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We investigate whether Higgs inflation can occur in the Standard Model starting from natural initial 
conditions or not. The Higgs has a non-minimal coupling to the Ricci scalar. We confine our attention to 
the regime where quantum Einstein gravity effects are small in order to have results that are independent 
of the ultraviolet completion of gravity. At the classical level we find no tuning is required to have 
successful Higgs inflation, provided the initial homogeneity condition is satisfied. On the other hand, 
at the quantum level we obtain that the renormalization for large non-minimal coupling requires an 
additional degree of freedom, unless a tuning of the initial values of the running parameters is made. In 
order to see that this effect may change the predictions we finally include such degree of freedom in the 
field content and show that Starobinsky’s R2 inflation dominates over Higgs inflation.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Inflation [1–3] is perhaps one of the most natural ways to 
stretch the initial quantum vacuum fluctuations to the size of the 
current Hubble patch, seeding the initial perturbations for the cos-
mic microwave background (CMB) radiation and large scale struc-
ture in the universe [4] (for a theoretical treatment, see [5]). Since 
inflation dilutes all matter it is pertinent that after the end of 
inflation the universe is filled with the right thermal degrees of 
freedom, i.e. the Standard Model (SM) degrees of freedom (for a 
review on pre- and post-inflationary dynamics, see [6]). The most 
economical way to achieve this would be via the vacuum energy 
density stored within the SM Higgs, whose properties are now be-
ing measured at the Large Hadron Collider (LHC) [7,8]. Naturally, 
the decay of the Higgs would create all the SM quarks and leptons 
observed within the visible sector of the universe. Albeit, with just 
alone SM Higgs and minimal coupling to gravity, it is hard to ex-
plain the temperature anisotropy observed in the CMB radiation 
without invoking physics beyond the SM.1

However, a very interesting possibility may arise within the SM 
if the Higgs were to couple to gravity non-minimally – such as in 
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1 Within supersymmetry it is indeed possible to invoke the flat direction com-
posed of the Higgses to realize inflation with minimal gravitational interaction, 
see [9], which can explain the current CMB observations.
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the context of extended inflation [10], which has recently received 
particular attention after the Higgs discovery at the LHC in the 
context of Higgs inflation [11]. By tuning this non-minimal cou-
pling constant, ξ , between the Ricci scalar of the Einstein–Hilbert 
term and the SM Higgs, it is possible to explain sufficient amount 
of e-folds of inflation and also fit other observables such as the 
amplitude of temperature anisotropy and the spectral tilt in the 
CMB data. Indeed, this is very nice and satisfactory, except that the 
non-minimal coupling, ξ , turns out to be very large (at the classical 
level ξ ∼ 104) in order to explain the CMB observables. This effec-
tively redefines the Planck’s constant during inflation, and invites 
new challenges for this model, whose consequences have been de-
bated vigorously in many papers, such as [12].

One particular consequence of such large non-minimal coupling 
is that there is a new scale in the theory, M̄Pl/

√
ξ , lower than the 

standard reduced Planck mass, M̄Pl ≈ 2.435 × 1018 GeV. Typically 
inflation occurs above this scale, the Higgs field takes a vacuum ex-
pectation value (VEV) above M̄Pl/

√
ξ in order to sustain inflation 

sufficiently. In fact, the inflaton potential, in the Einstein frame, 
approaches a constant plateau for sufficiently large field values. Ef-
fectively, the inflaton becomes a flat direction, where it does not 
cost any energy for the field to take any VEV beyond this cut-off.

Given this constraint on the initial VEV of the inflaton and the 
new scale, we wish to address two particularly relevant issues con-
cerning the Higgs inflation model [11], one on the classical front 
and the other on the quantum front.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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I. Classically, a large VEV of the inflaton does not pose a big 
problem as long as the initial energy density stored in the inflaton 
system, in the Einstein frame, is below the cut-off of the theory. 
Since, the potential energy remains bounded below this cut-off, the 
question remains – what should be the classical initial condition 
for the kinetic energy of the inflaton?

