. While we are

using a delta potential interaction, the correspondence holds for a gas of bosons

with any interaction, as long as the interaction has an impenetrable core. This

correspondence comes from the fact that the interaction forces a constant order

on the particles [78]. Because of this constant order, multiplying a fermionic

wavefunction by the unit anti-symmetric function

∏
j>l

sign(xj − xl) (1.2)

produces an eigenfunction of the Hamiltonian that obeys bosonic anti-commutation

relations and can be made to satisfy the same boundary conditions (depending on

the parity of the number of particles). The Pauli exclusion principle, and dis-

continuities in the anti-symmetric function above do not cause a problem when

satisfying regularity conditions because of the stipulated hard-core interactions

between bosons, which require the wavefunction to be 0 when two particles share
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a position. Both representations share many observables (including the energy of

the system), with the determining factor whether the unit anti-symmetric function

above commutes with the corresponding operator. This argument can be extended

to the case of a gas with a single distinguishable impurity, as the impurity puts no

extra constraints on the symmetry of the wavefunction [79]. Recent experiments

have managed to record gases in this regime [7, 8, 10], called a Tonks-Girardeau

gas, and have even observed the transition between a bosonic state and the Tonks-

Girardeau gas with increasing interaction strength [12].

Of these two representations, we use the fermionic one (called the Yang-Gaudin

model) throughout. This fermionic description gives us some important values, like

the Fermi momentum, useful in the phenomenological description of the impurity’s

momentum, and Fermi time, useful to describe the motion of the impurity in a

manner independent of the system size. In this case, there is no interaction between

pairs of similar particles, only between the single impurity and each particle in the

background gas, so the Hamiltonian is

H = P̂↓
2

+
N∑
i=1

P̂i
2

+ g
N∑
i=1

δ(xi − x↓). (1.3)

A dimensionless interaction strength parameter γ = g/2n (where n = N/L is the

density of particles in the system) can be defined to use in place of g. This provides

a more physically relevant parameter to inspect in Chapter 2.

The model is integrable, and exactly solvable via the Bethe Ansatz [73, 80]

so we use an alternate formalism of the Ansatz presented in ref [75] which has

been previously used to good effect in calculating the spectral properties of the

system [76] and the momentum of the impurity and background gas in the sys-

tem [69].

Bethe Ansatz

Soon after the formulation of quantum mechanics, Hans Bethe discovered a method

to find the exact eigenstates and eigenvalues of the Heisenberg model for a one-
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dimensional chain of spin-1/2 fermions [49]. As this model only accounts for in-

teractions between neighbouring particles, he noted that when no two down spins

were next to each other the eigenstate must be a linear combination of single down

spin wavefunctions. He used this observation to propose an Ansatz for the form of

the eigenstates of the system, and showed that when this wavefunction satisfies a

set of equations now known as the Bethe equations, his Ansatz indeed solves the

Hamiltonian [49].

Bethe’s paper showed that the many-particle problem of the Heisenberg chain

reduced to solving how two spin-down quasiparticles interact when upon neigh-

bouring sites [49]. This fact allows all interactions to be interpreted as multiple

two-body interactions, which has been suggested as a criterion for integrability [81].

Hence the Bethe Ansatz is intrinsically tied with integrability, and indeed almost

all integrable systems can be solved in terms of the Bethe Ansatz [82]. While this

statement holds, the applicability of the Bethe Ansatz to most integrable systems

was not initially seen, and required slightly different forms to be realised.

The first alternate use came in the 1960’s when Bethe’s hypothesis was applied

to the continuum case of a 1D model of interacting bosons [33, 34, 36, 73]. This

use, known as the coordinate Bethe Ansatz, is the form used for the current work

and as such is described in more detail in Section 1.2.1. The coordinate Bethe

Ansatz draws a parallel between the down spin quasiparticles of Bethe’s original

work and the physical bosons in the 1D gas that Lieb and Liniger studied.

Subsequently more applications and generalisations appeared. The more com-

plicated nested Bethe Ansatz was used to account for the additional spin degree of

freedom in the non-polarised fermionic 1D gas [36, 37, 71, 83]. For a non-polarised

gas, the symmetry between all orderings of particles is broken into a number of

distinct orderings depending on the distribution of spins in the system. Because

of this extra degree of complexity a generalised Bethe Ansatz is used and solved

using a set of conditions distinct yet still related to those in Eqn (1.14). Finally

an alternate derivation of the Bethe equations called the algebraic Bethe Ansatz
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was found applicable to integrable systems of quasiparticles above some reference

state [84–87].

While we use a fermionic gas system, the nested Bethe Ansatz is not used, as

the gas only has a single impurity of alternate spin.

Since its inception, the Bethe Ansatz has been found useful in many situa-

tions, indeed one author notes “numerous publications have been dedicated to the

subject, so that it is becoming difficult to make exhaustive citations” [88]. We

provide the reader with some previously collated references in the introduction of

Reference [89].

Bethe Ansatz Solution

For a description of how the Bethe Ansatz is used in our system, we first present a

work-through of the coordinate Bethe Ansatz for a two-body example. After, we

state the generalisation of this model and a simpler representation that has been

used in references [69, 75, 76]. Finally we discuss the computationally efficient

matrix equations developed in [69] to calculate the momentum of the impurity. It

is these matrix equations that were used in the custom code for the current work.

In essence, the coordinate Bethe Ansatz uses the fact that given a suitable

inter-particle potential, the wavefunction of the system can be described by the

wavefunction of free particles when said particles are far enough apart. For ex-

ample, for two particles at positions x1, x2, the wavefunction when they are far

enough apart from each other is

Ψ(x1, x2)asymptotic = αei(k1x1+k2x2) + βei(k2x1+k1x2) (1.4)

where xi, ki are the position and momentum respectively of particle i. The energy

of this wavefunction is

E = k21 + k22. (1.5)

Within this assumption, any interaction must be accounted for in the coefficients
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α and β, which are found using restrictions imposed by the inter-particle potential

and boundary conditions. While this ansatz is clear in the two-body case, it

has also been found correct when generalising to many particles for multiple two

body potentials; as in one-dimension, interactions between multiple particles can

be shown to be non-diffractive. This non-diffractive nature is the criterion for

the Bethe Ansatz mentioned previously where the interaction between multiple

particles can be described as a set of subsequent two-body scattering events.

Reference [73] used a more general form of this ansatz to find the exact eigen-

states for the system that we are using. They asserted the asymptotic wavefunction

in all configurations where the impurity does not share a position with any particle

in the background gas. Here we follow that method for a two body system with

one impurity at position x1 and one background fermion at position x2. In this

system, there are two different regions in which the wavefunction must have its

asymptotic form; one where x1 < x2 and one where x1 > x2. Hence

Ψ(x1, x2) = Ψ1(x1, x2) + Ψ2(x1, x2) (1.6)

where Ψ1,Ψ2 describe the wavefunction in their respective region, and are of the

asymptotic form (1.4). Due to periodic boundary conditions in x2, we know the

wavefunction when x2 = L must be the same as when x2 = 0, hence

Ψ1(x1, L) = Ψ2(x1, 0) =⇒ α1e
i(k1x1+k2L) + β1e

i(k2x1+k1L) = α2e
ik1x1 + β2e

ik2x1

=⇒

α1e
ik2L = α2 (1.7)

β1e
ik1L = β2.
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Similarly, applying the same boundary conditions to x1 we have the conditions

Ψ1(0, x2) = Ψ2(L, x2) =⇒ α1e
ik2x2 + β1e

ik1x2 = α2e
i(k1L+k2x2) + β2e

i(k2L+k1x2)

=⇒

α1 = α2e
ik1L (1.8)

β1 = β2e
ik2L.

Together these imply that

k1 + k2 =
2πn

L
, n ∈ N (1.9)

where the value 2πn
L

is hence the total momentum of the system.

To account for the delta function interaction potential, we assert the condi-

tion [73]

1

2

[
(
∂

∂x1
− ∂

∂x2
)
x1−x2=0+

− (
∂

∂x1
− ∂

∂x2
)
x1−x2=0−

]
Ψ = gΨ (1.10)

which, using the split of Ψ depending on the relative positions of each particle,

implies the following

(
∂

∂x1
− ∂

∂x2

)
Ψ1(x1, x2)−

(
∂

∂x1
− ∂

∂x2

)
Ψ2(x1, x2) = 2gΨ (1.11)

where g is the interaction strength from Equation (1.3). We can combine the

requirements found in Equations (1.7) and (1.8) with the one above into the fol-

lowing

eik2Lα
eik1Lβ


1

=

α
β


2

=

1 + g/i(k1−k2) g/i(k1−k2)

−g/i(k1−k2) 1− g/i(k1−k2)


α
β


1

(1.12)
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which requires for self-consistency that

∣∣∣∣∣∣∣
1 + g/i(k1−k2)− eik2L g/i(k1−k2)

−g/i(k1−k2) 1− g/i(k1−k2)− eik1L

∣∣∣∣∣∣∣ = 0. (1.13)

In order to satisfy the above condition, it is sufficient to require that

cot

(
k1L

2

)
=

2k1
g
− const

cot

(
k2L

2

)
=

2k2
g
− const

(1.14)

where const is some arbitrary value. Finding an eigenstate of the system is hence

reduced to finding 2 values k1, k2 which satisfy the equations (1.14), and (1.9),

where the energy of the state is given by (1.5). This solution can be generalised to

any number of background particles using the assertion that when no background

particle shares a position with the impurity, the wavefunction of the system is a

linear combination of free particles. Interactions are accounted for in the man-

ner described above [73]. In this more general solution, with a background gas

of N particles, the eigenstates of the system are defined by the N + 1 values

k1, k2, ..., kN+1 satisfying the generalised versions of Equations (1.14), and (1.9)

presented alongside the energy of these states below

N+1∑
i=1

ki =
2πn

L
= Q, n ∈ N

cot

(
L

2
ki

)
=

2ki
g
− const

E =
N+1∑
i=1

k2i

(1.15)

for all i ∈ 1, 2, .., N + 1, and with N representing the number of particles in the

background gas. These values k1, k2, ..., kN+1 are known as the Bethe momenta of

the equation and in our case (with a repulsive potential) they are real.

While this solves the system exactly, it results in a very complicated wave-
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function, with many different amplitudes to calculate. Reference [75] found the

same wavefunctions were reproduced in an easier format, by forming them in the

reference frame of the impurity. In this alternate reference frame, an ansatz is

taken to be

f(y2, ..., yN+1) = detN(Φj(yl)). (1.16)

Here yi are the coordinates of each background gas particle in the new frame of ref-

erence, and Φj are functions dependent on an individual coordinate. Coordinates

of this wavefunction span from y2 onward as the dependence of the function on

the position of the impurity has been factored out when switching reference frame.

This new ansatz can be shown to solve the system when each Φj(y) is described

as [75]

Φj(y) =
N+1∑
t=1

atje
ikty (1.17)

where the N + 1 kt values satisfy the conditions in Equation (1.15), and the

N(N + 1) coefficients atj satisfy the equations

N+1∑
t=1

atj(1− eiktL) = 0, j = 1, ..., N

N+1∑
t=1

atj[ikt(1− eiktL)− g] = 0, j = 1, ..., N

(1.18)

to ensure the wavefunction satisfies restrictions from the periodic boundary con-

ditions and the delta potential in the Schrödinger equation respectively. This is

the form of eigenstates used throughout the current work.

Equations for Momentum

This work focuses on the time evolution of the impurity’s momentum, which we

calculate using the computationally efficient equations described in [79]. That

reference describes in detail the derivation of equations to find the impurity’s

momentum in terms of matrix elements and a manner to calculate said matrix

elements. Here we state the equations which define the impurity’s momentum in
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order to set the scene for the discussion on separation of contributions in Chapter 3.

The expectation value of the impurity’s momentum can be found with the equation

〈P↓(t)〉 = Q−
∑
fQ,f

′
Q

e
it(Ef−Ef ′ ) 〈FS|fQ〉

〈
fQ

∣∣∣P↑∣∣∣f ′Q〉 〈f ′Q|FS〉 . (1.19)

Here the sum is over all eigenstates fQ described above, which have been given a

subscript of Q to highlight the fact that they depend on the total momentum of the

system. This total momentum is equal to the initial momentum of the impurity

as the system has evolved from an initial state consisting of the impurity at said

momentum and a Fermi sea at 0K. The fermionic gas state alone is represented

as |FS〉 in the above equation. The energy Ef of the system is for each different

eigenstate, and can be found with the equation given in (1.15) for each eigenstate

fQ. In the limit t → ∞, the dependence of Eqn (1.19) on Ef is removed through

time averaging, becoming

〈P↓(∞)〉 = Q−
∑
fQ

〈FS|fQ〉 〈fQ|P↑|fQ〉 〈fQ|FS〉 (1.20)

which finds the infinite time momentum of the impurity by only having to calculate

a single sum over eigenstates rather than the double sum required for Eqn (1.19).

