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Abstract

Collier, Johnson and Ruggiero (2011) deal with the problem of esti-
mating technical efficiency using regression analysis that allows multiple
inputs and outputs. This revives an old problem in the analysis of produc-
tion. In this note we provide an alternative maximum likelihood estimator
that addresses the concerns. A Monte Carlo experiment shows that the
technique works well in practice. A test for homotheticity, a critical as-
sumption in Collier, Johnson and Ruggiero (2011) is constructed and its
behavior is examined using Monte Carlo simulation and an empirical ap-
plication to European banking.
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1 Introduction

To make things concrete, suppose we have multiple outputs in vector y;; € RM,
and there exists an aggregator function of the constant elasticity of substitution
(CES) type:

g(ylt) = (alyiit + a2y5,it)1/pv 1= ]-7 ooy N7 t= ]-7 "'7T7 (1)
although other aggregator can serve just as well. The model is:
9(yit) = f(Xit) + vit — i, (2)

where f(x;;) is a functional form that shows how inputs x;: = %14, ..., Tk i) €
RX contribute to the production of aggregate output, vy is a two sided error
term and wu;; > 0 represents technical inefficiency. For example, with a Cobb-
Douglas functional form and K inputs, equation (2) is:

K

lng(yzt) = 60 + Zﬁk} lnxk,it + vt — Uit 1= 1a sy Na t= 17 7T (3)
k=1

There are certain important issues in technical efficiency analysis with multiple
outputs. Since outputs are jointly produced given the inputs, equations (2) or
(3) do not specify a joint system of equations for y;;. In fact, with M outputs,
M — 1 equations are missing, as noted by Fernandez et al. (2002). Therefore,
the aggregator function approach is not enough for a complete analysis of the
problem.

It is a, relatively, common practice in the literature to assume, say, * g(y) =
Y1 Y5 3 and use OLS in the following equation?:

K
arInyy i+ oeInys i = Bo + Z B In x5t + vig — Uit (4)
k=1
or, alternatively, in obvious notation:
K
Iny1ie = Bo+ 0 my2ie + Y eIk i + 2 (Vi — wir) - (5)
k=1

This equation shows plainly that we have an endogenous variable in the right-
hand-side of the equation and, therefore, OLS cannot be used because of cor-
relation with the error term, v;; — u;;. This is very often forgotten in applied

1To the author’s knowledge the only reason why a Cobb-Douglas aggregator may be un-
desirable is because it does not satisfy the second order conditions of profit maximization.
A Cobb-Douglas aggregator is, however, consistent with cost minimization. Of course it is
also undesirable in the sense that it is not flexible enough like the CES or translog functional
forms. Here we use it for simplicity in presentation of the main points.

2This, and similar practices, are nicely reviewed in Kumbhakar and Lovell (2000, pp. 93-95)
and the cited references.



research. This point applies not only to regressions involving aggregator func-
tions but also to distance functions. Input- or output-oriented distance functions
are homogeneous of degree one with respect to inputs and outputs, respectively.
Therefore, imposition of homogeneity results in a form similar to (5).

The proper method of estimation is limited information maximum likelihood
(LIML) if the inputs are exogenous and prices are not available®. However, this
is also a problematic assumption.

Under specific behavioral assumptions, inputs are endogenous. For exam-
ple under profit maximization or cost minimization, inputs are endogenously
selected and outputs are, respectively, endogenous or predetermined. In effect,
OLS is not the proper method of estimation. Using LIML requires predeter-
mined variables like prices (which, by assumption, are not available.) However,
lagged values of x;; and y;+ can be used as they are predetermined from the
point of view of period ¢, provided v;; and wu;; are not autocorrelated. An al-
ternative estimation technique is the generalized method of moments (GMM)
with a one-sided error term and explicit correlation allowed between x;; and the
error components (Tran and Tsionas, 2014).

Collier, Johnson and Ruggiero (2011), CJR henceforth, deal with the prob-
lem of estimating technical efficiency using OLS regression analysis that allows
multiple inputs and outputs. Specifically, technical efficiency can be estimated
using regression models with multiple inputs and outputs without input price
data. CJR propose to use DEA analysis in a first stage -without the input
constraints since they assume separability from inputs- to derive an aggregate
output measure, say S;;. The DEA problem solved in CJR is the following, for
each observation “0™

max : O,,
NT
Ej:l Ajyjm > @oyoma m = 17 ceey M7
YA =1,
Aj>0,j=1,..,NT.

