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Abstract

In this paper we introduce the Multimode Covering Location Problem.

This is a generalization of the Maximal Covering Location Problem that

consists in locating a given number of facilities of different types with a

limitation on the number of facilities sharing the same site.

The problem is challenging and intrinsically much harder than its basic

version. Nevertheless, it admits a constant factor approximation guaran-

tee, which can be achieved combining two greedy algorithms. To improve

the greedy solutions, we have developed a Variable Neighborhood Search

approach, based on an exponential-size neighborhood. This algorithm

computes good quality solutions in short computational time. The viabil-

ity of the approach here proposed is also corroborated by a comparison

with a Heuristic Concentration algorithm, which is presently the most

effective approach to solve large instances of the Maximal Covering Loca-

tion Problem.

1 Introduction.

A facility location problem consists in placing a number of facilities to serve
a set of demand centers, whose positions are known, while optimizing a given
objective function. The problem admits several variants, based on the objective
of the decision maker and on the application setting. For a complete taxonomy of
facility location problems, the interested reader may refer to ReVelle et al. [35].

In this paper we focus on a generalized version of the Maximal Covering
Location Problem (MCLP), first proposed by Church and ReVelle [8]. The
MCLP belongs to the class of discrete location problems, i.e., problems with a
finite set of demand centers and a finite set of candidate locations. The MCLP
does not require all the demand centers to be served: its purpose is to locate
a given number of facilities maximizing the number, or the total weight, of
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the served demand centers. Because of its wide applicability in the real world,
especially in the planning of service and emergency facilities, the MCLP is
a well-studied problem. Chung [7] reviewed several other applications of the
MCLP, such as data abstraction, stock selection and classification problems.
Other interesting applications are those described by Dwyer and Evans [18]
for the selection of mailing lists, Daskin et al. [14] for flexible manufacturing,
Hougland and Stephens [28] for air pollution control and Melo et al. [30] for
supply chain management.

Since its proposal, theMCLP has been generalized in different ways. Berman
et al. [5] reviewed gradual cover models, cooperative cover models and variable
radius models. Ghiani et al. [25] introduced a capacitated plant location problem
where multiple facilities can be opened in the same site. Rajagopalan, Saydam
and Xiao [34] considered a multiperiod set covering location model in the field
of application of emergency medical services. Dell’Olmo et al. [16] tackled the
optimal location of intersection safety cameras on an urban traffic network to
minimize the impact of car accidents, through a multiperiod variant of maximal
covering location.

In this paper, we present the Multimode Covering Location Problem (MM-
CLP). This problem consists in placing a given number of facilities of different
types (hereafter called modes) to serve demand centers that require different
types of service. The goal is to maximize the demand coverage over all the
considered modes. An additional restriction with respect to the MCLP is that
only a limited number of different modes can be activated in each candidate
facility site. A similar generalization for the uncapacitated facility location
problem has been recently proposed by Arora et al. [2]. They present a 4-
approximation LP-rounding based algorithm for a class of problems with only
two modes.

Possible applications of the MM-CLP refer to the distribution of facilities
addressed to different users in the same area (e. g., fire stations and police
stations). A similar situation occurs in the location of a heterogeneous fleet
of ambulances, some of which might have an equipment and crew specialized
in the treatment of heart-strokes or other severe health conditions. Another
common application of covering location problems is in the design of nature
reserves for the protection of biodiversity: each land parcel can be subject to
different types of protection, with a different impact on the endangered species
which populate the parcel. Finally, telecommunication antennas with different
radiuses and pointing in different directions can be installed in the same site,
covering different subsets of users, but the number of antennas in each site can be
limited by the available space and by the need to avoid reciprocal interferences.

The MM-CLP is NP-hard because it includes the MCLP as a special case.
However, while medium-size instances of the MCLP can be quickly solved by
commercial solvers, even fairly small instances of the MM-CLP prove much
harder. Nevertheless, we here prove that the MM-CLP admits two greedy al-
gorithms with a constant factor approximation guarantee. This extends in a
nontrivial way a similar property of the MCLP. To compute better solutions,
we also present a Variable Neighborhood Search (VNS ) algorithm, which imple-
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ments a Very Large Scale Neighborhood Search (VLNS ) as its basic local search
procedure. The hybridization of VNS with other metaheuristic approaches is an
active field of research, see for example [11, 27, 3]. To evaluate the performance
of the proposed VNS approach, we have first compared it to a simpler VNS
implementation based on a polynomial-size neighbourhood. Then, we have im-
plemented an alternative approach, based on the Heuristic Concentration (HC )
framework developed by ReVelle et al. [36]. To the best of our knowledge, HC
is considered the state-of-the-art heuristic for the MCLP.

The remainder of the paper is organized as follows. In Section 2 we formally
define the problem, through a mathematical programming formulation. The
complexity and approximation properties of theMM-CLP are described in detail
in Section 2.1. In Section 3, we describe the VNS framework. Section 4 reports a
computational comparison of the VNS and HC algorithms on a set of randomly
generated benchmark instances, showing that the former clearly outperforms
the latter. Finally, Section 5 draws some conclusions.

2 Mathematical model.

Let I be a set of demand centers, J a set of candidate facility sites and M a
set of modes. The relation between facility sites and demand centers in each
mode can be represented with a binary matrix: aijm = 1 if facility site j is
able to serve demand center i in mode m and aijm = 0 otherwise. For each
candidate facility site j ∈ J , there is a maximum number bj of modes that can
be activated on the site. The number of facility sites used in each mode, Km,
is given and a weight wim is assigned to each demand center i ∈ I and mode
m ∈ M . The MM-CLP requires to find a subset of facility sites for each mode,
such that the total weight of the served demand centers is maximum.