Within Equation (1.19) there are two non-trivial values to calculate for each

pair of eigenstates. The first is the overlap of the eigenstate with the original Fermi

sea and the other is the matrix element of the background gas momentum operator

between the two Bethe eigenstates. For this work, the overlap values and diagonal

matrix elements of P↑ were calculated using a pre-existing program [90] using the

equations found in references [76, 79]. The code to calculate off-diagonal matrix

elements was written by the author using equations from the same references, and

combined with the above code into the repository [91].

In order to calculate either values numerically, a normalisation constant for

the eigenstates in Equation (1.16) must be found. This is done by normalising the
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inner product of an eigenstate with itself

〈fQ|fQ〉 =
YfQYfQ
N !

∫ L

0

dx1 · · · dxN detN(Φj(xl)) detN(Φj(xl)) = 1 (1.21)

where YfQ is the normalisation constant of the eigenstate fQ. Using the identity

1

N !

∫ L

0

dx1 · · · dxN detN
[
ψj(xl)

]
detN

[
Φj(xl)

]
= detN

[ ∫ L

0

dy ψj(y)Φl(y)

]
(1.22)

valid for any functions Φj, ψj, Equation (1.21) can be written

〈fQ|fQ〉 = YfQYfQ detN

[ ∫ L

0

dxΦj(x)Φl(x)

]
. (1.23)

Taking the same choice of atj for Eqn (1.17) as references [69, 76], Φj(x) can be

written as

Φj(x) =
1√
L

[
ei
(
kjx+δj

)
− θj

Θ

N+1∑
t=1

ei
(
ktx+δt

)]
(1.24)

which when used in Equation (1.21) gives us the following expression for YfQ

|YfQ |−2 =
1

Θ2

(N+1∑
t=1

θ2t
1 + θ2t

)N+1∏
t=1

(1 + θ2t ) (1.25)

where the convenience variables θ,Θ are defined below

L

2
kj = njπ − δj (1.26)

θj =

√
8

gL
sin(δj) (1.27)

Θ =
N+1∑
t=1

θt. (1.28)

For singular eigenstates, where δj = 0, j = 1, . . . , N + 1, we have the relation

lim
c→−∞

θ

Θ
=

1

N + 1
(1.29)
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which implies

YfQ =
√
N + 1. (1.30)

The overlaps 〈FS|fQ〉 in Eqn (1.19) are calculated with

〈FS|fQ〉 = YfQ detN χ (1.31)

where χ is an N ×N matrix whose elements are defined by

χlj =
θl√
a

[
1

uj − L
2
kl
− 1

Θ

N+1∑
t=1

θt

uj − L
2
kt

]
, j, l = 2, . . . , N + 1. (1.32)

In the singular case, Equation (1.31) has an easier representation, using Equa-

tion (1.30) and the alternate equation for the determinant in Eqn (1.31) below.

detN χ =



1
N+1

, uj = L
2
kj

−1
N+1

, uj = L
2
kj+1

0, otherwise

(1.33)

The matrix elements of Equation (1.19),
〈
fQ
∣∣P↑∣∣f ′Q〉, are given in Reference [79]

as 〈
fQ

∣∣∣P↑∣∣∣f ′Q〉 = YfQYf ′Q
∂

∂λ

(
detN

(
Y + λZ

))
|λ=0 (1.34)

where

Y lj =

∫ L

0

dyΦj(x)Φ
′

l(y)

= K(k
′

l , kj)−
θj
Θ

N+1∑
t=1

K(k
′

l , kt)

− θ
′

l

Θ′

N+1∑
t=1

K(k
′

l , kj) +
θjθ

′

l

ΘΘ′

N+1∑
t,t′=1

K(k
′

t, kt) (1.35)
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Z lj =

∫ L

0

dyΦj(x)∂yΦ
′

l(y)

= k
′

lK(k
′

l , kj)− k
′

l

θj
Θ

N+1∑
t=1

K(k
′

l , kt)

− θ
′

l

Θ′

N+1∑
t=1

k
′

tK(k
′

t, kj) +
θjθ

′

l

ΘΘ′

N+1∑
t,t′=1

k
′

t′
K(k

′

t′
, kt) (1.36)

K(k
′
, k) =


1, if k

′
= k

ei(k
′
−k)L−1

i(k′−k)L ei(δ
′−δ), otherwise

(1.37)

Note that K is real

K(k
′
, k) =

ei(k
′−k)L − 1

i(k′ − k)L
ei(δ

′−δ)

=
e2πi(n

′−n)e−2i(δ
′−δ) − 1

i(k′ − k)L
ei(δ

′−δ) =
e−i(δ

′−δ) − ei(δ
′−δ)

i(k′ − k)L

=
2i sin

(
δ
′ − δ

)
i(k′ − k)L

=
2 sin

(
δ
′ − δ

)
(k′ − k)L

(1.38)

which implies that Y and Z are real too.

We look at this formula separately for when |f ′Q〉 = |fQ〉 and |f ′Q〉 6= |fQ〉. First,

for the diagonal matrix elements, we have

〈fQ|P↑|fQ〉 = Q−
(N+1∑

t=1

θ2t
(1 + θ2t )

kt

)(N+1∑
t=1

θ2t
(1 + θ2t )

)−1
(1.39)

which, when fQ is singular, becomes

〈fQ|P↑|fQ〉 = Q

(
1− 1

N + 1

)
. (1.40)

We discuss the off-diagonal matrix elements in more detail. The reasons for this

are twofold: first, the calculation of these terms was introduced into the project [91]

specifically for this work, and second, reference [79] discussed calculating these

terms in less detail than others. To find a computationally efficient manner to

calculate the off-diagonal case, we take Equation (1.34) and manipulate it in two
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different ways. First we separate it out into two different determinants

det(Y + λZ) = det
[
Y(1 + Y−1λZ)

]
(1.41)

= det(Y) det(1 + Y−1λZ) (1.42)

and second we use the identity

ln
(

det(X)
)

= tr
(

ln(X)
)

(1.43)

to transform the more complicated determinant into a trace

∂

∂λ
det(Y + λZ) =

det(Y + λZ)

det(Y + λZ)

∂

∂λ
det(Y + λZ)

= det(Y + λZ)
∂

∂λ
ln
(

det(Y) det(1 + Y−1λZ)
)

(1.44)

∂

∂λ
ln
(

det(Y) det(1 + Y−1λZ)
)

=
∂

∂λ
ln
(

det(Y)
)
|λ=0 +

∂

∂λ
ln
(

det
(
1 + Y−1λZ

))
|λ=0

= 0 +
∂

∂λ
tr
(

ln
(
1 + Y−1λZ

))
|λ=0

= tr
∂

∂λ

(
ln
(
1 + Y−1λZ

))
|λ=0. (1.45)

Next the logarithmic expansion is taken from the last form of Equation (1.45), and

we use the fact that the value of the derivative is taken at λ = 0 to simplify the

form

ln
(
1 + Y−1λZ

)
= λY−1Z +

(
λY−1Z

)2
2

+ . . .

=⇒ ∂

∂λ

(
ln
(
1 + Y−1λZ

))
|λ=0 = Y−1Z

=⇒ ∂

∂λ
ln
(

det(Y + λZ)
)
|λ=0 = tr

(
Y−1Z

)
=⇒ ∂

∂λ
det(Y + λZ)|λ=0 = tr

(
Y−1Z

)
det(Y + λZ). (1.46)
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In order to solve equation (1.46) we split the definition of Y−1 via singular

value decomposition (SVD)

tr
(
Y−1Z

)
= tr

(
(UΣY V∗)−1Z

)
= tr

(
V∗−1

Σ−1Y U
−1Z

)
(1.47)

which, using the fact that Y is real, and hence V and U are both unitary and real,

can be represented as

tr
(
Σ−1Y (UTZV)

)
. (1.48)

Using the fact Σ is diagonal, and that det(ΣY ) = det(Y), we can write

tr
(
Σ−1Y (UTZV)

)
det(ΣY ) = diag(Σ−1Y ) · diag(UTZV) · det(ΣY )

=

[
1

Σ2

,
1

Σ3

, · · · , 1

ΣN+1

]
diag(UTZV)

N+1∏
n=2

Σn

=

[∏N+1
n=2 Σn

Σ2

,

∏N+1
n=2 Σn

Σ3

, · · · ,
∏N+1

n=2 Σn

ΣN+1

]
diag(UTZV)

=

[N+1∏
n6=2

Σn,
N+1∏
n6=3

Σn, · · · ,
N∏
n=2

Σn

]
diag(UTZV). (1.49)

Finally, using the fact that the definition of Y is the same as the matrix used in

the inner product of eigenstates (1.23) we know that det(Y) = 0 for off-diagonal

states. This means that one value of Σn must be zero. Without loss of generality

we can set this to be the element N , so we have the computationally efficient

representation

〈
fQ

∣∣∣P↑∣∣∣f ′Q〉 = YfQYf ′Q
∂

∂λ

(
detN

(
Y + λZ

))
|λ=0 = YfQYf ′Q

N∏
n=2

Σn · (UTZV)NN

(1.50)

where (UTZV)NN is the final element of the N×N matrix UTZV . This equation is

only valid for off-diagonal elements, so diagonal elements must be calculated with

Equation (1.39). For the special case of c = −∞ calculating the matrix elements

requires accounting for the singularities in the Y and Z matrices. This is done by

using Equation (1.29) for the singular roots in equations (1.36) and (1.35).
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The equations (1.39,1.25,1.31), and their special case equivalents for singular

Bethe roots (1.40,1.33,1.30) were already encoded into reference [90]. This work

required implementing Equation (1.50) in a distributed manner, which allowed

calculating the full momentum against time evolution of the impurity via Equa-

tion (1.19).

Selection of States

As there are an infinite number of eigenstates on the RHS of Eqn (1.19), some

subset must be taken for a numerical calculation of the momentum. Given this

will inevitably introduce some error in the momentum calculated, we need some

way to ensure the subset of states we are using reproduces the actual value of

Eqn (1.19) close enough for quantitative results. A quantitative bound on the error

in momentum has been derived in reference [79]. It depends on a bound in the

absolute value of the matrix element P̄ = sup(
∣∣ 〈fQ∣∣P↓∣∣f ′Q〉∣∣), and the saturation

of

ς =
Ns∑
i=1

|〈FS|fQ,i〉|2. (1.51)

This value ς must approach 1 as Ns → ∞ due to the completeness of the Bethe

eigenstates [79]. It is noteworthy that the bound on the error,

√
P̄ 2(2ς(1− ς) + 2(1− ς)2) (1.52)

is independent of time, which allows us to plot the impurity’s momentum for large

time with the same accuracy as any other point. We will use this attribute heavily

when inspecting the momentum revivals of the system in Section 2.4, which can

happen on a time scale of t ≈ 140tF .

Throughout the text we talk of the saturation of the sum rule ς instead of

the bound on the error in the momentum. This is done to keep clear the relation

between the number of states counted and the value of |〈FS|fQ〉|2 for those states.

We wish to maintain the connection between these values as the time dependent
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momentum evolution has been studied before [69, 70] while Chapter 3’s isolation

of eigenstate pairs responsible for each feature of the momentum is wholly novel

work and can be better understood in these terms.

1.2.2 Method

Despite these pre-existing solutions and methods, the evaluation of Eqn (1.19) is

still difficult; as when the system is highly excited, a reliable calculation must

account for the contribution of a large number of eigenstates [79].