A priori there is no reason for the inflaton to move slowly on 
the plateau, therefore the question we wish to settle in this paper 
is what should be the range of phase space allowed for a sustain-
able inflation to occur with almost a flat potential? The aim of 
this paper is to address this classical initial condition problem.2

Here we strictly assume homogeneity of the universe from the 
very beginning; we do not raise the issue of initial homogeneity 
condition required for a successful inflation; this issue has been 
discussed earlier in a generic inflationary context in many classic 
papers (see [15,16]). In our paper, instead we look into the possi-
bility of initial phase space for a spatially flat universe, and study 
under what pre-inflationary conditions Higgs inflation could pre-
vail.

II. At quantum level, the original Higgs model poses a com-
pletely different challenge. A large ξ will inevitably modify the ini-
tial action. One may argue that there will be quantum corrections 
to the Ricci scalar, R , such as a Higgs-loop correction – leading to a 
quadratic in curvature action, i.e. R +αR2 type correction, where α
is a constant, whose magnitude we shall discuss in this paper. The 
analysis is based on the renormalization group equations (RGEs) of 
the SM parameters and the gravitational interactions. By restrict-
ing for simplicity the study to operators up to dimension 4, the 
RGE analysis will yield a gravitational action that will become very 
similar to the Starobinsky type inflationary model [17].3

One of the features of theories with curvature squared terms 
is that there are extra degrees of freedom involved in the prob-
lem, besides the SM ones and the graviton. There is another scalar 
mode arising from R2, which will also participate during inflation. 
The question then arises when this new scalar degree of freedom 
becomes dominant dynamically, and play the role of an inflaton 
creating the initial density perturbations?

The aim of this paper will be to address both the classical and 
quantum issues.

We briefly begin our discussion with essential ingredients of 
Higgs inflation in Section 2, then we discuss the classical pre-
inflationary initial conditions for Higgs inflation in Section 3. In 
this section, we discuss both analytical in Subsection 3.1, and nu-
merical results in Subsection 3.2. In Section 4, we discuss the 
quantum correction to the original Higgs inflation model, i.e. we 
discuss the RGEs of the Planck mass in Subsection 4.1, SM pa-
rameters in Subsection 4.2, and the gravitational correction arising 
due to large ξ in Subsection 4.3, respectively. We briefly discuss 
our results and consequences for inflation in Subsection 4.4, be-
fore concluding our paper.

2. The model

Let us define the Higgs inflation model [11]. The action is

S =
∫

d4x
√−g

[
LSM −

(
M̄2

Pl

2
+ ξ |H|2

)
R

]
, (1)

2 Some single monomial potentials and exponential potentials exhibit a classic 
example of late time attractor where the inflaton field approaches a slow roll phase 
from large initial kinetic energy, see [13,14].

3 In principle, large ξ may also yield higher derivative corrections up to quadratic 
in order, see [18], and also higher curvature corrections, but in this paper, we will 
consider for simplicity the lowest order corrections. We will argue that the αR2 is 
necessarily generated unless one is at the critical point of Refs. [19,20] or invokes a 
fine-tuning on the initial values of the running parameters.
where LSM is the SM Lagrangian minimally coupled to gravity, ξ is 
the parameter that determines the non-minimal coupling between 
the Higgs and the Ricci scalar R , and H is the Higgs doublet. The 
part of the action that depends on the metric and the Higgs dou-
blet only is∫

d4x
√−g

[
|∂H|2 − V −

(
M̄2

Pl

2
+ ξ |H|2

)
R

]
, (2)

where V = λ(|H|2 − v2/2)2 is the Higgs potential and v is the 
electroweak Higgs VEV. We take a sizable non-minimal coupling, 
ξ > 1, because this is required by inflation as we will see.

The non-minimal coupling −ξ |H|2 R can be eliminated through 
the conformal transformation

gμν → �−2 gμν, �2 = 1 + 2ξ |H|2
M̄2

Pl

. (3)

The original frame, where the Lagrangian has the form in (1), is 
called the Jordan frame, while the one where gravity is canonically 
normalized (obtained with the transformation above) is called the 
Einstein frame. Therefore, the scalar-tensor action for the metric 
and the physical Higgs mode φ ≡ √

2|H|2 is (after the conformal 
transformation)

Sst =
∫

d4x
√−g

[
K

(∂φ)2

2
− V

�4
− M̄2

Pl

2
R

]
, (4)

where K ≡ (
�2 + 6ξ2φ2/M̄2

Pl

)
/�4. The non-canonical Higgs ki-

netic term can be made canonical through the (invertible) field 
redefinition φ = φ(χ) defined by

dχ

dφ
=

√
�2 + 6ξ2φ2/M̄2

Pl

�4
, (5)

with the conventional condition φ(χ = 0) = 0. One can find a 
closed expression of χ as a function of φ:

