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Abstract  

 

Aims.  To investigate the inactivation of a range of recently isolated environmental 

and clinical bacteria using blue light from light emitting diodes (LEDs). 

Specific objectives.  To investigate the impact of the following on bacterial 

inactivation using a custom-built LED light module: i) exposure time; ii) sample 

distance; iii) bacterial concentration; iv) sample position on plate; v) incorporation of 

UV-resistance plasmids and also to conduct comparisons in inactivation efficacy of: i) 

pulsed versus continuous exposure to 405 nm light and ii) 405 nm versus UV-C. 

Methods.  Bacterial cultures were grown in Tryptone Soya Broth (TSB) and after 

processing were washed twice prior to re-suspension in Phosphate Buffered Saline 

(PBS).  Following this, dilutions were made and exposed, on agar plates, to blue light 

(BL, 405 nm) or UV-C  light (290 nm - 100 nm ) in a variety of experiments.  

Results.  The results indicated that bacterial inactivation by BL is dose-dependent, the 

presence of a plasmid encoding UV-resistance genes did not provide protection, and 

no relationship between inactivation through BL or UV-C could be inferred. 

Conclusions.  Depending on the dose, 405 nm BL was shown to be effective at 

inactivating the majority of the bacterial species and strains tested.  Exceptions were 

strains belonging to the genus Enterobacter and Raoultella.  Overall, there was a 

broad array of sensitivities across the species used. 

Significance and Impact of the Study.  Results indicate a positive potential future 

for using BL to inactivate bacteria.  More research is required to investigate this at 

different levels.  
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Research Background 

 

The year 2014 marked the movement by the World Health Organisation (WHO) to 

address the current crisis affecting the globe report on the surveillance of 

antimicrobial resistance (AMR).  Here, it was highlighted that a return to the pre-

antibiotic era is a reality for the 21
st 

Century if the problem is not properly addressed 

(WHO 2014).  There are several approaches that may be taken in order to improve the 

situation.  Among these are improved understanding of the mechanisms behind 

resistance development; heightened and more effective prevention strategies; the 

discovery of new antibiotics; and the development of novel technologies for the 

combating of microbial infections.  

Following on from this, there were discoveries of alternative antimicrobial treatments 

prior to and in parallel with the advent of antibiotics, such as bacteriophage therapy 

(Wittebole et al., 2014). However, these were overlooked due to the effectiveness of 

antibiotics at that time (Hamblin 2012).  The current decrease in antibiotic efficiency 

allows for re-evaluation of the previously under-investigated strategies.  Among these 

is antimicrobial photodynamic therapy (aPDT). This is an approach that utilizes the 

production of reactive oxygen species (ROS), via the excitation of photosensitizers, to 

inactivate microbes via the damage caused to a range of biomolecules. The 

photosensitizers may be exogenous or endogenous. This study focuses on the latter. 

In recent years, research has developed and redirected from general use of aPDT (all 

light wavelengths) to a similar approach that utilises specific wavelengths of light.  Of 

these, 405 nm light has shown strong potential for the reduction of a number of 

problematic microorganisms (McKenzie et al.,2013; Kim et al.,2016; Maclean et 

al.,2009; Murdoch et al.,2012; Guffey & Wilborn 2006; Maclean et al.,2010; 

MacLean et al.,2013).  This study is a continuation of the existing research, and 

investigates a number of factors that may influence the effectiveness of 405 nm light 

at inactivating bacteria.  
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Chapter 1: Introduction  

1.1 History of Photodynamic Therapy (PDT) 

 

The first discovery that light can mediate a negative effect on microorganisms was 

made by Oscar Raab in the early 20
th

 Century (Rajesh et al., 2011).  This was through 

observation that the combination of acridine red and light had a lethal effect on 

Paramecium spp. (Mitton & Ackroyd 2005) during experiments which were unrelated 

to this concept.  Around the same time, a treatment for Lupus vulgaris using 

phototherapy was discovered by Neils Finsen (Rajesh et al., 2011; Denis et al., 2012), 

who was later awarded a Nobel Prize for the treatment of small pox using red light 

(Mitton & Ackroyd 2005).  Despite this new-found knowledge, more research did not 

follow immediately, and it was not until decades later that experiments comprising the 

use of photosensitizers (PS), oxygen and light, a technique known as photodynamic 

therapy (PDT), made an emergence in the form of a book published by Thomas 

Dougherty et al., (1978) (Rajesh et al.,2011).  Interestingly, despite the previous 

discoveries made regarding the impact of light and PS on microorganisms, the focus 

of the book was on cancerous tumours.  The successes of PDT led to its acceptance as 

a treatment of pre-cancerous skin lesions contained above neck level by the Food and 

Drug Administration in 1999 (Rajesh et al.,2011).  To this day, a large sector of PDT 

is focussed on cancer treatments (Hamblin et al., 2005) as opposed to microbial 

inactivation; a distinction between the two treatments is often made by referring to the 

latter as antimicrobial photodynamic therapy (aPDT).  The emergence of multidrug-

resistant bacterial pathogens worldwide has resulted in intense research efforts in 

novel antimicrobial technology, including aPDT and blue light therapy.  However, 

extensive research needs to be performed on a large variety of bacteria, using 

numerous parameters, before the scope of using light for microbial inactivation can be 

fully determined. 
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1.1.2 Why move on from aPDT? 

 

Although aPDT has been shown to successfully inactivate a diverse group of 

microorganisms, including bacterial species, viruses, fungi and mycoplasma (Hamblin 

et al., 2005; Tavares et al., 2010), developments of this strategy are being investigated 

that omit the use of externally applied photosensitizers  (Maclean et al., 2014; 

Maclean et al., 2009; Enwemeka et al., 2009; Bumah et al., 2013; Song et al., 2013).  

This is for a number of reasons: i) certain photosensitizers have been reported to have 

serious side effects on health (Bumah et al., 2013); ii) the requirement of hospitals to 

put in place more efficient decontamination systems necessitates a method that is 

more practicable; whilst the effectiveness of PS in conjunction with light is 

impressive, it is not suitable for decontamination of large areas (a study by Maclean et 

al., (2010) successfully applied a blue light-system to disinfect large areas within a 

hospital room); iii)  ideally a system that does not involve the use of light within the 

harmful ultraviolet region needs  to be developed to allow continuation of daily 

activities whilst the treatment is being under-taken; iv) development of a cost-

effective, easily accessible system – one that does not include highly specialist or 

complicated equipment; v) development of a decontamination method that does not 

permit the development of antimicrobial resistance; and finally, vi) development of a 

method that is versatile in application range.   As a consequence of these 

requirements, studies on the use of blue light in place of aPDT for the inactivation of 

microorganisms have emerged in recent years.  There is emphasis on the wavelength 

range 400 – 420 nm; of particular focus is the wavelength 405 nm (McKenzie et al., 

2013; Maclean et al., 2009; Maclean et al., 2014; Endarko et al.,).  The paper by 

Ibbotson 2011 reviews the documented adverse effects of aPDT/PDT therapy.  These 

range from mild short-term effects to more serious and medium- to long-term effects.  

These have been summarised within Table 1.1 below.   
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Table 1.1. Reported symptoms of aPDT/PDT on patients.  The colour-coding refers to 

whether the effect is short-term (green), medium-term (orange) or long-term (red). 

Information was taken from the comprehensive review by Ibbotson (2011). 

Symptom Description and/or explanation  Reference 

Pain  Unpredictable due to variation among individuals Grapengiesser et 

al.,2002; Clark 

et al.,2003; 

Wang et 

al.,2001 

Caused by the generation of reactive oxygen 

species (ROS); this cannot differentiate between 

healthy patient tissue and site of treatment 

Ibbotson 2011 

Predominantly experienced during the irradiation 

phase of treatment; stinging sensation may be 

experienced during application of photosensitizer 

onto broken/sensitized skin. 

Clark et al.,2003 

The nature of the pain also varies during and after 

the irradiation treatment. Typically, the level of 

pain peaks during the second quarter of treatment 

and transitions from a stinging/burning sensation 

to one of throbbing. This may continue for 

numerous ours following treatment.  

Valentine et 

al.,2011; 

Gholam et 

al.,2010 

The percentage of patients that find the pain to be 

severe varies among reports and papers; Ibbotson 

2011 quotes ~20% of patients report extreme pain 

during treatment.  

Ibbotson 2011; 

Grapengiesser et 

al.,2002; 

Sandberg et 

al.,2006; 

Moseley et 

al.,2006 

Discomfort  Experienced by most patients. This can be due to 

a range of sensations, including stinging and 

burning  

Morton et 

al.,2001; Clark 

et al.,2003; 

Wennberg 2005; 

Algermissen et 

al.,2003 

Infection and 

pustules  

The rate of infections is the lowest in comparison 

with alternative non-surgical techniques, including 

cryotherapy. This is likely because of the effects 

of inducing ROS species within infective agents 

themselves.  

Morton et 

al.,1996; Dai et 

al.,2009; Yung 

et al.,2007 

 

Sterile pustule development commonly reported 

following PDT treatment for acne vulgaris 

Stine Regin 

Wiegell & Wulf 

2006; S R 

Wiegell & Wulf 

2006 

Infrequent reports of PDT-induced cellulitis; this 

was shown in the study by Wolfe et al.,2007 to be 

caused by S. aureus. 

Wolfe et 

al.,2007 

Increased risk of 

ulceration or 

erosion at treatment 

site 

This is linked to a number of factors, including 

infection and pustule formation. However, 

although the lower leg is a site featuring increased 

ulceration risk, it was shown that PDT elicits a 

lower risk than conventional therapies. Paper 

 Ibbotson 2011; 

Morton et 

al.,1996 
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reports ulceration rate to be <1% in their studies. 

Purpura 

development 

At treatment site. Observed for a small portion of 

the patients treatment by this paper. Factors that 

increase the risk of this event include the position 

of treatment site (below the knee) and venous 

stasis. 

Ibbotson 2011 

Oedema  Observed primarily where the treatment site is 

located on the temple or forehead area, resulting 

in swelling and/or bruising of the eye area. 

Ibbotson 2011 

Development of 

erosive pustular 

dermatosis 

There was one report of this occurrence within the 

review by Ibbotson 2011; however, it is unclear 

whether the cause for this was the PDT or 

condition being treated (actinic damage). 

Furthermore, there are contradictory reports of 

successful treatment of erosive pustular 

dermatosis using PDT. Investigative work is 

therefore required to elucidate the mechanisms 

behind these phenomena.  

 Ibbotson 2011; 

Guarneri & 

Vaccaro 2009; 

Meyer et 

al.,2010 

Reactivation of 

herpes simplex 

virus 

This mainly concerns susceptible patients, where 

the treatment site is facial. Few reports of this 

occurrence. 

Touma et 

al.,2004 

Bullous pemphigoid 

development 

So far only reported in Ibbotson et al., could be 

due to immune-modulatory effects of PDT. 

Ibbotson 2011 

Immunosuppression Immunosuppression is a side-effect of topical 

PDT. Reduction of epidermal Langerhans cells 

within animal models observed following PDT. 

Ibbotson 2011 

Local and systemic immunosuppression results 

from ALA PDT in animal models.  

Hayami et 

al.,2007; 

Kyagova et al., 

2011 

Immunosuppressive effect within humans was 

demonstrated in experiments on healthy subjects, 

where topical PDT was shown to reduce Mantoux 

reactions. 

Matthews & 

Damian 2010 

Dermatitis  May be due to: phototoxicity, irritation, 

sensitization, allergic contact dermatitis 

Gniazdowska et 

al.,1998; Wulf 

& Philipsen 

2004 

Reports of contact dermatitis to MAL following 

PDT; considered to be related to concentration. 

Harries et 

al.,2007 

Scarring  Atrophic or hypertrophic scarring may occur, 

although this is uncommon. Ibbotson 2011quotes 

the occurrence of significant scarring as <1% of 

cases. Therefore, PDT is considered a low-risk 

treatment regarding scarring, and has been 

recognised for superiority in patient preference 

and cosmetic outcome. 

Ibbotson 2011 

Photo-onycholysis This was reported form a case where ALA leaked 

into the nails of a patient receiving PDT for 

actinic keratosis of the hands and fingers. The 

side-effects on the nails include extreme pain 

during treatment, discoloration and onycholysis. 

This was due to the combination of MAL and red 

light; onycholysis resolved within 3 months. 

Hanneken et 

al.,2008 
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Milia or epidermoid 

cyst development 

This is a reflection of the phototoxicity level, and 

occurs due to disruption of the dermo-epidermal 

junction. Although these generally resolve, they 

can present issues such as likeness to recurrent 

BCC (hence problematic diagnosis and 

persistence).  

Ghaffar et 

al.,2007 

Destruction of 

sebaceous glands 

This can occur during treatment of A. vulgaris on 

the face. An approach to limit this is the reduction 

of irradiances used, since both the irradiance and 

total dose contribute to this happening. 

 Ibbotson 2011; 

Hongcharu et 

al.,2000 

Pigmentation 

changes 

Hypo- or hyperpigmentation may occur as a result 

of topical PDT. Although ALA and MAL can 

both result in pigmentation changes, the former is 

most often responsible. 

Steinbauer et 

al.,2009 

PDT seems to activate melanocytes, resulting in 

higher numbers and thus increased pigmentation. 

This effect on pigmentation can continue during 

the two weeks following treatment. 

Ibbotson 2011 

In one study, hyperpigmentation occurred in 2.2 

% of cases. 

Schroeter et 

al.,2007 

Hypopigmention, on the other hand, is much less 

documented. It is much less common than 

hyperpigmentation.  

Ibbotson 2011 

Hair growth 

alterations 

Akin to pigmentation changes, alterations in hair 

growth due to PDT may be increased or decreased 

growth.  

 

Toxicity  PDT is both cytotoxic and genotoxic. 

Additionally, the impact of PDT varies according 

to the cell type – lymphocytes are an example of a 

susceptible cell type.  

Chu et al.,2006; 

Calzavara-

Pinton et 

al.,2007 

Impact on DNA Although the primary target of topical PDT is 

membranes, DNA-damage resulting from a 

variety of photosensitizers was demonstrated in in 

vitro studies. Single-strand breaks may also occur. 

Ibbotson 2011 

  

From the above table, it appears that the majority of side-effects of aPDT are short-

term. Furthermore, the majority of adverse effects reported only occurred in a 

minority of cases. However, these effects are still an issue with aPDT/PDT.  

Therefore, there is a requirement to either find alternative photosensitizers or other 

adaptations to aPDT/PDT that reduce the likelihood of these occurring, or develop 

different phototherapy approaches altogether, where phototherapy approaches 

encompasses aPDT, blue light therapy, low-level light therapy and applications using 

ultraviolet (UV) light 

.    
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1.2 Using visible light to inactivate bacteria 

 

There are an increasing number of studies that focus on the inactivation of bacteria 

using visible light (refer to Figure 1.1 for the visible and ultraviolet wavelength 

ranges).  The phototoxicity of white light on Staphylococcus aureus has been 

demonstrated previously (Lipovsky et al., 2009).  The results of the study revealed 

that significant reductions in bacterial viability (up to 99.8 %) of some strains can be 

achieved using white light in the absence of exogenous photosensitizers.  The 

effectiveness of this appears to depend on a variety of factors related to endogenous 

porphyrin content, pigmentation and bacterial response to oxidative stress.  Figure 1.1 

summarises the wavelength ranges of the ultraviolet and visible light sections within 

the electromagnetic spectrum (EMS).  

 

 

 

1.2.1 Blue Light for bacterial inactivation (BI) 

 

 A large portion of studies on visible light-mediated bacterial inactivation  claim that 

the blue wavelengths (~400 – 500 nm)  of visible light (~400 – 800) are the most 

effective (Lubart et al., 2010).  The primary focus of the study by Lipovsky et al., 

(2010) was the level of reactive oxygen species (ROS) produced following exposure 

to different sets of wavelength within the visible region of the electromagnetic 

spectrum.  These were 400-500 nm, 500-800 nm, 415nm and 455 nm respectively.  

The results indicated that the region that resulted in the highest production of ROS 

was the blue light (BL) region: 400-500 nm.  Furthermore, within the BL spectrum, 

415 nm was the most effective wavelength.  This is similar to the inactivation results 

of other studies assessing the impact of BL on bacteria, such as the study conducted 

by Michelle Maclean et al., (2008), in which the maximum inactivation of 

Figure 1.1. Ultraviolet and visible light wavelengths within the electromagnetic 

spectrum (EMS).  
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Staphylococcus aureus was achieved through exposure to 405 nm within the range 

400 – 420 nm.  This range was also featured in the study by Tomb et al., (2014), who 

additionally found 405 nm to be the most effective wavelength.  Table 1.2 below lists 

the known bacterial species involved in studies assessing the inactivation efficiency of 

BL, along with the specific wavelength(s) within the spectrum.  

 

 

Bacterial strain/species Source/collection 

number 

Wavelength(s) 

used (nm) 

Reference 

Staphylococcus aureus NCTC 4135 405 (Maclean et al., 2009; 

McKenzie et al., 2013) 

MRSA Clinical isolate 

16a, GRI 

405 (Maclean et al., 2009) 

Staphylococcus 

epidermidis 

NCTC 11964 405 (Maclean et al., 2009) 

Streptococcus pyogenes NCTC 8198 405 (Maclean et al., 2009) 

Enterococcus faecalis NCTC 00775 405 (Maclean et al., 2009) 

Clostridium perfringens NCTC 13124 405 (Maclean et al., 2009) 

Acinetobacter 

baumannii 

NCTC 12156 405 (Maclean et al., 2009) 

Pseudomonas 

aeruginosa  

NCTC 9009 405 (Maclean et al., 2009) 

Pseudomonas 

aeruginosa  

LMG 9009 405 (McKenzie et al., 2013) 

Escherichia coli NCTC 9001 405 (Maclean et al., 2009; 

McKenzie et al., 2013) 

Escherichia coli 

serotype 0157:H7 

NCTC 12900 405 (Murdoch et al., 2012) 

Proteus vulgaris CN 329 405 (Maclean et al., 2009) 

Klebsiella pneumoniae NCTC 9633 405 (Maclean et al., 2009) 

Salmonella enterica 

serovar enteritidis 

NCTC 4444 405 (Murdoch et al., 2012) 

Table 1.2. List of known bacterial strains/species involved in studies using BL, along 

with the specific wavelength(s) used.  

 



8 
 

*Refers to the light wavelengths used by Song et al., 2013, whilst **refers to those 

used by Soukos et al., 2005.  

Table 1.2 holds a list of the bacterial species that have been involved in studies 

featuring blue light.  This information illustrates that a diverse range of bacteria from 

different genera have been included in these studies; therefore, it can be concluded 

that there is a broad spectrum of recorded effects of blue light on bacteria.  It is clear 

that the most popular wavelength within the BL part of the EMS is 405 nm; this will 

be discussed in detail below. 