In order to find eigenstates and choose which states to include in our calcu-

lation, we use a program written in the Python programming language [92] with

the Scipy and Numpy [93, 94] external libraries. The program uses a stochastic

sampling algorithm to choose a smaller subset than in [69], that will still reli-

ably reproduce observables. The discovered states are then accumulated with the

greatest |〈FS|fQ〉| first. This program has been used in work before [95], is freely

available online [90], and provides not only the overlap value for every state used,

but the diagonal matrix elements of the momentum operator. To this program,

we add the functionality to calculate off-diagonal matrix elements of the momen-

tum operator
〈
fQ
∣∣P↑∣∣f ′Q〉 for fQ 6= f

′
Q (see Equation (1.50)). This allows finding

the impurity’s time-dependent momentum evolution. The additional code is also

freely available [91], and an overview of its structure is given in Appendix A.
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Chapter 2

Observables of the System

2.1 Introduction

This chapter details the difference in 〈P↓(t)〉 with differing parameters of the sys-

tem. The three physical parameters we can change within the restrictions of our

model are the system size, the initial momentum of the impurity, and the dimen-

sionless interaction strength parameter γ. Note the only dependency of 〈P↓(t)〉

on the density of the background gas n = N/L or the interaction strength g is via

the dependency on γ. While the momentum evolution of the impurity has been

discussed in other work [69, 70, 79], we look further into the revivals of the impu-

rity’s momentum that come from finite size effects in Section 2.4. We then present

comparisons between 〈P↓(∞)〉 as calculated from Eqn (1.20) and the momentum

plateau obtained when plotting the full evolution of 〈P↓(t)〉 in Section 2.5. We

also discuss the variation of 〈P↓(t)〉 with ς (see Section 1.2.2), which will provide

grounding for the discussion on separating contributions provided in Chapter 3.

Where this chapter overlaps with [69, 70], there is consistent agreement. This cor-

roborates their results and increases the confidence that both our programs give

the correct numerical solution of this model.
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2.2 Justification

As mentioned in Section 1.2.1, when calculating 〈P↓(t)〉, a large number of states

must be accounted for in the sum of Eqn (1.19). Reaching a high saturation of ς is

easier said than done, as while 1− ς decreases linearly with the log of the number

of states (see Fig 2.1), this relation only happens until ς ≈ 0.96. Moreover the

number of states required for a given ς strongly increases with system size, as seen

in Fig 2.2.

Figure 2.1: The number of states required over a range of saturation values for
ς. We show the semi-log plot of how ς changes with the number of states. The
progression is linear until a ς ≈ 0.96, at which point many more states are required
to provide further accuracy.

Because of the computational restrictions on the number of states used and

the system size (see Appendix A), calculating the impurity’s momentum against

time is prohibitively expensive for a number of states Ns > 20000 and a system

size of N = 99. This gives an overlap of ς ≈ 0.97 which is not a large enough ς
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Figure 2.2: The number of states required to obtain specific ς values over a range
of system sizes. We show the semi-log plot of how the number of states required
for a given ς changes with increasing system size. The progression is not linear, so
this is not an exponential relation, but the plot does show a large increase in the
number of states required as larger systems are used.

for confidence in our results from the saturation itself. This is a problem, as for

those systems where we can reach ς = 0.99 some of the more interesting features

are hidden by finite size effects (see Sections 2.4 and 2.5)

Fortunately, we find evidence in these smaller systems that a missing sum

rule contribution this small does not change the general shape of the momentum

evolution. Rather it introduces some minor variances, and a total downwards

shift in the momentum of the impurity; see Fig 2.3a. While normalisation in this

manner has no rigorous mathematical backing, it provides a useful approximation

for values of the plateau at parameters not otherwise accessible. Fig 2.8 provides

more details on how a change in ς affects 〈P↓(t)〉.
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(a)

(b)

Figure 2.3: a) As ς is increased past 0.9 to 0.999, the main observable change in
〈P↓(t)〉 is a downwards shift over the entire time range. b) This downwards shift
can be normalised out by the value of ς to provide approximate results when the
number of states required for a satisfactory ς is too high.
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As our main focus in this chapter is on the momentum revivals, which are the

feature least investigated in reference [69], the fact that these are stable once ς has

passed ς ≈ 0.9 puts good confidence behind our results. As shown in Fig 2.3b,

normalising 〈P↓(t)〉 by the sum rule saturation goes some way to accounting for the

difference in the plateau of 〈P↓(t)〉. This normalisation is done with the equation

〈̃P↓(t)〉 = Q−

∑
fQ,f

′
Q
e
it(Ef−Ef ′ ) 〈FS|fQ〉

〈
fQ
∣∣P↓∣∣f ′Q〉 〈f ′Q|FS〉∑

fQ
|〈FS|fQ〉|2

(2.1)

which would provide the total and correct 〈P↓(t)〉 if the set of states accounted

for provided a fully representative evolution. By “representative” we mean the

contribution of a set of states, scaled by the ς saturation said states achieve,

matches the total momentum evolution. This normalisation extends the range

of system sizes we can investigate to 99 particles, beyond what has been seen

previously [69, 70]. The additional range lets us view the evolution of the system

for a much longer time without the intrusion of finite size effects. However, the

normalisation is not sufficiently effective to allow the approach to be used for

investigating larger systems with confidence. The dependence of the momentum

on ς is further explored in Sections 2.5 and 2.6.

2.3 Overall Momentum

With the previous justification we can access a wide range of system parameters

and view how the impurity’s momentum evolution changes within this extended

parameter space. We reiterate that within our model we have three physical

parameters: the system size N , the initial momentum of the impurity Q, and the

dimensionless interaction strength γ. The difference in the impurity’s momentum

evolution when changing each of these parameters can be seen in Figures 2.4, 2.5

and 2.6 respectively. While there are many changes throughout the parameter

space, there are consistently three main features of the momentum evolution: the

regular revivals, a period of non-zero relatively constant momentum, and the small
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Figure 2.4: Impurity momentum evolution for multiple system sizes. Plots show-

ing 〈̃P↓(t)〉 over systems of 21, 45, and 99 particles with constant γ = 3 and
constant initial momentum of Q = 4

3
kF . Until the revival in the impurity’s mo-

mentum, the evolution of the impurity is identical for all system sizes. The revivals
increase in period with a linear progression on the system size (see Fig 2.9), and
they are the only finite size effect apparent here. The consistency of the flutter and
plateau is in agreement with reference [69]. In this plot we ensure ς is consistent
for N = 21 and N = 45, however we were unable to match the ς for N = 99, so we
plot all data once appropriately normalised. When not normalised by the value of
ς, the only noticeable difference is a total shift up in the entire plot for N = 99.

scale oscillations in this region (dubbed “quantum flutter” in previous work [69]).

These features were described in reference [69], and the same work thoroughly

discussed both the phenomenology of the plateau and quantum flutter alongside

an argument for the physical cause of these features. Though previous work has

investigated two of these features, we will discuss each of them in turn over the

following sections to provide a full description of the system as a setting for future

chapters. The next section will discuss the momentum revivals, being the least

investigated feature of the system. The plateau and flutter are discussed after in
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Sections 2.5, and 2.6.

Within these sections, we also show the change in 〈P↓(t)〉 over the non-physical

parameter ς (of which the general shape is shown in Figures 2.7 and 2.8) where

relevant. The change in the momentum evolution with ς is important to in-

vestigate despite not being a physical property of the system. This is because it

helps gain insight into how the solution behaves, allowing an understanding of the

inaccuracies introduced when it is not possible to reach large enough ς for a strong

limit on the maximum error. Knowing how 〈P↓(t)〉 changes with ς means we can

investigate larger systems with an understanding of what errors we are letting into

our results.

As can be seen in Figures 2.7, and 2.8, the revival period is independent of

the last 0.1 in the ς, though both the flutter and plateau undergo changes. While

some of the change in the plateau can be normalised out by using 〈̃P↓(t)〉 in place

of 〈P↓(t)〉, we have no way to convert the flutter of an under-saturated ς to what

would occur with perfect saturation.
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(a)

(b)

Figure 2.5: 〈P↓(t)〉 over multiple values of Q, with a fixed system size N = 45
and interaction strength γ = 3. a) While Q > kF , increasing Q decreases both the
plateau and time to the momentum revival (see Sections 2.4 and 2.5). b) As Q
decreases past kF , the flutter goes away, which is a central feature of reference [69].
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Figure 2.6: Change in 〈P↓(t)〉 with γ for fixed system size N = 45 and Q = 4
3
kF .

As γ increases, the revival period decreases, the plateau in the momentum de-
creases, and the flutter frequency increases. The change in the revival periods and
the plateau can be qualitatively interpreted as an increase in the momentum trans-
fer to the background gas. The flutter follows the progression in Equation (2.3),
which was formed from an argument presented in [69, 70].

48



Figure 2.7: The change in 〈P↓(t)〉 over ς with fixed N = 99, γ = 3 and Q = 4
3
kF .

Here a larger system size than previous is used, as the features which differ with
changing overlap are sometimes obscured by finite size effects. As ς increases,
the revival period is constant, the flutter frequency increases, and the plateau
decreases. The flutter frequency increases with increasing overlap, but reaches a
constant value at a ς of about 0.95. The plateau tends to some value, but has not
saturated in the ς range shown.
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Figure 2.8: The change in 〈̃P↓(t)〉 with ς with fixed N = 99, γ = 3 and Q = 4
3
kF .

Of the two features that change with ς, the plateau change can be almost factored
out with the normalisation in Equation (2.1).
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2.4 Momentum Revivals

Of the three main features in 〈P↓(t)〉, the momentum plateau and flutter are

present in the thermodynamic limit of N →∞ with constant N/L. In contrast, the

revivals in the momentum are finite size effects which can only be seen in systems

small enough for the given parameters and time range.

While these revivals would not be present in a macroscopic scale gas, they

are relevant in experiment, which often use gases of the same order of magnitude

N as we can numerically probe [12, 13, 20, 24]. The momentum revivals can

be problematic, as they can mask the evolution of other momentum features for

smaller system sizes, but they are an interesting feature themselves which have

not yet been thoroughly investigated.

From a semi-classical argument, we can attribute the cause of the momentum

revivals to the finite size of the system. The momentum packet put into the

background gas by the impurity travels through the gas until it reaches and excites

the impurity again. Were there hard boundaries in the system, the time this effect

would appear would be influenced by the initial position of the impurity; however

in our model, the periodic boundary conditions give us translational invariance.

This means the time period of the momentum revivals is only determined by the

physical parameters of the system we have previously discussed. We can estimate

the revival period as

trev ≈
L

2prelative
(2.2)

where L is the length of the system, and prelative = Q−2p is the momentum in the

packet put into the background gas relative to that of the impurity’s plateau (for p

representing the value of the plateau seen). This predicts a linear change in revival

period with increasing system size, which matches what we see in Figure 2.4. A

similar increase in revival period and qualitative argument for the increase with

system size was presented in [79], but was not fully explored.

When this equation is applied to describe the change in the revivals over initial
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Figure 2.9: The progression of the revival period trev with changing system size
N increases linearly, which is in good agreement with Eqn (2.2) and shows how
the revivals are a finite size effect diverging as N → ∞. This plot was created
with Q = 4

3
kF , γ = 3, but the particulars of how γ is set to its value are important

for the prediction of Equation (2.2). We find empirically that fixing L/N = 2, g = 3
gives the best predictions for Eqn (2.2), for example, with L/N = 3, g = 2 the
estimations are further off.

momentum Q and the interaction strength γ it qualitatively matches what we see.

The change in momentum passed to the background gas contains most of the non-

linearity of the revival periods change. Though it qualitatively reproduces changes

for most parameters this prediction is far from perfect; it completely neglects

the fact that γ can change with both g and L, and fails to even qualitatively

predict the progression for a low initial momentum Q > kF (see Figure 2.10). In

Figures 2.9, 2.10, and 2.11 we see the choice of L/N and g for a fixed γ affects the

prediction of Eqn (2.2). The progression with Q indicates Eqn (2.2) should have

some dependence on the initial momentum, possibly defining the ratio of g to L

with which γ is formed.
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Figure 2.10: The change with Q of the revival period trev progresses in a non-
trivial manner, mostly following the progression of the momentum plateau (to be
shown in Section 2.5, see Figure 2.16). For a low initial momentum Q < kF , the
approximation in Eqn (2.2) is very poor, failing to even qualitatively reproduce the
progression. As the initial momentum becomes greater than the Fermi momentum
it gives a better prediction. Note the estimated revival periods for Q = 38

45
kF are

not shown as they are greater than 1000tF , once again demonstrating this estimate
is not useful for a low initial momentum. As with Figures 2.9 and 2.11, the choice
of how to set γ is important for this prediction. The current plot was created with
L/N = 2 for the red points, and L/N = 3 for the blue ones. While in Figures 2.9
and 2.11, the choice of L/N = 2 has been shown to be the most accurate for
Q = 4

3
kF , this plot demonstrates a dependence of the optimum choice on the

initial momentum Q. The exact relation is currently unknown.

The fact this prediction is dependent on the ratio of g to L, while the actual

momentum is only dependent on their product shows the limitations of the simple

interpretation that leads to Eqn (2.2). Nevertheless the equation remains useful

for systems with high initial momentum to show the qualitative progression when

this particular fault is sidestepped.