Let xjm = 1 if a facility of mode m ∈ M is located on site j ∈ J , xjm = 0
otherwise; yim = 1 if demand center i ∈ I is served in mode m ∈ M , yim = 0
otherwise. The MM-CLP can be formulated as follows.

max z =
∑

i∈I

∑

m∈M

wimyim (1a)

∑

j∈J

aijmxjm ≥ yim i ∈ I,m ∈ M (1b)

∑

j∈J

xjm = Km m ∈ M (1c)

∑

m∈M

xjm ≤ bj j ∈ J (1d)

xjm ∈ {0, 1} j ∈ J,m ∈ M (1e)

yim ∈ {0, 1} i ∈ I,m ∈ M (1f)

The objective function (1a) maximizes the total weight of the served demand
centers. The covering constraints (1b) link the x and y variables. For each mode,
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Constraints (1c) fix the number of facilities to be placed. Constraints (1d) set
the maximum number of facilities (of different modes) that can be located in
each site. The integrality of the x and y variables is imposed by Constraints (1e)
and (1f).

We here add a few remarks about the formulation. First, note that, once
the x variables are fixed, the objective function and the covering constraints
implicitly assign integer values to the y variables. Therefore, Constraints (1f)
can be relaxed to 0 ≤ yim ≤ 1 for all i ∈ I,m ∈ M . Second, the feasibility of the
problem depends only on the cardinality constraints (1c) and (1d): the problem
is feasible if and only if

∑

m∈M Km ≤
∑

j∈J bj . From the practical point of view
this condition is in general satisfied, because the number of candidate facility
sites exceeds the number of facilities to be located. If the problem is feasible,
Constraints (1c) can be relaxed to ≤ inequalities.

2.1 Complexity and approximation properties

The decision version of the MM-CLP is NP-complete, because the special case
in which the set of modes is a singleton (|M | = 1) coincides with the MCLP.
An alternative reduction to the MCLP can be obtained allowing each candidate
site to use all available modes (bj = |M | for all j ∈ J). Under this assumption,
in fact, Constraints (1d) are redundant and the problem decomposes into |M |
independent instances of the MCLP, one for each mode.

The MM-CLP also includes as a special case the k-MCLP, which requires
to compute k disjoint solution of the MCLP such that the sum of their values
is maximum. This problem corresponds to instances of the MM-CLP in which
the number of modes is fixed to k, only one facility can be located in each site
(bj = 1) and the facilities serve the same demand centers for all the modes.

In what follows, we present approximation properties for the MM-CLP.
These properties generalize the approximation results provided by Vohra and
Hall [39] for the MCLP. A maximization problem is α-approximable when it
admits a polynomial time algorithm that provides on each instance P a solu-
tion z̃ (P ) such that z̃ (P ) /z∗ (P ) ≥ α, where z∗ (P ) is the value of the optimal
solution of P .

With the purpose of establishing the approximation results, we first present
two greedy algorithms. As it is customary for the MCLP, in what follows we
will also denote the facility sites as columns and the demand centers as rows.

Greedy algorithms

AlgorithmGreedy1 (see Figure 1 for its pseudocode) generates a solution placing
for each mode m ∈ M the required number of facilities Km one by one.

We denote as Ijm the subset of rows that are currently uncovered and would
be covered by setting xjm = 1. At first, Ijm = {i ∈ I : aijm = 1}. At each inner
loop iteration, the algorithm selects the column j∗ that, in the current mode
m, covers the subset of rows Ij∗m of maximum weight, sets the corresponding x
variable to one and updates all subsets Ijm removing the rows covered by j∗. If
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column j∗ has been selected bj∗ times, it is forbidden in the following iterations.
As already observed, if

∑

j∈J bj ≥
∑

m∈M Km, Algorithm Greedy1 terminates
with a feasible solution.

Algorithm Greedy1 (I, J,M, a, b,K,w)
xjm := 0 for all j ∈ J , m ∈ M ;
Ijm = {i ∈ I : aijm = 1} for all j ∈ J , m ∈ M ;
for m := 1 to |M | do
for j := 1 to Km do

j∗ := argmax
j∈J

∑

i∈Ijm

wim;

xj∗m := 1;
Ijm := Ijm \ Ij∗m for all j ∈ J ;
if

∑

m∈M

xj∗m = bj∗ then J := J \ {j∗};

end for

end for

return x;

Figure 1: Pseudocode of Algorithm Greedy1.

Algorithm Greedy2 (whose pseudocode is given in Figure 2) builds a solu-
tion similarly to Algorithm Greedy1, with the only difference that it relaxes
Constraints (1d). Therefore, the solution obtained after the first loop can be
unfeasible, because some columns can be selected in more than bj modes. The
second loop restores feasibility. For each column j selected more than bj times,
the algorithm computes the subset Cjm of rows that are covered in mode m
in the current solution only by j. It sets to zero the x variable corresponding
to the mode for which Cjm has the minimum total weight. The while loop
terminates when column j is selected bj times.

Approximation results

The approximation properties of Algorithm Greedy1 require the following tech-
nical assumption.

Definition 1 Coverability assumption: for each mode m ∈ M there exists a
sufficiently large value K̃m such that Algorithm Greedy1 returns a feasible so-
lution covering all the rows.