 

 

Shigella sonnei NCTC 12984 405 (Murdoch et al., 2012) 

Listeria monocytogenes NCTC 11994 405 (Murdoch et al., 2012) 

Listeria monocytogenes LMG 19944  (McKenzie et al., 2013) 

Mycobacterium terrae LMG 10394 405 (Murdoch et al., 2012) 

MRSA  IS-853 470 (Enwemeka et al., 2009) 

MRSA US-300 470 (Enwemeka et al., 2009) 

Aggregatibacter 

actionmycetemcomitans 

ATCC 33384 400-420 (Song et al., 2013) 

Fusobacterium 

nucleatum 

ATCC 23726 400-420 (Song et al., 2013) 

Porphyromonas 

gingivalis 

ATCC 33277 400-420* 

380-520** 

(Song et al., 2013)* 

(Soukos et al., 2005)** 

Porphyromonas 

intermedia 

ATCC 25611 380-520** (Soukos et al., 2005)** 

Porphyromonas 

nigrescens 

ATCC 33563 380-520** (Soukos et al., 2005)** 

Prevotella 

melaninogenica 

ATCC 25845 380-520** (Soukos et al., 2005)** 

Streptococcus 

constellatus 

ATCC 27823 380-520** (Soukos et al., 2005)** 
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1.2.2 405 nm – the most popular BL wavelength for bacterial inactivation? 

 

Although a range of wavelengths of BL is presented in Table 1.2, it is clear that the 

most commonly applied wavelength is 405 nm.  In the majority of cases, this is 

because multiple studies have been conducted by the same researchers; subsequently, 

there has been a progression in specificity from visible light through to 405 nm due to 

successive experiments narrowing down the most effective wavelength range 

(Maclean et al., 2008).  However, some studies have furthered the existing research to 

determine the factors behind the efficacy of 405 nm.  In accordance with the widely-

accepted theory that the mechanism behind BL bacterial inactivation involves 

excitation of endogenous photosensitizers leading to production of reactive oxygen 

species (ROS), analysis of porphyrin levels is featured in a few studies (Soukos et 

al.,2005; Ashkenazi et al.,2003; Borelli et al.,2006) .  High-performance liquid 

chromatography (HPLC) analysis of the bacterium Propionibacterium acnes revealed 

that coproporphyrin is the most abundant porphyrin within this organism (Ashkenazi 

et al., 2003).  In contrast to S. aureus, which appears to contain one type of porphyrin, 

other bacterial species can contain multiple types. This is demonstrated in Table 1.3 

below. 
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The porphyrins in the above table are not an exhaustive list of those found in the 

corresponding bacterial species.  This is due to the fact that in some cases, such as for 

P. acnes, there is conflicting literature on the types and amounts of porphyrins present 

(Shu et al.,2013).  Furthermore, it was previously found that environmental factors 

such, such as culture age, habitat and medium pH, can determine the porphyrin 

quantities present within P. acnes (Kjeldstad et al., 1984).  There is a significant gap 

in the current literature regarding porphyrins in bacteria that needs to be addressed. 

 

 

 

 

 

Bacterial Species Identified Porphyrins  Reference 

Porphyromonas 

nigrescens 

Uroporphyrin 

Heptacarboxyl Porphyrin 

Protoporphyrin 

(Soukos et al., 2005) 

Porphyromonas gingevalis Coproporphyrin (Soukos et al., 2005) 

Prevotella melaninogenica Uroporphyrin 

Protoporphyrin 

Coproporphyrin 

(Soukos et al., 2005) 

Porphyromonas 

intermedia 

Protoporphyrin 

Coproporphyrin 

(Soukos et al., 2005) 

Staphylococcus aureus Coproporphyrin  

Propionibacterium acnes Coproporphyrin 

Protoporphyrin 

Coproporphyrin I 

Coproporphyrin III 

(Ashkenazi et al., 2003) 

(Shu et al.,2013) 

(Borelli et al., 2006) 

(Borelli et al., 2006; 

Kawada et al., 2005) 

Table 1.3. Porphyrin distribution among different bacterial species. 
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1.3 Contradictory results: light-induced proliferation of bacteria 

 

In contradiction to the results of the majority of studies featuring BL-inactivation of 

bacteria, the opposite was shown to occur to one of the Staphylococcus aureus clinical 

isolates in the study by Lipovsky et al., 2009.  Whilst BL resulted in a decrease in 

viability of strain 101, strain 500 displayed a 15.8 % increase following exposure to a 

BL dose of 72 J/cm².  In addition to this, doses of 7.2 and 36 J/cm² caused 

proliferation of both strains of S. aureus (Lipovsky et al., 2009).  This proliferation 

effect was also observed in another study, involving the organisms Staphylococcus 

aureus, Pseudomonas aeruginosa and Propionibacterium acnes (Guffey & Wilborn 

2006).  The dose range in the study by Guffey & Wilborn (2006) was low: 1 – 15 

J/cm².  Subsequently, proliferation of Staphylococcus aureus following exposure to 

405 nm at the lowest dose resulted in proliferation; all of the doses resulted in 

proliferation of Propionibacterium acnes at this wavelength; and no proliferation was 

observed for Pseudomonas aeruginosa.  When the wavelength of 470 nm was applied 

using the same dosage range, similar results were observed.  No proliferation was 

observed for Pseudomonas aeruginosa, every dose resulted in proliferation of 

Propionibacterium acnes and proliferation of Staphylococcus aureus occurred up to 

doses of 10 J/cm².  These results demonstrate that whilst high intensities of BL result 

in bacterial inactivation, presumably through production of ROS, the opposite occurs 

when the intensity is too low.  There is therefore a requirement to determine the 

minimum thresholds for the inactivation of a range of bacterial strains, so that a 

general minimum intensity for bacterial inactivation may be established.  

1.4 Mechanisms of action of aPDT/PDT and BL 

 

The mechanism(s) of action for both aPDT and BL-inactivation are the same in the 

existing literature.  The difference between the two approaches is the nature of the 

photosensitizers and the range of wavelengths used. For aPDT, exogenous 

photosensitizing agents are applied to bacteria prior to exposure to broadband visible 

light (Tavares et al.,2010).  For BL-inactivation, it is thought that some bacteria 

possess endogenous photosensitizers, mostly in the form of porphyrins.  This is 

therefore exploited by applying wavelengths corresponding to the peak absorbance of 
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porphyrins.  Ultimately, it is the production of reactive oxygen species (ROS), in both 

instances, that is responsible for the detrimental effects (Rajesh et al., 2011) that 

occur.  This phenomenon was demonstrated by Lipovsky et al., (2010).  Furthermore, 

a correlation between ROS level and extent of phototoxicity was also found by 

Lipovsky et al., (2008;2009).  The role of ROS, and therefore the presence of oxygen, 

in phototoxicity has been demonstrated through experiments that counteract the 

presence of ROS and oxygen.  This has been achieved by incorporating ROS 

scavengers, or altering the conditions such that oxygen is absent (Ginsburg et al., 

2005).  Furthermore, the requirement of oxygen in photodynamic inactivation was 

illustrated by von Tappeiner and Jodlbauer in 1904 (Mitton & Ackroyd 2005). 

 

1.4.1 The Type I and Type II (photochemical) reactions 

 

Following the excitation of photosensitizer (PS) molecules, whether endogenous or 

exogenous, the transition from the PS ground state to an excited state leads to one or 

both of two photochemical reactions (De Lucca et al., 2012).  The excited triplet state 

PS may:  

i) React with a substrate, resulting in the production of lipid-derived or 

hydroxyl radicals (OH●) through electron transfer.  In turn, these result in 

production of reactive oxygen species (ROS) through reaction with 

endogenous molecular oxygen (Type I Reaction) (Koshi et al, 2011). 

ii) Contribute to the production of singlet state oxygen due to energy transfer 

from the transition of the excited triplet state PS to ground state (triplet) 

molecular oxygen.  Biomolecule oxidation and cell death ensue (Type II 

Reaction) (Fila et al., 2013). 

Both of the above pathways induce the oxidative stress response in bacteria.  Although 

both pathways are capable of causing damage, the antioxidant enzymes contained by 

bacteria, including catalase and superoxide dismutase, are unable to counter-effect the 

actions of singlet oxygen (Almeida et al.,2011), making this the most detrimental type 

of ROS.  
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In an attempt to determine the pathway of most importance in inactivation of Gram 

positive and Gram negative bacteria, Hamblin et al., (2012) conducted a series of 

experiments to investigate the contribution to killing by singlet oxygen and hydroxyl 

radicals.  The markers used to study these components‘ individual contribution were 

singlet oxygen sensor green (SOSG) and hydroxylphenyl fluorescein (HPF) 

respectively.  The results gained from this study indicated that Gram Positive and 

Gram Negative bacteria exhibit different sensitivities to the products of the type I and 

II pathways of aPDT.  Whilst Gram positive bacteria appear to be more susceptible to 

singlet oxygen, hydroxyl radicals appear to be more detrimental towards Gram 

negative bacteria. In either case, it has been postulated that the multi-target attack of 

ROS is attributed to the inactivation of bacteria, such as E. coli (Mitoraj et al. 2007). 

 

1.4.2 Reactive Oxygen Species 

 

The toxicity of reactive oxygen species (ROS) has been investigated for decades, 

following the discovery by Carlioz & Touati  (1986)  that superoxide dismutase 

(SOD) is essential for the correct growth of E. coli aerobically.  Oxidation of 

biomolecules, such as amino acids, is of restricted efficiency by molecular oxygen due 

to the molecular orbital structure of oxygen (Cabiscol et al., 1999).  Since the outer 

shell contains two spin-aligned, unpaired electrons, it is only possible for a single 

electron to be transferred from a molecule containing spin-paired electrons.  In 

addition to this, oxygen molecules and the majority of organic molecules are weak 

univalent electron acceptors and donators respectively (Imlay 2003).  ROS, on the 

other hand, have greater reduction potential and hence are stronger univalent oxidants 

than oxygen itself  (Imlay 2003). 

 

1.4.2.1  Intracellular ROS production 

 

ROS are produced continuously within aerobically growing microorganisms (Morgan 

et al., 1986) due to univalent reduction of molecular oxygen (Gonzalez-Flecha & 

Demple 1995; Cabiscol et al., 1999; Morgan et al., 1986) and as by-products of 

adventitious oxidation of redox electrons by molecular oxygen (Imlay 2003).  In E. 
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coli , Cabiscol et al., 1999 showed that 87% of total H₂O₂ was generated via the 

respiratory chain.  This has also been highlighted as an internal source of O₂⁻.  This is 

because the enzymes involved in the respiratory chain are effective at univalent redox 

reactions, a required property of enzymes for the successful transferral of electrons to 

oxygen (Imlay 2003; Gonzalez-Flecha & Demple 1995; Imlay 1995).  Subsequently, 

bacteria (particularly aerobes and facultative aerobes) have developed mechanisms to 

maintain the ROS level to an acceptable level (Tamarit et al., 1998).  For example, in 

the organism E. coli, there is a continuous system in place whereby the by-products of 

autoxidation of the redox enzymes, such as superoxide and hydrogen peroxide, go on 

to be degraded by enzymes.  These include superoxide dismutase, catalase and 

catalase-peroxidase (Keith & Valvano 2007). 

It is when the level of ROS increases beyond the capacity of the cell to counteract this 

that oxidative stress occurs (Cabiscol et al., 1999; Farr & Kogoma 1991; Tamarit et 

al., 1998).   The acceleration of mutagenesis and enzymic damage are two examples 

of biological events that occur due to elevated intracellular levels of oxidants within 

bacteria (Imlay 2015a).  It is speculated that numerous external stressors are 

responsible for this elevation; however, there is conflicting evidence on this topic 

(Imlay 2015a).  The paper by Imlay (2015) lists 30 events that have been suggested to 

trigger increased oxidant levels in bacteria, including near-UV radiation.  Antibiotics 

are an example of a high-controversy subject regarding increased ROS production.  

 

1.4.2.2  Impact of ROS on biomolecules 

 

ROS are suggested to irreversibly oxidise cellular macromolecules, including DNA, 

RNA, lipids, proteins, unsaturated triacyl glycerols and cholesterols (Calzavara-Pinton 

et al., 2007; Alves et al., 2013).  This results in loss of function and structural changes 

(Alves et al., 2013).  The impact is therefore multi-target and non-specific (Almeida et 

al.,2011).   This was demonstrated by the damage to E. coli from non-coherent visible 

light, within the range 408-750 nm.  Affected areas include the membrane, 

metabolism, mutagenesis and loss of culturability (Arana et al., 1992; Webb & Malina 

1967).  However, despite this existing knowledge, the precise details of what is 

required for cell death to occur have not been clearly established (Ruiz-González et 
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al., 2012).  For example, it is unclear how important PS location is in PDT (Ruiz-

González et al., 2012).  Further insight has been provided using electron microscopy 

has demonstrated that damage to the cell envelope occurs progressively during 

exposure to irradiation (Ruiz-González et al., 2012). 

 

1.4.2.3  Oxidising potential of ROS 

 

Despite the potential for damage that can occur, there are also restrictions on certain 

ROS that limit their oxidising potential and reactivity.  For example, interference in 

the oxidation of electron-rich molecules by O₂⁻ occurs due to its anionic charge.  The 

reactivity of  H₂O₂ is limited by the stable nature of the oxygen-oxygen bond (Imlay 

2003).  Neither of these events apply to the hydroxyl radical; it is therefore the ROS 

species that can cause the most damage (Imlay 2003; Cabiscol et al., 1999).   

 

1.4.2.4  ROS and Lipid Peroxidation 

 

Lipid peroxidation has been attributed to cell death through oxidative stress (Maness 

et al., 1999).  There are two modes of attack of ROS on lipids.  These are: 

i) Direct effects.  Lipid peroxidation occurs when unsaturated fatty acids are 

oxidised.  This results in alteration of membrane properties due to 

decreased membrane fluidity, in addition to disruption of membrane-bound 

proteins (Cabiscol et al., 1999).  

ii) Indirect effects.  Furthermore, the generation of further highly-reactive 

products, such as aldehydes, can result (Cabiscol et al., 1999).  These are 

longer-lived than ROS; therefore, they are able to exert damaging effects 

over a prolonged amount of time.    

A lipidomic approach was used by Alves et al., 2013 to determine the impact of 

photodynamic inactivation on membrane phospholipids in E. coli.  Since cytoplasmic 

membranes are primarily composed of phospholipids, this is an important site of 

ROS-mediated damage during photoinactivation of bacteria (Alves et al., 2013).  This 
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is reflected by the 97.5 % increase in lipid hydroperoxides in bacterial cells subjected 

to photosensitization in the study by Alves et al., 2013.  

 

1.4.2.5  ROS and Enzymes 

 

Another effect of ROS is the inactivation of enzymes.  This can occur due to the 

conversion of amino acids into derivatives; these are responsible for the inactivation 

(Flahaut S, Laplace JM, Frère J 1997).  Following a 1 hour exposure to 2 mM H₂O₂, 

losses of 80% and 25% of enzymatic activity by alcohol dehydrogenase E and enolase 

in E. coli were observed (Tamarit et al., 1998).  

 

1.4.2.6  ROS and Protein oxidation 

 

The cellular metabolism of cells is disrupted by oxidation of proteins (Cabiscol et al., 

1999).  This is due to the structural alteration and changes in the function as a 

consequence of oxidation (Cabiscol et al., 1999); this can be caused by oxidation of 

cysteine-bound sulphur atoms and methionine (Kashmiri & Mankar 2014). 

Subsequently, alteration of membrane properties and decreased membrane fluidity can 

result (Kashmiri & Mankar 2014). 

Furthermore, disruption of protein activity can occur due to changes in the cytosol 

reducing environment; this has implications for cytosolic proteins that have evolved 

such that the cysteines are maintained in the reduced form (Cabiscol et al., 1999).  The 

formation of carbonyl groups in amino acid residues may occur (Tamarit et al., 1998), 

leading to protein unfolding (Kashmiri & Mankar 2014).  Indeed, successful 

measurement of oxidative stress in tissue, protein and cell samples is enabled by the 

presence of these carbonyl groups (Tamarit et al., 1998).  The major protein targets 

within E.coli in the study by Tamarit et al., 1998 were involved in diverse, but vital, 

functions.  These included protein synthesis (EF-G), chaperone-function (DNA-K), 

glucose catabolism (alcohol dehydrogenase E) and outer-membrane protein OmpA 

(Tamarit et al., 1998).  However, not all proteins are susceptible to oxidation.  An 
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example of such was discovered by Tamarit et al., 1998: the outer membrane protein 

OmpC. 

 

1.4.2.7  Oxidative DNA damage  

 

The sugar and base moieties of DNA and RNA are a primary target, leading to 

blockage of replication due to lesion formation.  However, in contrast to UV radiation, 

the DNA damage incurred by aPDT is not thought to be a substantial factor in the 

killing of cells.  Furthermore, DNA repair via specialist proteins can occur, limiting 

the effectiveness of this as a mechanism.  Damage to DNA can occur due to particular 

ROS.  Furthermore, ROS that unable to directly cause damage, such as superoxide, 

are able to indirectly cause damage.  In the case of superoxide, this is because of its 

involvement in the production of a ROS that directly damages DNA, hydroxyl 

radicals (Imlay 2015b).  DNA repair enzymes of importance include exonuclease III, 

DNA polymerase I, RecBC nuclease and RecA protein (Morgan et al., 1986). 

 

1.4.2.8  Oxidative stress regulons in Escherichia coli and Salmonella 

typhimurium 

 

Bacteria possess systems that are able to sense adiverse conditions and elicit a 

response accordingly (Storz et al.,1990).  Following on from this, mechanisms for the 

response and damage-limitation of reactive oxygen species (ROS) are possessed by all 

aerobic organisms ( Farr & Kogoma 1991). In the case of Escherichia coli and 

Salmonella typhimurium, some of these mechanisms are controlled through two 

known regulons: SoxRS and OxyR (Storz et al.,1990; Christman et al.,1989; Morgan 

et al.,1986; Farr & Kogoma 1991).  In addition to these, there is the well-known SOS 

response in bacteria, which was the first discovered DNA-repair system in E. coli 

(Janion 2008). However, OxyR will be the primary focus of this study regarding 

regulons and oxidative stress in bacteria. 
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1.4.2.8.1 OxyR: Overview 

 

OxyR belongs to the LysR family of regulatory proteins (Storz et al.,1990; Christman 

et al.,1989; Morgan et al.,1986; Farr & Kogoma 1991), and has been shown to 

negatively regulates it‘s expression whilst positively regulating genes within the OxyR 

regulon (Storz et al.,1990; Christman et al.,1989; Morgan et al.,1986; Farr & Kogoma 

1991).  The OxyR regulon is specific to hydrogen peroxide (Chiang & Schellhorn 

2012; Storz et al.,1990).  However, it also provides some protection against other 

stresses, such as those imparted by singlet oxygen, near-UV, heat and lipid 

peroxidation (Chiang & Schellhorn 2012). 

 

1.4.2.8.2 Oxidised and reduced forms of OxyR 

 

 The OxyR protein exists in two structurally different forms (Chiang & Schellhorn 

2012). This is due to the hydrogen peroxide-mediated oxidation of the conserved 

Cys199 residue containing a sulphur residue, which is converted into sulphuric acid as 

a consequence of the aforementioned oxidation (Chiang & Schellhorn 2012). The 

formation of a reversible disulphide bond between the Cys199 and Cys208 residues 

follows.  The resulting structural differences in the regulatory domain of OxyR 

contribute to the differential binding properties and regulatory behaviour of the 

oxidised and reduced forms of OxyR.  In the absence of hydrogen peroxide, it exists 

in the reduced form, where it negatively regulates genes, including negative 

autoregulation (Christman et al.,1989).    