χ(φ) = M̄Pl

√
1 + 6ξ

ξ
sinh−1

[√
ξ(1 + 6ξ)φ

M̄Pl

]

− √
6M̄Pl tanh−1

⎡
⎢⎣

√
6ξφ√

M̄2
Pl + ξ(1 + 6ξ)φ2

⎤
⎥⎦ . (6)

Thus, χ feels a potential

U ≡ V

�4
= λ(φ(χ)2 − v2)2

4(1 + ξφ(χ)2/M̄2
Pl)

2
. (7)

Let us now recall how slow-roll inflation emerges. From (5)
and (7) it follows [11] that U is exponentially flat when χ � M̄Pl, 
which is the key property to have inflation. Indeed, for such high 
field values the slow-roll parameters

ε ≡ M̄2
Pl

2

(
1

U

dU

dχ

)2

, η ≡ M̄2
Pl

U

d2U

dχ2
(8)

are guaranteed to be small. Therefore, the region in field con-
figurations where χ > M̄Pl (or equivalently [11] φ > M̄Pl/

√
ξ ) 

corresponds to inflation. We will investigate whether successful 
slow-roll inflation emerges also for large initial field kinetic en-
ergy in the next section. Here we simply assume that the time 
derivatives are small.

All the parameters of the model can be fixed through experi-
ments and observations, including ξ [11,21]. ξ can be obtained by 
requiring that the measured power spectrum [4],
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P R = U/ε

24π2M̄4
Pl

= (2.14 ± 0.05) × 10−9, (9)

is reproduced for a field value φ = φb corresponding to an appro-
priate number of e-folds of inflation [21]:

N =
φb∫

φend

U

M̄2
Pl

(
dU

dφ

)−1 (
dχ

dφ

)2

dφ ≈ 59, (10)

where φend is the field value at the end of inflation, that is

ε(φend) ≈ 1. (11)

For N = 59, by using the classical potential we obtain

ξ = (5.02 ∓ 0.06) × 104
√

λ, (N = 59) (12)

where the uncertainty corresponds to the experimental uncer-
tainty in Eq. (9). Note that ξ depends on N:

ξ = (4.61 ∓ 0.06) × 104
√

λ, (N = 54) (13)

ξ = (5.43 ∓ 0.06) × 104
√

λ. (N = 64) (14)

This result indicates that ξ has to be much larger than one because 
λ ∼ 0.1 (for precise determinations of this coupling in the SM see 
Refs. [22,23]).

3. Pre-inflationary dynamics: classical analysis

Let us now analyze the dynamics of this classical system in the 
homogeneous case without making any assumption on the initial 
value of the time derivative χ̇ . We will assume that the universe 
is sufficiently homogeneous to begin inflation.

In the Einstein frame Sst is given by:

Sst =
∫

d4x
√−g

[
(∂χ)2

2
− U − M̄2

Pl

2
R

]
, (15)

where U is the Einstein frame potential given in Eq. (7).
Let us assume a universe with three dimensional translational 

and rotational symmetry, that is a Friedmann–Robertson–Walker 
(FRW) metric

ds2 = dt2 − a(t)2
[

dr2

1 − kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (16)

with k = 0, ±1.
Then the Einstein equations and the scalar equations imply 

the following equations for a(t) and the spatially homogeneous 
field χ(t)

χ̈ + 3Hχ̇ + U ′ = 0, (17)

ȧ2 + k

a2
− χ̇2 + 2U

6M̄2
Pl

= 0, (18)

k

a2
− Ḣ − χ̇2

2M̄2
Pl

= 0. (19)

where H ≡ ȧ/a, a dot denotes a derivative with respect to t and a 
prime is a derivative with respect to χ . Notice that Eq. (17) tells 
us that χ cannot be constant before inflation unless U is flat. From 
Eqs. (17) and (18) one can derive (19), which is therefore depen-
dent.