Aggregate output is defined as:

S, = =1,.., NT. (7)

1
— .0
O
Then, instead of (2) they propose regression analysis in the following model:

log Sit = f(xit) +vit —ui, t=1,..., N, t=1,...,T. (8)

As x;; is often used in logs in (8) a Cobb-Douglas function has the following
form:
log Sit = Bo + xuB+vig —uyi=1,...,N, t=1,...,T. (9)

3If prices are available the system can be completed using the first order conditions from
cost minimization or profit maximization. An alternative has been introduced by Atkinson
and Tsionas (2015) where the first order conditions are used, and unobserved prices are treated
as latent variables in the context of a Bayesian hierarchical model.



This methodology has been applied by Collier, Mamula, and Ruggiero (2014).
Under homotheticity, this bypasses the problem of having an endogenous vari-
able in the right-hand-side, and falls in between DEA and stochastic frontier
analysis: It allows measurement error in the aggregate output, and statistical
assumptions about the error terms v; and wu;;. However, it does not addresses
concerns about the potential endogeneity of inputs, in which case x;; and v
are correlated.

The main problem, however, is not to seek an output aggregator, since ho-
motheticity cannot be taken for granted. In Fernandez, Koop, and (2002) the
problem in (3) is recognized for what it truly is, viz. several inputs x;; are used
to jointly produce outputs y;;. The problem is not which aggregator function
must be used (a CES would be just fine for most purposes) or how to aggre-
gate the outputs, but how to account for the endogenous character of y;; in
this context. From the econometric point of view, the problem is that with M
outputs there are M endogenous variables but only one equation, viz. (2) or
(3). Therefore, there are M — 1 missing equations to complete the system.

2 An alternative estimation technique

The question is how to deal with the problem when both outputs and inputs are
endogenous and prices are not observed. To complete the model provided by
(3) we consider the reduced form:

[ Yit ] =z + €it, (10)
Xit
where ¥ = [Y2.it, - - Ym,it]’s Zit is a vector of predetermined variables, g;; is

a vector of error terms and II is a matrix of unknown parameters. Under the
assumption that w;; = u;, Vt = 1,...,T are fixed parameters and:

[vitasgt}/ NNM(()?E)? (11)

the system of (3) and (10) can be estimated using limited information maximum
likelihood (LIML) along the lines suggested by Pagan (1979). The variables in
z;¢ include only firm and time dummies so that it is not necessary to think
about the possibility of other instruments, which may not be available at all in
practice. For example, the use of lagged values of y;; and x;; is often problematic
if they are only weakly correlated with the endogenous variables.

As in CJR, we assume time-invariant technical inefficiency, that is u;; =
u;, ¥Vt = 1,...,T. As the inclusion of firm-specific effects in (10) prevents the
identification of u;s we use the nonlinear transformation:

u; = exp(—¢?), Vi=1,...,n, (12)

where the ;s are unrestricted. With this transformation, the u;s are always
positive and less than one, thus making it unnecessary to apply a corrected



ordinary least squares (COLS) transformation, viz. 4; = u; — max w;, to
i=1,...,n

obtain technical inefficiencies. To the author’s knowledge, this transformation
has not been used before although it has considerable merit, at the cost of
requiring nonlinear estimation techniques.

3 Monte Carlo evidence

To see specifically how the problems mentioned in the previous section can

be addressed, we consider a model using (1) with p = % The first output
is are generated from a standard lognormal distribution. Next, we generate

vit ~ N(0,02). The three inputs (in log terms) are generated as follows:

214t = avie + Diyy + &1t
Z2,it = T1,it + DitYe + &2,it, (13)
23,4t = T1,5t + Dtz + &3,

where &, ~ N(0,1). Therefore, inputs are mutually correlated as well as

correlated with v;;. The correlation coefficient between z;;; and v;; is 0 =

2
ao,+1 . . .
e Given o, we can vary « so that we obtain different values of p.

Moreover, D;; is a vector of firm and time dummies and ~; are respective
coefficients, which are generated from a uniform distribution in [1,1]. We have
N + T — 1 coefficients in each input equation.