 

1.4.2.8.3 OxyR regulon  

 

The OxyR regulon consists of over 30 genes (Christman et al.,1989; Chiang & 

Schellhorn 2012; Farr & Kogoma 1991; Wei et al.,2012), that may be positively or 

negatively regulated by OxyR (Chiang & Schellhorn 2012). These encode defensive 

products, including catalase, thioredoxins, hydrogen peroxidases, and alkyl 

hydroperoxide reductase (Chiang & Schellhorn 2012).  The rate of synthesis for the 

different gene products was previously shown to be divided into immediate/early 
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synthesis and late synthesis. This is on the basis that maximum synthesis rates 

occurred within 30 minutes and after 30 minutes respectively, within the recorded 60 

minute interval following exposure of Salmonella typhimurium cells to a low dose of 

hydrogen peroxide (Farr & Kogoma 1991). 

 

1.4.2.8.4 Distribution of OxyR and OxyR analogues within bacteria  

 

OxyR has been most extensively investigated within E. coli and S. typhimurium. 

However,  it has been reported that there is conservation of the regulation of catalase 

and alkyl hydroperoxide reductase homologues by OxyR among the 

gammaproteobacteria (Chiang & Schellhorn 2012). Furthermore, identification of 

OxyR homologues within a variety of bacteria within the phylum  Proteobacteria 

have been identified (Wei et al.,2012). However, there are significant differences in 

the homologues, such as composition of the conserved cysteines and transcriptional 

regulation, compared to the E. coli OxyR protein (Wei et al.,2012).  

 

1.5 Iron and oxidative stress 

 

Despite the fact that ferrous irons can lead to ROS production via the Fenton reaction, 

iron is also a cofactor with some of the enzymes employed to remove ROS, such as 

certain superoxide dismutases (Cornelis et al., 2011).  There is, therefore, a significant 

link between the networks for iron homeostasis and oxidative resistance (Cornelis et 

al., 2011).  An example of this is the control of dps.  Whilst this has a ferritin role, 

storing and sequestering iron, it is also implicated in oxidative resistance due to the 

protection of DNA from ROS, and the utilization of H₂O₂ to oxidise      with water 

as a by-product in place of ROS (as in the Fenton reaction).  Free iron may be released 

into the cell due to the damage to Fe-S protein centres caused by superoxide anion.  

These Fe-S clusters can also become oxidised by H₂O₂. 
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1.6 The Viable but non-culturable (VBNC) state in bacteria 

 

An issue that can arise when assessing bacterial viability is that it is not always 

concomitant with culturability.  Cells that appear dead due to loss of culturability may 

reside in a state referred to as the ‗viable but non-culturable (VBNC) state (Heim et 

al., 2002; Signnoretto C., Lleo M., Tafi M.C. 2000).  A variety of bacterial species, 

both Gram negative and Gram  positive (Signnoretto C., Lleo M., Tafi M.C. 2000), 

are able to enter the VBNC state.  This permits them to remain dormant and regain 

their infectiveness once favourable conditions arise (Signnoretto et al.,  2000)   VBNC 

cells retain metabolic activity (Signnoretto et al.,  2000)    In fact, it is metabolic 

activity that differentiates between VBNC and dormant cells (Ramamurthy et al., 

2014).  Subsequently, studies using solely culturing techniques for the assessment of 

the efficacy of BL at killing bacteria are flawed in this respect. 

 

1.6.1 VBNC state theories and conclusions  

 

There are at present two theories regarding the true definition of the VBNC state. 

These were summarised by Signnoretto et al., ( 2000)and are as follows: 

 The VBNC state is a precursor state to cell death; effectively an intermediary 

phase between cell life and cell death. 

 A distinct physiological state in which bacteria may reside in upon exposure to 

conditions that are not conducive to normal growth and functioning, upon 

which bacteria may exit once more favourable conditions arise. 

Despite this being a topic that is still under much scientific debate, the VBNC state 

has generally been accepted as a distinct physiological state in bacteria (Ramamurthy 

et al., 2014).  However, since there is evidence that some bacterial species are able to 

remain pathogenic in the VBNC state (Ramamurthy et al., 2014), it is of the utmost 

significance within healthcare and industrial food settings regardless of the correct 

theory.  Therefore, the inclusion of bacteria in this state within studies investigating 

antimicrobial technologies is not only desirable, but a necessity.  
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1.6.2 Role of Hydrogen Peroxide in inducing the VBNC state 

 

Furthermore, the study by Arana et al.,, (1992) indicated that hydrogen peroxide 

promoted the transition into the VBNC state in Escherichia coli.  In this study, visible 

light was addressed as a significant abiotic factor involved in decreased numbers of E. 

coli in natural systems.  Since hydrogen peroxide is a ROS, it is reasonable to 

hypothesise that a percentage of the bacteria involved in experiments involving the 

production of ROS could have entered the VBNC state and hence were mistakenly 

deemed inactivated by the study.  This is of particular relevance to both the food and 

healthcare domains within society, since in the past outbreaks that could not be 

otherwise explained were attributed to bacteria in the VBNC state (Andrews et al.,, 

2013).  They are therefore a threat to the public health and should be addressed 

accordingly.  

 

1.6.3 Distinguishing the VBNC state from other physiological states 

 

However, the VBNC state is not to be confused with the starvation response.  This can 

occur due to nutrient deprivation or exhaustion.  The main difference between the two 

states is that cells undergoing the starvation response retain culturability despite the 

adverse conditions (Heim et al., 2002). 

 

1.6.4 Enterococcus faecalis and the VBNC state 

 

It has been demonstrated previously that Enterococcus faecalis transitioned into the 

VBNC state upon release into the environment, and therefore undesirable conditions, 

since this organism is primarily an enteric organism and hence is not well adapted to 

environments outside of the mammalian host (Ta et al., 1999; Heim et al., 2002).  

This could explain the results gained from the study by Maclean et al., (2009), 

whereby Enterococcus faecalis disrupted the general trend that Gram positive 

bacterial require lower doses of BL for inactivation.  Conversely, required the highest 
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dose out of all the bacterial species, with an inactivation of 2.6 log10 following 216 

J/cm2 BL.  

 

1.6.5 Alterations in the cell physiology of VBNC cells 

 

In this state, there are distinctions in the cell wall structure compared to cells in the 

stationary and exponential states (Canepari et al.,, 2000).  An example is increased 

cross-linking and resistance to mechanical stresses (Canepari et al.,, 2000), in addition 

to the size and shape of the cells.  Size reduction and transition from rods to cocci are 

among the changes that Gram negative cells in the VBNC state undergo (Signnoretto 

et al.,  2000) Signnoretto C., Lleo M., Tafi M.C. 2000).  

 

1.6.5.1  Cell envelope changes 

 

Cell envelope alterations also occur in the VBNC state (Signnoretto C., Lleo M., Tafi 

M.C. 2000). Scanning electron microscopy revealed formation of polymer-like 

filaments, associated with starved Vibrio parahaemolyticus in the study by Chai & 

Jiang 1996. This could have implications in protection of cells in the VBNC state 

when exposed to blue light.  In addition to this, bleb formation between the inner and 

outer membrane can occur, and within Vibrio cholera the presence of polymer-like 

filaments has been recorded (Signnoretto et al.,  2000)   The formation of blebs could 

have led to the misinterpretation of localised envelope damage due to ROS in studies 

using electron microscopy for evaluation of the impact of BL on bacteria. 

 

1.6.5.2  Cell Wall Chemical Composition 

 

(Signnoretto et al., 2000) investigated the cell wall chemical composition of E. 

faecalis and  made direct comparison with cells in the stationary and exponential 

phases, along with cells that had been killed by UV.  These investigations revealed 
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that the mechanical resistance of cells in the VBNC state was twice that of cells in the 

other states described.  

 

1.6.5.3  Peptidoglycan chemical composition 

 

Furthermore, the peptidoglycan chemical composition of VNBC cells was analyzed. 

All muropeptide families exhibited significantly different changes in comparison to 

cells in the stationary and exponential phases.  The greatest increase was seen for the 

higher oligomer family at 95 %. Subsequently, the degree in cross-linking was 

substantially greater in VBNC cells.  

 

1.6.6 Interference of VBNC state bacteria within studies 

 

A concern regarding the efficacy of the phototherapy used in the existing studies is 

that the majority employ viable counts as a means of assessing the effectiveness of 

light, whether in the form of aPDT, BL or PL therapy, for bacterial inactivation. 

However, it is well-known that a variety of bacteria are able to exist in a state that 

permits them to remain dormant and regain their infectiveness once favourable 

conditions arise (Signnoretto C., Lleo M., Tafi M.C. 2000).  Although initially this 

behaviour was predominantly displayed by Gram negative bacteria, there are cases of 

Gram positive bacteria eliciting this behaviour (Signnoretto C., Lleo M., Tafi M.C. 

2000).  Whilst in this state, however, they appear dead or inactivated using traditional 

enumeration techniques due to their loss of culturability.  It is important to note that 

despite this, the cells are still metabolically active.  This phenomenon is referred to as 

the viable but non-culturable (VBNC) state (Heim et al., 2002; (Signnoretto et al.,  

2000) .  Subsequently, the question of accuracy must be raised in regard to the studies 

that solely employed viable counts within their studies.  Heim et al., 2002 inferred that 

the VBNC state is a survival strategy employed by bacteria that are unable to 

endosporulate.  In addition to this, a reference to the lack of success in culturing the 

majority of environmental isolates could be a reflection of these organisms residing in 

the VBNC state.  Therefore, when assessing the effectiveness of BL as a biological 
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control method, the development of a method/technique that evaluates the 

effectiveness on all physiological states, including the VBNC state, is integral for an 

all encompassing study.  

 

1.7 Practical Applications of BL 

 

The purpose of this study was to determine if using BL within a range of applications, 

such as medical, environmental and within the food industry, is a possibility. The 

literature contains other studies that have investigated one or more of these themes 

using light within the blue region. The findings of these studies will be discussed 

below, whilst the findings and conclusions of this study will feature within the 

discussion section.  

1.7.1 Suitability of using blue light technology on humans    

 

Whilst investigating the impact of blue light on bacteria and the mechanisms involved, 

it is important to address the impact of humans and mammalian cells.  Whilst blue 

light is in the region of visible light, and therefore not considered as dangerous as 

ultraviolet wavelengths, the intensities used in these experiments are not typical of the 

average exposure gained from natural light.  This is because all the energy is focussed 

into a narrow spectrum high intensity set of wavelengths with a peak of 405 nm.  

Furthermore, since this region of blue light is within close proximity of the UV 

wavelengths, it is technically violet light.  There is also the possibility of overlap into 

the UV section of the electromagnetic spectrum.  

 

1.7.1.1  Effect of 405 nm light on mammalian cells 

 

Whilst the quantity of scientific publications regarding the effect of 405 nm on 

microbial cells vastly outweighs that for mammalian cells, there are an increasing 

number of investigations into the effect of 405 nm light on mammalian cells due to the 

success of the applications of this wavelength within investigations involving 
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microorganisms.  So far, these studies have been limited to using animal models; 

however, careful consideration has been given to the choice of model so that the 

effects can be related to human cells as closely as is practicable.  A direct comparison 

of the impact of 405 nm on bacteria and oesteoblasts was performed in the study by 

(Ramakrishnan et al.,2014).  The findings of the experiments indicated that in parallel 

to microbial cells, the effects of 405 nm are dose-dependent.  The same trend was also 

found to be true for fibroblasts, with significant declines in fibroblast viability 

occurring following a dose of 54 J/cm² (McDonald et al., 2011).  This dose was also 

shown to negatively impact oesteoblast viability (McDonald et al., 2012) by the same 

leading author.  Following the observation that following a dose of 54 J/cm², 

physiological changes indicative of preservation and early onset of apoptosis led the 

authors to state that to identify if sub-lethal damage occurs to mammalian cells due to 

exposure to 405 nm light, there is a requirement for studies that investigate this.  

Furthermore, studies on the impact on mammalian DNA are needed.  Since the 

sensitivity of the oesteoblasts was lower than that for the bacteria (Ramakrishnan et al. 

2014), this allowed determination of a dose range that was effective for microbial 

inactivation in the absence of detrimental effects on the oestoblasts. In the case of the 

study by (Ramakrishnan et al. 2014), exposure to 36 J/cm² had no impact of the 

functioning, morphology, viability or proliferation of the oesteoblats.  Conversely, this 

dose resulted in inactivation rates between 99.5 and 100 % for a range of bacterial 

pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia 

coli, Acinetobacter baumannii and Klebsiella pneumonieae (Ramakrishnan et al. 

2014).   

 

1.7.1.2  Light-mediated ROS production in mammalian cells 

 

In direct contrast to the results following exposure of oesteoblasts and fibroblasts in 

the above section, contradictory evidence is presented in the paper by Hockberger et 

al., 1999 regarding the effect of BL on mammalian cells.  It is stated that BL exerts 

toxic effects on mammalian cells, with mutations and even death occurring as a 

consequence of exposure to doses as low as 2-6 J/cm².  The type of mammalian cells 

here has not been specified; therefore, this cannot be representative inclusively of all 
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mammalian cell types.  As the above section clarifies, the effects of BL on certain 

mammalian cells have been shown to be dose-dependent.  It can therefore be assumed 

that production of ROS does occur in mammalian cells, but at higher thresholds than 

for bacteria.  The production of H₂O₂ within peroxisomes and mitochondria within 

3T3 cells was shown to result from exposure to light with a wavelength range of 450-

490 nm.  However, the dose parameters applied were very high – an irradiance of 6.3 

W/cm² for 20 minutes (7.56 kJ/cm²) as opposed to the irradiance of 1.25 mW/cm² for 

240 minutes (18 J/cm²) that was deemed to have no negative effects on oesteoblasts in 

the study by (Ramakrishnan et al. 2014) mentioned in the above section.  Hence there 

is need for a study that determines ROS production in a variety of mammalian cell 

types at the doses previously reported to be non-detrimental.   

 

1.7.1.3  BL for wound-healing  

 

An area of particular interest within the variety of possible applications of BL 

microbial inactivation is wound healing.  Despite the toxic effects of BL on microbial 

cells, the impact of BL on mammalian cells is deemed to be lesser than that on the 

microbial counterparts (Tomb et al., 2014).  The difference in sensitivity of microbe 

and mammalian cells has therefore been used to suggest development/application of 

intensities that are detrimental to microbes but safe for mammalian cells.  

Furthermore, a study that investigated the effects of a blue LED (470 nm) on the 

healing of excision wounds in rat models.  The light exposure using the blue LED in 

these experiments was based on the established technique low level light therapy 

(LLLT), founded by (Adamskaya et al. 2011).  BL was shown to successfully reduce 

repair time for the excision wounds through enhanced epithelialisation.  

 

1.7.1.4  Blue light and acne 

 

Perhaps one of the most widely known applications of blue light as a component of 

medical treatment is treatment of acne.  This is extremely common in adolescents, 

with a reported 70-80% of members of this group experiencing acne (Papageorgiou et 
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al., 2000; Ashkenazi et al., 2003).  The main causal agent of this condition is the 

bacterium Propionibacterium acnes.  A minimum of 40% of P. acnes has 

demonstrated antibiotic resistance (Ashkenazi et al., 2003), leading to the search for 

non-antibiotic therapies.  Furthermore, there have been reports that the wide use of 

antibiotics in treating acne was responsible raising the selective pressure for drug 

resistance among important nosocomial pathogens (Dawson 1998).  This results that 

led to this collected from a study that took place at the Skin Research Centre within 

the University of Leeds between 1991 and 1997 (Dawson 1998).  It was found that 

people in close contact with acne patients taking antibiotics on a long-term basis 

possessed higher levels of antibiotic resistant Staphylococci, and in greater population 

densities compared to controls (Dawson 1998).  Consequently, suggested measures 

featured in the interim report prior to the decision for national guidelines included:   

 Prescription of antibiotics only when strictly necessary  

 Good compliance with antibiotic usage  

 Restricted length of antibiotic treatment 

 Use of benzoyl peroxide 

This was said to be due to the transmission of antibiotic resistance genes from the 

acne patient.  Therefore, the application of non-antibiotic acne treatments was 

desirable.  This has resulted in studies using visible light.  Wavelengths within the red 

and blue regions of the electromagnetic spectrum are the most commonly used for this 

application (Ashkenazi et al., 2003; Dai et al., 2012).  Due to the natural production of 

intracellular porphyrins by this bacterium, it is possible to treat it with phototherapy in 

the absence of exogenous photosensitizers.  

 

1.7.1.5  Dental applications of photodynamic therapy 

 

An area where photoinactivation has advantages over traditional therapy is dentistry. 

This was highlighted in the study by Doukas et al 2007.  For example, although 

conventional antibiotics exert antimicrobial effects, they also present a number of 

undesirable side effects (Feuerstein et al., 2006), in addition to increasing antibiotic 

resistance (Song et al., 2013).  In addition to this, a traditional approach for the 

treatment of periodontal disease is mechanical debridlement of bacterial biofilms; 
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however, this is unable to completely eradicate the bacteria (Song et al., 2013).  This 

is partly because mechanical instrumentation is unable to reach all of the affected 

sites, due to the structural complexity of the root canal (Foschi et al., 2007), in 

addition to the persistent nature of biofilms (Tennert et al., 2014).  Therefore, a 

therapy that is able to inactivate a higher percentage of pathogens, with minimal side 

effects, is required. Whilst studies treating periodontal pathogens with aPDT have 

generated positive results, there are a number of periodontic pathogens that contain 

high numbers of endogenous porphyrins.  These include black-pigmented bacteria 

(BPB), Porphyromonas gingevalis and Fusobacterium nucleatum.  In dentistry, 

composite resins are cured using blue light (Song et al., 2013).  Since this light is 

known to stimulate endogenous porphyrins within bacteria (Song et al., 2013; Tennert 

et al., 2014), the spectrum of uses for this light could potentially be expanded to 

encompass photoinactivation.   

 

1.7.2 Environmental disinfection using BL 

1.7.2.1  Bacterial spores 

 

A small portion of bacterial species is able to transition from the vegetative cell state 

into what are known as endospores. These are structures that are able to withstand 

highly unfavourable conditions that would kill cells in the vegetative state. Hence, 

spores are one of the most resistant biological agents worldwide (St Denis et al.,2012).  

The fraction of bacterial species capable of sporulation is located in a sub-section of 

the Gram positive Firmicutes (St Denis et al.,2012; MacLean et al.,2013). An 

interesting fact to note is that spores are unable to conduct repair operations due to 

their state of dormancy, which comprises of very low metabolic rate and minimal to 

no enzyme activity (Setlow 2006).  Therefore, a range of mechanisms have been 

developed for the protection of these microbial structures during dormancy, making 

them extremely resistant to a multitude of antimicrobial treatments.  
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1.7.2.2. Existing procedures for bacterial spore decontamination  

 

Previous methods of decontaminating bacterial spores include heat treatment, high-

level disinfectants, high-pressure processing and irradiation with ionizing radiation 

such as ultraviolet and gamma-rays (St Denis et al., 2012). However, spores are many 

times more resistant to all of these treatments than vegetative cells. Following on from 

this, reports of the inactivation of bacterial spores by UV irradiation revealed that 

resistance is 50-fold greater than for vegetative cells (MacLean et al., 2013). Due to 

their structure, traditional disinfectants, such as peroxides, are of limited effectiveness. 