This assumption is trivial when there is a single mode, as it corresponds
to requiring each row to be covered by at least one column. In the multimode
case, the coverability assumption might not be satisfied due to the limitation
on the maximum number of facilities that can be located on a site. In practice,
however, this assumption is largely satisfied.
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Algorithm Greedy2 (I, J,M, a, b,K,w)
xjm := 0 for all j ∈ J , m ∈ M ;
Ijm = {i ∈ I : aijm = 1} for all j ∈ J , m ∈ M ;
for m := 1 to |M | do
for j := 1 to Km do

j∗ := argmax
j∈J

∑

i∈Ijm

wim;

xj∗m := 1;
Ijm := Ijm \ Ij∗m for all j ∈ J ;

end for

end for

for j := 1 to |J | do
Cjm = {i ∈ I : aijmxjm = 1 and airmxrm = 0∀r 6= j} for all m ∈ M ;
while

∑

m∈M

xjm > bj do

m∗ := arg min
m∈M

∑

i∈Cjm

wim;

xjm∗ := 0;
end while

end for

return x;

Figure 2: Pseudocode of Algorithm Greedy2

Theorem 1 Under the coverability assumption, Algorithm Greedy1 computes
a solution of MM-CLP with a guaranteed approximation factor of

α1 =

∑

m∈M

Km Wm

|J |Wtot

where Wm =
∑

i∈I wim is the total weight of all rows in mode m ∈ M and
Wtot =

∑

m∈M Wm is the total weight of all rows in all modes.

Proof. Consider the inner loop of Algorithm Greedy1, which is performed on
each single mode. By construction, the weights of the columns selected form a
nonincreasing sequence. In fact, at each step the algorithm selects the column j∗

which provides the maximum additional contribution to the objective function
and updates the potential contributions of the other columns reducing them to
account for the rows covered by j∗. In the algorithm, the process stops after Km

iterations and the total weight of the covered rows is zH1

m . If the process were
continued for K̃m iterations, thanks to the coverability assumption, all the rows
would be covered, thus generating a sequence of nonincreasing values summing
up to Wm. Monotonicity implies that the average of the first Km values exceeds
the average of the overall sequence:

zH1

m

Km

≥
Wm

K̃m
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Consequently, the value of the solution returned by Algorithm Greedy1 is

zH1 =
∑

m∈M

zH1

m ≥
∑

m∈M

Km Wm

K̃m

and since the total weight of all rows in all modes exceeds the optimum of the
problem (Wtot ≥ z∗) and K̃m ≤ |J |

zH1

z∗
≥
∑

m∈M

KmWm

K̃mWtot

≥

∑

m∈M

Km Wm

|J |Wtot

which is the thesis.
In the specific case in which all modes have the same total weight (Wm = W )

and require the same number of facilities (Km = K), α1 = K/|J |. If all columns
can be selected in one single mode (bj = 1), the approximation can be refined.

Corollary 1 Under the coverability assumption, if bj = 1 for all j ∈ J , Km =
K and Wm = W for all m ∈ M , Algorithm Greedy1 provides a constant ap-
proximation factor equal to

α′
1 =

K

|J |

(

1

|M |
+

|J |

K|M |
ln

1

1− K
|J| (|M | − 1)

)

Proof. Under the simplifying assumptions of this corollary, the value of K̃m

is also bounded by the difference between the maximum number of facilities
that can be placed and the number of facilities that have already been placed
in modes m′ = 1, . . . ,m− 1

K̃m ≤
∑

j∈J

bj −
m−1
∑

m′=1

Km′ = |J | − (m− 1)K

Notice that this estimate is always strictly positive, because, by assumption,
∑

j∈J bj ≥
∑|M|

m′=1
Km >

∑m−1

m′=1
Km′ . Consequently,

zH1

z∗
≥

∑

m∈M

Km Wm

K̃mWtot

≥
∑

m∈M

KW

(|J | − (m− 1)K) |M |W
≥

≥
K

|M ||J |

|M|
∑

m=1

1

1− K
|J| (m− 1)

which can be approximated from below by using an integral approximation [10]

α′
1 =

zH1

z∗
≥

K

|M ||J |

(

1 +

∫ |M|+1

x=2

1

1− K
|J|(x− 2)

dx

)

=
K

|M ||J |

(

1 +
|J |

K
ln

1

1− K
|J| (|M | − 1)

)
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Remark 1 For |M | = 1, the approximation factor α′
1 is identical to α1; for

any |M | > 1, it is strictly stronger.

In view of the hypothesis of Corollary 1 (bj = 1 for all j ∈ J), the k-MCLP
is also approximable.

Remark 2 Algorithm Greedy1 provides a constant approximation factor α′
1 for

the k-MCLP.

Contrary to Greedy1, Algorithm Greedy2 provides an approximation guar-
antee for which the coverability assumption is not required.

Theorem 2 Algorithm Greedy2 computes a solution of MM-CLP with a guar-
anteed approximation factor of

α2 =
bmin

|M |

[

1−

(

1−
1

Kmin

)Kmin

]

where bmin = min
j∈J

bj and Kmin = min
m∈M

Km.

Proof. The first loop of Algorithm Greedy2 solves the MM-CLP as |M | inde-
pendent instances of theMCLP, one for each mode, by relaxing Constraints (1d).
Each of these instances is solved applying the algorithm proposed in [39], which
is the classical greedy algorithm for the optimization of submodular set func-
tions, with an approximation factor equal to:

zH2

m

z∗m
≥

[

1−

(

1−
1

Km

)Km

]

where zH2

m and z∗m are, respectively, the value obtained by this algorithm and
the optimal value for the MCLP instance associated to mode m. The total value
of the objective function after the first loop of Algorithm Greedy2 is

|M|
∑

m=1

zH2

m ≥

|M|
∑

m=1

[

1−

(

1−
1

Km

)Km

]

z∗m ≥

[

1−

(

1−
1

Kmin

)Kmin

]

|M|
∑

m=1

z∗m

whereKmin = minm∈M Km. The second inequality holds because 1−(1− 1/Km)
Km

is a monotonically increasing function of Km.
The second loop of Algorithm Greedy2 removes for each column j ∈ J

at most |M | − bj modes, which are selected as those which give the smallest
contribution to the objective function. Therefore, the remaining modes provide
a fraction ≥ bj/|M | of the original objective function. Consequently, Algorithm
Greedy2 returns a value

zH2 ≥
bmin

|M |

|M|
∑

m=1

zH2

m ≥
bmin

|M |

[

1−

(

1−
1

Kmin

)Kmin

]

|M|
∑

m=1

z∗m
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and since
∑|M|

m=1
z∗m is an upper bound on the optimum z∗

α2 =
zH2

z∗
≥

bmin

|M |

[

1−

(

1−
1

Kmin

)Kmin

]