The model is the same as in (3) with constant term -1 and slope coefficients
equal to % Finally, the second output is generated from (2) where vy ~ N(0,02)
and independently wu;; ~ N, (0,02). Denote o = /02 + 02 and \ = Zu. For
practical reasons, we can set ¢ = 0.3 and A = 1 which is a typical case in
empirical studies and examine the rank correlation between true and estimated
inefficiencies for various values of p. The number of firms is N, the number of
time periods is T' and we assume u;; = u;, Vi =1,...,T .

LIML is implemented using a standard conjugate-gradients algorithm with-
out analytic derivatives and we consider 10,000 alternative data sets. Our evi-
dence is summarized in Table 1. Clearly, the behavior of OLS is disappointing,
as expected, and gets worse in larger sample sizes as o increases, contrary to
LIML which performs well across the board. Another problem is how the two-
stage method of CJR performs when homotheticity is violated. For simplicity
in presentation, we proceed with the following specification:

9(yit) = (1 — w)(alyiit + a2y§,z‘t>1/p + w(awiit + 0425”5,11 + 043535,1‘15)1/7- (14)

We set ay = a9 = a3 = % and 7 = % The parameter ¢ € (0,1) measures
the degree of departure from homotheticity (which corresponds toy) = 0). As
this does not affect the behavior of LIML, we focus on how different values
of ¢ affect the CJR estimator. A fair comparison with CJR must be based on

taking account of the endogeneity between x;; and v;;. Therefore, the regressors



are replaced by the fitted values of regressions in (13) as is commonly done in
two-stage least squares. 4

From the evidence in Table 1 it turns out that even minor departures
from homotheticity have an important impact on efficiency estimates obtained
through CJR. As the rank correlations tend to stabilize by increasing N and T
it becomes clear that there is (a significant) asymptotic bias when homotheticity
is violated.

Table 1. Rank correlation coefficients
y | OLS [ LIML | CJR \

0=0.3 V=00l | ¢¥=03]¢¥=05] =09
n=>50,T=5 0.117 0.515 0.313 0.117 -0.224 -0.487

n=>50,7=10 | 0.121 | 0.589 0.308 0.032 -0.335 -0.515
n=200,T7=5 | 0.125 | 0.771 0.298 -0.115 -0.361 -0.528

n=200,7 =10 | 0.129 | 0.814 0.214 -0.117 -0.369 -0.557
n=>500,T7=5 | 0.131 | 0.921 0.213 -0.116 -0.370 -0.562
n =500,7 =10 | 0.135 | 0.975 0.214 -0.117 -0.370 -0.562
0o=0.5
n=>50,T=>5 0.022 | 0.622 0.119 -0.026 -0.381 -0.555

n=>50,7=10 | 0.031 | 0.791 0.120 -0.031 -0.394 -0.585
n=200,7=5 | 0.017 | 0.873 0.022 -0.035 -0.317 -0.592
n =200,7 =10 | 0.019 | 0.913 0.017 -0.041 -0.321 -0.590
n=>500,7=5 | 0.015 | 0.925 0.016 -0.041 -0.320 -0.606
n =500,7 =10 | 0.017 | 0.981 0.017 -0.040 -0.320 -0.606
0=0.8
n=>50,T=5 0.012 | 0.635 0.051 -0.037 -0.357 -0.552
n=>50,7=10 | 0.015 | 0.802 0.047 -0.043 -0.371 -0.589
n =200,7 =5 | -0.007 | 0.899 0.012 -0.046 -0.394 -0.617
n = 200,7 =10 | -0.009 | 0.978 0.007 -0.047 -0.317 -0.622
n =>500,7 =5 | -0.004 | 0.992 0.007 -0.048 -0.322 -0.620
n = 500,7 =10 | -0.005 | 0.998 0.007 -0.048 -0.322 -0.620

The important question in relation to the CJR technique is whether we can
construct a test that has power against violations of homotheticity. The test
can be used to decide whether homotheticity is satisfied so that CJR can be
applied in practice. Suppose S;; and S, are the output indicators obtained
using, respectively, CJR (see program (6)) and an “output indicator” that one
obtains by including the input constraints in their DEA problem. This problem
is the following:

4 All computations are performed in Fortran 77 using g77. The envelopment problems in (6)
and (15) are solved using DLPRS or DSLPRS. The conjugate gradients technique is implemented
using DUMCGG in the IMSL library, version 5.



max : O,,

2;“1 Ajyim = Oulorm, m = 1,..., M,
Z A x]k: < Lok, k= 1 7K7 (15)