This is also true for antibiotics. Therefore, a strategy for decontaminating these 

structures is essential for the maintenance of safe environments within the food and 

healthcare industries. 

 

1.7.2.3. Using BL to inactivate bacterial spores 

 

Unlike their vegetative cell counterparts, the spores of some bacterial species were 

shown to not be sensitive to certain aPDT conditions (Demidova and Hamblin 2005). 

This is due to a number of factors that heighten the resistance of bacterial spores to BL 

compared to their vegetative cell counterparts. These include thymidyl-thymidine 

adducts, spore-specific photoproducts and high-level DNA repair mechanisms 

contributing to the altered photochemistry of spores (St Denis et al., 2012).  However, 

inactivation of bacterial spores through various phototherapies, including BL, has 

been shown to occur regardless of the spore-specific defences (Dai et al.,, 2013). 

Specifically, in the study by MacLean et al., 2013, inactivation of Clostridium and 

Bacillus spores was investigated. This is because of the treat that spores of these 

species present to clinical and food environments respectively (MacLean et al., 2013).  

Whereas the dose required for a 3.5 log₁₀ reduction of vegetative Bacillus cereus (B. 

cereus) cells was approximately 100 J/cm², the dose required for the same degree of 

inactivation of B. cereus endospores was approximately 1.3 kJ/cm². In addition to the 

significant different in dose required for inactivation between the two physiological 

states of B. cereus, the inactivation kinetics were also different. The inactivation rate 

for the endospores was more linear than that for vegetative cells. As with vegetative 
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cells, BL-inactivation was shown to be variable in a species-dependent manner. 

Inactivation data for the endospores of Bacillus cereus, B. subtilis, B. megaterium and 

Clostridium difficile was generated. This demonstrated that B. subtilis was the most 

sensitive to inactivation, whilst C. difficile was the most resistant.  

 

1.7.2.4. BL-inactivation of bacterial biofilms 

 

Another problem posed by bacteria regarding BL-inactivation is the ability to form 

biofilms.  These are often responsible for heightened resistance of bacteria to 

disinfection (Bridier et al., 2011).  This is a persistent issue within food and clinical 

environments that needs to be addressed (Van Houdt & Michiels 2010).  In the 

biofilms state, bacteria are protected from adverse environmental conditions due to 

their incorporation within an extracellular matrix.  Bacterial phenotypes of cells within 

a biofilm differ from their sessile counterparts.  Subsequently, increased resistance to 

disinfection is a common trait of bacteria within a biofilm (Bridier et al., 2011).  

Subsequently, when investigating the effectiveness of BL-inactivation of bacteria, it is 

essential to include bacterial biofilms.  In the study by McKenzie et al., 2013, the 

inactivation of biofilms from a range of clinically important bacterial species using 

405 nm light from an LED was assessed.  The study incorporated factors such as 

biofilm maturity, substrate and single/multispecies biofilm communities.  The results 

indicated that successful inactivation of bacterial biofilms can be achieved using BL. 

The effectiveness of inactivation was shown to be affected by the biofilm substrate 

material; biofilms on acrylic surfaces required higher doses of BL compared with 

those grown on glass surfaces.  This was attributed to the adhesion properties of 

bacteria to the different surfaces.  However, it was also found that with increased age, 

the influence of substrate on inactivation decreased.  Finally, increased biofilm density 

illustrated dose-dependent behaviour, with greater doses required for higher biofilm 

densities. 
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1.7.2.5  Disinfection of hospital environments using BL 

 

The effectiveness of a decontamination system termed ‗high-intensity narrow-

spectrum light environmental decontamination system‘(HINS-light EDS) within a 

hospital environment was investigated by Maclean et al., (2010).  The peak 

wavelength of this system is 405 nm; operation is of a continuous and supplementary 

disinfection nature.  It was mounted from the ceiling, allowing the disinfection of the 

air and environment.  Three studies were carried out by Maclean et al., (2010); these 

investigated: 

 Study A.  Impact of HINS-light EDS on surface levels of bacteria within an 

unoccupied isolation room 

 Study B.  Impact of an extended treatment phase of HINS-light EDS within a 

occupied room - MRSA-positive patient present 

 Study C.  Comparison of levels of bacterial contamination of an occupied 

room in the presence and absence of the HINS-light EDS 

Significant reductions of plate counts (up to 91 %) were achieved for Study A.  There 

was also no significant increase in plate counts after the HINS-light EDS was 

switched off.  The results from Study B demonstrated that in the presence of a source 

of MRSA, reductions of up to 86 %.  Finally, the results of Study C revealed that 

whilst HINS-light EDS was in operation, reductions in plate counts reached 62 %; 

however, once it was switch off, recovery of bacterial counts to over 100 % occurred.  

In summary, this study provided evidence that the use of BL within a hospital 

environment is able to effectively provide disinfection of surfaces within a hospital.  It 

should not be the sole treatment, and effects are temporary when the room is occupied 

by an infected patient.   
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1.8 Summary of BL-inactivation of bacteria 

 

This introduction can be summarised in the following points:  

 BL-inactivation of bacteria is considered to be due to the production of ROS 

through excitement of endogenous photosensitizers (porphyrins) within 

bacteria 

 Not all bacteria contain porphyrins, which could be a possible explanation for 

the differences in effectiveness of BL-inactivation of bacterial species 

 Since ROS elicit a non-specific attack on biomolecules, resistance 

development is considered low-risk for BL-inactivation 

 405 nm appears to be the most effective wavelength within the BL region of 

the EMS 

 Bacteria display a dose-dependent inactivation behaviour by BL; the higher the 

dose, the greater the extent of inactivation 

 Establishment of minimum  doses of BL for the inactivation of a range of 

bacterial species needs to occur for development of novel products 

incorporating BL technology 

 The VBNC state needs to be addressed – proof that BL inactivates bacteria and 

that they do not enter the VBNC state must be achieved  to ensure the accuracy 

and reliability of BL-inactivation results 

 Inactivation of bacterial spores and biofilms, both of which display increased 

resistance to other disinfection technologies, can be achieved using high doses 

of 405 nm BL 

 Applications of BL for inactivation of microorganisms are already in place in 

clinical environments (acne treatment and the HINS-light EDS system) 

1.9 Aims and Objectives of this project 

 

This project had a number of objectives within the general aim to investigate the 

inactivation of a range of recently isolated environmental and clinical bacteria using 

blue light from light emitting diodes (LEDs). These were to investigate the following 

on bacterial inactivation using a custom-built LED light module: 
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 Exposure time 

 Sample distance 

 Bacterial concentration 

 Sample position on plate 

 Incorporation of UV-resistance plasmids in Pseudomonas putida 

 Impact of different OxyR mutations within Salmonella enteric serovar 

Typhimurium strain LT2.  

And finally, in addition to the above objectives, to conduct comparisons in 

inactivation efficacy of: i) pulsed versus continuous exposure to 405 nm light and ii) 

405 nm versus UV-C. 
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Chapter 2: Materials and Methods 

2.1 Bacterial strains 

 

Table 2.1 lists the bacterial strains taken from the previous library of strains created by 

Aston (2012; Lancaster MSc thesis), whilst Table 2.2 contains the Salmonella 

typhimurium mutant strains kindly provided by Dr John Roth (University of 

California).  Lastly, Table 2.3 contains the Pseudomonas putida strains and constructs 

provided by Dr Glenn Rhodes (CEH, Lancaster). The identification, API profile and 

VNTR profiles were obtained by Aston (2012; Lancaster MSc thesis) previously by 

using the system provided on apiweb™ base (https://apiweb.biomerieux.com) and 

through sending the isolates to the Committee on Antimicrobial Resistance and 

Healthcare Associated Infection (ARHAI) for variable number tandem  repeat 

(VNTR) Profiling. 

Table 2.1 Bacterial strains extracted from the strain library by Aston (2012; MSc 

thesis, Lancaster University).   (CITU – cardiac intensive care unit; MWC - MAINS 

WATER CITU) 

Bacterial species/strain API 
number 

VNTR Profile Site Abbreviation 

Escherichia coli 5144572 - URINE C1 
Citrobacter freudii 1604573 - URINE C4 
Citrobacter spp. 3604713 - URINE C8 
Acinetobacter spp. 0000071 - BLOOD C10 
Enterobacter cloacae 3304573 - BLOOD C13 
Enterobacter sakazakii 3305175 - URINE C25 
Enterobacter spp. 3305173 - SPUTUM C27 
Enterobacter aerogenes 5305773 - SPUTUM C29 
Serratia liquifaciens 1304763 - SPUTUM C30 
Acinetobacter baumannii 0005042 - SPUTUM C31 
Acinetobacter spp. 0.000005 - WOUND C38 
Serratia liquifaciens 1304763 - SPUTUM C39 
Acinotobacter baumannii 0004042 - SPUTUM C43 
Raoultella ornithinolytica 5355773 - URINE C44 
Serratia marcescens 5307761 - THROAT C45 
Pseudomonas aeruginosa - 10,3,5,5,-,1,3,7,7 MWC  E19 
Pseudomonas aeruginosa - 12,5,5,3,1,1,15,4,13 CITU P1 
Pseudomonas aeruginosa - 12,5,5,3,1,1,15,4,- CITU P16 
Pseudomonas aeruginosa - 12,5,1,5,2,2,9,2,11 MWC E24 
Pseudomonas aeruginosa - 3,4,5,2,3,5,2,9 MWC E28 

https://apiweb.biomerieux.com/
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Table 2.2. Salmonella enterica serovar Typhimurium LT2 mutant strains provided by 

Dr John Roth (University of California).  

 

Table 2.2 lists the OxyR mutant strains provided by Dr John Roth (University of 

California).  $COM denotes strains that were provided by Gisela Storz (University of 

California).  Tn10 is a transposable element.  Therefore, where oxyR is followed by 

::Tn10, this indicates a Tn10 insertion within the oxyR coding sequence.  Deletion 

mutants were symbolised by ‗del‘.  The information in brackets following this details 

the start and end points of the deletion.  Strains S6 and S7 have Tn10 insertions near 

the different mutant oxyR genes (oxyR1 and oxyR2 respectively).  Strain S8 is a Tn10 

insertion transduced into the wild type strain, TR10000.  And finally, strain S1 strain 

has two mutations — an insertion of phage-Mu derived MudJ element into the 

nadB499 gene causes a nutritional requirement that can be satisfied by either 

nicotinamide or nicotinic acid.  The inserted element includes a lac operon that is 

expressed from the nada promoter.  The second mutation is an insertion of Tn10d into 

oxyR — this Tn10d is defective for transposition. The reason for including OxyR 

mutants within the experiments is to investigate the involvement of OxyR in 

mediating the cellular response to the predicted increased levels of ROS, and hence 

induction of oxidative stress in bacterial cells exposed to blue light. Since there are 

two types of reaction that can occur during ROS-mediated oxidative stress, namely the 

Type I and Type II reactions, incorporating OxyR mutants is also a way of deducing 

which reaction pathway is of most importance, since the OxyR regulon is only capable 

of addressing the ROS products that arise from the Type I reaction (refer to section 

1.4.1). 

Salmonella enterica serovar  Typhimurium strain LT2 mutants Abbreviation 

TT22481 sty(LT2) nadB499::MudJ oxyR::Tn10d-tet S1 

TT19390 sty(LT2) oxyR::Tn10 $COM S2 

TT22480 sty(LT2) oxyR::Tn10 S3 

TT19137 sty(LT2) oxy1 del (oxyR-argH) S4 

TT19138 sty(LT2) oxy2 del (oxyR-argH) S5 

TT19388 sty(LT2) zii-614::Tn10 oxyR1 $COM S6 

TT19389 sty(LT2) zii-614::Tn10 oxyR2 $COM S7 

TT24008 sty(LT2) TR10000 oxyR::Tn10 $COM was MPC412 S8 
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Table 2.3. Pseudomonas putida strains provided by Dr Glenn Rhodes (CEH, 

Lancaster).  

Strains/constructs  Abbreviation  

P. putida PaW340  pseud1 

P. putida PaW340 

(pWW0ΔrulAB::KmR)     

pseud2  

P. putida PaW340 (pWW0::KmR) pseud3 

 

The above strains were featured in the study by Rhodes et al.,(2014).  pseud1 serves 

as a control whilst pseud2 and pseud3 contain the plasmid pWW0, which carries UV 

resistance.  However, there is thought to be a deletion in pseud2; therefore it is 

assumed to not carry UV resistance. With respect to the experiments, this means that 

if the carriage of UV-resistance genes is advantageous during exposure to blue light, 

then this would be reflected in the inactivation rates of the P. putida strains, with 

pseud3 displaying lower levels of inactivation than pseud1 and pseud2. 

2.2 Sample collection and identification 

 

Isolates C1 to E28 were collected and stored on beads in horse serum at -70 °C 

between October 2010 and June 2012 (Aston 2012; Lancaster University MSc 

Thesis).  These were taken from clinical samples from infected patients at Blackpool 

Victoria Hospital.  All isolates were identified using api®20 E or 20NE (BioMérieux) 

and further distinguished in some cases by VNTR profiling.  

2.3 Maintenance of bacterial cultures 

 

All bacterial strains were recovered and maintained in Tryptone Soya Broth (TSB) 

(Oxoid Ldt, Basingstoke, Hampshire, England) and Tryptone Soya Agar (TSA) 

(Oxoid Ldt, Basingstoke, Hampshire, England).  For the initial recovery from frozen 

stocks which comprised beads in glycerol/nutrient broth, the tubes containing the 

beads were removed from the -70 °C freezer and allowed to thaw before vortexing for 
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10 seconds.  Sterile forceps were used to remove a single bead, and a disposable 

plastic loop used to roll the ball over the surface of a TSA plate before submerging the 

bead into the agar using the loop.  The plates were left at room temperature and 

examined after 24 and 48 hours.  Following growth, a typical colony was streaked 

onto a fresh plate to obtain pure colonies.  This process was repeated if necessary if 

purity was not assured.  Following this, the plates were stored at 4 °C and sub-cultured 

on a regular basis onto fresh TSA plates. 

2.4 Experiment Preparation 

 

For overnight-grown cultures, a single colony was suspended in 200 μl of filter-

sterilized phosphate-buffered saline (PBS) and agitated to form a homogenous 

suspension.  100 μl of this suspension was inoculated into 4 ml sterile TSB and 

incubated at 30 °C, shaking at 200 rpm, overnight.  Following this, a small sample 

(~10 μl) was extracted and the OD₆₀₀ value obtained using the NanoDrop 1000 

spectrophotometer (Thermo Fisher Scientific).  Readings were taken in triplicate and 

the average value used.  The value for use in experiments was 0.3 ± 0.1; therefore, the 

broths were either diluted or given additional incubation time accordingly.  100 μl 

aliquots of the inoculum were taken for each sample and centrifuged at 17, 000 x g for 

6 minutes; the time was increased if necessary to obtain a firm pellet.  This was 

washed twice in sterile PBS before re-suspension in 100 μl of sterile PBS.  Eight serial 

dilutions were carried out and either the droplet method (section 2.6.3) or 100 μl 

spread plates (section 2.6.4 – 2.6.6) of dilution     were performed in at least 

duplicate. In addition to this, duplicate plates100 μl spread plates for the      and 

     dilutions were performed to allow the bacterial concentrations to be calculated at 

a later stage.  

2.5 LED Light Source 

 

The light source was designed through collaboration between myself (representative 

of Lancaster University) and Marl International Limited.  Figure 2.1 shows the design 

and layout of the LED array/module.   
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Figure 2.1. Design and layout of the LED module designed for use in the blue light 

experiments.  Whilst the first diagram shows the lateral view of the LED housing, the 

picture on the right provides information on the number and position of the LEDs.  

Those shown in blue are the ones that were present, whilst the non-coloured LEDs 

indicate the available positions for double the number of LEDs present during 

experimentation.  

 

2.5.1 LED Array Specifications 

 

Table 2.4 summarises the output values for parameters, including peak wavelength, 

total voltage and total power for continuous mode at 25 °C. For pulsing mode, the 

input voltage (and therefore total power) was three times greater.  

 

Table 2.4. Electrical specifications of the LED module in continuous mode.  

Item Maximum Rating Unit 

λᴘ 405 nanometers 

Iin  1.4 Amps 

Ptotal  20 Watts 

nleds  15 Numerical Unit 

Φv led  950 milliWatts  

Φv relative  1900 milliWatts  

Φv total  24.5 Watts 

 Definitions: λᴘ peak wavelength; Iin input current; Ptotal total power; nleds number of 

LEDS; Φv led luminous flux per LED; Φv relative  and Φv total  total luminous flux of the 

LED array. The above values are defined at 25 °C.  
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2.5.2 LED Set-Up 

 

The team at Marl International mounted the LED module (shown in Figure 2.1) onto a 

mobile platform of wood.  This was positioned above the base board, where the 

marked petri dish position is shown.  Whilst the base board was immobile, the upper 

board carrying the light source could be raised or lowered using the handle to achieve 

the correct sample distances in the experiments.  All experiments were carried out in a 

dark room, in the absence of visible light.  Figure 2.2 is a photograph of the set-up, 

with labels for the described features. 
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Pulsed modules. The leads 

from the pulsed modules 

in this image were 

connected to the LED 

board via leads and x 

connectors. 

Handle. A handle attached to 

the LED board allowed easy 

modification of the sample 

distance from the LED board. 

Plate marker. The position 

of the plate was kept 

constant by ensuring that the 

cross was in the centre of a 

plate and marking the plate 

outline. 

Continuous modules. 

The leads from the 

pulsed modules in this 

image were connected 

to the LED board via 

leads and x connectors. 

 

External fan. To 

minimize the heating 

effects of the LED array 

at the agar surface. 

Close-up of LED board. 

This was surrounded by 

plastic housing and 

included a heat-sink. 

Continuous modules. 

The leads from the 

pulsed modules in this 

image were connected 

to the LED board via 

leads and x connectors. 

 

Figure 2.2. Photographs of the components of the LED light module, designed through joint 

research and work efforts by myself and Marl International respectively.  
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2.6 Plate layouts  

 

For both the exposure-time and sample-distance experiments described below, the 

template shown in Figure 2.3 was used.  Each dot on the template represents the 

position of a 2 μl droplet of bacterial suspension on the agar surface.  Each plate 

contained eight serial dilutions of the original bacterial suspension from           

    .  Three 2 μl droplets of each dilution were plated as shown in the template in 

Figure 2.3. These were labelled (droplet) position 1 – 3, starting from the innermost 

droplet position. The distance between each droplet position was 1 cm.  For the 40 °C 

heat, pulsed vs continuous BL and Pseudomonas putida experiments, triplicate 100 μl 

spread plates of the      dilution were used.  UV experiments utilized a modified 

droplet plate layout, illustrated in Figure 2.5; the droplet size remained 2 μl.  All plates 

were allowed to dry within a Class II Microbiology Safety Cabinet for 30 minutes 

prior to exposure.  Temperature measurements were taken every 10 minutes using an 

infrared gun. All experiments were repeated in at least duplicate.  