Figure 2.12a shows a longer term evolution of the momentum, demonstrating
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Figure 2.11: The change in revival period trev with respect to γ, shows that
Eqn (2.2) qualitatively reproduces the progression of the momentum revivals. It
should be noted that the revival period plotted for γ = 1 is highly suspect as
the revival is not nearly as clear as other points, having a relative peak spanning
100tF . We chose to plot the highest point of this peak, which was near its end.
Like in Fig 2.9 and 2.10 the way γ is set has a strong influence on the accuracy
of Eqn (2.2). For the two example data sets shown, we fix L/N, at 2 for the red
points, and 3 for the blue ones.

an initial decoherence of the revivals with increasing time. Despite this apparent

progression in the short term, a plot of 〈P↓(t)〉 for t� trev shows no point where

they have been fully dispelled (see Fig 2.12b). In fact some ranges of t still show

quite strong revivals. From this information we can see that for a finite system

the impurity never reaches a fully thermalised state, it only ever reaches a plateau

before finite size effects set in.

As the period of the revivals is constant after a very low value of ς (figure 2.8),

we can infer the major contribution to this feature comes from states with among

the greatest |〈FS|fQ〉|. This will be demonstrated while attributing momentum

features to subsets of eigenstate pairs in Chapter 3.
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2.5 Infinite Time

The fact the impurity’s saturation momentum is non-zero is an interesting phe-

nomenon [69]. While it inevitably draws comparisons to a superfluid, it must be

stressed that typical superfluidity, like the Bose Einstein condensate, does not in

general survive the transition to one dimension [96–98]. Moreover, what aspects

do cross over are strongly dependent on the particulars of the system [59, 99–

101]. A non-zero saturation momentum has previously been predicted via ballistic

transport, through an argument based on the dynamical conductivity in a system

very similar system to this [102, 103], but the current feature is different. This

observation was of immediate interest, receiving further investigation and general-

isation in references [70, 95, 104–106]. This section provides results corroborating

what was seen in reference [69] and also discusses how the plateau found and the

theoretical infinite time value 〈P↓(∞)〉 relate to each other over a wide range of

changing system parameters.

We describe the change in both the apparent saturation momentum of the

impurity, given by the plateau in 〈P↓(t)〉 before the momentum revival takes place,

and the theoretical saturation momentum of the impurity from summing the time-

independent contributions in Eqn (1.19). The time-independent contributions are

all elements in the sum where |fQ〉 = |f ′Q〉, as these state pairs are the only

ones where the difference in energy is identically 0, and hence the exponential

in Eqn (1.19) is constant over all time t. Particular care must be taken when

measuring the plateau, as this is the feature of 〈P↓(t)〉 that most strongly depends

on the value of ς reached for the simulation (as can be seen in Figures 2.8 and

2.13). To mitigate this, we reach ς ≥ 0.99 where feasible, and for this section we

normalise by ς in the manner described in Section 2.2 unless otherwise specified.

In an infinite system, the plateau would have the same value as 〈P↓(∞)〉, but

we find there is a difference. This difference decreases with a power law relation

to the system size N as can be seen in Fig 2.14. Hence the values would be equal

in the thermodynamic limit as might be expected. Since we cannot reach this

55



thermodynamic limit we have two alternate yet reasonable values for the infinite

time momentum, so whenever we inspect this value we have two options to choose

from. Where there is a significant difference between the two values, we will

mention both.

As noted in Section 2.4, the saturation value of the impurity’s momentum

changes with both Q and γ (see Figures 2.5, 2.6, 2.15, and 2.16). For both pro-

gressions the relation of the plateau matches what is described in Reference [79],

but while the progression of 〈P↓(∞)〉 is qualitatively the same with changing γ, it

is noticeably different with the increase of N and the change in Q. As Q increases,

the progression of 〈P↓(∞)〉 matches that of the plateau for Q < kF , but is very

different once Q > kF . There 〈P↓(∞)〉 increases with increasing initial momen-

tum, and the plateau decreases (Figure 2.16). This is another demonstration of

how the behaviour of the system is different when Q is above the Fermi momen-

tum. While Figure 2.14 shows these two momentum saturation values can be

drastically different for a chosen system size, they do tend to each other in the

thermodynamic limit.

The manner in which the two values converge is via the plateau staying constant

as 〈P↓(∞)〉 decreases to meet it. This is an interesting characteristic, as it implies

〈P↓(∞)〉 for an infinite system will eventually reach the consistent value of the

plateau, and hence can be found by looking at the plateau for a smaller system.

Measurement of the momentum plateau by eye is both subject to human error

in measurement and systematic error by choosing the plateau position from the

oscillation of quantum flutter. Because of this, we only use this observation to

form an approximation of 〈P↓(∞)〉.
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(a)

(b)

Figure 2.12: a) A plot of 〈P↓(t)〉 for many revivals shows how the momentum
revivals initially decohere with increasing time. The plot at a much later time
t � trev in b) shows that despite this, the momentum does not reach a stable
value.
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Figure 2.13: Both saturation measures have a near linear dependence on the
value of ς reached in the calculation. This can be normalised out to find the limit
that would be reached for Ns = ∞. The gradient of this progression changes
with different parameters, but once the overlap is large enough, ς & 0.95 then the
linearity has always been seen to exist. This graph has been plotted for N = 45,
γ = 3, and Q = 4

3
kF and does not normalise the results by ς.
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Figure 2.14: Momentum plateau and time-independent values over different
system sizes for constant γ = 3 and Q = 4

3
kF . While the plateau value in the

momentum stays constant with system size, the theoretical value is initially much
greater than the plateau and decreases towards it with a power law relation as
N →∞. Hence the momentum of the impurity is not the same as its theoretical
thermalised value, but this is a finite size effect and disappears as the system moves
into the thermal regime. This fact could be used to obtain an approximate value
for the saturation momentum in a thermalised system by finding the plateau of a
much smaller system. This uses much less computational resources than otherwise,
but measuring the plateau is intrinsically imprecise because of the quantum flutter,
so this is only useful as an approximation.
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Figure 2.15: How the saturation values are modified by interaction strength
γ. As γ diverges, the saturation values both converge to a non-zero value, and to
each other. The progression of the theoretical infinite time value was discussed in
reference [79], and the current plot shows the same progression. While the plateau
is independent of the way γ is chosen, 〈P↓(∞)〉 is not. The current plot is formed
for L/N = 2; for L/N = 3 the values of 〈P↓(∞)〉 follow a progression of the same
shape, but between the points shown in this figure.
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Figure 2.16: The change with Q of both 〈P↓(∞)〉 and the momentum plateau.
Once the initial momentum is above kF , the plateau decreases with increasing Q,
while 〈P↓(∞)〉 increases. There is a maximum in the momentum plateau for an
initial momentum some point below kF as seen in [69]. The difference between
〈P↓(∞)〉 and the momentum plateau increases with initial momentum, showing
how the interplay between states becomes more important as the initial momentum
goes above kF . The progression of the plateau matches what is seen in [79], the
progression of 〈P↓(∞)〉 was not mentioned there. This plot was created fixing
γ = 3 and N = 45.
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2.6 Quantum Flutter

Like the non-zero infinite time value, an oscillation in the momentum of an impu-

rity is an effect that has been discussed in other one-dimensional systems. Usually

it has come from Bloch oscillations in periodic structures [4, 107]. References [108–

110] predicted that application of a constant external force to an impurity would

create Bloch oscillations in a 1D gas without a periodic potential. Their predic-

tions were based on quantum hydrodynamics arguments around the impurity’s

dispersion relation, but recently the range of parameters for which this result is

applicable to a Tonks-Girardeau gas has been under discussion [104, 111, 112].

In contrast to Bloch oscillations, quantum flutter is present in a system with

no external potential acting on the impurity. Rather than an external potential,

it has so far been attributed to the superposition of plasmon and magnon states.

The difference in energy of these states when the impurity is at momentum Q ≈ kF

matches the flutter frequency. The impurity is hypothesised to have lost any excess

momentum to the background gas [69, 70].

This physical argument results in an exact equation for the flutter frequency

in this model [113].

ωflutter = 2k2F

(
1

2
−
γ2
(
2π
γ

+ arctan
(

2π
γ

)
+

4π2 arctan( 2π
γ )

γ2

)
4π3

)
(2.3)

Notably, the frequency is only dependent on one of the physical parameters we can

change, so there should be no change with system size or with initial momentum.

We show quantitative agreement with Eqn (2.3) to within the accuracy of our

measurements in Fig 2.17. We also see the predicted independence on system size

and initial momentum.

The dependence of the flutter on the non-physical parameter ς is between the

dependence of the revivals in Section 2.4, and the momentum saturation measures

in Section 2.5. While the revivals reach a stable value for a relatively small ς,

and the saturation momentum requires the ς to be very high (when not using the
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Figure 2.17: The flutter frequency we see matches what is predicted from
Eqn (2.3) to a high accuracy. The error bars on the period seen show the maximum
and minimum value measured for the flutter, which often come from finite size
effects obscuring the flutter. Note there is no “plotted” point for γ = 1 as the
oscillation was completely obscured by the revival (as can be seen in Figure 2.6).
Despite these difficulties, the flutter period we see closely follows the prediction
from [113].

normalisation from Section 2.5), the frequency and amplitude of the flutter both

increase until they reach saturation at a ς value that is between those required for

the other two features (see Fig 2.8). As the flutter saturates before the values of

the plateau and 〈P↓(∞)〉, this implies there is a subset of state pairs that are the

cause of this feature. From the fact the ς required for the flutter to saturate is

much higher than what is required to see the momentum revivals, we might guess

the eigenstate pairs that cause flutter have a lower overlap than those determining

revivals. This hypothesis shall be explored in detail in Chapter 3.
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2.7 Conclusion

The features of the momentum evolution for our system are discussed and plot-

ted for a range of system parameters. Agreement is found for all statements in

references [69, 70], and a further discussion has been made on both the momen-

tum revivals and the change with the non-physical parameter ς. We push the

limits of our program to system sizes of N = 99 (larger than seen before [69, 70]),

showing the quantum flutter and momentum plateau without interference from

the revivals. At this system size, we are feasibly restricted to ς ≈ 0.97 which is not

large enough to provide confidence in our results by itself. For further confidence,

we present an observation based justification in Section 2.2, where we show that for

the systems investigated, the frequency of the momentum revivals reaches a stable

point at a very low value of ς. The flutter requires greater, but still achievable,

ς to stabilise. Furthermore, while the momentum plateau has not been observed

to stabilise at any ς, the consistency of how it changes allows a normalisation to

provide a reasonably accurate prediction of the plateau at lower ς.

The time between revivals in the momentum of the impurity is shown to

be qualitatively predicted by a semi-classical argument based on the momentum

passed to the background gas and the size of the system. Though the revivals

initially disperse, we find no time where they have completely gone away.
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Chapter 3

Eigenstates Responsible For

Momentum Features

3.1 Introduction

In the previous chapter, we discussed how the impurity’s momentum evolution

changes with different system parameters; both physical and non-physical. It was

seen that the non-physical parameter ς changed the three different momentum

features in different ways. The momentum revivals were determined at a low ς,

without any noticeable change for ς > 0.9, the quantum flutter was determined

at a higher value, only settling at ς > 0.95, while the position of the momentum

plateau did not show any signs of saturation at a reachable value. This chapter

presents an attribution of state pair subsets to 〈P↓(t)〉 features, demonstrating how

different eigenstate subsets can be described, and showing which subsets cause

which features of the momentum evolution. Through this attribution of subsets to

features, we will see why the different 〈P↓(t)〉 features reach stability at different

values of ς.

For this chapter we use a large system (N = 99) for all graphs, keeping the

initial momentum constant at Q = 3
2
kF , and the interaction strength constant at

γ = 3. A system size this large shows the patterns we will discuss much more
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clearly, as for all subgroups we identify the number of states in them is limited

by the size of the system. Despite the varying clarity, all patterns shown in this

chapter were seen across the range of parameters we can access with our program.

There is an exception of low initial momentum Q < kF where some patterns break

down, again showing the qualitative difference between systems with large and

small initial momentum. We hence limit all discussions in this chapter to systems

where the impurity has been injected with initial momentum greater than the

Fermi momentum, which is where the quantum flutter has been predicted.

3.2 The Pseudo Sea

We now describe a concept called the pseudo Fermi sea that we will use throughout

the rest of the current work to categorise eigenstates. The concept comes from a

representation of the Bethe roots, related to the Bethe momenta of Equation (1.15)

by

zi =
L

2
ki. (3.1)

These roots can be represented as

zi = πni − δi, i = 1, 2, . . . , N + 1 (3.2)

where ni are a unique set of integers, and δi are bound within 0 and −π. This

representation is demonstrated graphically in Figure 3.1. Using this representation,

the Bethe eigenstates of a system are uniquely determined by the N integers ni.