Aggregate output is constructed similarly to (7) Consider the test:

Sit — Sl
(NT)™? [t — Sit (16)
; % it +Szt)

The test measures relative deviations between the two aggregate output
indicators relative to their simple average. The average is used so that we do not
have to choose which case is a benchmark, viz. (6) or (15). We use the same data
generating process as before. We consider only the typical case ¢ = 0.3, which
is more favorable to regressions using (6). We report size and power results in
Table 2. The test is, approximately, correctly sized for NT = 50, approximately,
and it is almost 5% for NT = 100. The power of the test in (16) is reasonable
even when the sample size is small (NT = 20 for example) and deviations
for homotheticity are minor (¢» = 0.01). These results are encouraging and
show that the D-statistic can be used in the CJR approach to detect whether
violations of homotheticity in the data are statistically significant.

Table 2. Size and power of D-statistic

Power
0=0.3 1 = 0, Size 1/1:0.01\1/):0.1\1[1:0.3
nT =10 0.0717 0.451 0.781 0.892
nl =20 0.0623 0.711 0.915 0.938
nT = 50 0.0517 0.825 0.947 0.951
nT = 100 0.0504 0.877 0.953 0.953

Notes: Size is measured using the proportion of cases where the hypothesis ¢ = 0 is rejected
when, in fact, it holds true. Power is measured using the proportion of cases where the hypothesis
1 = 0 is rejected when, in fact, ¢» = 0.01, 0.1, 0.3.

4 Empirical application

In this section we present an empirical application to European banking along
with some important clarifications for the implementation of LIML. Our data
set includes prices of labor, capital, deposits. The two outputs funds are loans
and other earning assets. We have also obtained the quantity values for loans,
deposits and other earning assets as well as other funds. Labor quantity is
obtained as personnel expenses divided by the price of labor. Capital is defined



as total fixed assets divided by the price of capital. Quantities for loans, deposits
and other earning assets are obtained from total values divided by respective
prices. Total assets and equity (in logs) are included as environmental variables
in all models. The data is for 27 European countries over the period 2006-2011
and were retrieved from Datastream. The total number of observations is 27,187.
To minimize computational costs in the implementation of CJR we consider only
large banks, viz. those who have total assets in excess of the ninth decile.

First, we present our translog specification under the assumption of output
homotheticity. This is given by the following:

M 1 —M M
D om=1 OmYmiit + 5 D me1 Zm’Zm Amm! Ym,itYm’ it =

Bo + Xy Brhit + 5 Doy 2ok Bk Th it it it + Vit — Uit

Without the assumption of output homotheticity, the specification is as follows:

M M M
Zm:l OmYm,it + % Zm:l Zm’>m Cmm/ Ym,itYm’ it =
K K K
Bo+ Yt Brhit + 3 Dhn Sowrsr Bk Thyit Thr i+ (18)
K M =
Zk:l an:l YiemTk,itYm,it T Vit — Uit

The constant term of the output “aggregator” in the left-hand-side cannot be
identified separately and it is merged with an overall intercept, 5y. Under the
K M restrictions vgm =0,k =1,..., K,m =1,..., M, (18) reduces to (17). LIML
is implemented to estimate the more general form in (18). The instruments z;;
in (10) now include time-specific and bank-specific dummy variables, log of total
assets and log of equity. It is important to mention that LIML does not depend
on assigning one output as the “left hand side” variable in (18), see Schmidt
(1976, p. 171). Let us write (18) in compact form as follows:

oy + 3y Ay = B'xi + 3%}, Bxi 4+ X, Lyi + v — . (19)

The definition of the various vectors and matrices is as follows:

a=a,...,an), B=1[0, 0k,
A= [amm’v mum, = 17"'7M]7 B = [ﬁkk’v ka K = 17~~~7K]7
I'=[vm, k=1,...K,m=1,..,M].

The matrices A and B are symmetric. Suppose €; = v; — ug. Laking
derivatives, % =a+ Ay + I'x;, an M x 1 vector. In the system consisting
of (19) and (10) the Jacobian of transformation from [e;;, €},]" to yu¢ is:

M
Jir = | [[lee+ Ayir + Txit]s|, i =1,.., N, t =1,.., T, (20)
j=1

where [a]; denotes the jth element of vector a. Under normality of v;; the like-
lihood function can be formulated easily taking also into account the Jacobian
term in (20).