2.6.1 Exposure-time experiments 

 

Four different exposure times were used, with a fixed sample distance of 5 cm.  The 

exposure times were 5, 10, 15 and 20 minutes.   

 

2.6.2 Sample-distance experiments 

 

Three sample distances were used, each for a fixed exposure duration of 10 minutes.  

These were 2, 3, and 4 cm.   
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2.6.3 Continuous vs Pulsed BL Experiments 

 

100 μl of bacterial suspension at dilution 10⁻⁶ was spread onto three TSA plates using 

a disposable plastic spreader, as described in section 2.6.  There were three different 

treatments within these experiments.  One plate was exposed to continuous blue light 

(BL), the second to pulsed BL and the third acted as a control (unexposed) plate.  The 

sample distance was 2 cm and exposure time 10 minutes for the exposed plates. The 

pulse duration used was 10 milliseconds (ms) with a rest interval of 100 ms resulting 

in 5, 455 cycles in the 10 minute exposure time.  Experiments were repeated in 

triplicate. 

 

 

Figure 2.3. Template used for the exposure-time and sample-distance experiments. 

Each dot represents the position of a 2 μl droplet of bacterial suspension. The 

dilution of each branch is marked on the perimeter.  

 

Position 3 

Position 2 

Position 1 
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2.6.4 Temperature Experiments 

 

Eppendorf tubes containing 100 μl aliquots of bacterial suspension at dilution 10⁻⁶ 

were placed in a heat block at 40 °C for 10 minutes before transferring to a spread 

plate for enumeration.  This was repeated in triplicate.  

 

2.6.5 UV experiments 

 

Square 10 x 10 cm plates (Sterilin, UK) were used for these experiments.  Six serial 

dilutions were used, and the plate divided into four sections of progressing exposure 

time: 0, 5, 10 and 15 seconds.  For experimentation, the plates were inverted onto a 

UV transilluminator (302 nm) (Figure 2.4).  Whilst a more efficient way to provide 

UV exposure to the bacteria in a controlled manner would have been to use a 

crosslinker, unfortunately this piece of equipment was not available. However, given 

that the transilluminator model used states that the UV illumination is uniform, and 

that the plate took up a fraction of the available surface area, it is unlikely that the 

distribution of light to the bacterial samples was significantly different across the 

plate. Three droplets of each dilution acted as triplicates, due to the even spread of UV 

exposure from the UV transilluminator.  The plate layout is in Figure 2.5. 
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Figure 2.5. Template used within the UV experiments. Each dot represents the 

position of a 2 μl droplet of bacterial suspension. The dilution of each row is 

marked on the left; each column represents exposure of that section for the 

number of seconds specified at the top. 

 

Figure 2.4. UV-transilluminator used in UV experiments. 
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2.6.6 Influence of UV-resistance genes on BL-inactivation of Pseudomonas 

putida strains 

 

The Pseudomonas putida strains listed in Table 2.3 were included in the exposure-

time and sample-distance experiments. Following the results gained from these, a 

separate set of experiments on these strains was conducted.   100 μl aliquots of all 

three strains at dilution 10⁻⁶ were either: 

i) spread onto a TSA plate and exposed to 10 minutes of continuous or 

pulsed BL at a distance of 5 cm for a duration of 10 minutes, as described 

for the strains involved in the continuous vs. pulsed BL  experiments 

detailed in section 2.3; 

ii) OR transferred into an eppendorf tube and placed in a heat block at 40 °C 

for 10 minutes before transferring to a spread plate for enumeration.  

In all instances, experiments were repeated in triplicate.  

2.7 Measurement of Data 

2.7.1 Qualitative measurement of BL-inactivation of bacteria – arbitrary rating 

scale 

 

The impact of BL on the inactivation of a large number of strains was measured 

qualitatively using the droplet method, combined with a self-defined arbitrary rating 

scale. This was designed to allow collection of qualitative data, since it was 

impractical and inaccurate to count the colonies within the 2 μl droplets of bacterial 

suspension on the agar plates.  This ranged from 0-4.  Every unit represented a ≤25% 

droplet reduction.  Therefore, 0 = no change, 1 = 0 – 25 %, 2 = 26 - 50%, 3 = 51 - 

75% and 4 =  > 75 % reductions accordingly.  This scale was applied to all 

experiments using the droplet method.  A section of the table containing results from 

the exposure-time experiments for Citrobacter freundii is displayed below in Table 

2.5. 
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2.7.2 Quantitative measurement of BL-inactivation of bacteria – spread plate 

data 

 

Quantitative data was obtained via colony counts from the spread plate experiments 

outlined in sections 2.6.3 and 2.6.4.  The number of colonies that grew on the plates 

exposed to pulsed BL, continuous BL or heat was compared to the counts on control 

plates that were not exposed to BL or heat, following incubation of all plates at 30 °C 

for 18 – 24 hours.  For these experiments, only five bacterial strains were used.  These 

were Enterobacter cloacae, Raoultella ornithinolytica, Serratia marcescens, 

Acinetobacter spp. and Escherichia coli.       reductions were calculated by 

calculating the CFU/ml of bacteria on the control and experimental plates, which 

enabled a percentage change to be calculated. This was then converted into a       

reduction in excel.  

 

Table 2.5.  Extract of the table of results for time experiments for the bacterial 

strain Citrobacter freundii. * refers to the location of the 2 μl droplet of bacterial 

suspension on the agar plate, as shown in Figure 2.3 in the Materials and Methods 

section.   

 

** refers to exposure time in minutes. S = bacterial species/strain. D = dilution 

used; where the numerical value refers to the number of the ten-fold serial 

dilution. For example, ‗1‘ is equivalent to     . Where a dash with a grey 

background is present, the value is non-applicable due to the absence of bacterial 

colonies in that position on the control plate. The colour of the background 

mirrors the rating scale, from red to blue in ascending order of inactivation. 
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2.8 Statistical Methods 

 

A variety of statistical methods were applied to the data.  The type of test applied was 

determined by whether the data was qualitative or quantitative, as detailed in sections 

2.7.1 and 2.7.2 above.  

 

2.8.1 Quantitative Data: Chi-squared test of independence and Pearson’s 

Product-Moment Correlation Coefficient 

 

For qualitative data, two statistical analyses were made.  The first method tests if there 

is a significant association between two variables: the Chi-Square test.  This produces 

a p value.  The significance level chosen for this value was 0.05.  The hypotheses 

were as follows: 

i) The droplet position (refer to section 2.6) has no significant effect on the 

degree of bacterial inactivation 

ii) The bacterial concentration  has no significant effect on the degree of 

bacterial inactivation 

iii) The sample-distance has no significant effect on the degree of bacterial 

inactivation 

iv) The exposure-time has no significant effect on the degree of bacterial 

inactivation 

v) The mutant strains (OxyR mutants in S. enterica and carriage of plasmid 

pWW0 in P. putida) do not show altered inactivation    

A p value of less than the significance interval (0.05) rejects the null hypothesis, 

whilst a p value of more than 0.05 accepts the null hypothesis.  

The second test determined the strength of linear association between two variables. 

This is known as the Pearson‘s Product-Moment Correlation Coefficient, which 

generates an r value between two variables.  This value ranges from  -1 to +1, 

representative of a perfect negative correlation through to a perfect positive 

correlation accordingly.  A value of or close to zero is therefore representative of no 

correlation.  The equation is shown in Figure 2.6. 
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Figure 2.6.  Equation for the calculation of the Pearson Product Moment Correlation 

Coefficient.  Where n = the number of data pairs, Ʃ = sum of, x = time and y = degree 

of bacterial reduction (in accordance with the arbitrary scale used, detailed in section 

2.7.1). 

 

2.8.2 Quantitative Data: Paired T-Test 

 

A single statistical test was used in the analysis of the quantitative data.  This was the 

Paired T-Test (two-tailed).  This was employed to determine if there is a relationship 

between two variables, and if the results are statistically significant.  The confidence 

value chosen was 0.05.  The hypotheses were as follows: 

i) Continuous BL exposure has no effect on bacterial inactivation. 

ii) Pulsed BL exposure has no effect on bacterial inactivation. 

iii) 40⁰C heat has no effect on bacterial inactivation. 

The result of this test is a t value; if this is below the significance interval (0.05), the 

null hypothesis is rejected. If it is above the significance interval, the null hypothesis 

is accepted. 
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Chapter 3: Results  

3.1 Irradiance values of the LED module 

 

Within the BL experiments, TSA plates containing the appropriate layout (section 2.6) 

were illuminated with BL from the LED array for the durations and distances 

described in sections 2.6.1 – 2.6.3.  To calculate the doses of light used in the 

experiments, it was first necessary to measure the irradiance of the LED module.  This 

was done for a range of heights.  Calculation of doses was performed using the 

following equation: 

Dose (J/     = irradiance (mW/   ) x time (seconds) 

The irradiance was measured using a spectroradiometer (SR910-A, Macam, 

Livingston). The results shown in Figure 3.1 are the average values of triplicate 

readings taken during continuous exposure mode.  

 

Figure 3.1. Total irradiance values (mW/   ) of the LED module for distances 

ranging from 2 – 15 cm. 
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From Figure 3.1, the total doses (J/cm²) were calculated for the continuous exposure 

BL experiments using the equation described in section 3.1.  These are displayed in 

Tables 3.1 and 3.2 for the exposure-time and sample-distance experiments 

respectively.  

 

Table 3.1.  Doses (J/cm²) for each of the exposure durations in the exposure-time 

experiments. The doses below correspond to a constant distance of 5 cm.  

Exposure Time (mins) Total Dose (J/   ) 

5 65.8 

10 131.5 

15 197.3 

20 263 

 

Table 3.2.  Doses (J/cm²) for each of the distances between the LED array and agar 

plate used in the sample-distance experiments. The doses below correspond to a 

constant exposure duration of 10 minutes. 

Sample-distance (cm) Dose (J/   ) 

2 520.3 

3 277.4 

4 205.8 

 

3.2 Exposure-time experiments 

3.2.1 Objectives 

 

The objectives of the ‗exposure-time‘ experiments were to evaluate the impact of the 

duration of exposure to BL from the LED array on the degree of inactivation of 

bacteria.  This was mainly assessed using the arbitrary rating scale (section 2.7.1) to 

determine the relative reductions in the quantity of bacterial colonies within 2 μl 

droplets of bacterial suspension (section 2.6) on a TSA plate compared to a non-

exposed control.  Analysis of the results was performed to answer the hypotheses 

stated in section 2.8.1. These will be discussed in the following sections. 
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3.2.2 Impact of length of BL exposure on bacterial reduction 

 

The average inactivation values for each bacterial strain (across all dilutions and 

droplet positions), using the arbitrary rating scale (section 2.7.1) are displayed in 

Figure 3.2.  The average values were used due to the high volume of data produced.  It 

is clear from Figure 3.2 that there is a high degree of variation in the degree of 

inactivation between bacterial strains. This can be divided on both an inter- and intra-

species basis. Two conclusions may be made using the data in Figure 3.2. These are:  

i) For the majority of bacterial strains, there is a relationship between 

length of BL exposure and degree of bacterial inactivation 

ii) This represents a positive correlation accordingly.  

To test the statistical strength of the above two observations, the Chi-squared test of 

independence and the Pearson‘s product moment correlation co-efficient were used 

respectively. 
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3.2.2.1   Chi-squared test of independence 

 

This statistical test examines if there is a significant association between two 

variables.  In this case, the variables are duration of BL exposure and extent of 

bacterial inactivation.  Table 3.3 is the contingency table generated for this test.  The 

significance level selected for all chi-squared analyses in this chapter is 0.05. 

Therefore, P values less that 0.05 indicate statistically significant results. 

 

 

 5 MIN 10 MIN  15 MIN 20 MIN Row Totals 

0 116 (81.50) 

[14.60] 

97 (81.50) 

[2.95] 

66 (81.50) 

[2.95] 

47 (81.50) 

[14.60] 

326 

1 35 (35.50) 

[0.01] 

41(35.50) 

[0.85] 

40 (35.50) 

[0.57] 

26 (35.50) 

[2.54] 

142 

2 14 (22.75) 

[3.37] 

17 (22.75) 

[1.45] 

31 (22.75) 

[2.99] 

29 (22.75) 

[1.72] 

91 

3 12 (16.50) 

[1.23] 

11 (16.50) 

[1.83] 

18 (16.50) 

[0.14] 

25 (16.50) 

[4.38] 

66 

4 8 (28.75) 

[14.98] 

19 (28.75) 

[3.31] 

30 (28.75) 

[0.05] 

58 (28.75) 

[29.76] 

115 

Column 

Totals 

185 185 185 185 740 (Grand 

Total) 

 

The above table contains the values for the observed cell total (e.g. total number of ‗0‘ 

values from the arbitrary scale for all dilutions of all strains for the exposure time of 5 

Table 3.3. Contingency table for the different exposure times used in the exposure-

time experiments, in relation to the degree of bacterial inactivation.  
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minutes is 116) alongside the ‗expected‘ cell totals (calculated by the statistics 

software, displayed in round brackets) and the chi-square statistic for each individual 

cell in square brackets.  The P value calculated from the above table was <0.00001, 

and therefore statistically significant.  Subsequently, the null hypothesis that exposure 

time (of BL) has no influence on the degree of bacterial inactivation in the exposure-

time experiments can be rejected. Following this result, the chi-square values for pairs 

of exposure times were calculated.  The results are displayed in Table 3.4.  

 

*statistically significant at P < 0.05 

With the exception of the difference between 5 and 10 minutes, the differences 

between the other exposure times are significantly different.  

 

 

 

 

 

 

 

 

 

Exposure Time Pair 

(mins) 

Chi-square statistic p value 

5/10 6.98 0.136747 

5/15 34.4 <0.00001* 

5/20 78.2 <0.00001* 

10/15 14.2 0.00683* 

10/20 49.0 <0.00001* 

15/20 16.3 0.002666* 

Table 3.4. Chi-square statistics and p values for the chi-squared analysis between 

pairs of BL exposure times.  
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3.2.2.2  Pearson’s product moment correlation coefficient 

 

The second test was performed to determine the strength of linear association between 

two variables, in this case the exposure time and degree of bacterial inactivation.  This 

is known as the Pearson‘s Product-Moment Correlation Coefficient, which generates 

an r value between two variables.  This value ranges from  -1 to +1, representative of 

a perfect negative correlation through to a perfect positive correlation accordingly.  A 

value of or close to zero is therefore representative of no correlation.  The results are 

displayed in Table 3.5.  

Table 3.5.  Pearson‘s Product Moment Correlation Co-efficient r values for bacterial 

strains in the Exposure-Time experiments. 

Bacterial Genus Bacterial Strain r value p value 

Pseudomonas pseud 1 0.99 < 0.00001* 

Salmonella S3 0.98 < 0.00001* 

Pseudomonas P16 0.97 < 0.00001* 

Salmonella S8 0.97 < 0.00001* 

Salmonella S2 0.96 < 0.00001* 

Pseudomonas pseud2 0.96 < 0.00001* 

Pseudomonas pseud3 0.92 0.000024* 

Salmonella S5 0.91 0.000032* 

Salmonella S7 0.90 0.000071* 

Pseudomonas E24 0.89 0.000116* 

Serratia C39 0.88 0.000162* 

Citrobacter C4 0.87 0.00023* 

Acinetobacter C38 0.86 0.000365* 

Escherichia C1 0.85 0.000462* 

Salmonella S1 0.85 0.000503* 

Pseudomonas P1 0.85 0.000509* 

Pseudomonas E19 0.84 0.000707* 

Acinetobacter C31 0.83 0.000891* 

Raoultella C44 0.79 0.002379* 

Serratia C30 0.79 0.002484* 

Enterobacter C29 0.75 0.005001* 

Citrobacter C8 0.56 0.057956 

Salmonella S6 0.51 0.088298 

Pseudomonas E28 0.19 0.548274 

Salmonella S4 0.13 0.676173 

Enterobacter C25 0.09 0.778033 

Enterobacter C13 0.06 0.857418 

Serratia C45 -0.18 0.577777 
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*statistically significant at P  <  0.05. 

Table 3.5 reveals that a large number of strains used demonstrate an almost perfect 

positive correlation, with an r value of almost +1 (the highest possible value). 

However, certain strains do not follow this trend.  For example, C13 (Enterobacter 

cloacae) has an R value of 0.06.  Since this value is closest to 0, this suggests that 

there is little correlation.  Reviewing of the original data reveals that there is minimal 

reduction for all exposure times for this strain; it is highly resistant to the treatment, 

and therefore does not follow the overall trend. The majority of r values are 

statistically significant. 

 

3.2.2.3   Inter-species variation in BL inactivation as a function of exposure 

time 

 

An example of inter-species variation is the contrast between strains belonging to the 

species Enterobacter and Acinetobacter respectively.  Whilst the degree of bacterial 

reduction within strains in the former species is low, a strain of the latter species 

possesses a strong r value (C31).  This is also demonstrated in Table 3.6, which lists 

the cumulative reduction values for all four exposure times.  

 

3.2.2.4  Intra-species variation in BL inactivation as a function of exposure 

time 

 

Table 3.6 demonstrates that there is also intra-species variation in the inactivation 

data.  The most prominent example of this is the data obtained from the Serratia 

strains.  Whilst there is negligible difference between the two Serratia liquifaciens 

strains (C30 and C39), there is a significant difference in the inactivation rates 

between these and the Serratia marcescens strain (C45).  In addition to this, there is 

also a broad range of inactivation efficiency within the Pseudomonas aeruginosa 

strains, with the smallest value of 2.88 and the largest value of 12.25.  The size of the 

difference between the Salmonella mutants is comparable with the Pseudomonas 
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mutants, with the differences between the highest and lowest values being 9.38 and 

7.83 respectively. 

 

Table 3.6.  Cumulative values of the average* degree of inactivation for all exposure 

times. 

Strain Genus Total  

Inactivation  

Score* 

C31 Acinetobacter 13.38 

C45 Serratia 12.33 

pseud3 Pseudomonas 12.25 

P1 Pseudomonas 10.38 

pseud1 Pseudomonas 9.20 

pseud2 Pseudomonas 9.00 

S2 Salmonella 8.00 

E19 Pseudomonas 7.25 

C38 Acintobacter 7.17 

E28 Pseudomonas 6.57 

C4 Citrobacter 6.13 

S5 Salmonella 5.00 

E24 Pseudomonas 4.88 

S7 Salmonella 4.83 

S8 Salmonella 4.50 

S1 Salmonella 4.17 

S3 Salmonella 4.00 

C1 Escherichia 3.86 

P16 Pseudomonas 2.88 

C30 Serratia 2.75 

C39 Serratia 2.71 

C8 Citrobacter 2.67 

C29 Enterobacter 2.50 

S6 Salmonella 2.17 

C25 Enterobacter 1.29 

C13 Enterobacter 0.71 

C44 Raoultella 0.67 

S4 Salmonella 0.17 

*average value across all dilutions and droplet positions, as described in section 2.6. 