3 A Heuristic for the Multimode Covering Lo-

cation Problem

To solve instances of the MM-CLP, we here present a Variable Neighborhood
Search (VNS ) heuristic, which exploits an exponential-size neighborhood. Sec-
tion 3.2 describes in detail the local search procedure applied to visit such a
neighborhood.

3.1 The Variable Neighborhood Search

The key constituents of the VNS approach are a local search procedure, and a
hierarchy of size-increasing neighborhoods used to restart the search every time
the procedure reaches a local optimum [26].

Figure 3 reports a pseudocode of our algorithm. The algorithm is initialized
with a solution produced by the local search procedure applied to the solution
of Algorithm Greedy1. At each iteration, the current best known solution x∗

is used by the shaking procedure to generate a new starting solution, which is
then improved by the execution of the local search. The shaking procedure ran-
domly perturbates x∗ replacing s columns of the current solution with s unused
columns for each mode m. The shaking parameter s starts at a conventional
minimum value smin and varies adaptively, depending on the result of the local
search: if the best known solution does not improve, s increases by 1, otherwise
it goes back to smin. The rationale of this mechanism is to first generate new
starting solutions close to the best known result, so as to intensify the search
in a promising region of the solution space. If this restart fails, diversification
replaces intensification, and the starting solutions are generated farther and far-
ther away from the current best known one. Every time a new best solution is
found, the approach switches back to intensification, and once again generates
solutions near the best known one. Of course, the best known solution x∗ is
kept up-to-date. To avoid improductive excessive diversification, an upper limit
smax is imposed on s: whenever such a limit is reached, s goes back to smin.
The algorithm terminates after Rmax restarts, or a given total time.

The shaking parameter and the local search procedure, i.e., the criterium
to select the incumbent solution from the neighborhood, and the definition of
the neighborhood itself, affect the computational performance of the VNS. A
basic local search procedure can be obtained by moving a single facility from a
candidate site to another one without changing its mode (local search move).
Referring to Formulation (1), the described move corresponds to turning two

9



Algorithm VNS MMSCP(I, J,M, a, b,K,w, smin, smax, Rmax)
x := Greedy1 (I, J,M, a, b,K,w);
xo := LocalSearch(I, J,M, a, b,K,w);
x∗ := xo;
s := smin;
for r := 1 to Rmax do

{Restart the local search}
x := Shaking(x∗ , s, I, J,M, a, b,K,w);
xo := LocalSearch(I, J,M, a, b,K,w);
{Update the shaking parameter and possibly the best known solution}
if (f(xo) > f(x∗)) then
s := smin;
x∗ := xo;

else

s := s+ 1;
if s > smax then s := smin;

end if

end for

return x∗;

Figure 3: Pseudocode of the VNS algorithm

decision variables, xj1m and xj2m, respectively from one to zero and from zero
to one (note that the two variables refer to different columns j1 6= j2 and the
same mode m). The size of such a neighborhood is polynomial with respect to
the size of the problem instance. In what follows, by contrast, we present an
exponentially large neighborhood that is obtained by more complex moves.

3.2 Very Large Scale Neighborhood Search

The distinguishing feature of Very Large Scale Neighborhood Search (VLNS )
algorithms is to define a neighborhood N which is exponentially large with
respect to the size of the problem instance, and to explore it more efficiently than
with exhaustive enumeration. The approach herein developed to solve the MM-
CLP problem is a customized version of the cyclic exchanges first proposed in
Thompson and Orlin [38]. The neighborhood of this approach is given by cyclic
sequences of moves. Although each move might violate the problem constraints,
the overall sequence is purposely built to guarantee the feasibility of the solution.

In our setting, a move consists of locating a new facility, removing a facility
or changing the mode of a facility. Referring to Formulation (1), the first two
types of move correspond to turning a decision variable xjm, respectively from
zero to one and from one to zero; the third type corresponds to simultaneously
turning xjm1

from zero to one and xjm2
from one to zero (note that the two

variables refer to the same column j and different modes m1 6= m2). As men-
tioned above, these moves are combined so that the current solution remains
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feasible and the cardinality constraints (1c) and (1d) remain strictly enforced.
In particular, since the number of facilities to be located for each mode is given
by Constraints (1d), when a facility previously used in mode m1 changes mode
or is deactivated, another facility has to replace it assuming mode m1.

To better visualize the cyclic exchanges that allow to explore the neigh-
borhood of the current solution, we use a directed graph G = (N,A), where
N =

⋃

j∈J Nj , which is an adaptation to the MM-CLP of the so called im-
provement graph [38]. The subsets Nj are pairwise disjoint; each one includes
bj nodes, one for each mode that can be activated in site j. Each node in subset
Nj can have a label indicating a mode currently active in column j. If the
active modes are less than bj , the nodes in excess are left unlabelled. Thus, the
number of labelled nodes of Nj is equal to

∑

m∈M xjm, while the number of
unlabelled nodes is equal to bj −

∑

m∈M xjm. While the nodes are fixed, their
labels change from solution to solution.