Thus, we have to solve the following system with initial condi-
tions
⎧⎪⎪⎨
⎪⎪⎩

�̇ + 3H� + U ′ = 0, �(t̄) = �,

χ̇ = �, χ(t̄) = χ,

ȧ2 + k = a2

6M̄2
Pl
(�2 + 2U ), a(t̄) = ā,

(20)

where t̄ is some initial time before inflation and χ , �̄ and ā are 
the initial conditions for the three dynamical variables. In the case 
k = 0 the previous system can be reduced to a single second order 
equation. Indeed, by setting k = 0 in Eq. (18) and inserting it in 
Eq. (17), one obtains

χ̈ +
√

3χ̇2 + 6U

2M̄2
Pl

χ̇ + U ′ = 0, (k = 0). (21)

This equation has to be solved with two initial conditions (for χ
and χ̇ ). The initial condition for a is not needed in this case as its 
overall normalization does not have a physical meaning for k = 0.

We confine our attention to the regime where quantum Ein-
stein gravity corrections are small:

U � M̄4
Pl, χ̇2 � M̄4

Pl,
|k|
a2

� M̄2
Pl (22)

such that we can ignore the details of the ultraviolet (UV) com-
pletion of Einstein gravity.4 However, we do not always require to 
be initially in a slow-roll regime. The first and second conditions 
in (22) come from the requirement that the energy–momentum 
tensor is small (in units of the Planck scale) so that it does not 
source a large curvature; the third condition ensures that the 
three-dimensional curvature is also small. The first condition is au-
tomatically fulfilled by the Higgs inflation potential, Eq. (7): the 
quartic coupling λ is small [25,22,23] and the non-minimal cou-
pling ξ is large (see Eq. (12)). The second and third conditions in 
(22) are implied by the requirement of starting from an (approxi-
mately) de Sitter space, which is maximally symmetric; therefore 
we do not consider them as a fine-tuning in the initial conditions. 
In de Sitter we have to set k = 0 and Ḣ = 0, which then implies 
χ̇ = 0 from Eq. (19). Notice also that we cannot start from an exact 
de Sitter, given Eq. (17): the potential U is almost, but not exactly 
flat in the large field case (see Eq. (7)).

In order for the Higgs to trigger inflation sooner or later one 
should have a slow-roll regime, where the kinetic energy is small 
compared to the potential energy, χ̇2/2 � U , and the field equa-
tions are approximately

ȧ2 + k

a2
≈ U

3M̄2
Pl

, χ̇ ≈ − 1

3H
U ′, (slow-roll equations). (23)

The conditions for this to be true are

χ̇2 � 2U , |χ̈ | � 3|Hχ̇ | (slow-roll regime). (24)

We will use these conditions rather than the standard ε � 1 and 
η � 1 as we do not assume a priori a small kinetic energy.

3.1. Analytic approximations in simple cases

Let us assume, for simplicity, that the parameter k in the FRW 
metric vanishes, i.e. a spatially flat metric, and consider the case 
χ̇2 � U , such that the potential energy can be neglected compared 
to the kinetic energy. In this case, combining Eqs. (18) and (19)
gives

4 The conditions in (22) may not be necessary in scenarios where gravitational in-
teractions are softened at energies much below M̄Pl and remain small at and above 
M̄Pl [24]. However, here we do not want to rely on any specific quantum gravity 
theory.
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Fig. 1. Initial conditions χ and � for the Higgs field and its momentum � ≡ χ̇
respectively. The thickness of the lines corresponds to 2σ uncertainty in the value 
of the power spectrum, Eq. (9).

Ḣ + 3H2 + 2k

a2
= 0, (χ̇2 � U ), (25)

which for spatially flat curvature, k = 0, leads to

H(t) = H̄

1 + 3H̄(t − t̄)
, (χ̇2 � U , k = 0), (26)

where H̄ ≡ H(t̄). By inserting this result into Eq. (19), we find

χ̇2 = 6M̄2
Pl H̄

2[
1 + 3H̄(t − t̄)

]2
, (χ̇2 � U , k = 0), (27)

that is the kinetic energy density scales as 1/t2 by taking into ac-
count the time dependence of H . This result [15] tells us that an 
initial condition with large kinetic energy is attracted towards one 
with smaller kinetic energy, but it also shows that dropping the 
potential energy cannot be a good approximation for arbitrarily 
large times. Moreover, notice that Eqs. (26) and (27) imply

χ̈ = −3Hχ̇ (28)

so the dynamics is not approaching the second condition in (24). 
Therefore, the argument above is not conclusive and we need to 
solve the equations with U included in order to see if the slow-roll 
regime is an attractor.