 

The above table lists the cumulative values for the inactivation rates for all of the 

exposure times (5, 10, 15 and 20 minutes) combined for each species, in descending 

order. 
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3.2.2.5  Impact of different OxyR mutations on inactivation efficacy of 

Salmonella enteric serovar Typhimurium  

 

To assess the involvement of the correct functioning of the transcriptional regulator 

OxyR in Salmonella enterica serovar Typhimurium, a variety of mutant strains 

provided by Dr John Roth (University of California) were included in the exposure-

time experiments (refer to table 2.2 for the list of mutants). By reviewing the values in 

Table 3.6, it can be seen that the Salmonella mutant strains display a range of 

sensitivities, but not within the predicted trends.  From Table 2.2, the strains where the 

Tn10 insertions are located near to the mutant oxyR gene are S6 and S7.  These mutant 

oxyR genes are oxyR1 and oxyR2 respectively.  These are the result of dominant 

mutations in oxyR that lead to constitutive expression of oxyR. Subsequently, strains 

with these mutations are highly resistant to oxidative stress. Whilst this appears to be 

the case for S6, S7 is the third most sensitive mutant strain, and has a total inactivation 

value that is within the mid-range of the spectrum for all of the bacterial strains.  

Conversely, strain S4 is the most resistant of both the Salmonella mutant strains and 

all of the bacterial strains featured in the experiments.  This is a deletion mutant, 

where the deletion ranges from oxy1 to argH.  Therefore, it was predicted to display 

high sensitivity to oxidative stress.  However, strain S2 shows sensitivity to oxidative 

stress, as the most sensitive Salmonella strain.  This mutant features disruption to the 

oxyR gene due to the incorporation of Tn10.  

 

3.2.2.6  Influence of incorporation of a UV-resistance plasmid 

 

To investigate the influence of UV-resistance on BL inactivation, Pseudomonas 

putida mutant strains provided by Dr Glenn Rhodes (CEH, Lancaster) were also 

included in the experiments.  From Table 3.6 it can be seen that all three P. putida 

strains were the most sensitive Pseudomonas strains.  Furthermore, the strain with the 

pWW0 plasmid (pseud3) is more sensitive than the wild-type and deletion strains 

(pseud1 and pseud2 respectively).  Therefore, it can be concluded that the carriage of 

a UV resistance gene is not advantageous during BL exposure. 
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3.2.2.7  Impact of bacterial concentration on BL-inactivation as a function 

of exposure time 

 

To test the impact of bacterial concentration of inactivation efficiency of BL, eight 

dilutions of each strain were included in the exposure-time experiments.  To aid in the 

analysis, the dilutions performed were 1 in 10 serial dilutions, ranging from      to 

    .  All dilutions of each strain were present on the same plate.  The arbitrary rating 

scale (section 2.7.1) was used to define the inactivation efficacy and a Chi-squared 

test of Independence was used to either accept or reject the null hypothesis that 

bacterial concentration has no impact on bacteria inactivation by BL (section 2.8.1).  

This was performed independently for each of the exposure times; because the droplet 

position was later shown to have no statistically significant effect on the degree of 

bacterial inactivation (refer to section 3.2.2.8), the values used for each exposure time 

were the averaged values across all three droplet positions (section 2.6 and Figure 

2.3).  The Chi-squared and p values for each exposure time are shown in Table 3.7. 

 

*Statistically significant at P < 0.05 

 

The p value for the analyses conducted for each exposure time are below the 

significance level of 0.05. Therefore, the impact of bacterial concentration on 

inactivation efficacy for all exposure times is statistically significant, and the null 

hypothesis can be rejected. 

Exposure Time 

(minutes) 

Chi squared value p value 

5 61.6 0.000253* 

10 69.3 0.000023* 

15 91.6 <0.00001* 

20 67.5 0.000041* 

Table 3.7. Chi-square statistics and p values for the chi-squared analysis for the 

impact of bacterial concentration for individual BL exposure times.  
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3.2.2.8   Impact of droplet position on BL inactivation as a function of 

exposure time 

 

To test the impact of droplet position on inactivation efficiency of BL, three droplet 

positions of each dilution were featured on the plate (refer to section 2.6 and Figure 

2.3).  A Chi-squared test was performed on the inactivation of strains in each position 

(1-3) for each exposure time.  The results are displayed in Table 3.8. 

 

Table 3.8.  Results from the chi-squared analysis of the impact of droplet position on 

bacterial inactivation by BL, for the range of exposure-times used. 

Exposure Time 

(minutes) 

Chi-squared value p value 

5 12.0 0.151651 

10 6.37 0.605663 

15 8.60 0.377244 

20 4.39 0.820327 

  

The p value for the analyses conducted for each exposure time are all above the 

significance level of 0.05. Therefore, the impact of droplet position on inactivation 

efficacy for all exposure times is statistically insignificant, and the null hypothesis that 

droplet position has no impact of bacterial inactivation can be accepted.  

 

3.3 Sample-distance experiments 

3.3.1 Objectives 

 

The objectives of the ‗sample-distance‘ experiments were to evaluate the impact of the 

distance between the surface of the agar plate and the LED array described in section 

2.5 on the level of bacterial inactivation.  This was mainly assessed using the arbitrary 

rating scale (section 2.7.1) to determine the relative reductions in the quantity of 

bacterial colonies within 2 μl droplets of bacterial suspension (section 2.6) on a TSA 
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plate compared to a non-exposed control.  In addition to this, analysis of the results 

was performed to answer the hypotheses stated in section 2.8.1. These will be 

discussed in the following sections. 

 

3.3.2 Impact of sample-distance on bacterial reduction 

 

The average inactivation values for each bacterial strain (across all dilutions and 

droplet positions), using the arbitrary rating scale (section 2.7.1) are displayed in 

Figure 3.4.  The average values were used due to the high volume of data produced.  

The results displayed in Figure 3.4 show comparable trends to those in Figure 3.2. 

These are: 

i) There is a high degree of variation in the degree of inactivation between 

bacterial strains.  This can be divided on both an inter- and intra-species 

basis. 

ii) There is a relationship between sample-distance and degree of bacterial 

inactivation. 

iii) There is a correlation between the two variables accordingly. 

To test the statistical strength of the above two observations, the Chi-squared test of 

independence and Pearson‘s product moment correlation coefficient were used 

accordingly.   
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3.3.2.1  Chi-squared test of independence 

 

To test if the relationship between the distance between the sample and LED array and 

the degree of bacterial inactivation was significantly different, a chi-squared test was 

applied to the data for each droplet position.  

 

Table 3.9.  Results from the Chi-squared analysis of the impact of sample-distance on 

degree of bacterial inactivation for all three droplet positions.  

Droplet Position Chi-square value p value 

1 77.0 <0.00001* 

2 68.7 <0.00001* 

3 39.0 <0.00001* 

*statistically significant at P < 0.05  

 

The p values for the analyses conducted for each droplet position regarding the 

relationship between sample-distance and degree of inactivation efficiency are below 

the significance level of 0.05.  Therefore, they data is statistically significant and the 

null hypothesis that sample-distance has no impact on inactivation efficacy can be 

rejected, for all three droplet positions.  

 

3.3.2.2   Pearson’s product moment correlation coefficient 

 

The second test was performed to determine the strength of linear association between 

two variables, in this case the exposure time and degree of bacterial inactivation. This 

is known as the Pearson‘s Product-Moment Correlation Coefficient, which generates 

an r value between two variables. This value ranges from  -1 to +1, representative of a 

perfect negative correlation through to a perfect positive correlation accordingly. A 

value of or close to zero is therefore representative of no correlation. The results are 

displayed in Table 3.10.  
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Table 3.10. Pearson‘s Product Moment Correlation Co-efficient r values for bacterial 

strains in the sample-distance experiments.  

*Statistically significant at P < 0.05 

 

Table 3.10 contains the r values for the bacterial strains in the sample-distance 

experiments.  These were calculated in the same manner as those r values for the 

exposure-time experiments in section 3.2.2.2.  From Table 3.10, the majority of strains 

have a strong negative R value.  This illustrates that the photoinactivation efficiency 

of the majority of the strains decreased with increasing distance.  However, there are 

anomalies present within the data.  C44 shows a positive R value of 0.49.  By 

referring to Figure 3.6, it can be seen that this is in line with the fact that the degree of 

inactivation for 4 cm is higher than that for 2 and 3 cm.  Since there is not a clear 

trend on the graph, and the degrees of inactivation for all heights are ≤ 25 %, it can be 

concluded that this result is due in part to the resistance of this strain to BL.  Pipetting 

Bacterial Genus Bacterial Strain r value p value 

Salmonella S8 -0.94 0.00013* 

Enterobacter C29 -0.90 0.000821* 

Salmonella S3 -0.88 0.00185* 

Pseudomonas pseud2 -0.87 0.002118* 

Escherichia C1 -0.85 0.004134* 

Pseudomonas P1 -0.84 0.00441* 

Pseudomonas pseud1 -0.84 0.00489* 

Pseudomonas E19 -0.84 0.00499* 

Serratia C39 -0.83 0.005407* 

Pseudomonas pseud3 0.83 0.005515* 

Pseudomonas E24 -0.83 0.00585* 

Pseudomonas E28 -0.82  0.00643* 

Salmonella S1 0.82 0.00643* 

Salmonella S2 -0.80 0.009008* 

Citrobacter C8 -0.76 0.017472* 

Enterobacter C27 -0.75 0.020201* 

Salmonella S5 -0.67 0.049711* 

Enterobacter C13 -0.65 0.056031 

Salmonella S4 -0.61 0.080468 

Salmonella S7 -0.60 0.085634 

Serratia C30 -0.58 0.09943 

Salmonella S6 -0.55 0.124977 

Acinetobacter  C43 -0.33 0.390381 

Acinetobacter  C10 -0.16 0.675204 

Raoultella C44 0.49 0.182308 
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error could account for the differences in the size of the 2 μl droplets, making it appear 

that there are differences affected by the light.  The relative resistance of other 

bacterial strains to BL, such as S6, is also reflected in the r value. Where there is little 

degree of inactivation, the trend will be to a lesser extent than for the more sensitive 

strains, with the exception of C10 and C43, which are so sensitive a trend is not 

apparent due to consistent high-level inactivation. 

 

3.3.2.3. Inter- and intra-species related differences in inactivation efficacy 

 

Table 3.11. Cumulative values of the average* degree of inactivation for all strains 

involved in the sample-distance experiments.  

Strain Genus Total Inactivation  

Score* 

C10 Acinetobacter 70.33 

C43 Acinetobacter 64.33 

pseud3 Pseudomonas 52.33 

S7 Salmonella 51 

S2 Salmonella 46.67 

S5 Salmonella 45.33 

E24 Pseudomonas 41.67 

pseud1 Pseudomonas 41.33 

pseud2 Pseudomonas 40.33 

S3 Salmonella 38 

P1 Pseudomonas 36.67 

E19 Pseudomonas 30.67 

C8 Citrobacter 30 

S1 Salmonella 25.33 

S8 Salmonella 25.33 

E28 Pseudomonas 25 

C29 Enterobacter 21.67 

C30 Serratia 18.67 

S4 Salmonella 16.33 

S6 Salmonella 16.33 

C27 Enterobacter 15 

C1 Escherichia 10.33 

C39 Serratia 10 

C44 Raoultella 7.33 

C13 Enterobacter 1.33 

*average value across all dilutions and droplet positions, as described in section 2.6.3. 
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From table 3.11, some of the trends that existed for the exposure-time experiments are 

present within the sample-distance results.  For example, the relative sensitivities of 

Acinetobacter and Enterobacter remain highly sensitive and resistant respectively. 

The strains belonging to the Salmonella and Pseudomonas species display a 

sensitivity spectrum, as was observed in the exposure-time experiments.  However, 

there are some differences in the patterns in bacterial inactivation in this set of 

experiments.  Whereas mutant Salmonella strain S4 was the most resistant organism 

for the exposure-time experiments, this is no longer the case.  In addition to this, the 

total inactivation score for S4 is equalled by S6.  Therefore, whilst the former strain 

has become less resistant compared to the dataset as a whole, the opposite has 

occurred to the latter strain.  Whilst there was considerable difference between the 

pure strain Acinetobacter baumannii(C31) and the un-defined Acinetobacter spp. 

strain (C38) in the exposure-time experiments, both Acinetobacter strains are of 

similar inactivation efficiency in this set of experiments.  The Enterobacter strains 

appear to be more widely distributed amongst the inactivation spectrum in these 

experiments compared to the former set of experiments. 

 

3.3.2.4  Impact of different OxyR mutations on inactivation efficacy of 

Salmonella enteric serovar Typhimurium  

 

As with the exposure-time experiments, the Salmonella mutant strains were also 

included in the sample-distance experiments.  The objectives remained the same.  The 

order of sensitivity of the mutant strains was different during this set of experiments. 

Whilst S4 was still the most resistant Salmonella mutant strain, it was not the most 

resistant strain overall, as discussed in the previous section.  Furthermore, the total 

inactivation score for S6 was tied with that for S4.  Strain S7 displayed increased 

sensitivity, taking the position of the most sensitive Salmonella mutant strain.  The 

only strain to remain in the same position on the sensitivity spectrum of the 

Salmonella strains was strain S1.  These inconsistencies introduce difficulty in 

assessing the impact of OxyR mutations on inactivation via BL. 
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3.3.2.5  Influence of incorporation of a UV-resistance plasmid 

 

In contrast to the inconsistency of the results for the Salmonella mutant strains, the P. 

putida strains illustrated the same order of sensitivity to BL in the sample-distance 

experiments as that for the exposure-time experiments. This reinforces the conclusion 

made in section 3.2.2.6 that the carriage of a UV resistance gene is not advantageous 

during BL exposure. 

 

3.3.2.6  Impact of bacterial concentration on BL inactivation as a function 

of sample-distance 

 

The impact of bacterial concentration on inactivation rates was assessed by analysing 

the degree of bacterial inactivation over the range of dilutions described in sections 

2.6 and 3.2.2.7. The arbitrary rating scale was used to define the inactivation efficacy 

and a Chi-squared test of Independence was used to either accept or reject the null 

hypothesis that bacterial concentration has no impact on bacteria inactivation by BL 

(section 2.8.1).  This was performed independently for each of the sample-distances 

featured (section 2.6.2), within each of the droplet positions (section 2.6). The results 

are displayed in Table 3.12. 

 

 

 

 *statistically significant at P < 0.05 

 

  Position 1 Position 2 Position 3 

2 CM  0.038084* 0.083 0.091 

3 CM 0.038* 0.093 0.24 

4 CM 0.06 0.214 0.17 

Table 3.12.  p values from the chi-squared analyses of impact of bacterial 

concentration, for i) the different sample-distances (2-3 cm) and ii) droplet 

positions (section 2.6.3). 

 

  Position 1 Position 2 Position 3 

2 CM  0.038084 0.083 0.091 

3 CM 0.038 0.093 0.24 

4 CM 0.06 0.214 0.17 

 Table 3.10. p values from the chi-squared analyses of impact of bacterial concentration, 

for i) the different sample-distances (2-3 cm) and ii) droplet positions (section 2.6.3). 
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From Table 3.12, the majority of the p values are not statistically significant. This 

indicates that in these cases, bacterial concentration did not have a significant effect 

on bacterial inactivation, and the null hypothesis can be accepted. The null hypothesis 

can be rejected for the inactivation data for the sample-distances of 2 cm and 3 cm in 

droplet position 1, where the p values are statistically significant.  

 

3.3.2.7  Impact of droplet position on BL inactivation as a function of 

sample-distance 

 

To test the impact of droplet position on inactivation efficiency of BL, three droplet 

positions of each dilution were featured on the plate (refer to section 2.6 and Figure 

2.3).  A Chi-squared test was performed on the inactivation of strains in each position 

(1-3) for each exposure time.  The results are displayed in Table 3.13. 

 

Table 3.13.  P values of the impact of droplet position on inactivation efficacy on 

bacterial inactivation for each sample-distance.  

  2 cm 3 cm 4 cm 

POS1 0.000067* <0.00001* 0.689615 

POS2 0.000067* <0.00001* 0.689615 

POS3 0.000067* <0.00001* 0.689615 

*statistically significant at P < 0.05 

 

From Table 3.13, the p values for the sample-distances 2 cm and 3 cm, across all 

droplet positions, are below the significance level.  They are therefore statistically 

significant, and the null hypothesis that bacterial concentration has no impact on 

bacterial inactivation can be rejected for these parameters.  However, none of the p 

values for the sample distance of 4 cm are statistically significant.  Consequently, the 

null hypothesis can be accepted for the sample-distance 4 cm within all droplet 

positions.  
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Following on from this, the relationship between pairs of distances was assessed using 

the Chi-squared analysis. The results are shown in Table 3.14.  

 

Table 3.14.  p values obtained from the Chi-squared analysis of the difference in 

bacterial inactivation between pairs of the distance samples used.  Separate analyses 

were performed for each droplet position (1-3).  

  2/3 cm 2/4 cm 3/4 cm 

POS1 0.08 <0.00001* 0.000011* 

POS2 0.000139* <0.00001* 0.007* 

POS3 0.004* <0.00001* 0.084 

*statistically significant at P < 0.05 

 

From Table 3.14, it can be seen that the majority of the p values between the pairs of 

sample-distances are statistically significant.  The exceptions to this are for the 2/3 cm 

pair for droplet position 1 and the 3/4 cm pair for position 3.  These results reinforce 

the conclusion drawn from Table 3.13.  

 

3.4 Continuous versus Pulsed Experiments 

3.4.1 Overview 

 

In this set of experiments, the efficacy of two modes of BL was assessed.  These were: 

i) Continuous BL exposure mode 

ii) Pulsed BL exposure mode 

In the pulsed mode, the input voltage value was three times greater than that for 

continuous mode.  The purpose of this was to determine if the degree of inactivation 

of bacteria could be achieved within a shorter period of time following exposure to 

short, powerful pulses of BL as opposed to longer durations of continuous BL 

exposure.  This was assessed using spread plates as described in section 2.6.3.  The 

organisms used were a representative sample of the sensitivity spectrum within the 
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population of strains previously used in the BL experiments.  Therefore, they ranged 

from very sensitive (Acinetobacter spp.) to very resistant (Raoultella ornithinolytica), 

with strains of intermediate sensitivity included.  The results from the exposure-time 

and sample-distance experiments were assessed to allow the optimum sample distance 

and exposure time parameters to be selected.  These were a distance of 2 cm for a 

duration of 10 minutes. The dilution used was     , since at this dilution the colonies 

were within an accurate countable range (30-300).  The log₁₀ reductions of the 

bacterial strains following exposure to continuous and pulsed BL are displayed in 

Table 3.15. 

 

3.4.2 Impact of continuous and pulsed BL exposure on bacterial inactivation 

 

Table 3.15.  Inactivation rates of Escherichia coli, Acinetobacter spp., Enterobacter 

cloacae, Raoultella ornithinolytica and Serratia marcescens following exposure to 10 

minutes of continuous or pulsed BL.   