As the energy of a state is determined by the sum of the squares of zi, the ground

state has the integers ni = {−(N + 1)/2, . . . , (N − 1)/2}.

An analogy can be drawn between this set of integers and the Fermi sea, as

you cannot have two identical integers in the set ni, and the ground state’s set

fills all the lowest magnitude integer values. We hence refer to this ground set of

integers as the pseudo Fermi sea. Following this analogy, any excited state must
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Figure 3.1: The graphical solutions of the Bethe root equations in Eqn (1.15)
shows the validity of the representation for the Bethe roots given in Equation (3.2).
Each root can be distinguished by the range it is in. As the gradient of the green
line here is fixed by the physical parameters of the system, the set of ranges in
which roots are found uniquely determine the roots themselves.

have a number of pseudo particle/hole pairs, where a pseudo hole is defined as an

integer in the pseudo sea but absent in ni, and a pseudo particle is an integer in

ni, but absent in the pseudo sea. This analogy and terminology is not new [79,

114], but provides some very fitting terms to define the eigenstate pair patterns

that make up the bulk of this chapter.

3.3 Eigenstate Families

The plot of energy against log10(|〈FS|fQ〉|
2) of each eigenstate shown in Figure 3.2

shows some clear branches, with a few having a much greater contribution to ς

than others [95]. In Figure 3.2, (which shows the same type of plot as seen in [95])

each branch consists of two parametric families defined by states sharing a pseudo

hole. When the pseudo hole of an eigenstate is (N−1)/2, it is in the branch with the
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greatest average overlap. If the pseudo hole is (N−1)/2 − 1 then the eigenstate is

in the second most important branch, and this pattern continues for all positive

pseudo holes. The other family in each branch is given by those states with a

matching negative pseudo hole. States with a pseudo hole of −(N+1)/2 are in the

same branch as those with a pseudo hole of (N−1)/2, and states with a pseudo hole

of (N−1)/2− 1 are in the same branch as those with a pseudo hole of −(N+1)/2 + 1.

Eigenstates with negative pseudo holes tend to have a much lower overlap than

those with positive pseudo holes. All bar one family of these states are below the

cut off in |〈FS|fQ〉| used for Figure 3.2. The exceptional family consists of those

states with a pseudo hole from the negative edge of the pseudo sea. These states

have a pseudo hole of −(N+1)/2 and are in the same branch as the (N−1)/2 family,

which is the greatest overlap branch in Figure 3.2. For example, if the pseudo sea

consists of the integers {−50,−49, ..., 0, ..., 48, 49} then the main branch evident

in Fig 3.2 would consist of all states whose pseudo hole is either 49 or −50. This

corresponds to two parametric families, one with the pseudo hole 49, another with

the hole −50. Note that this graph demonstrates the individual states which

contribute most to ς have a single pseudo excitation. This is a particular case

of a “rule of thumb” in the literature [79, 114] where the contribution to ς from

states with a small number of particle/hole pairs is dominant. These branches and

families have been noted before, and it has been shown that in the asymptotic

limit of γ2 logN → 0 and γ2N →∞ the states from just the main family saturate

ς [95].

As we know a subset of states can determine the momentum of the impurity at

infinite time, and there is a strong pattern in the description of these states within

the pseudo particle/hole terminology, a natural question to ask is whether there is

a subset within the transitions between these states that determine features in the

time evolution of the momentum. We shall show how there are in fact two separate

(though related) subsets of transitions between eigenstates that together describe

the momentum features of the system. One of these subsets describes the overall
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Figure 3.2: The plot of eigenstate energy against importance shows some distinct
branches. These branches are comprised of parametric families defined by the
pseudo hole each related state shares. For all branches other than the main one (at
the top of the figure), the branch is composed of a single parametric family where all
related states have the same pseudo hole. The main branch consists of two families,
one where the pseudo hole is on the positive edge of the pseudo sea, nhole = (N−1)/2,
and one where the pseudo hole is on the negative edge, nhole = −(N+1)/2. Each
successive branch consists of states from a single family whose pseudo hole is
further inside the pseudo sea, as is schematically shown in the top left hand corner.
The most important states shown here have a single pseudo excitation, and as
a single parametric family is followed from left to right, the pseudo particle is
increased by one for each element. This can be understood because the energy of
each state is the sum of the squares of Bethe roots zi where 0 ≤ ni − zi ≤ 1.

shape of 〈P↓(t)〉, including the plateau at non-zero momentum and the revivals in

momentum. The other describes the flutter that occurs around the plateau. It

is the separation of these subsets, and particulars of the state pairs in each, that

cause the saturation of these different features to happen at different values of ς

as seen in Chapter 2.
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3.4 General Shape

When deconstructing the individual contributions to the momentum of a system it

is natural to investigate the Fourier transform. The particulars of the method we

are using make this a trivial task, as it is the Fourier transform we start with and

the momentum is calculated from there (see Equation (1.19)). This also means

that each point in the Fourier transform corresponds to a transition between a

specific pair of eigenstates which may then be inspected for any pattern in the

pseudo particle/hole pairs that describe them.

A typical Fourier transform of our impurity’s momentum is shown in Fig 3.3,

which has two obvious features to the casual observer. The first is the strong peak

at ω = 0 that comes from all contributions in Eqn (1.19) where |fQ〉 = |f ′Q〉. It is

this peak that determines 〈P↓(∞)〉 by contributing a time-independent shift in the

impurity’s momentum. The other is the series of negative amplitude peaks that

occur at integer multiples of the revival frequency, with decreasing amplitude as

the multiple increases. As the states in the peak at ω = 0 have been discussed in

other works [95], and we have presented our own observations on their contribution

in Section 2.5, we now discuss the set of negative amplitude peaks and the state

pairs they comprise of.

Each point on the Fourier transform comes from a pair of eigenstates. Upon

inspection of the state pairs that form these peaks a simple pattern in the pseudo

particle/hole representation can be found. All states, in all state pairs of these

notable peaks, come from the main family in Figure 3.2. They therefore share

with each other N integers in the set ni, and differ in the pseudo particle they

have from their excitation. Furthermore, each peak is formed by taking all possible

pairs from this subset subject to the constraint that the pseudo particles of the

two states are a fixed number apart. The fixed number corresponds to the integer

multiple of the revival frequency where the relevant peak occurs. For example:

the first peak, coloured red in Fig 3.3, consists of all state pairs where both states

come from the main family, and where the pseudo particles of the two states differ
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Figure 3.3: The Fourier transform of the impurity’s momentum with inset
showing which state pairs cause each small peak. The main plot shows the Fourier
transform of the impurity’s momentum against time. Each point here is a contri-
bution from a single state pair to the total 〈P↓(t)〉. There are two strong features:
the large peak at ω = 0 and the set of negative amplitude peaks around each in-
teger multiple of the revival frequency. Inset shows all states with a single pseudo
excitation on the same axis as Figure 3.2 (more clearly showing the branches dis-
cussed previously). The coloured arrows show example state pairs for some of
the coloured peaks in the main plot. In all state pairs from the coloured peaks,
both states are in the main family (those not coloured grey). As the states in this
family are defined by a pseudo hole of (N−1)/2, the difference between state pairs
is only in the pseudo particles of each state in the pair. Transitions which give
the contributions in the first negative peak of the Fourier transform are between
states whose pseudo particles differ by one. Transitions causing the second peak
are between states whose pseudo particles differ by two. This pattern continues
for all peaks.

by one. For each point in Fig 3.3, the two eigenstates used in Equation (1.19) to

calculate said point can be defined by a pair of sets {n1
i , n

2
i }, i = 1, 2, . . . , N +

1. For the points in these peaks, the corresponding pair of sets are of the form

{nbasei ∪ {p}, nbasei ∪ {p+ n}}. Here p is some integer outside the pseudo sea, nbasei

is a shared set of N integers, and n is an integer defining which peak this pair is
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in. This relation is diagrammatically shown in the inset of Figure 3.3.

An initial analysis of the effect these peaks in the Fourier transform have can

be done by viewing the contribution to 〈P↓(t)〉 that each peak makes in turn.

These contributions can be seen in Fig 3.4 and show that each peak combines

to add a remarkably smooth wave of period close to some integer multiple of the

revival period. Though the contributions have very good alignment for the first

few revivals, it is apparent that they become misaligned as time increases.

Figure 3.4: The contribution to 〈P↓(t)〉 from each negative amplitude peak in the
Fourier transform. The main plot shows the Fourier transform of the momentum,
highlighting each negative amplitude peak, while the inset compares the contribu-
tion of each of these peaks to the total momentum evolution of the impurity. The
colour of each contribution in the inset correlates with the colour of the peak in
the Fourier transform. These partial contributions are plotted on an axis of the
same scale as the total, but are shifted for clarity. Each peak adds a wave almost
harmonic to the revival frequency, and Figure 3.5 shows that their superposition
describes both the plateau and the revivals. Figure 3.5 shows this superposition of
all peaks describes the general shape of the total 〈P↓(t)〉, but does not describe the
flutter. Figure 3.6 demonstrates the contribution from these peaks to the plateau
value of the total momentum is proportional to the ς value reached when just
accounting for the eigenstates whose transitions form them.
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Combined, the state pairs in all of these peaks plus each diagonal element from

the main family constitute all combinations of states selected only from the main

family. This contribution is what is plotted in Figure 3.5, reproducing the general

shape of 〈P↓(t)〉, but not the flutter or the exact momentum of the plateau.

Figure 3.5: Comparison of 〈P↓(t)〉 to the contribution from all transitions be-
tween states in the main parametric family. This is is equivalent to the contri-
bution from all peaks seen in the Fourier transform. This comparison shows how
this limited number of transitions describes the majority of features in 〈P↓(t)〉.
Their contribution provides the majority of the revival amplitude, and there is a
non-zero plateau. There are notable differences though: the plateau is not in the
same position as that of the total momentum, and there is no quantum flutter
around it.

Because this set of pairs describes all transitions between a subset of states, we

can apply the normalisation from Equation (2.1) to see what momentum would

occur were ς saturated by the main family alone. When this is done we see the

normalisation does not account for the difference in the momentum plateau; this

main family does not contribute proportionally to the momentum plateau of the

impurity. While the main family does not accurately represent the total, the main
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branch in the graph of Figure 3.2 consists of two parametric families: one from

either edge of the pseudo sea. When both these families are accounted for, i.e.

the entire branch is taken into account, the momentum plateau is much better ap-

proximated by a normalised plot; matching to within the variation from quantum

flutter.

In both normalised contributions, the revivals have a greater amplitude than

the total 〈P↓(t)〉, which implies that the main family/branch contributes relatively

more to the momentum revivals than other states. The fact the revivals are deter-

mined mainly by transitions between states in the main branch, and hence states

that have a large |〈FS|fQ〉|2, explains why the revivals are determined from a low

ς onward as was seen in Section 2.4. These states are the first to be accounted

for; which means the momentum revivals have been found at a very early stage

in the saturation of ς. The representative nature of the main branch can be seen

by the effects of this normalisation in Figure 3.6. We talk of how “representative”

a momentum contribution from a set of states is to refer to how well it recreates

the total momentum once normalised using Equation (2.1). The representative

nature of the main branch contribution to the momentum plateau is a useful fea-

ture, allowing one to find the value of the momentum plateau only accounting for

a small subset of states. As the description of this set of states is known before-

hand the calculation time required is less than the square root of what it would be

otherwise. Unfortunately, this feature is limited in scope. It exists for all system

parameters we can probe with this program, but in the thermodynamic limit of

N → ∞ with constant N
L

the infinite time contribution of the main family tends

to 0 while the total 〈P↓(∞)〉 does not (see Section 4.2). It is of interest to note

that the contributions from all the parametric families and branches seen in Fig-

ure 3.2 are similar; reproducing the general shape of 〈P↓(t)〉. While similar, the

amplitude of each contribution decreases with the importance of the states, and

the resulting contributions are less representative of the total. The normalised

contributions of each branch are compared to the total momentum in Figure 3.7.
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Figure 3.6: Comparison between the normalised contributions of the main para-
metric family, main branch in Figure 3.2, and all states calculated for a typical
system. The normalised branch reproduces the plateau of the entire 〈P↓(t)〉 quite
well, while the main parametric family does not. Both the normalised contri-
butions from the main family and main branch have a greater revival amplitude
than the actual 〈P↓(t)〉. This demonstrates they contribute relatively more to the
momentum revivals than other states.