3.2. Numerical studies

We studied numerically the system in (20) assuming k = 0; this 
case is realistic and is the simplest one: it does not require an ini-
tial condition for a. We found that even for an initial kinetic energy 
density �2

of order 10−3M̄4
Pl (which we regard as the maximal or-

der of magnitude to have negligibly small quantum gravity), one 
should start from an initial field value χ of order 10M̄Pl to inflate 
the universe for an appropriate number of e-folds, i.e. N = 59. This 
value of χ is only one order of magnitude bigger than the one 
needed in the ordinary case, �2 � U (χ) ∼ 10−10 M̄Pl, where the 
initial kinetic energy is much smaller than the potential energy.

Fig. 1 presents these results more quantitatively. There the ini-
tial conditions for � have been chosen to be negative because pos-
itive values favor slow-roll even with respect to the case where the 
initial kinetic energy is much smaller than the potential energy: 
this is because the potential in Eq. (7) is an increasing function of 
χ for χ � v .
We conclude that at the classical level Higgs inflation does not 
suffer from a worrisome fine-tuning problem for the initial condi-
tions.

4. Quantum corrections

The theory in Eq. (1) is not renormalizable. This means that 
quantum corrections �� at a given order in perturbation theory 
can generate terms that are not combinations of those in the clas-
sical action S . In formulae the (quantum) effective action is given 
by:

� = S + �� (29)

where S + �� cannot generically be reproduced by substituting 
the parameters in S with some renormalized quantities.

A UV completion requires the existence of additional degrees 
of freedom that render the theory renormalizable or even finite. 
Much below the scale of this new physics, the effective action can 
be approximated by an expansion of the form

�� =
∫

d4x
√−g (δL2 + δL4 + . . . ) (30)

where δLn represents a combination of dimension n operators, 
having given dimension 0 to the metric gμν and neglecting v as it 
is very small compared to inflationary energies.

We consider the one-loop corrections generated by all fields of 
the theory, both the matter fields and gravity. Our purpose is to 
apply it to inflationary and pre-inflationary dynamics. We approx-
imate �� by including all operators up to n = 4:

�� ≈
∫

d4x
√−g (δL2 + δL4) . (31)

This is the simplest approximation that allows us to include the 
dynamics of the Higgs field and possess scale invariance at high 
energies and high Higgs field values (up to running effects). We 
have

δL2 = −δM̄2
Pl

2
R (32)

δL4 = αR2 + β

(
1

3
R2 − Rμν Rμν

)

+ δZH|∂H|2 − δλ|H|4 − δξ |H|2 R + . . . (33)

where for each parameter pc in the classical action we have intro-
duced a corresponding quantum correction δp and the dots rep-
resent the additional terms due to the fermions and gauge fields 
of the SM. Notice that we have added general 5 quantum correc-
tions that are quadratic in the curvature tensors as they are also 
possible dimension 4 operators. These are parameterized by two 
dimensionless couplings α and β .

Our purpose is now to determine the RGEs for the renormalized 
couplings

p = pc + δp

as well as for the new couplings α and β generated by quantum 
corrections. Indeed the RGEs encode the leading quantum correc-
tions. We will use the dimensional regularization (DR) scheme to 
regularize the loop integrals and the modified minimal subtraction 
(MS) scheme to renormalize away the divergences. This as usual 
leads to a renormalization scale that we denote with μ̄.
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Fig. 2. The leading loop diagram that generates the R2 term in the effective ac-
tion. The dashed lines correspond to the Higgs field, while the external double lines 
represent gravitons.

4.1. One-loop RGE of the Planck mass

In the absence of the dimensionful parameters besides M̄Pl , the 
only possible contributions to the RGE of M̄Pl are the rainbow and 
the seagull diagram contributions to the graviton propagator due 
to gravity itself: the rainbow topology is the one of Fig. 2, while 
the seagull one is obtained by making the two vertices of Fig. 2
coincide without deforming the loop.