Bacterial 

Strain 

Control Continuous Log₁₀ 
Reduction 

Pulsed Log₁₀ 
Reduction 

Escherichia 

coli 
1.23 x 10⁹ 1.6 x 10⁸ 0.89* 1.11 x 10⁹ 0.04 

Acinetobacter 

spp. 
3.9 x 10⁸ 1 x 10⁷ 1.59* 2.6 x 10⁸ 0.18 

Enterobacter 

cloacae 
2.15 x 10⁹ 1.69 x 10⁸ 1.10* 2.07 x 10⁹ 0.02 

Raoultella 

ornithinolytica 
6.2 x 10⁸ 5.4 x 10⁸ 0.06* 6.1 x 10⁸ 0.01 

Serratia 

marcescens 
1.1 x 10⁸ 5 x 10⁷ 0.34* 7 x 10⁷ 0.20 

*statistically significant at P < 0.05 

 

From Table 3.15, it is apparent that the continuous mode of exposure to BL is more 

effective than the pulsed.  This is reinforced by the fact that only the reductions from 

continuous light exposure are statistically significant, as calculated using a Paired T–

Test (2 tailed).  An anomalous result for the continuous exposure was obtained for 

strain Enterobacter cloacae.  This was predicted to be the second most resistant, after 

Raoultella ornithinolytica.  However, it is the second most sensitive strain for 

continuous BL.  A fact that makes this further surprising is that the starting numbers 
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for Enterobacter cloacae are the highest.  Theoretically, this should heighten the 

resistance of the bacteria due to shielding effects.  However, this is not the only 

anomaly.  The Acinetobacter spp. was predicted to have the greatest levels of 

reduction for both types of exposure.  Whilst this was the case for continuous 

exposure, it is the third most susceptible for the pulsed exposure.  

 

3.5 Temperature Experiments 

3.5.1 Objective 

 

During the continuous exposure experiments carried out in section 3.4, it was 

observed that the agar surface reached temperatures up to 40 °C.  Subsequently, a set 

of experiments to determine if exposure of bacterial suspensions to 40 °C heat had a 

significant effect on bacterial viability were conducted.  This was achieved by using 

the same dilution used for the spread plates for the continuous and pulsed BL 

exposure experiments in section 3.4.  The results from the temperature experiments 

are recorded in Table 3.16.  

 

3.5.2  Impact of 40 ⁰C heat on bacterial inactivation 

 

 

 

Bacterial 

Strain 

Control Light Log₁₀ 
Reduction 

Heat Log₁₀ 
Reduction 

Escherichia coli 9.1 x 10⁸ 1.4 x 10⁸ 0.81* 9.3 x 10⁸ -0.001 

Acinetobacter 

spp. 

1.38 x 

10⁹ 
1 9.14* 1.15 x 10⁹ 0.08 

Enterobacter 

cloacae 

2.12 x 

10⁹ 
9.8 x 10⁸ 0.34* 2.13 x 10⁹ -0.002 

Raoultella 

ornithinolytica 

1.22 x 

10⁹ 
5 x 10⁸ 0.39* 1.1 x 10⁹ 0.04 

Serratia 

marcescens 
3.5 x 10⁸ 1 x 10⁸ 0.54* 5.2 x 10⁸ -0.17 

Table 3.16.  Comparison of inactivation of Escherichia coli, Acinetobacter spp., 

Enterobacter cloacae, Raoultella ornithinolytica and Serratia marcescens from 10 

minutes of continuous BL and 40 ⁰C heat.  Where there is an asterisk, the reduction 

is statistically significant at P < 0.05 
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In contrast to Table 3.15, Enterobacter cloacae is the most resistant strain to both the 

light exposure plates and heat controls, whilst Acinetobacter spp. is the most sensitive 

in both cases.  For all of the strains, the change in bacterial count following exposure 

to 10 minutes of 40 °C heat was not significantly different from the controls.  In 

contrast, all of the counts for the bacteria exposed to continuous blue light for 10 

minutes were significantly different from the controls.  It can therefore be concluded 

that despite the increase in temperature during light exposure experiments, the 

inhibitory growth effects observed from the plate counts are independently caused by 

BL, with no interference from the temperature change observed for the bacterial 

strains involved.  This is reinforced by the results gained from the Pseudomonas 

experiments in the section below.  

 

3.6  Influence of UV-resistance on BL-mediated bacterial inactivation  

3.6.1 Overview 

 

To determine if the fitness trait of UV-resistance was advantageous to BL 

inactivation, three Pseudomonas aeruginosa mutants were included in the study.  Two 

of these carried a plasmid (pWW0) that encoded a UV-resistance gene, whilst the 

other served as a control.  These were included in the exposure-time and sample-

distance experiments for an initial indication of the influence of a UV-resistance gene 

on efficacy of BL inactivation.  Following the conclusion that there was no observable 

influence within both of the BL experiments, spread plate experiments were 

conducted to determine if the inactivation of the P. putida strains was statistically 

significant.  
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3.6.2 BL-inactivation of Pseudomonas aeruginosa mutants by exposure to both 

modes of BL exposure and 40⁰C heat 

 

 

 

 

 

For all three Pseudomonas strains, the reductions in colony numbers from both types 

of BL were significantly different (P  <  0.05).  For the temperature experiments, 

pseud3 was significantly different; however, this is because the cell counts were 

actually higher than the control plates.  These results suggest that 40 °C heat has no 

adverse effects on the Pseudomonas isolates used. The numbers of colonies for the 

controls varies slightly. This could be attributed to slightly different growth rates 

among the strains. Alternatively, the inoculation of the strains into broth for liquid 

culture, using a loop, could have resulted in introduction of fewer or more colonies per 

inoculum. Finally, there could have been differences in the numbers of bacteria in the 

colonies of the different strains. The method of using optical density is not precise 

enough for exact numbers to be calculated. Since the order of magnitude of all three 

strains (10⁸) is equivalent, this was considered acceptable for the purposes of this 

Masters project.  

 

 

Bacterial 

Strain 

Control Continuous 

Light 

Log₁₀ 
Reduction 

Pulsed 

Light 

Log₁₀ 
Reduction 

Heat 

(40⁰C)  

Log₁₀ 
Reduction 

pseud1 1 x 10⁸ 1 x 10⁷ 1.10* 6 x 10⁸ -0.68* 6.4 x 

10⁸ 
-0.70 

pseud2  8 x 10⁸ 1 x 10⁷ 1.89* 1 x 10⁸ 0.81* 5.1 x 

10⁸ 
0.18 

pseud3 5 x 10⁸ 2 x 10⁷ 1.42* 2 x 10⁸ 0.42* 6.6 x 

10⁸ 
+0.10* 

Table 3.17. Comparison of the inactivation of Pseudomona putida mutants by 

continuous BL, pulsed BL and 40 ⁰C heat following an exposure time of 10 minutes. 

Where there is an asterisk, the reduction is statistically significant at P < 0.05 . 
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3.7  UV experiments 

3.7.1 Overview 

 

A set of experiments using UV light to inactivate the bacterial strains that featured in 

the previously described spread-plate experiments were conducted to assess if the 

inactivation patterns resulting from exposure to UV were similar to those illustrated 

following BL exposure.  As with the exposure-time and sample-distance experiments 

(sections 3.2 and 3.3 respectively), the droplet method was applied (section 2.6).  

However, there were changes in the plate layout (section 2.6.5). 

 

3.7.2  UV light inactivation of bacteria as a function of exposure-time 

 

The results of these experiments are shown in Figure 3.5.  From this, it can be seen 

that as with BL-inactivation, there is a relationship between the degree of bacterial 

inactivation and the duration of exposure-time.  The statistical tests used to determine 

the significance of this relationship, along with strength of linear association between 

the two variables being analyzed, were applied to this data set.  
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3.7.2.1. Chi-squared test of independence  

 

The Chi-squared test of independence was conducted on the variables exposure-time 

and degree of bacterial inactivation following exposure to a UV transilluminator (302 

nm).  The results are displayed in Table 3.18. 

 

 

 

The chi-square value was 24.41 and the p value was 0.001954.  The differences in 

UV-inactivation for the sample-distances are therefore statistically significant, and the 

null hypothesis can be rejected.  This led to the analysis for pairs of exposure times.  

The results are shown in Table 3.19. 

 

Table 3.19.  p values obtained from the Chi-squared analysis of the pairs of exposure 

times of bacterial strains to UV (302 nm). 

Pairs of exposure times (seconds)  p value 

5 and 10 0.004701* 

5 and 15 0.000718* 

10 and 15 0.482455 

*statistically significant at P < 0.05 

 

 5 SECS 10 SECS 15 SECS Row Totals 

0 17 (10.33) [4.30] 8 (10.33) [0.53] 6 (10.33) [1.82] 31 

1 11 (8.00) [1.12] 8 (8.00) [0.00] 5 (8.00) [1.12] 24 

2 9 (6.00) [1.50] 3 (6.00) [1.50] 6 (6.00) [0.00] 18 

3 3 (4.00) [0.25] 6 (4.00) [1.00] 3 (4.00) [0.25] 12 

4 8 (19.67) [6.92] 23 (19.67) [0.56] 28 (19.67) [3.53] 59 

Column 

Totals 

48 48 48 144 (Grand Total) 

Table 3.18.  Contingency table for Chi-squared analysis of impact of sample-distance on 

UV-inactivation of bacteria. 
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From Table 3.19, it can be seen that the only pair of exposure times to not yield a 

significant p value was 10 and 15 seconds of UV exposure.  By consulting Figure 3.5, 

it can be seen that the inactivation scores for 10 seconds of exposure are either very 

close or equal to those for 15 seconds of exposure for the Pseudomonas strains; 

however, this is not the case for the Enterobacteriaceae. 

 

3.7.2.2  Pearson’s product moment correlation coefficient 

 

The results of the Pearson‘s product moment correlation coefficient performed for the 

range of exposure-times for the UV experiments are displayed in Table 3.20. 

 

Table 3.20.  r values from the Pearson‘s product moment correlation coefficient for 

UV exposure times and bacterial inactivation. 

Strain r value p value 

Escherichia coli 0.962504 0.000032* 

Acinetobacter spp 0.996616 < 0.00001* 

Enterobacter cloacae  0.933257 0.000238* 

Serratia marcescen  0.944911 0.000122* 

Raoultella ornithinolytica  0.99705 < 0.00001* 

pseud1  0.866025 0.002538* 

pseud2  0.866025 0.002538* 

pseud3  0.866025 0.002538* 

*statistically significant at P < 0.05 

 

All of the above strains illustrated high r values, indicating that there is a strong 

(positive) linear relationship between exposure-time of bacteria to UV light and 

degree of inactivation. 
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3.7.2.3  Inter-species variation of UV light-induced inactivation of bacteria 

 

The difference in total inactivation rates between the bacterial strains can be observed 

from the values in Table 3.21.  

 

Table 3.21. Cumulative values of the average* degree of inactivation for all strains 

involved in the sample-distance experiments using UV light.  

Bacterial Strain 

Total Inactivation 

Score* 

pseud1  9.17 

Serratia marcescen  8 

Acinetobacter spp 7.83 

Enterobacter cloacae  6.67 

pseud3  6.5 

Escherichia coli 6.33 

pseud2  6.33 

Raoultella ornithinolytica  4.5 

*average value across all dilutions, as described in section 2.6.5. 

 

3.7.2.4  Impact of bacterial concentration on bacterial inactivation by UV 

light  

 

The impact of bacterial concentration on inactivation rates was assessed by analysing 

the degree of bacterial inactivation over the range of dilutions described in sections 

2.6 and 3.2.2.7.  The arbitrary rating scale was used to define the inactivation efficacy 

and a Chi-squared test of Independence was used to either accept or reject the null 

hypothesis that bacterial concentration has no impact on bacteria inactivation by UV 

(section 2.8.1).  This was performed independently for each of the sample-distances 

featured (section 2.6.6). 
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Table 3.22.  Results from the Chi-squared analysis of the impact of bacterial 

concentration on bacterial inactivation by UV light as a function of exposure-time.  

Exposure time (seconds)  Chi-squared value p value  

5 67.7 <0.00001* 

10 76.3 <0.00001* 

15 75.2 <0.00001* 

*statistically significant at P < 0.05 

 

The p values for all of the exposure-times were statistically significant. The null 

hypothesis that bacterial concentration has no impact on bacterial inactivation (via 

exposure to UV) can therefore be rejected. 

 

3.8. Summary of results 

 

The following facts have been established following analysis of results obtained from 

the sets of experiments described in the above sections. In summary: 

 The relationship between length of exposure of bacteria to both BL and UV 

light is a statistically significant. 

 For the majority of strains, high positive r values obtained from the Pearson‘s 

product moment correlation coefficient indicate a strong linear relationship 

between length of light exposure and degree of bacterial inactivation.   

 There is a high amount of both inter- and intra-species variation in level of BL-

inactivation for both the exposure-time and sample-distance experiments. 

 The impact of bacterial concentration on bacterial inactivation by BL is 

statistically significant for each exposure time in the exposure-time 

experiments. 

 However, the influence of droplet position is not statistically significant within 

the exposure-time experiments. 

 The impact of the distance between the sample and LED array is statistically 

significant for all sample-distances, across all droplet positions. 
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 The majority of strains possess high negative r values obtained from the 

Pearson‘s product moment correlation coefficient indicate a strong linear 

relationship between sample-distance and degree of bacterial inactivation. 

   The impact of bacterial concentration on BL-inactivation was only 

statistically significant for the sample-distances of 2 cm and 3 cm within 

position 1.  The rest of the combinations of droplet position and sample-

distance were not. 

 Furthermore, the impact of droplet position on BL-inactivation of bacteria was 

only statistically significant at the sample-distances 2 cm and 3 cm. 

 Continuous BL exposure was more effective for the bacterial inactivation of 

the  five representative strains than pulsed BL; this was reflected in the results 

of the t-test, in which only the reductions obtained from continuous BL 

exposure were statistically significant.   

 Exposure of these strains to 40 ⁰C heat had no statistically significant impact 

on bacterial viability 

 Exposure of the Pseudomonas putida mutant strains carrying UV-resistance 

genes resulted in statistically significant reductions for both continuous- and 

pulsed-BL exposure; therefore the UV-resistance do not confer an 

advantageous fitness trait in these circumstances 

 The differences in UV-inactivation for the sample-distances were statistically 

significant. 

 In comparison to the results gained from the BL-inactivation experiments, the 

total inactivation scores for UV-inactivation of the bacterial strains were on a 

smaller range. 

 The differences in UV-inactivation for the exposure-times were statistically 

significant. 
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Discussion 

4.1 Overview 

 

The purpose of this project was to design and conduct sets of experiments to 

determine the following: 

 The range of exposure times to Blue light (BL) that generates adequate 

bacterial reduction across the majority of a large number of bacterial strains 

within time scales that are practical for industrial applications; 

 The range of distances between the light source and bacteria that is practical 

for industrial applications: 

o Whilst also keeping the exposure time practical; 

o For the majority of bacterial strains featured in the experiments.  

 Impact of bacterial concentration on inactivation by BL. 

 Within the sample distances used, is the light intensity evenly distributed over 

the area (agar plate) involved in the experiments? 

 Do UV-resistance genes confer advantageous traits to bacteria that possess 

them? 

 Are the bacterial sensitivities/resistances to BL reflected in the inactivation 

kinetics for UV inactivation? 

The results obtained from the experiments will be discussed in the following sections, 

in addition to how these contribute to current understanding of BL-inactivation of 

bacteria, interpretation of the results in the context of practical applications and future 

work. 

4.2 Choice of bacterial strains 

 

From 2008, the five most common Gram negative human pathogens were named as 

Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter spp 

and  Acinetobacter baumannii (Steven & Luis 2013).   Four out of five of these 

species have been selected for use in the experiments in this project, in reflection of 
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the need to find alternatives to antibiotics to target these pathogens.  In addition to 

this, all of the strains belonging to the Enterobacteriaceae family were isolated from 

patient samples and various target sample sites within the Blackpool Victoria 

Hospital.  They are, therefore, recent isolates that are representative of a diverse set of 

environmental and clinical backgrounds.  Following on from this, the accuracy of 

using reference strains (from national or private culture collections) to investigate 

bacteria has been previously questioned (Fux et al., 2005).  This is due to the evolving 

of the genomes of these strains due to decades of sub-culturing within laboratory 

conditions, where many genes are made redundant resulting in expression of a 

different genotype (Fux et al., 2005) thus they no longer represent bacteria in the 

environment.  It was highlighted by Fux et al., (2005) that this could lead to the 

exclusion of pathophysiological mechanisms present within the wild-type strains, 

rendering research on the pathology of laboratory strains incomplete.  Therefore, the 

use of wild-type strains as opposed to reference strains could have potentially widened 

the scope of the experiments.  

4.3  Choice of wavelength and light source 

 

Reviewing the scientific literature revealed a clear pattern with regards to the 

wavelength of choice in the blue region of the electromagnetic spectrum; the majority 

of studies investigating the impact of blue light on bacteria chose the wavelength 405 

nm (refer to section 1.2.1 and table 1.2). A theory behind the effectiveness of this 

wavelength is that most porphyrins are said to contain a sorbet band of 380 – 500 nm 

(Fyrestam et al. 2015) with peak wavelengths of 400 – 410 nm (Touma et al. 2004).  

This explains why although 405 nm appears to be the most effective wavelength, there 

are reports of 470 nm exerting similarly detrimental effects on some bacteria.  Due to 

the quantity of studies using 405 nm, it was logical to use this wavelength in the 

present study. This light was delivered via a light-emitting diode (LED) array, which 

was the product of joint work between myself and Marl International Limited, with 

whom I collaborated with for this project. It is worth noting that the year this project 

commenced (2014), the Nobel Prize in Physics was awarded to Isamu Akasaki, 

Hiroshi Amano and Shuji Nakamura, for Blue LED innovation (MLA 2014). They 

achieved this by overcoming the challenge of creating a blue LED, which had 

previously presented difficulties for three decades prior to their break-through. The 
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blue LEDs used to construct the LED array were provided from the company at which 

Shuji Nakamura is employed.  

4.4 Experimental results     

 

4.4.1 Dose-dependent bacterial inactivation  

4.4.1.1  Exposure time of bacteria to BL 

 

Referring back to the summary presented in section 3.8, the first observation is that 

increased exposure time results in an increased degree of inactivation of the majority 

of bacterial strains.  The relationship between the length of exposure of bacteria to BL 

and degree of inactivation was shown to be statistically significant from the Chi-

squared analysis of all of the exposure times collectively.  Further analysis between 

pairs of exposure times revealed that the only pair of exposure times that did not 

product significantly different results in the degree of bacterial inactivation were the 5 

and 10 minute exposure times.  An explanation for this could be that the initial doses 

did not result in adequate production of ROS to overcome the oxidative stress 

threshold in the majority of the bacterial strains.  This correlates with the inactivation 

kinetics of the organism Staphylococcus aureus in the experiments by Farrell et al., 

(2010), which displayed a shoulder effect within a sigmoidal inactivation plot 

following exposure to pulsed light (PL) within the visible range of the EMS.   