From LIML estimation of (18) the F-statistic to test homothetic production,
viz. Yem =0,k =1,..., K,m = 1,..., M has a p-value very close to zero (0.00072)
suggesting that, statistically, homotheticity is rejected through this parametric
form. The D-statistic yields an empirical p-value of 0.00014. The empirical
p-value is obtained through a bootstrap procedure (using 200 replications to
minimize computational costs) where the data are re-sampled in blocks corre-
sponding to the same bank over time. We follow the bootstrap implementation
in Simar and Wilson (2010, 2011). This implementation is rather computa-
tionally intensive. Since homotheticity is rejected, the CJR techniques are not
reliable as it has been stated in the previous section. Nevertheless, a comparison
is interesting. Another problem is that the assumption of time-invariant ineffi-
ciency, in the second stage of CJR, is not likely to hold. Therefore, both CJR
and LIML are implemented using the assumption that technical inefficiency is
constant for the sub-periods 2006-2007, 2008-2009 and 2010-2011. The p-values
of the F-statistic and the D-statistic are practically zero when the models are
re-estimated in the three sub-periods. For a fair comparison between CJR and
LIML, a translog functional form is estimated in the second stage of CJR where
trend, and logs of total assets and equity are included also as regressors.

The empirical results for technical efficiency scores are provided in Table
3. Apart from CJR and LIML we also consider another estimator, CJR/2SLS
(2SLS stands for two-stage least squares). This is similar to CJR but instead of
OLS, we use 2SLS in the second stage of CJR. The instruments are fitted values
from OLS regressions of inputs on the instruments z;; in (10) used in LIML.
This may provide a more fair comparison between CJR and LIML.

Table 3. Technical efficiency results

y \ 2006-2007 \ 2008-2009 \ 2010-2011
LIML 0.919 0.734 0.884
(0.177) (0.144) (0.211)
CJR 0.872 0.810 0.913
(0.202) (0.187) (0.109)
CJR/2SLS 0.880 0.832 0.910
(0.165) (0.157) (0.122)
p-value of 0.0027 0.00015 0.00011
D-statistic
Rank Correlation, 0.202 0.0144 0.181
LIML-CJR
Rank Correlation, 0.245 0.0261 0.203
LIML-CJR/ 2SLS

Notes: Sample standard deviations of efficiency scores appear in parentheses. The p-values
of D-statistics are obtained from a block-bootstrap applied to the CJR linear programs. “RAnk
correlation” refers to the rank correlation coefficients between efficiency scores from LIML and
CJR. CJR-2SLS (2SLS stands for two-stage least squares) is similar to CJR but instead of OLS,
we use 2SLS in the second stage of CJR. The instruments are fitted values from OLS regressions of
inputs on the instruments z;¢ in (10) used in LIML.



Technical efficiency, according to LIML, is 91.9% for 2006-2007, 73.4% for
2008-2009 and 88.4% for 2010-2011. CJR estimates are 87.2%, 81% and 91.3%
respectively. The (rank) correlation coefficients between efficiency scores are
very low at 0.202, 0.014 and 0.181 for the three sub-periods. The low rank
correlations and the differences in estimated scores (as well as their sample
standard deviations) are, probably, attributed to the violation of homotheticity
in this data set. Notably, efficiency scores from LIML drop during 2008-2009,
when the sub-prime crisis occurred, to recover in the sub-period 2010-2011.
CJR scores also drop but not as much as those derived from LIML. The use of
2SLS in CJR yields similar results with respect to rank correlations with LIML
although the first two moments of CJR and CJR/2SLS seem to be different.

5 Conclusions

This study addresses concerns raised by CJR. The main concern is how to use
econometric tools in the presence of multiple inputs and multiple outputs when
prices are not available. CJR assume homotheticity and propose a two-stage
approach to the problem. In the first stage, a DEA problem is formulated that
drops the input constraints, and a composite output aggregator is obtained.
In the second stage, OLS is used to regress the composite output aggregator
on inputs and obtain efficiency measures. This also allows for noise in the
second stage. We show that a more promising approach to the same problem is
to couple an explicit multiple-output specification with a reduced form for the
endogenous inputs and outputs. LIML is used to estimate the system and obtain
estimates of technical inefficiency. Moreover, a test is proposed to examine
whether deviations from the critical homotheticity assumption are statistically
significant. The approach is shown to perform well in Monte Carlo experiments
and an empirical application using European banking data.
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