While the general shape stays constant, there are notable differences. The period

of the revivals is slightly larger for lesser families, the normalised amplitude of

the revivals decreases, and the momentum plateau of the normalised contribution

is further from the total. This shows that these families with lower |〈FS|fQ〉|2

not only contribute less overall that the main one, but they also contribute less

proportional to their contribution to the ς saturation. I.e. when normalised by

Equation (2.1) their contribution to the total momentum is still less than the

similarly normalised contribution of the main family. When combined, the con-

tributions from all intra-branch pairs in the parametric families create a better

approximation of the momentum plateau than the main branch alone. However,
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Figure 3.7: Comparison between the normalised contributions of each branch
from Figure 3.2 and the total momentum evolution. Each branch contributes a
similar shape to the momentum, though without the normalisation of each branch
the shape of most would not be visible here. The gradual increase in the revival
period can be attributed to the fact that the less important branches seen in
Figure 3.2 have points closer together on the energy axis.

the normalisation applied previously cannot be applied again, as this contribution

does not come from all transitions within a subset of states.

The good results obtained by normalising the contribution of states in the

main branch of Figure 3.2 using Equation (2.1) neglect the contribution coming

from the majority of states. Using the numerical observation that the value of〈
fQ
∣∣P↑∣∣f ′Q〉 for a given state |fQ〉 is greater when |f ′Q〉 = |fQ〉 than otherwise, a

better approximation of the total momentum can be obtained. This approximation

is made by taking the full contribution of the same subgroup of transitions as

before; but rather than normalising this contribution using Equation (2.1), other

states are accounted for using just their time-independent contribution. While

using these extra contributions is much more time-intensive, it produces a better

76



approximation of the total momentum evolution, especially near the momentum

revivals. This can be seen in Figure 3.8 which compares the two approximations

with the total, and again in Figure 3.13 where the same type of approximation is

used. This alternate approximation provides a better estimate of the momentum

Figure 3.8: Comparison of the approximations gotten from normalising the main
branch contribution via Equation (2.1) to that of adding the time-independent con-
tribution of other states to the full contribution of the main branch. Accounting for
the time-independent contributions of all states provides a better approximation
around the momentum revivals.

plateau at lower initial momenta Q. This is shown in Figure 3.14, where various

plateau approximations are presented for a range of different Q.

3.5 Flutter

The last section showed that the overall shape of 〈P↓(t)〉 comes from all transitions

where both states come from the same branch of Figure 3.2. This section will

demonstrate that the oscillation dubbed “quantum flutter” is a feature resulting
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from pairs of states where each is in a different branch. While the Fourier transform

highlighted the states most culpable for the general shape, we found no feature

around the quantum flutter frequency in any relation we looked at. This is because

the eigenstates from the branches discussed in the previous section dominated the

structure of any plots including all eigenstates.

As eigenstates with a single pseudo excitation are the greatest contributors (see

Figure 3.2), and we have already found that transitions between states in the same

branch describe the general shape of 〈P↓(t)〉, it is not unreasonable to believe that

flutter may come from transitions between states in different branches of Figure 3.2.

This conjecture is borne out in Figure 3.9, where the contribution of the inter-

branch transitions can be seen to match the flutter of the total 〈P↓(t)〉. Moreover,

this contribution provides very little overall shift of the impurity from the initial

momentum of 4
3
kF . The fact that flutter comes from these inter-branch transitions

can be used to explain the observation that the quantum flutter saturates at a ς

of about 0.95. The phenomenon of quantum flutter requires including many of

the parametric families from Fig 3.2, but does not depend on any states that have

more than a single pseudo excitation. This means that a large number of states

must be accounted for to describe the flutter, but these are states that are found

early by the sampling algorithm we use.

While this identification of the contribution to the flutter as inter-branch tran-

sitions between singly excited states does cut the computational resources required

to investigate this feature, this is still a large subset compared to that which we

found described the general shape in Section 3.4. We can find a much smaller

group that still reproduces the flutter frequency using an analogy to the paramet-

ric families discussed in Section 3.3, whose intra-branch transitions were shown

to determine the general shape of the impurity’s momentum evolution in Sec-

tion 3.4. Those representative families were defined by the set of states that

share their only pseudo hole, and we find that transitions between states which

share their only pseudo particle (and have different pseudo holes) determine the
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Figure 3.9: Plot comparing the quantum flutter in the total momentum evo-
lution with the contributions to the momentum from transitions between state
branches. Also shown is the contribution from transitions between states in differ-
ent branches, but sharing a pseudo particle as highlighted in Figure 3.10. The total
quantum flutter is reproduced by all inter-branch transitions, and the restricted
set of transitions between states sharing a pseudo particle reproduces both the fre-
quency and most of the amplitude of the flutter. As the set of transitions between
states which share a pseudo particle is not normalisable, none of the plots above
have been normalised.

flutter around the momentum plateau. Hence, the transitions which cause the

majority of the flutter are between pairs of states that can be represented as{(
nground \ {h}

)
∪ {p},

(
nground \ {k}

)
∪ {p}

}
. Here nground is the set of integers

defining the ground state, h and k are integers defining the pseudo hole missing

in each state, and p is the integer defining the pseudo particle that both states

share. In this representation, all three of h, k, and p can change and the new state

pair would still be in the set of contributing transitions. Examples of these sets

are highlighted in Figure 3.10. This shows the same plot as Fig 3.2 without states

of more than one pseudo particle/hole excitation, and including some states with

a lower |〈FS|fQ〉|2. While we could normalise the contribution from one of these
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sets, the combination of all transitions from each of these sets is not normalisable.

Hence in Figure 3.9 we show the unnormalised contribution to 〈P↓(t)〉 from intra-

set transitions in black, and compare it to the unnormalised total 〈P↓(t)〉. The

Figure 3.10: All singly excited states with a |〈FS|fQ〉|2 above a certain threshold.
Some parametric families different to the type discussed before are highlighted in
colours other than dark blue. In these parametric families, related states share
a pseudo particle and have different pseudo holes. To avoid confusion, we will
not refer to these sets as parametric families in the text. Intra-family transitions
from these families create the major contribution to the quantum flutter in 〈P↓(t)〉.
While one family of the type described in Figure 3.2 clearly contributes more to
〈P↓(t)〉 than others, the contributions of the families shown here are relatively
similar, and we cannot isolate a single one as providing the main contribution to
the flutter.

contribution from those state pairs whose pseudo particles differ by one, two, or

more has the same oscillation as shown in Figure 3.9, but with an ever decreasing

amplitude as the pseudo particles are further apart.

When looking for patterns in the individual contributions before, the Fourier

transform highlighted some contributions which could be used to describe the gen-
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eral shape of 〈P↓(t)〉. Using the same technique on those contributions identified

as the main contributions to the flutter is not as helpful, as the largest contribu-

tions in the subset we have identified are not at the flutter frequency. A more

effective visualisation of these state pairs is to plot the real and imaginary parts

of each corresponding term on the RHS of Eqn (1.19) given a fixed time of t = 1.

This plot is effectively a polar plot, with the radius of each point determined by

the amplitude of the term, and the angle anticlockwise from the positive real axis

determined by the term’s frequency. Two examples of such plots are shown in

Figure 3.11, one from a system with a high initial momentum Q > kF and one

with Q < kF . Note that in Figure 3.11 we have limited the contributions to those

with positive frequency for clarity. This is done without loss of information, as

each contribution has equal amplitude and opposite sign frequency when the order

of eigenstates is changed. These plots show another form of branch, and again,

each branch consists of all entries in some parametric family. Each family of state

pairs in these plots share an eigenstate. Since the state pair for every transition

on this graph share a pseudo particle, moving along the family only changes the

pseudo hole of the transitions second state. The greatest amplitude families come

from the greatest amplitude individual states, and all have a frequency that is

less than π/4. This means those transitions with positive imaginary and real parts

have positive amplitude while those with negative imaginary and real parts have

negative amplitude.

In Figure 3.11a we see that despite the greatest amplitude contributions having

a much smaller frequency than the flutter, there is a large negative amplitude

peak around the flutter frequency. This peak consists of those families whose fixed

state has a pseudo hole on the negative edge of the pseudo sea, i.e. the fixed state

defining the new branch is in the negative edge parametric family of type described

in Section 3.3.
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(a)

(b)

Figure 3.11: The plot of the imaginary and real parts of the terms in Eqn (1.19)
for those state pairs found to be major flutter contributors. a) While the con-
tributions with the greatest amplitude are far from the flutter frequency, there is
a strong peak around that frequency coming from state pairs where one state is
excited from the negative edge of the pseudo sea. b) For a small initial momentum
Q < kF , the structure of the Bethe Ansatz means states excited from the negative
edge with a positive particle can’t exist, so the branches are lost. In both plots,
the red radial line denotes the flutter frequency.
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Using the insight of Figure 3.11, where the greatest amplitude state pairs with

a near flutter frequency come from an even smaller subset of those identified previ-

ously, we plot the sum of contributions from transitions in this subset. Figure 3.12

shows the total contribution of state pairs which include a state whose pseudo hole

is on the negative edge of the pseudo Fermi sea. We can see this contribution nearly

matches that obtained from all state pairs which share a pseudo particle. With

this final filter we have found a subset of state pair contributions that describe

the flutter yet require accounting for a much smaller number of contributions in

Equation (1.19). We do note that this contribution is at a lower amplitude than

the total flutter.

Figure 3.12: Comparison of the contribution from all state pairs sharing a
pseudo particle to the subset of those where one of the states has its pseudo hole
on the negative edge of the pseudo sea. The oscillation that relates to the flutter
is the same between these two subsets, sharing both the amplitude and frequency.
This shows the peak seen in Figure 3.11 defines the flutter of the system. Each
state pair in that peak has one state whose pseudo hole is on the negative edge
of the pseudo Fermi sea, and another whose pseudo particle is the same as the
pseudo particle of the first state.
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It should be stressed that though this small subset of transitions reproduces

the flutter frequency, there are other contributors within the larger subset of inter-

branch transitions that increase the amplitude of said oscillation. When the initial

momentum is only slightly greater than the Fermi momentum, these states con-

tribute more to the amplitude than otherwise. Though the transitions to and

from states on the negative edge between others with the same pseudo particle

still reproduce the frequency in this case, the proportion of the flutter observed is

less.

In the previous sections we have shown that the main contribution to both time-

dependent features of the system come from transitions between states which only

have a single pseudo excitation. In order to stress this point, Figure 3.13 compares

the total momentum evolution of the system to what occurs when assuming the

time-dependent contribution of all states with more than a single pseudo excitation

is 0. This is done by taking all transitions between singly excited states, and adding

to that the time-independent contribution of all other states.

The approximations presented in this section are generally only useful in the

regime where Q > kF . The shape of the momentum evolution and the plateau

obtained using the normalisation approach become unacceptably inaccurate when

Q < kF . However, the plateau approximation from discarding the time-dependent

contribution of states outside the two main subgroups identified here is still rea-

sonably accurate, as demonstrated in Figure 3.14.
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Figure 3.13: Comparison of the unnormalised total momentum evolution of the
impurity to the momentum evolution that comes from assuming the only time-
dependent contributions come from transitions between states with a single pseudo
excitation. While the plateau of the approximation is not as level as the total, the
majority of all features are shown, with both the flutter and revivals presenting
good approximation in both amplitude and frequency.
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Figure 3.14: The plateau values of different approximations and their progres-
sion with the initial momentum Q. We can see that the approximation from nor-
malising a subgroup defined via pseudo excitation patterns becomes progressively
less accurate as the initial momentum of the impurity decreases. On the other
hand, the approximations from taking account of the time-independent contribu-
tions of all states still provide a reasonable plateau value. Moreover, normalising
the contribution found from only obtaining a saturation of ς = 0.95 also provides
a reasonable plateau over all initial momenta Q.
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3.6 Conclusion

While reference [95] showed that in the limit γ2 logN → 0 and γ2N →∞, states

in the main family saturate the sum rule, we demonstrate that for those system

parameters reachable by our program transitions within these states describe the

overall shape of the impurities momentum. More generally, we show transitions

between states in a branch contribute to the general shape of the momentum evolu-

tion, and transitions between states in different branches contribute to the flutter.

Combined, their contribution describes all the non-negligible contributions to the

time dependent motion of the impurity. I.e., the set of contributions from intra-

branch transitions where a branch is defined by the pseudo hole of an excitation

determines the overall 〈P↓(t)〉 shape, while the contributions from inter-branch

transitions determine the flutter.