As for the arcs of graph G, two nodes ih ∈ Ni and jk ∈ Nj , associated
respectively to facility sites i and j (with i 6= j), are linked by an arc (ih, jk) in
the following cases:

1. the two nodes have different labels mh and mk (this arc represents a
facility in site i changing from mode mh to mk);

2. the tail node ih is unlabelled and the head node has label mk (this arc
represents the location of a facility of mode mk in site i);

3. the head node jk is unlabelled and the tail node has label mh (this arc
represents the removal of a facility of mode mh from site i).

A cyclic exchange corresponds to a directed cycle on the improvement graph
as depicted in Figure 4.

Each arc (ih, jk) is associated to a weight, equal to the variation of the
objective function value induced by the corresponding move. The purpose is to
represent a feasible group of moves as a cycle in the auxiliary graph, in such a
way that the total weight of the arcs of the cycle is equal to the total effect of
the group of moves. However, if two or more moves of a cyclic exchange involve
the same mode, the overall variation of the objective function is not always
equal to the total weight of the cycle, because the effect of the moves could be
nonadditive. To overcome this drawback, we only admit cyclic exchanges which
affect any mode at most once.

Also note that any feasible cycle with two or more unlabelled node can be
splitted in a number of independent cycles equal to the number of unlabelled
nodes. If the overall cycle has positive weight, at least one of the component
subcycles also has positive weight, and provides an improving move. This allows
the following remark.

Remark 3 Any cycle has at most one unlabelled node.
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Figure 4: Graphical representation of the basic local search procedure. The
picture displays three subsets of nodes, one for each site (i, j and l respectively).
Site i hosts three facilities, one of which, denoted as ih, is of mode mh.

Move evaluation To compute the best cyclic exchange, i.e., the one of max-
imum weight, we perform an exhaustive breadth-first generation of all paths of
graph G. We first consider all the paths composed of one single arc, then all the
paths composed of two arcs and so on. Each path is extended by appending to
the end node each outgoing arc, respecting the limitation that all nodes should
have different labels and at most one node should be unlabelled. For each path
generated, the algorithm evaluates the cost of the cycle obtained by going back
from the end of the path to its starting node. This algorithm has computational
complexity in O

(

nlmax

)

, where n is the number of nodes of the improvement
graph and lmax the maximum number of nodes in a cycle. The limitation on
the labels of the nodes imposes a bound on the number of nodes in the feasible
cycles.

Remark 4 The maximum number of nodes in any cycle is bounded above by
|M |+ 1, i.e., lmax ≤ |M |+ 1.

The efficiency of the neighborhood exploration is strongly improved by the
following remark, proved in [1].

Remark 5 Any cycle of positive total weight has at least one starting node such
that all the subpaths along the cycle which originate from that node have positive
weights.

This implies that all nonpositive weight paths generated during the search can
be immediately removed. Indeed, if such a path belongs to a positive weight
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cycle, there is an alternative path of positive weight which allows to identify the
cycle.

4 Computational Experience

In this section we present the computational results of the proposed algorithm,
which has been coded in C++, compiled by gcc 4.4.3 and run on a PC
equipped with an Intel Core2 Quad-core 2.66 GHz and 4 GB of RAM.

4.1 Benchmark instances

We have considered two benchmark sets of random instances, denoted as square
and rectangular, respectively. The square instances represent the situation in
which a facility can be located in each customer point. The number of columns
|J | is therefore equal to the number of rows |I|, and in our benchmark both
are set to 1 000. The rectangular instances model the situation in which the
distribution of the candidate facility sites is denser than that of the demand
centers. The number of columns per mode is therefore larger than the number
of rows, and more specifically they are set to 500 rows and 5 000 columns.

In addition to the number of rows and columns, each instance is characterized
by the following parameters: the number of modes (|M |), the maximum number
of modes for each column (bj), the number of columns used in each mode (Km),
the range of the weights (w), the covering pattern of each column. As for the
number of modes, we generated instances with |M | = 2 modes and instances
with |M | = 3 modes. The former have bj = 1 for all j ∈ J , whereas for the latter
we generated tighter instances with bj = 1, and looser ones with bj = 2. The
number of columns for each mode, Km, is extracted at random, with a uniform
distribution in [0.02 |J |; 0.03 |J |] for the square instances, in [0.08 |J |; 0.10 |J |]
for the rectangular ones. These values were chosen so as to avoid both the
trivial instances in which the optimal solution covers all rows and the easy
ones in which the columns are so few that a greedy choice directly provides the
optimal result. The unweighted instances have all weights equal to one, while
the weighted instances have random integer weights uniformly distributed in
{1, . . . , 10}. Finally, the covering pattern can be uniform, i. e. each column
covers the same rows in all modes, or assorted, i. e. the covered rows are
selected independently for each mode. For each combination of the parameters
listed above, we have generated a pool of 5 instances: the set of rows covered
by each column is generated at random with a uniform distribution, imposing
a 5% density1. In order to avoid easy instances, we imposed that each column
should cover at least one row in each mode and that each row should be covered
by at least two columns in each mode.

Overall, we generated 60 instances for each of the two benchmark sets.

1The density is the average percentage of rows covered by each column.
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4.2 Parameter tuning

A first computational campaign has been devoted to tuning the parameter s that
controls the shaking mechanism of the VNS procedure, the criterium to select
the incumbent solution from the neighborhood, and the size of the neighborhood
itself.