The seagull diagram vanishes as it is given by combinations of 
loop integrals of the form∫

ddk
kμkν

k2 + iε
,

∫
ddk

1

k2 + iε
, (34)

where d is the space–time dimension in DR. These types of loop 
integrals vanish in DR. The rainbow diagram does not contribute to 
the RGE of M̄Pl either. The reason is that each graviton propagator 
carries a factor of 1/M̄2

Pl and each graviton vertex carries a factor 
of M̄2

Pl (because the graviton kinetic term −M̄2
Pl R/2 is proportional 

to M̄2
Pl): the rainbow diagram has two graviton propagators and 

two vertices, therefore this contribution is dimensionless and can-
not contribute to the RGE of a dimensionful quantity. We conclude 
that M̄Pl does not run in this case. This argument assumes that the 
graviton wave function renormalization is trivial, which we have 
checked to be the case at the one-loop level at hand.

4.2. One-loop RGEs of SM parameters

At small classical backgrounds φ, having neglected v all SM pa-
rameters are dimensionless and thus cannot receive contributions 
from loops involving graviton propagators (that carry a factor of 
1/M̄2

Pl). Therefore, the SM RGEs apply and can be found (up to the 
three-loop level) in a convenient form in the appendix of Ref. [23]. 
The effect of the classical background is to suppress loops involving 
the physical Higgs fluctuation through a factor s which depends on 
ξφ2/M̄2

Pl such that s ≈ 1 for small ξφ2/M̄2
Pl and s ≈ 1/(1 + 6ξ) for 

large ξφ2/M̄2
Pl [30]. The RGEs with such s-insertions can be found 

in [19] and have to be solved by choosing φ ∼ μ̄.

4.3. One-loop RGEs of gravitational couplings

Finally, we consider the RGEs for ξ , α and β . The RGE of ξ
receives contribution from the SM couplings and ξ itself [26,27]:

(4π)2 dξ

d ln μ̄
= (1 + 6ξ)

[
y2

t − 3

4
g2

2 − 3

20
g2

1 + (1 + s)λ

]
, (35)

where yt is the top Yukawa coupling and g3, g2 and gY = √
3/5g1

are the gauge couplings of SU(3)c , SU(2)L and U(1)Y respectively.
The RGEs of α and β receive two contributions: one from pure 

gravity loops (a rainbow and a seagull diagram), which we denote 
with β g , and one from matter loops, βm:

5 Rμνρσ Rμνρσ is a linear combination of R2, Rμν Rμν and a total derivative.
(4π)2 dα

d ln μ̄
= β

g
α + βm

α , (36)

(4π)2 dβ

d ln μ̄
= β

g
β + βm

β . (37)

One finds [28] β
g
α = −1/4 and β g

β = 7/10 (which can be removed 
by a suitable gauge fixing [29]). βm

α and βm
β are instead gauge 

invariant and their expressions in the SM with the appropriate 
s-insertions are

βm
α = − (3 + s)(1 + 6ξ)2

72
, βm

β = 47

10
+ s

60
. (38)

4.4. Higgs-to-Starobinsky inflation

Let us start this section by commenting on fine-tunings in the 
couplings, a relevant issue as inflation is motivated by cosmological 
fine-tuning problems. The first equation in (38) has an important 
implication; the Feynman diagram that leads to this contribution 
is given in Fig. 2. Generically Higgs inflation requires a rather large 
value of ξ , which implies a strong naturalness bound

|α| � ξ2

8π2
. (39)

A large value of ξ is necessary at the classical level (see Eq. (12)
and the corresponding discussion). At quantum level one can ob-
tain smaller values, but still ξ � 1 [30,31].

A possible exception is Higgs inflation at the critical point 
[19,20]; however, ξ � 10 to fulfill the most recent observational 
bounds, r � 0.1 [32]. Moreover, in previous analysis of Higgs in-
flation at the critical point the wave function renormalization of 
the Higgs field has been neglected, an approximation that is under 
control when ξ is large [30].

Since ξ � 1 generically, (39) indicates that an additional R2

term with such a large coefficient may participate in inflation. 
Therefore, we write the following effective action:

� =
∫

d4x
√−g

[
L eff

SM −
(

M̄2
Pl

2
+ ξ |H|2

)
R + αR2

]
, (40)

where the L eff
SM part corresponds to the effective SM action, which 

is obtained, at the leading quantum level we are using, by sub-
stituting each parameter in the classical SM action with its renor-
malized quantity. L eff

SM is gauge independent as shown in Ref. [23]
and our results will be therefore free of any gauge dependence. 
The scalar-tensor effective action for the metric and the physical 
Higgs mode φ is

�st =
∫

d4x
√−g

[
1

2
(∂φ)2 − V eff − 1

2

(
M̄2

Pl + ξφ2
)

R + αR2
]

.

where V eff is the SM effective potential. Here we have neglected 
the wave function renormalization of the Higgs because ξ is large.