Within those transitions causing the flutter, the main contribution comes from

transitions between state pairs where one state has its pseudo hole on the negative

edge of the pseudo sea, and both states have the same pseudo particle. Similarly,

the main contribution to the general shape can be found from those state pairs

where both states are in the main family. A final decomposition can be made, as

the revival frequency is seen from contributions between states in the main family

which differ by a nearest-neighbour displacement of one pseudo particle.

These observations can be used to approximate any individual feature of the

momentum evolution with a much smaller computational expense than has pre-

viously been possible. Hence our work has allowed more research on the physics

of this system without as much focus on how said physics must be calculated.

From the approximately
(
N2

2

)
state pairs that come from all states with a single

pseudo excitation, we have identified two distinct subsets of approximately N2

pairs which can be used to find each of the different features of the impurity’s

momentum evolution.
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Figure 3.15: Comparison of 〈P↓(t)〉 to the sum over transitions between the two
main state pair contributors identified. The inclusion of all transitions between
states in the main branch matches the overall shape of the momentum evolution,
while the inclusion of those transitions between states excited from the negative
edge of the pseudo sea and those which share a pseudo particle with them, add
flutter to the plot. The approximate flutter does not reproduce the same amplitude
as the total, and the value of the momentum plateau is not matched, but the
frequency of the revivals and flutter are accurately reproduced. In this graph, the
total plot required calculating 400000000 contributions, while the approximate
value required calculating only 11865, a computational speedup of about 4 orders
of magnitude.
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Chapter 4

Other Investigations

4.1 Thermalisation

The question of if and how a one-dimensional system thermalises from its initially

excited state is interesting and open [115–119]. Experimental data has shown that

such systems do not always relax into a thermalised state [14, 120], and theoretical

work on the subject has shown there can be a non-thermal steady state that a

system can relax into [115, 121–127]. Other work has inspected the locality of

this state and how looking at a wider scope affects conclusions [128, 129]. Within

this area the effects of dimensionality and whether a system is closed or integrable

seem to be strong [122, 123, 130–133]

Recently it has been argued [134] that in the thermodynamic limit the expecta-

tion value of an operatorO which is local in space can be found using the projection

of the ground state onto a single eigenstate of the system Φs (see Eqn (4.1)). Also

that as t→∞ expectation values of observables in the system can be found from

the expectation of that single state [134] as shown in Eqn (4.2)

lim
N→∞

〈O(t)〉 = lim
N→∞

[
〈Ψ|O(t)|Φs〉

2 〈Ψ|Φs〉
+ Φs ↔ Ψ

]
(4.1)

lim
t→∞

lim
N→∞

〈O(t)〉 = lim
N→∞

〈Φs|O|Φs〉
〈Φs|Φs〉

. (4.2)
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Here the item Φs ↔ Ψ denotes the previous term in the equation with terms Φs

and Ψ swapped.

The current system, being integrable, one-dimensional, and evolving from an

initial state far from equilibrium, is a good example of those that have been of

such interest. Though Eqn (4.2) was derived under assumptions that do not hold

in our system, we can make some numerical observations about whether it may

hold for the momentum operator here, providing complementary information in

a similar system. The first steps of such an analysis have been made, and our

limited results are presented below.

While no claim has been made of the relative import of Φs one might guess

that it is a state with a large contribution to the momentum of the impurity, so

looking only at those states with a single pseudo excitation seems a reasonable

starting point. Plotting 〈Φs|P↑|Φs〉 against |〈FS|fQ〉| for each such eigenstate

found in the system gives the graph shown in Fig 4.1. While there clearly are

states whose momenta are near the two values for infinite time momentum we have

(the plateau on our plots and the theoretical 〈P↓(∞)〉), none have a particularly

notable |〈FS|fQ〉|, and there is no obvious feature leading to a state we can use as

an initial guess for Φs.

Though these plots don’t provide any conclusive data on the thermalisation

hypothesis, they do give some more information about the structure of the singly

excited eigenstates. We can see the states in this subset are bounded in momen-

tum, and those states where the impurity has a positive momentum (i.e. the

impurity is travelling in the same direction as it was initially going) tend to have

a greater |〈FS|fQ〉|2 than those where it is negative. This asymmetry can be seen

in Figure 4.2, which shows a much stronger directionality than is obvious in Fig-

ure 4.1. Figure 4.2 shows the importance of each range of momentum, plotting a

histogram showing the value of the equation

σ =
∑
fQ

〈fQ|P↑|fQ〉 | 〈FS|fQ〉 |2 (4.3)
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Figure 4.1: Distribution of each state’s momentum contribution, and the weight
that contribution has. For clarity this plot is limited to states that are singly
excited, as the structure in states with extra excitations cannot be seen at this
scale. The red line shows the time-independent contribution of all states, and
the green line denotes the plateau seen in the momentum. While there are states
that have the momentum which would occur at infinite time (whichever of the
two definitions we use), there is no obvious feature in the distribution around this
point.

where the sum is over those |fQ〉 whose momentum is within a bucket’s range. Not

only does this figure show a very strong directionality, but it also demonstrates two

separate progressions in σ: one that follows the contribution of the main branch,

and another from all states in different branches of Fig 3.2.

While there is a much stronger positive contribution to the impurity’s mo-

mentum there are actually more eigenstates where the impurity has a negative

momentum than otherwise. We show this in Figure 4.3, which plots the number

of states over the same buckets as used for Figure 4.2. It can be seen in this

figure that while there are peaks in the number of states at both bounds in the

momentum, the number of states near the negative bound is much larger than at
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Figure 4.2: Contribution to infinite time momentum from singly excited states.
Each bar is the sum of the |〈FS|fQ〉|2 for the states in that region, the red vertical
line denotes the infinite time contributions from all states, and the green line
denotes the position of the plateau seen when the total momentum against time is
plotted. While the contributions increase markedly near the upper bound on the
momentum, the peak is slightly beforehand. There are two apparent contributions:
one from the progression of the most important family, and one from others, but
both have a peak at the same point.

the positive one.

4.2 Asymptotic 〈P↓(∞)〉

The discussion presented in section 3.4 on the representative nature of the contri-

bution from the main parametric branch (seen in Fig 3.2) is necessarily restricted

to the range of parameters our code can reach. Naturally, the question of whether

this behaviour persists to the thermal regime of N → ∞ has been raised. As

the computational expense of calculating the full 〈P↓(t)〉 for a large system is

prohibitively expensive for system sizes greater than N ≈ 99, we looked at how
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Figure 4.3: Distribution of the singly excited states across their expectation
values of the impurity’s momentum. Each bar represents the number of states
within that region of momentum, the red vertical line denotes the infinite time
contributions, and the green line denotes the position of the plateau when the
total momentum against time is plotted. The momentum of these states is bounded
in both directions, and there are more states near these bounds than elsewhere.
While the number of states with negative momentum is greater than those with
positive momentum, the |〈FS|fQ〉|2 weights mean the contribution from positive
momentum states is much greater (see Fig 4.2).

representative the infinite time contribution of the main branch
〈
P 1
↓ (∞)

〉
is of the

total value as the system grows larger. While the normalised values of the main

branch seem to tend towards 〈P↓(∞)〉 for the range of system sizes we can calculate

the momentum evolution for, as we progress into larger systems
〈
P 1
↓ (∞)

〉
continues

to decrease, as shown in Figure 4.4. An analytical approach made by Oleksandr

Gamayun [135] has shown this is how they behave as the system moves into the

thermal regime N → ∞, with the contribution of the main branch continually

decreasing and eventually disappearing
〈
P 1
↓ (∞)

〉
→ 0.
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Figure 4.4: How the normalised time-independent contributions to the momen-
tum from the main family compare with the total as the system size changes. For
those systems which we can plot the time evolution of the momentum (N < 100),
the infinite time contributions of the main branch are almost representative of the
total, and their representative nature increases with increasing system size. For
larger systems, outside of this calculable range, the infinite time contribution of
the main branch decreases further, away from the total. An analytical analysis
shows that this progression continues, and as the system size diverges the main
branch’s contribution tends to zero [135].
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4.3 Conclusion

While we have no conclusive results on the thermalisation hypothesis in our system,

the code we have should provide an adequate platform for research into the area.

Initial plots show that if some representative eigenstate Φs exists, it does not have

a standout value of 〈FS|fQ〉, and the distribution of states does not show any

noticeable feature near where it should be. The plots created in order to find Φs

shed some light on the infinite time momentum of the impurity. While there are

more states with a negative momentum, the impurity’s directionality comes from

the strong asymmetry in the contribution to ς.

The discovery in Section 3.4 that the main family is representative of the total

momentum contribution excluding flutter should only be relevant to finite systems

as its infinite time contribution does not stay representative. As N → ∞, then

P1(∞) → 0, but this progression is slow and can be discounted for the systems

investigable by our program.
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Chapter 5

Concluding Remarks

5.1 Results

To conclude, this work has discussed the momentum evolution of an impurity

quenched into a one dimensional Tonks-Girardeau liquid. We find agreement

with the statements made in reference [69] on the momentum evolution of the

impurity, reproducing all progressions in the plateau and quantum flutter. Sec-

tion 2.4 presented progressions in the momentum revivals that come from finite

size effects, and show that for a large initial momentum they can be qualitatively

described using a classical argument based on the momentum imparted to the

background gas by the impurity. Though useful, this argument cannot be com-

plete as it fails to describe the equivalency in the change to 〈P↓(t)〉 that comes

from modifying γ via either the density of the background gas or the interaction

strength between the background gas and the impurity. The relationship between

the momentum plateau and the theoretical infinite time value obtained from time

averaging 〈P↓(∞)〉 was explored in Section 2.5. It was shown that while the mo-

mentum plateau is constant with changing system size, 〈P↓(∞)〉 starts out much

higher and decreases towards the value of the plateau, the difference decreasing

with a power law relation.

Chapter 3 described patterns observed in the eigenstates and eigenstate pair

contributions to the momentum of the impurity, and used them to explain why
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different features of the momentum evolution saturate at a different accuracy as

measured by ς. We find that the overall shape of the evolution is determined by

eigenstate transitions within the same branch of Figure 3.2. Those in the main

branch contribute the most, though the contribution from this branch becomes less

representative with large systems. These contributions can be normalised using

Equation (2.1) to account for the difference in ς between subsets of states used

and the total. This shows that the states in the main branch are representative of

the total in setting the momentum plateau, but contribute more to the momen-

tum revivals than their ς would suggest. The quantum flutter which is the main

topic of references [69, 70] was shown to come from inter-branch transitions. This

demonstrates that the contribution from those states with more than one pseudo

excitation is negligible. While the entire flutter requires all inter-branch transi-

tions, the frequency at about a quarter of the amplitude can be obtained from

just looking at those transitions between states excited from the negative edge of

the pseudo sea and those in other branches, under the condition that both states

share a pseudo particle. This can provide an intuitive explanation for how the

numerics describes the loss of flutter when the initial momentum drops below the

Fermi momentum: the structure of the Bethe Ansatz inhibits any states excited

from the negative edge when Q < kF .

These patterns can explain the stability of each feature once ς has passed a

given point. Figure 3.2 shows that states from the main branch have a much greater

contribution to ς than others, and hence are counted first. Similarly, states with

more than one pseudo excitation are accounted for much later when stepping up

ς. Because transitions between states in the main branch define the general shape

of the momentum evolution and the frequency of the momentum revivals, these

features stabilise much earlier than the exact value of the momentum plateau and

the flutter around it. The inter-branch transitions that define the frequency of the

flutter require the lesser contributing branches to be accounted for; this naturally

results in a greater value of ς before the feature has been fully described. However
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as all eigenstates of the system contribute to the momentum plateau, that feature

shows no saturation at ς < 1.

Finally, the distribution of the singly excited eigenstates in the momentum

was shown in Chapter 4, demonstrating no significant pattern around the thermal

value of the impurity’s momentum. In the same chapter, the contribution to

〈P↓(∞)〉 from the main branch of Figure 3.2 is shown to decrease relative to the

total 〈P↓(∞)〉 as the system size increases. While this doesn’t necessarily mean

the momentum plateau from the normalised main branch contribution decreases

relative to the total plateau, it has been found elsewhere that this is the case [135].

Thus the representative nature of the main families contribution to the momentum

plateau found in Section 3.4 is only valid in finite systems.