First, remark that the number of columns Km used in each mode m ∈ M is
given by the problem instance. Since the shaking procedure replaces s of these
columns with s unused ones in each mode, necessarily s ≤ min (Km, |J | −Km).
In our experiments we always set s ≤ Kmin = minm∈M Km because in our
benchmarks Km < |J | − Km for all m ∈ M . We considered three different
ranges for parameter s:

• [smin; smax] = [5;Kmin];

• [smin; smax] = [5;Kmin/2];

• [smin; smax] = [Kmin/2;Kmin]

The first tuning leaves the parameter completely free to evolve depending on
the results of the search. The second one avoids the larger values, thus reducing
the diversification effect of shaking. The third one, by contrast, stresses the
effect of diversification. We did not consider values of s smaller than 5 because
preliminary experiments showed that, most of the time, a search starting very
close to the best known solution ends up again in it, with a useless waste of
computational time.

As for the exploration of the neighborhood, we considered two common
variants: the global-best strategy explores the whole neighborhood, returning
the best solution found; the first-best strategy terminates the search as soon as
an improving solution is found. In a single iteration, of course, the first strategy
yields a stronger improvement, but the latter allows to perform more iterations
in the same time. Experimental evidence suggests that in different problems
either strategy can perform better [9].

Global-best First-best
s Gap BK itot i∗ Gap BK itot i∗

[5;Kmin] 0.25% 607.93 162.98 0.40% 872.08 166.70
[

5;
Kmin

2

]

0.19% 609.03 270.87 0.40% 871.83 166.70
[

Kmin

2
;Kmin

]

0.56% 603.10 64.13 0.59% 871.18 12.27

Table 1: Computational results of the parameter tuning phase on the square
instances

For this campaign, we allotted a computational time of 600 seconds for each
instance. For each of the three ranges of the shaking parameter s and for each
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Global-best First-best
s Gap BK itot i∗ Gap BK itot i∗

[5;Kmin] 0.09% 370.28 192.05 0.15% 425.87 169.88
[

5;
Kmin

2

]

0.09% 370.37 194.70 0.15% 426.07 169.88
[

Kmin

2
;Kmin

]

0.22% 356.38 3.02 0.22% 427.70 6.40

Table 2: Computational results of the parameter tuning phase on the rectangu-
lar instances

of the two neighborhood exploration strategies, Table 1 reports the average
values computed on all the square instances of the following statisics: column
“Gap BK” provides the average percentage gap (z∗ − z) /z between the result
z obtained by the current parameter setting and the best result z∗ found in
the overall experimental campaign. This is assumed as a reference because
the optimal value for these problems is unknown and, as we shall discuss in
the following, even a state-of-the-art general purpose solver such as CPLEX
12 is unable to provide meaningful upper bounds on the optimum. Statistics
itot and i∗ are the number of local search iterations performed in 600 seconds
and the iteration at which the result z has been found, respectively. Table 2
reports the corresponding information for the rectangular instances. The two
tables suggest a clear dominance of the global-best strategy on the first-best
strategy: the latter, in fact, has worse results, on average; it finds them earlier,
but is unable to improve them, even though it performs more iterations in the
same time. The difference between the average performances is confirmed by the
application ofWilcoxon’s matched-pairs signed-ranks test [40] to the instance-by-
instance results. This test estimates that the probability to obtain such results
with a random fluctuation is p = 1.585 · 10−14. As for the shaking parameter,
the setting which favors diversification over intensification by adopting large
values of s is outperformed by the other two settings (p < 10−26 in both cases).
The intensifying setting, which restricts s in [5;Kmax/2], proves the better of
the remaining two, with a probability of random fluctuations equal to p =
1.221 · 10−4. The intensifying setting has a particularly strong dominance on
the square instances, whereas for several rectangular instances the two settings
are equivalent. This is partly due to the fact that the two settings behave
exactly in the same way as long as the shaking parameter s has not yet reached
the threshold value smax. Since in the allotted time the algorithm performs less
iterations on the rectangular instances, the difference between these two settings
is less marked on that benchmark.
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Polynomial vs exponential sized neighborhood

The parameter tuning computational campaign described above has been car-
ried out on the VNS implementing the exponentially large neighborhood (VLNS ).
Indeed, experiments on the polynomial-size neighborhood confirm the perfor-
mance with respect to the shaking parameter and the exploration strategy: the
intensifying setting and the global-best exploration strategy outperform the al-
ternative settings. The results are, however, worse than those obtained, in the
same time, by the VLNS procedure. In particular, the average gap with respect
to the best known result is 0.24% for the square instances and 0.12% for the
rectangular ones, versus 0.19% and 0.09% (see Tables 1 and 2). Considering
instance-by-instance solutions, Wilcoxon’s test estimates the probability to ob-
tain such a difference with a random fluctuation to be p = 1.011 · 10−12 when
considering all six parameter settings, and p = 4.058 · 10−12 when consider-
ing only the best one. Using a good parameter setting probably allows to find
optimal or nearly optimal solutions even exploring a smaller neighborhood.

An interesting remark is that, when applying the first-best exploration strat-
egy, the difference between the polynomial and exponential size neighborhoods is
less marked (0.44% and 0.16% versus 0.40% and 0.15% for square and rectangu-
lar instances, respectively). This is easily explained by the fact that the first-best
strategy terminates the exploration of the neighborhood as soon as an improv-
ing solution has been found and that the moves adopted in the polynomial-size
neighborhood correspond, in the improvement graph, to cycles of two arcs vis-
iting an unlabelled node. These cycles are among the first explored in the
exponential-size neighborhood. Therefore, the VLNS procedure with the first-
best exploration strategy has a good probability to return a solution included
also in the polynomial-size neighborhood. Anyway, this remark does not in-
volve the best performing parameter setting. Our conclusion is that, even if the
polynomial-size neighborhood can be explored more quickly, the exponential-size
one provides solutions of better quality and a stronger robustness with respect
to local optima. On the basis of such results, in the following experiments we
have adopted the intensifying setting for the shaking parameter, the global-best
exploration strategy and the exponential-size neighborhood.