As well-known, the R2 term corresponds to an additional scalar. 
In order to see this one can add to the action the term

−
∫

d4x
√−g α

(
R + ω

4α

)2
,

where ω is an auxiliary field: indeed by using the ω field equa-
tion one obtains immediately that this term vanishes. On the other 
hand, after adding that term

�st =
∫

d4x
√−g

[
1

2
(∂φ)2 − V − f

2
R − ω2

16α

]
, (41)

where f ≡ M̄2 + ω + ξφ2.
Pl
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Note that we have the non-canonical gravitational term − f R/2. 
Like we did in Section 2, we can go to the Einstein frame (where 
we have instead the canonical Einstein term −M̄2

Pl R E/2) by per-
forming a conformal transformation,6

gμν → M̄2
Pl

f
gμν. (42)

One obtains [33]

�st =
∫

d4x
√−g

[
Lφz − Ueff − M̄2

Pl

2
R

]
, (43)

where

Lφz ≡ 6M̄2
Pl

z2

(∂φ)2 + (∂z)2

2
,

Ueff(φ, z) ≡ 36M̄4
Pl

z4

[
V eff(φ) + 1

16α

(
z2

6
− M̄2

Pl − ξφ2
)2 ]

and we have introduced the new scalar z = √
6 f .

Notice that when α → 0, the potential Ueff forces z2 =
6(M̄2

Pl +ξφ2) and we recover the Higgs inflation action. For large α
(as dictated by a large ξ ), this conclusion cannot be reached. The 
absence of runaway directions in Ueff requires α > 0 and λ > 0, 
which is possible within the pure SM (without gravity [35]), al-
though in tension7 with the measured values of some electroweak 
observables [23,31]. Ref. [33] studied a system that includes (43) as 
a particular case.8 It was found that inflation is never dominated 
by the Higgs, because its quartic self-coupling λ (which we assume 
to be positive for the argument above) is unavoidably larger than 
the other scalar couplings, taking into account its RG flow. Even 
assuming that the Higgs field has a dominant initial value, in our 
two-field context inflation starts only after the field evolution has 
reached an attractor where φ is subdominant. We have checked 
that this happens also when ξ is large.

Therefore, the predictions of the theory defined by Eq. (40) are 
closer to those of Starobinsky inflation, which are distinct from the 
Higgs inflation ones [37].

5. Conclusions

In conclusion, we have studied two different aspects of stan-
dard Higgs inflation – to seek how fine-tuned the initial conditions 
should be to fall into a slow-roll attractor solution in an approxi-
mate exponentially flat Higgs potential in the Einstein frame. We 
started with a large kinetic energy, and we found that for an 
initial kinetic energy density of order 10−3 M̄4

Pl (this is the max-
imum allowed order of magnitude to avoid quantum gravity cor-
rections) the inflaton VEV should be ∼ 10M̄Pl to sustain inflation 
long enough to give rise to enough e-folds.

In the second half of the paper, we focused on the question of 
viability of Higgs inflation in presence of large ξ , typically required 
for explaining the observed CMB power spectrum and the right tilt. 
We found that one would incur quantum corrections (at the lowest 
order) to the Ricci scalar, i.e. quadratic in Ricci scalar, αR2, with a 
universality bound on α given by Eq. (39), unless the initial value 

6 Notice that one goes to the Einstein frame with the same f even in the pres-
ence of all components of the Higgs doublet.

7 Such tension, however, can be eliminated by adding to the SM well-motivated 
new physics, which solve its observational problems [34].

8 Ref. [33] has an additional scalar which, however, can be consistently decoupled 
by taking its mass large enough. For another treatment of the dynamical system 
in (43) see Ref. [36].
of α is fine-tuned. If one includes this R2 term in the effective 
action, both the Higgs and a new scalar degree of freedom are 
present. By taking ξ ∼ 102 − 104 and using the bound in Eq. (39), 
the potential would be effectively determined by the Starobinsky 
scalar component z, and the CMB predictions would be different 
from that of Higgs inflation.
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