5.2 Limitations and Further Work

The current work only directly applies to the integrable case in the Tonks-Girardeau

regime, and much of the results are on the structure of the Bethe Ansatz solution

to the system, without a known physical interpretation. Despite this limitation

it is hoped that these results can allow others to probe this regime with much

less computational expense, from which more physical results can be found. The

ubiquitous nature of the Bethe Ansatz in integrable one-dimensional systems also

lends credibility to a hope that such patterns may occur in different models, both

on a lattice and in the continuum.

An alternate direction of further study might be into the case of an attractive

potential between the impurity and background gas. While requiring changing the

code which solves the Bethe Ansatz to account for complex Bethe roots [136] this

route should not require changing the code which finds the impurity’s momentum.

Overall we have presented novel research in this system, writing code and

discovering relations that can aid any research of others in this area.
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Appendix A

Code Details

A.1 Introduction

As the central tool used throughout this thesis, the code written for calculat-

ing Equation (1.19) deserves discussion. While our method of finding eigenstates

for our system is novel, it is beyond the scope of this thesis, being written by

Evgeni Burovski and not the current author. Instead this chapter discusses the

process of finding the time dependent momentum contributions from a given set

of eigenstates. We will neglect the details of encoding those equations presented

in Section 1.2.1 and discuss the challenges faced when scaling to large systems,

how they have been circumvented and what trade-offs have been made. Hence

this chapter contains no information on the physics or maths of the problem and

focuses solely on the implementation details of this research.

There are two main discussions in this chapter: 1) How to efficiently spread

the work required over multiple processes, and 2) the benefits and disadvantages

of storing different data structures. Unfortunately there is no clear separation

between these discussions, as different methods often make different compromises

between these values.

Throughout this chapter we will refer to two stages: the calculation stage,

and the analysis stage. We work under the assumption that the majority of the

calculation is done on a larger machine such as a computing cluster, and the
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analysis done on a much smaller personal computer. Note all judgement calls on

when a data structure was too large, or took too much computation for the analysis

stage, were made to account for a personal computer with 2GB of RAM and

one hyperthreaded 2.20GHz processor. The most notable decision was whether

calculating 〈P↓(t)〉 from the amplitudes and frequencies in the RHS of Eqn (1.19)

should be part of the calculation stage or if it could be done during analysis.

In order to simplify the discussion, we shall compare and contrast the ap-

proaches to two different systems: one small system (e.g. N = 15) accounting for

Ns = 400 states, and one large system (e.g. N = 45) accounting for Ns = 20000

states. To give the reader an idea of how the time required to find 〈P↓(t)〉 from

the eigenstates of the system changes with increasing system size N a description

of the calculation bottlenecks is required. The bottleneck in calculating each indi-

vidual amplitude from a pair of states comes from the calculation of the singular

value decomposition of an N ×N matrix. This scales with N3, while the number

of amplitudes that must be calculated in this manner scales with N2
s . The number

of states Ns has a non-trivial but strongly increasing relationship with N shown

in Figure 2.2.

A.2 Data Structures

When working on a small system, worries about computational expense and mem-

ory usages are much lower than otherwise. Consequently most design decisions

were made based on the ease of analysis once all terms on the RHS of Eqn (1.19)

have been found. The data required for the analysis made in this work are the am-

plitude, frequency, and pair of eigenstates for each term on the RHS of Eqn (1.19).

Also required are the system parameters (both physical and non-physical) de-

scribed in Chapter 2. Note however, that the form of a stored eigenstate changes

throughout the process of reading from a stored cache, calculating amplitudes,

and storing with amplitudes and frequencies for a given contribution. In order to

save calculation, many values which must be calculated once for each eigenstate
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and used to find the amplitude of each transition to or from that state are cached

in the eigenstate structures during the calculation step. However, in analysis, the

only identification required for a state are the pseudo excitations that create it (see

Section 3.2). This section describes the form of data structures written to disk in

the calculation step for use in analysis.

In a system near our “small” example, Ns is low enough that all these values

can be simultaneously stored in RAM. Because of this ability, data structures

for these systems are designed with the primary objective of being easy to read

and manipulate during analysis. This results in storing all values required in

a single file with no recalculation required (see Figure A.1a). From this data

〈P↓(t)〉 for any period of time is easily created, and any subsets can be found

by filtering contributions by the relevant eigenstate pairs. This provides good

flexibility in analysis within reasonable time frames. For a larger system size,

and the correspondingly larger number of states used, such an approach is no

longer viable. The calculation time of 〈P↓(t)〉 from the elements of the Fourier

transform, and the space required to store all individual contributions both become

prohibitively expensive. The consequences of these restrictions are twofold: the

process of finding the total 〈P↓(t)〉 from all contributions must be moved into the

calculation stage, and a method of only reading in those contributions required for

a subset analysis must be implemented.

Implementing the first of these restrictions is a simple manner, we choose a

range of time values to plot before calculation and save the momentum and time

values for each of the points requested on disk for analysis. Moving the calculation

of 〈P↓(t)〉 from the analysis step to the calculation one is not as much of a hindrance

as one might initially suppose, as the calculation of the total 〈P↓(t)〉 is rarely done

more than once.

The latter of these two consequences is implemented by storing the amplitudes

on disk in a dense two dimensional array with each row and column corresponding

to the eigenstates which create the amplitude. As the eigenstate energy for each
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Frequencies

Amplitudes

State Pairs

Parameters ς

(a) Small system.

Total 〈P↓(t)〉

Original Eigenstate Store

Increasing
Ef

Increasing
Ef ′

Amplitude Matrix

(b) Large system.

Figure A.1: Schematics of data structures serialised for both large and small
systems. For small systems a hash table containing all data required for analy-
sis was directly serialised to disk, and unserialised when required. This had the
advantage of simplicity and would not easily result in un-synchronised data. The
calculation stage created this data in one step, and no modifications are needed in
the analysis stage. Frequencies, amplitudes, and eigenstate pairs are kept ordered
by increasing energy, and can hence be matched accordingly. This means only
information required for choosing interesting states is needed in the state pairs.
When the system is large, storing all data in RAM at the same time in the anal-
ysis stage is impossible, so a different method of reading in data was devised (see
Figure A.2). Said method centred around calculating the position in the stored
amplitude matrix where each interesting eigenstate pair will be, and only reading
the data stored in those positions. As this new method of reading those ampli-
tudes required for partial contributions took time and required the calculation of
each eigenstates’ energies, storing the frequencies associated with each amplitude
became redundant and was removed for storage space concerns.
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column/row increases with increasing element index, the amplitude for a given pair

of eigenstates can be obtained by finding the corresponding position in the array

and only reading that value. A decision to forgo storing the frequencies of each

state pair was made as the recalculation of this value is trivial and faster than

reading a value from disk, especially after the energies for each eigenstate have

already been found for amplitude lookup. We also decided to keep checkpoint files

for eigenstates and amplitudes separate, rather than joining them together. This

helped in parsing the data structures: reusing existing code to read eigenstates

from their original structure. The decision created a danger which the user must

be aware of: the two checkpoint files may get out of sync if eigenstates are added

to the cache which would have been accounted for in the matrix of amplitudes.

Keeping these two sets of values separate also meant that spreading the work of

calculating amplitudes across multiple processors could be kept simple as described

in Section A.3. The data structures saved to disk when in this large system

regime, and hence those that define the majority of our codes structure, are shown

in Figure A.1b. These consist of a packed two-dimensional array of amplitudes

ordered by the energy of each state in the transition, an SQLite database storing

the eigenstates of the system (in the same format as delivered by the eigenstate

calculation), and a numpy named array containing the impurity’s momentum and

time over a predefined time period.

A.3 Multiple Processors

With a large system, the need to spread work over more processors becomes much

greater as the amount of computation increases dramatically (the manner in which

it increases is discussed at the start of this Chapter). Luckily, the form of Equa-

tion (1.19) means the bottleneck in our computation can be written in an embar-

rassingly parallel manner. Each process takes a different set of eigenstate pairs

to work with, and works independently to find the background gas’ momentum

contribution from that set of transitions. They then sum these contributions with
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the other processes before subtracting from the total momentum to obtain the mo-

mentum of the impurity. This method, schematically shown in Figure A.2, lends

itself very well to the packed data structure of amplitudes we store on disk (see

Section A.2). Each process can memory map a chunk of the file as its assigned

Units of Work

|f〉

Increasing Ef

|f ′〉

In
cr

ea
si

n
g
E
f
′

Calculate

Calculate

Calculate

+

〈P↑(t)〉

〈P↑(t)〉

〈P↑
(t)
〉

Total 〈P↓(t)〉

Figure A.2: Schematic of how work is spread over multiple processors. In this
example 3 processors are used. The distribution of work across multiple processors
is done in a simple manner: each processor takes a block of the amplitude matrix
and calculates the contribution to the RHS of Equation (1.19) for a set of time
points. Each of these contributions is then summed, and taken from the total
momentum Q of the system to find the momentum of the impurity.

part of the matrix, and when this chunk has been flushed to disk the amplitudes

are saved in their assigned positions. Assigning the work in this manner means

the number of processes used when the amplitude matrix was initially created is

completely opaque to the user. This keeps the data structures general, and allows

a user to reuse the amplitude matrix over a different number of processes without

additional logic.

The lower level spreading of processes has been implemented in two different

ways: one uses the built in Python multiprocessing module, and the other uses

mpi4py [137]. Dual implementations are maintained as the default multiprocessing

module in Python can not spread load over more than one node in a cluster, but

we see less of an overhead when using it to manage different processes on a single

node.
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We observe a near-linear scaling from 1 to 64 processes used when calculating

〈P↓(t)〉 for 1000 points in time of our large system. Greater numbers of processes

have not been investigated as the wait for job scheduling becomes a limiting factor.

A.4 Improvements

While the current formulation of this code has been proved useful and reliable when

working through this project, there are a few improvements which should have

noticeable benefits yet have not been made due to time constraints. The simplest

of these is to save the packed matrix of amplitudes ordered by eigenstate overlap

|〈FS|fQ〉|2 rather than energy. This different ordering would help when inspecting

how the system changes with differing ς saturation. When a set of amplitudes has

been calculated for a saturation of e.g. ς = 0.999, the higher overlap eigenstates

from this set that provide a saturation of ς = 0.9 could be read from the original

data file in the simple manner shown in Figure A.3. Currently, calculating the

|f〉

Decreasing |〈FS|f〉|2

|f ′〉

D
ec

re
as

in
g
∣ ∣ 〈FS

|f
′ 〉∣ ∣2 ς = 0.9

ς = 0.99

ς = 0.999

Figure A.3: Alternate order of amplitude matrix. Currently amplitudes of con-
tributions are stored ordered by the energy of the eigenstates in each transition as
shown in Figure A.2. If the matrix were ordered by |〈FS|f〉|2 instead, finding the
amplitudes for the highest overlap eigenstates would be much simpler and could
be done without recalculation.
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contribution from a smaller set requires saving another matrix of amplitudes in a

separate file that simply contains a subset of the information in the original. This

results in needless duplication. Storing the amplitude matrix ordered by energy

has no inherent benefit, but the amount of programmatic complexity in order to

realise the benefits of an alternate order has so far delayed this change.

Another possible yet unimplemented feature is the filtering of eigenstate pairs

in the initial computational run. The trade-off on using this hypothetical feature

would be sacrificing future flexibility in analysis for a shorter initial computation.

Thus certain contributions would not be calculated initially on the assumption

that they will never be needed in the analysis stage. While the results presented

in Chapter 3 suggest that such restrictions can be made when looking at specific

features of the momentum evolution, the focus of this work never moved to using

these observations and accordingly this feature was not implemented.

One final compromise which a future researcher may wish to reverse has been

made to sacrifice close to a factor of 2 in program speed for code simplicity. As the

amplitude matrix is symmetric, there is no reason to find every possible transition

as is currently done. Finding the amplitudes of all off-diagonal transitions in a

given order and doubling the contribution would decrease both the required RAM

and CPU time dramatically. An equivalent optimisation is already implemented

in the code for subset analysis, but it is not accounted for when calculating the

total amplitudes. The decision has been taken solely for the sake of code clarity

and speed of development, and as such is a strong candidate for change in the

future. Furthermore, in obtaining this factor of 2 speedup, it is highly likely that

a quirk in implementation can be removed, reducing the RAM required by yet

another factor of 3. The details of this are discussed in the code comments and

are based around the use of the numpy.frompyfunc command.

Overall the structure of the current program makes what the author believes

to be reasonable compromises between flexibility of analysis and computational

resources. It scales well with multiple processors yet still allows for easy selection
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of transition subsets by the researcher during analysis. There are some obvious

possible improvements which the author sincerely hopes are made, and anyone

wishing to use this code is encouraged to contact the author with any questions.
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