4.3 Performance of the different phases of the algorithm

An important feature of the MM-LCP is the fact that nearly optimal solutions
can be found in a very short time even by the greedy initialization procedure.
This was remarked also in the early works on the MLCP and is related to the
approximation properties discussed in Section 2.1. We have therefore compared
the result obtained by the greedy initialization, the one improved by the basic
local search procedure with a global-best strategy, the result further improved
by the VNS algorithm with the best parameter setting and the one obtained
independently by CPLEX 12.0. The greedy and the local search procedures
run to completion: the former takes on average 0.1 seconds, the latter about
10 seconds. The VNS algorithm is terminated after 600 seconds, which also
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include the greedy and local search phases. Finally, CPLEX runs for 1 hour.
Tables 3 and 4 refer, respectively, to the square and rectangular instances. The
first column (Instance) provides a description of each subclass of instances: |M |
is the number of modes, b the capacity of each location – that, we recall, has the
same value for all j ∈ J –; w distinguishes the weighted instances (W) from the
unweighted one (U); A/U distinguishes the assorted mode instances, denoted
with A, from the uniform mode instances, denoted with U. The following three
columns report the percentage gap between the result obtained by each phase
of the algorithm and the best known one. Finally, the last two columns provide
the percentage gap between the heuristic solution returned by CPLEX and the
best known one, and the percentage gap between the upper bound computed
by CPLEX and the best known result ((UB − z∗) /z∗). The value in each row
is the average over the 5 instances of each group.

Instance Greedy Local Search VNS Cplex
|M | b w A/U (%) (%) (%) Best Sol. (%) UB (%)
2 1 U A 0.85 0.75 0.12 15.21 15.68
2 1 U U 0.78 0.65 0.10 14.82 11.08
2 1 W A 1.03 0.81 0.15 16.03 13.38
2 1 W U 0.85 0.66 0.20 17.48 8.85
3 1 U A 0.85 0.68 0.24 19.38 14.58
3 1 U U 0.63 0.44 0.07 15.23 12.48
3 1 W A 0.99 0.73 0.12 14.82 12.55
3 1 W U 0.66 0.59 0.10 12.93 10.40
3 2 U A 0.51 0.37 0.16 19.51 14.68
3 2 U U 0.69 0.45 0.45 17.57 12.14
3 2 W A 0.68 0.50 0.28 21.03 12.74
3 2 W U 0.71 0.40 0.30 17.68 9.93

Table 3: Average gap (with respect to the best known solution) computed on
each group of square instances.

The greedy algorithm finds in a fraction of a second a solution very close
to the best known one (on average 0.55% worse). The local search procedure
improves it in few seconds, reducing the average gap to 0.41%. Finally, the VNS
algorithm further improves the solution reducing the gap to 0.14% on average.
By contrast, CPLEX after one hour returns a heuristic solution which is on
average 11% worse than the best known one. This suggests that an ad hoc
heuristic for the MM-LCP is indeed useful, as it cannot be easily replaced by a
general-purpose solver. This is in sharp contrast with the common experience
on the MCLP, for which general-purpose solvers are very effective.
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Instance Greedy Local Search VNS Cplex
|M | b w A/U (%) (%) (%) Best Sol. (%) UB (%)
2 1 U A 0.34 0.21 0.03 5.17 4.14
2 1 U U 0.38 0.27 0.03 5.22 4.45
2 1 W A 0.43 0.34 0.07 5.67 3.60
2 1 W U 0.37 0.27 0.10 5.74 3.90
3 1 U A 0.42 0.32 0.11 5.79 4.99
3 1 U U 0.33 0.21 0.05 5.36 5.05
3 1 W A 0.29 0.17 0.02 6.17 4.43
3 1 W U 0.30 0.21 0.06 5.99 4.49
3 2 U A 0.30 0.17 0.12 5.62 5.01
3 2 U U 0.31 0.21 0.20 5.59 4.87
3 2 W A 0.34 0.21 0.16 6.07 4.36
3 2 W U 0.24 0.14 0.12 6.08 4.36

Table 4: Average gap (with respect to the best known solution) computed on
each group of rectangular instances.

The hardness of the MM-LCP for MIP solvers is confirmed by the scarce
quality of the upper bound provided. In fact, the gap with respect to the
upper bound is on average 8%. Indeed, this bound is often equal to the trivial
combinatorial bound given by the sum of the weights of all rows in all modes,
which can be computed in negligible time. This happens for all rectangular
instances and for more than half of the square instances.

4.4 Comparison with heuristic concentration

To evaluate the performances of the proposed VNS approach, we have also
implemented an alternative heuristic, based on the Heuristic Concentration ap-
proach, which has been applied to the MCLP in [36] and, to the best of our
knowledge, is the most effective heuristic to solve large instances of this problem.

This is a two-stage metaheuristic. In the first stage, q random starting
solutions are improved by a basic local search heuristic, and all the xjm variables
which are set to 1 in the best t ≤ q local optimal solutions are collected in a
list, called the concentration set (CS ). In the second stage, Formulation (1) is
solved with CPLEX 12.0, under the additional constraint that all variables not
belonging to the CS are set to zero. The CS, in fact, is considered likely to
contain the optimal solution, provided that the basic heuristic is good, and the
number of restarts q and of best solutions t are large enough. On the other
hand, excessively large values of q increase the computational time of the first
stage and excessively large values of t increase the computational time of the
second stage.

In our experiments, we set q = 30 and t = 10, as in [36]. Tables 5 and 6
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compare the VNS approach with the best parameter setting, the first stage of the
HC algorithm (column HC-1 ), and the final result returned by the second stage
of the HC algorithm (column HC-2 ). The former table refers to the square
instances, the latter to the rectangular ones. The first column of each table
identifies each subclass of instances, and each row reports the average results
over the 5 instances of the subclass. The second column provides the gap with
respect to the best known result achieved by the VNS approach with the best
parameter setting as identified above. The following two columns provide the
corresponding gap and the computational time in seconds for the q = 30 random
restarts of the first stage of HC . The last two columns provide the number of
binary variables xjm which compose the CS and the percentage gap for the
result returned by the second stage of the HC algorithm with a time limit of
1 800 seconds.

Instance VNS HC-1 HC-2
|M | b w A/U Gap BK Gap BK CPU |CS| Gap BK
2 1 U A 0.12% 1.14% 653.44 305.40 3.92%
2 1 U U 0.10% 1.24% 729.84 379.40 5.89%
2 1 W A 0.15% 1.47% 698.81 311.20 4.29%
2 1 W U 0.20% 1.43% 786.55 371.40 5.26%
3 1 U A 0.24% 1.17% 1719.74 485.00 6.59%
3 1 U U 0.07% 1.39% 1925.27 560.00 7.06%
3 1 W A 0.12% 1.23% 1836.91 488.60 6.13%
3 1 W U 0.10% 1.16% 2033.36 552.80 7.25%
3 2 U A 0.16% 1.06% 3780.03 483.60 6.01%
3 2 U U 0.45% 1.64% 4091.90 568.80 7.59%
3 2 W A 0.28% 1.09% 4075.43 486.60 6.48%
3 2 W U 0.29% 1.49% 4401.99 549.20 7.35%

Table 5: Computational results of the HC algorithm on the square instances.

The results show that, contrary to what happens for the basic MLCP, the
HC approach is not very effective on the MM-LCP. The reason derives from
both stages of the HC algorithm. The random restart strategy used in the
first stage is much less effective than the shaking mechanism of VNS, because it
produces solutions of bad quality, thus requiring to the local search procedure
a long computational time before retrieving a local optimum. Moreover, the
second stage of the HC algorithm is neither efficient nor effective. In fact,
within the imposed time limit, CPLEX proves unable to recombine the t = 10
best solutions composing the CS into a better one, and actually also unable
to extract the best solution included in the CS. So, while it is true that the
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Instance VNS HC-1 HC-2
|M | b w A/U Gap BK Gap BK CPU |CS| Gap BK
2 1 U A 0.03% 0.58% 1559.04 544.80 4.07%
2 1 U U 0.03% 0.45% 1552.26 543.80 4.15%
2 1 W A 0.07% 0.58% 1651.40 549.40 4.44%
2 1 W U 0.10% 0.48% 1657.52 545.00 4.41%
3 1 U A 0.11% 0.64% 3351.59 790.00 4.50%
3 1 U U 0.05% 0.53% 3434.01 827.40 4.42%
3 1 W A 0.02% 0.50% 3573.03 777.80 4.71%
3 1 W U 0.06% 0.44% 3603.25 821.60 4.86%
3 2 U A 0.11% 0.68% 7483.37 795.60 4.55%
3 2 U U 0.20% 0.67% 7713.76 841.60 4.71%
3 2 W A 0.16% 0.53% 8155.12 775.20 4.89%
3 2 W U 0.12% 0.60% 8094.79 817.20 4.72%

Table 6: Computational results of the HC algorithm on the rectangular in-
stances.

percentage gap obtained by HC is much better than that obtained by CPLEX
on the whole problem (see Tables 3 and 4), the experiments do not support the
effectiveness of HC on the MM-LCP.

It could be objected that the bad performance of HC could be due to an
excessive value of the two crucial parameters q and t. This idea, however, is
contradicted by the number of variables which compose the MIP problem used
in the second stage of the HC algorithm. As it can be seen from column |CS|
in Tables 5 and 6, the number of binary variables is strongly reduced by the
heuristic selection performed in the first phase. For the square instances, in fact,
the binary variables x decrease from 2 000− 3 000 (depending on the number of
modes) to around 300−500, while the number of variables which must be set to
1 is

∑

m∈M Km ∈ [50; 75]. For the rectangular instances, the binary variables x
decrease from 10 000− 15 000 to around 500− 800 and

∑

m∈M Km ∈ [100; 150].

5 Conclusion

In this paper, we study the Multimode Covering Location Problem (MM-CLP),
which is a generalization of the Maximal Covering Location Problem (MCLP).
This problem consists of locating a given number of facilities of different types to
serve demand centers with the restriction that only a limited number of different
types can be activated in each candidate facility site.

The problem is intrinsically difficult to solve and much more challenging than
the MCLP. In fact, commercial solvers fail to compute good quality solutions
in a reasonable amount of time. The hardness of the MM-LCP for MIP solvers
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is confirmed by the poor quality of the upper bound that they are able to
compute. Indeed, for most of our benchmark instances, this bound is often equal
to the trivial combinatorial bound given by the sum of the weights of all rows in
all modes. Nevertheless, the problem admits a constant factor approximation
guarantee that we proved by means of two greedy algorithms extending in a
nontrivial way a similar property of the MCLP.

To improve the greedy solutions, we have developed a VNS approach, which
implements a VLSNS algorithm as its basic local search procedure. The pro-
posed procedure is able to compute good quality solutions in short computa-
tional times. The viability of the proposed approach is also corroborated by a
comparison with an alternative VNS based on a polynomial-size neighborhood
and a Heuristic Concentration algorithm, which is, to the best of our knowledge,
the most effective approach to solve large instances of the MCLP.
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