 

4.4.1.2  Sample distance between bacterial sample and LED 

 

Following on from the above section, it was observed that decreased sample distance 

led to increased bacterial inactivation rates.  As with the exposure time experiments, 

the relationship of the distance between the bacterial samples and LED array was 

shown to be statistically significant from the Chi-squared analysis of all of the sample-

distances collectively.  Inspection of the difference in p values illustrates that there is 

an inactivation pattern common to positions 2 and 3, whereby the difference between 

2 cm and 3 cm has a higher degree of statistical significance than the difference 

between 3 cm and 4 cm (refer to Table 3.14).  This pattern is not true for droplet 
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position 1.  This could be due to the fact that the chi-squared value was the greatest for 

position 1 (Table 3.9), indicating greater statistical significance that is not obvious 

from the p values (all p values were <0.00001).  Since the dose of BL exposure 

(J/cm²) increased with a decrease in sample distance, and the p value for bacterial 

reduction in accordance with all of the sample-distances collectively was statistically 

significant, the inactivation behaviour within this set of experiments can also be said 

to be dose-dependent.  

  

4.4.1.3  UV experiments 

 

To determine if there were any parallels in the inactivation kinetics between BL- and 

UV-inactivation, bacteria were exposed to three durations of exposure: 5, 10 and 15 

seconds respectively.  Chi-squared analysis of the relationship between exposure time 

and degree of bacterial inactivation showed that this was statistically significant 

(Table 3.9).  Further analysis into the difference between pairs of exposure times, as 

for BL-inactivation, revealed that not all pairs of exposure times yielded significant p 

values.  In the case of the UV experiments, the difference in bacterial inactivation 

rates between 10 and 15 seconds of UV exposure was not statistically significant 

(Table 3.10).  UV inactivation of bacteria has been reported to involve a ‗tailing 

phenomenon‘ at the latter part of the inactivation curve (Ȧ et al., 2014).  The cause of 

this is a much debated topic.  However, this tailing effect may be responsible for the 

statistically insignificant p value for the differences in inactivation rates between 10 

and 15 seconds of UV exposure.  Regardless of the p value for the difference between 

10 and 15 seconds of UV exposure, the overall p value for the impact of exposure 

time on degree of bacterial inactivation was significant and the bacterial inactivation 

in the UV experiments was shown to be dose-dependent.   

 

4.4.1.4  Summary  

 

In conclusion, the inactivation of a variety of important human pathogens were 

inactivated by both BL and UV in a dose-dependent manner.  This dose-dependent 
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inactivation behaviour has been demonstrated in a number of other studies (Bumah et 

al., 2015; Lipovsky et al., 2009).  

 

4.4.2 Inter- and intra-species related differences in BL-inactivation of bacterial 

strains 

4.4.2.1  BL-inactivation experiments 

 

Another observation is that there are differences in the inactivation efficiency of BL 

on both an inter- and intra-species level.  This was shown for both the exposure-time 

and sample-distance experiments using BL.  This difference in BL sensitivity among 

bacterial species has been reported from numerous studies involving photoinactivation 

of bacteria (Soukos et al., 2005; Murdoch et al., 2012; Maclean et al., 2009; Maclean 

et al., 2014; Dai et al., 2012).  Subsequently, investigation of the cause of this has 

been conducted by some studies (Nitzan et al.,2004; Shu et al.,2013).  

 

4.4.2.1.1 Porphyrins within bacteria  

 

Porphyrins are abundant compounds that have been suggested to act as endogenous 

photosensitizers when exposed to BL (Almeida et al.,2011).  As mentioned in section 

1.2.2, the relative quantity and type(s) of porphyrin within bacteria has previously 

been regarded as an important factor in BL-inactivation efficacy (Soukos et al.,2005; 

Ashkenazi et al.,2003; Borelli et al.,2006; Nitzan et al.,2004).   This is because the 

production of ROS through excitation of endogenous porphyrins is the proposed 

mechanism for BL-inaction in bacteria.  This led to the investigation into the 

differences in type and relative quantities of porphyrins within a selection of Gram-

positive and Gram-negative bacterial strains was determined by Nitzan et al., (2004).  

It was shown that there was a slight difference in the emission peaks of porphyrins 

between Gram positive and Gram negative cells.  These were 622 nm and 630 nm 

respectively. In addition to this, whilst the Gram positive species Staphylococcus 

possessed a predominant porphyrin type, this did not exist for Gram negative bacteria 

(Nitzan et al.,2004).  These factors could contribute to the relative resistance of Gram 

negative bacteria compared to Gram positive bacteria.  The study concluded that the 
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differences in inactivation rates of 9 bacterial species, following exposure to 407-420 

nm light, was due to the porphyrin amounts and distribution (Nitzan et al., 2004). 

However, there are contradictory reports on the types and amounts of porphyrins 

present within some of the studied bacterial species, such as Propionibacterium acnes 

(Masamitsu et al.,2012).  Therefore, more research on this topic is required before full 

conclusions can be made.  

 

4.4.2.1.1 Bacterial fitness traits 

 

The differences in the sensitivity of different bacterial species could also be due to 

species- and strain-specific physiological or genotypic traits that are advantageous to 

survival of BL-inactivation.  For example, the ability of Enterobacter species to 

detoxify antibiotics through the expression of specialist enzymes, along with 

acquisition of genetic mobile elements (Davin-Regli & Pagès 2015), may also 

enhance their survival during and following exposure to BL.  In addition to this, 

Enterobacter species display adaptability to a broad range of conditions and hosts, 

thus being presented with various environmental stresses and unsavoury conditions 

(Davin-Regli & Pagès 2015).  This, along with a lack of endogenous porphyrins, 

could explain the high resistance to BL illustrated by the Enterobacter species in the 

experiments in this project. 

4.4.2.1.2 Differences in previous bacterial habitat 

 

Following on from the above section, the environment that the bacteria were sampled 

from could influence BL-sensitivity.  The bacterial strains collected by Aston (2012, 

Lancaster MSc Thesis) were isolated from both biotic and abiotic environments (Table 

2.1).  Whilst all of the strains belonging to the Enterobacteriaceae family are 

exclusively from patient samples, the Pseudomonas strains are a mixture of patient- 

and environment-derived isolates.  It is not clear if this has an impact from the 

experiments in this project.  However, this is an important topic that should be 

investigated in future experiments.   
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4.4.2.2  UV experiments 

 

It was also observed that there were differences in the susceptibility of bacterial 

strains exposed to UV light.  However, by referring to Table 3.20, it is clear that the 

degree of variation is not as high as for the BL experiments (Tables 3.6 and 3.11).  

This could be due to the inactivation mechanisms behind the two types of 

photoinactivation effected by UV and BL.  The mechanisms of damage that occur due 

to BL-inactivation are detailed at length in section 1.4.  Whereas there are multiple 

damage sites and damaging components (ROS) involved in BL-inactivation, damage 

caused by UV is mostly DNA damage (Ozer & Demirci 2006).   

 

4.4.3 Bacterial concentration can affect the effectiveness of bacterial 

photoinactivation 

 

These experiments showed that bacterial concentration can significantly affect the 

efficacy of photoinactivation of bacteria by both BL and UV.  The exceptions to this 

were within the sample-distance experiments; all distances within positions 2 and 3 

yielded insignificant results, along with the sample-distance 4 cm within position 1. 

By reviewing the raw data (see appendices), it can be observed that the inactivation 

ratings tend to be weighted at the extreme ends of the arbitrary rating scale for the 

majority of strains.  There is also a much lesser degree of intermediate ratings, for 

most of the dilutions, compared with the results gained from the exposure-time 

experiments.  Two examples of this are strain C13 (Enterobacter cloacae) and strain 

C10 (Acinetobacter baumannii).  These are shown in Table 4.1. 
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Table 4.1 illustrates the reason for the unexpected result that bacterial concentration 

largely was not significant in affecting the inactivation rates.  Because a much lesser 

portion of the strains demonstrated a range of inactivation scores, the p values 

obtained from the chi-squared analysis were not statistically significant.  

 

4.4.3.1  The ‘shielding effect’ 

 

Where the bacterial concentration exerted a statistically significant impact on BL-

inactivation, this could be attributed to a phenomenon known as the ‗shielding effect‘. 

This was described by Farrell et al., (2010), who investigated factors affecting the 

efficiency of bacterial inactivation using pulsed light.  Among these was the effect of 

population size on inactivation.  Similarly to this study, a range of dilutions of 

bacterial suspension were exposed to a set exposure of light treatment.  In parallel to 

the results seen in this thesis, with an increase in population density is a decrease in 

inactivation effectiveness.  This trend is readily observed upon inspection of the plates 

used in the current experiments; since all dilutions are present on the same dish, this 

makes for a quick, easy and immediate comparison.  The shielding effect describes the 

Position 1 Position 2 Position 3

Strain 2 cm 3 cm 4 cm 2 cm 3 cm 4 cm 2 cm 3 cm 4 cm Dilution

C13 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 0 0 5

2 0 0 2 0 0 0 0 0 6

C10 4 4 4 4 4 4 3 3 3 1

4 4 4 4 4 4 4 3 3 2

4 4 4 4 4 4 4 4 4 3

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 5

4 4 4 4 4 4 4 4 4 6

Table 4.1. Inactivation scores for the strains C13 and C10 within the sample-

distance experiments. 
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event in which the greater the number of bacterial cells present, the lower the 

proportion of these that are exposed either fully or at all to the inactivating light. 

 

4.4.3.1.1 Impact of dose on the shielding effect  

 

An interesting observation regarding the shielding effect within the experiments in 

this project is that whilst it is a clear (and statistically significant) pattern at the lower 

doses, it is less prominent at greater doses.  An example for this is illustrated by the 

strain of Pseudomonas aeruginosa referred to as ‗E28‘.  This is best illustrated using 

Figure 4.1.  At the lowest dose (4 cm) in the sample-distance experiments, there is no 

reduction in colonies for any of the dilutions.  The shielding trend is more noticeable 

for the next highest dose; however, for the greatest dose, all dilutions were drastically 

reduced at the same level.  This could be a reflection of the events occurring at the 

molecular level.  If the widely accepted theory behind BL-mediated inactivation is 

correct, it is plausible that the disruption to the membranes caused by ROS could lead 

to breakdown of the bacterial cells sufficiently to allow light penetration through these 

cells if the dose is great enough.  This would explain why, at the higher doses, 

dilutions previously offering shielding at lower doses are devoid of this protection.    
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4.4.4 Difference in efficacy of continuous versus pulsed BL 

 

In addition to the exposure-time and sample-distance experiments, determination of 

the efficacy of continuous and pulsed BL was determined for a set of strains that 

ranged from very sensitive to very resistant with regards to BL inactivation, in 

addition to the three P. putida strains featured in the project. As described in section  

2.6.3, this was assessed by exposing spread plates of each of the bacterial strains 

involved to 10 minutes of either continuous or pulsed BL, with the distance between 

the LED array and samples set at 2 cm. By consulting table 3.15, it can been observed 

that whilst the continuous exposure resulted in statistically significant reduction in the 

number of CFU/ml of every strain belonging to the Enterobacteriaceae family, the 

pulsed-BL exposure did not result in statistically significant colony reductions, despite 

the power output being 3-fold higher (Table 2.4). This can be explained through the 

dose delivery of these two different modes of BL exposure. Whilst it was possible to 

accurately measure the irradiance of the LED array during operation  in continuous 

mode, this was not possible in pulsed mode due to the limitations on the pulse length 

Figure 4.1.  Impact of BL dose on the ‗shielding effect‘ of bacterial 

concentration.  Degree of inactivation corresponds to the arbitrary scale 

discussed in section 2.7.1.  The dilution of the bacterial suspension used is a 

ten-fold serial dilution, where n corresponds to the numbers on the x-axis.  
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of the LED array. The pulse length used within the experiments was 10 ms; the 

equipment used to measure the irradiance would not have been able to accurately 

measure the irradiance within such a minute time interval. Subsequently, the best 

possible compromise was to make a comparison of the two modes of light exposure 

based on a set exposure time and sample-distance. However, this is not truly 

representative of the equivalence in efficacy, since due to the required rest intervals of 

100 ms (that took place following every pulse) the actual dosage delivered during the 

pulsed mode of exposure would have been lower than expected. Therefore, if 

equipment had been available to measure the irradiance of the LED array during 

pulsed mode, a more accurate comparison would be based on a set dose instead. 

Despite this, all three P. putida strains were inactivated to statistically significant 

levels by both continuous and pulsed BL.  By referring to the cumulative values of the 

average degree of inactivation for all exposure times and sample distances (Tables 3.6 

and 3.11 respectively), it can be seen that these strains are very sensitive to BL-

inactivation. Therefore, a lower dose of BL could result in sufficient inactivation 

within these strains compared to the Enterobacteriaceae strains.  
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4.4.5 Differences between BL- and UV-inactivation of bacteria 

4.4.5.1  UV-resistance plasmid Pseudomonas strains 

To investigate the extent of similarity behind the inactivation mechanisms of UV and 

BL, two different sets of experiments were conducted.  The first involved the 

inclusion of Pseudomonas strains carrying plasmid pWW0, provided by Dr Glenn 

Rhodes (CEH, Lancaster). The plasmid pWW0 belongs to the IncP-9 plasmid family, 

which consists of a group of self-transmissible plasmids primarily located within 

pseudomonads containing resistance genes, such as antibiotic resistance (Rhodes et 

al.,2014).  The core backbone of pWW0 possesses rulAB homologue genes.  These 

genes have been previously been shown to confer fitness traits to Pseudomonas 

putida. Rhodes et al.,(2014)  reported the integration of a group of integron-like 

elements (ILEs) into pWW0.  Furthermore, the role of insertion of ILEs into the 

rulAB operon within other genera was discussed, in terms of relevance to bacterial 

adaptation and survival.  Therefore, three strains from the study by Rhodes et 

al.,(2014) were included in the experiments within this project, to determine if the 

plasmid pWW0 conferred fitness traits via UV resistance genes during BL 

inactivation.  Strain P. putida PaW340 did not contain pWW0, so served as a control.  

In addition to this, pseud2 was considered to possess a deletion within pWW0; 

therefore it was predicted to not carry resistance to UV.  For both the exposure-time 

and sample-distance experiments, the strain carrying the UV resistance was the most 

sensitive; therefore, UV resistance was shown to not influence the survival of P. 

putida within the BL experiments and was not advantageous. 
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4.4.5.2  Exposure of representative bacterial strains to UV light (302 nm) 

The second approach to determine the similarity in BL and UV inactivation was a set 

of experiments involving the bacterial strains featured in the qualitative experiments 

(section 2.7.2), in addition to the Pseudomonas putida strains provided by Dr Glenn 

Rhodes (CEH, Lancaster).  The purpose of this was to determine if the levels of 

photoinactivation rates for UV light were comparable to those for BL.  Although the 

results cannot be directly compared due to experimental differences, the relative 

sensitivities of the strains in relation to each other can be compared.  This revealed 

that although the majority of strains displayed similar inactivation patterns within both 

types of light inactivation, Enterobacter cloacae displayed greater sensitivity towards 

UV compared to BL.  This indicates that DNA damage is an important factor in the 

inactivation of this strain.  Furthermore, the levels of endogenous porphyrins within 

Enterobacter species are unknown.  Therefore, the relative resistance to BL compared 

to UV could be due to minimal, or lack of, endogenous porphyrins.  Therefore, 

damage to the biological components would not occur due to BL exposure in this 

case. 

 

4.4.6 Influence of OxyR mutations in the BL-inactivation of Salmonellla 

enterica serovar Tyyphimurium mutants 

 

To test the role of OxyR in protection from BL-inactivation in Salmonellla enterica 

serovar Typhimurium, the mutant strains provided by Dr John Roth (University of 

California) were included in the exposure-time and sample-distance BL experiments.  

Different types of mutation were featured in the strains used.  It was therefore 

predicted that the deletion strains would show enhanced sensitivity compared to the 

strains where a Tn10 transposable element was located near to the oxyR gene (refer to 

Table 1.2 for the genotypes).  Furthermore, the oxyR gene within the latter strains was 

mutated, resulting in constitutive expression of OxyR. Despite this, within the 

exposure-time experiments, one of these strains (S7) was the third most sensitive 

mutant strain, and has a total inactivation value that is within the mid-range of the 

spectrum for all of the bacterial strains.  Conversely, a deletion mutant strain (S4) was 

the most resistant of both the Salmonella mutant strains and all of the bacterial strains 

featured in the experiments.  The apparent lack of predictability of the sensitivity of 
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the OxyR mutant strains also occurred within the sample-distance results.  Whilst S4 

was still the most resistant Salmonella mutant strain, it was not the most resistant 

strain overall.  Furthermore, the order of BL sensitivity of the mutant strains in 

relation to one another was altered; the only strain to remain in the same position on 

the sensitivity spectrum of the Salmonella strains was strain S1.  These inconsistencies 

introduced difficulty in assessing the impact of OxyR mutations on inactivation via 

BL.  Another issue was that a control (i.e. a non-mutant strain of Salmonellla enterica 

serovar Typhimurium) was not available.  Comparison of the inactivation of the 

mutants in relation to a strain that has a correctly-functioning OxyR protein would 

have been extremely useful.  It can be concluded from these sets of results that further 

experiments on these mutant strains, with the inclusion of a positive control, is 

required before any stable conclusions may be taken from the results.  Furthermore, 

confirmation that the mutant strains listed still hold the correct mutations is necessary.  

4.5 Further factors that could have affected the results 

4.5.1 Impact of population age on bacterial inactivation 

 

When reviewing stress treatments on bacteria, an important factor is the phase within 

the growth cycle of the organisms.  However, growth rate is equally as important.  A 

change in physiology or phenotype may occur as a result of different growth 

conditions (Berney et al., 2006).  Therefore, it is of utmost importance to evaluate the 

impact of growth phase, growth rate and growth conditions on the efficacy of a 

treatment on any one bacterial species.  There are a number of factors that corroborate 

with the theory that bacteria in the stationary growth phase elicit higher levels of 

resistance compared with those in exponential.  For example, the slower or more non-

specific the growth rate, the higher the levels of dps and induction of the global stress 

response, mediated via RpoS, in E. coli  (Berney et al., 2006).   Due to the nature of 

the experiments within this project, in addition to time limitations, it was not possible 

to determine the precise growth cycles of each bacterial strain used.  Instead, through 

extensive literature searches on the bacterial strains and experiments with a similar 

set-up, the incubation time and desired OD₆₀₀ value were determined.  
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4.5.2 Impact of culture medium 

 

The medium is another factor that can impact oxidative stress resistance of cells (De 

Spiegeleer et al., 2004).  It can impact heat shock protein (HSP) expression in E. coli  

(Berney et al., 2006), which in turn may lead to increased resistance to oxidative 

stress.  Furthermore, in any instance where bacteria have been exposed to a stress, the 

choice of media can affect the outcome of which damaged cells are able to recover 

and grow.  Oxidative stress specifically has been identified as an important factor in 

the recovery and growth of injured bacterial cells (De Spiegeleer et al., 2004).  The 

hypothesis that following stress, cells have increased sensitivity to ROS due to an 

imbalance in cell metabolism, resulting in greater endogenously-produced ROS levels, 

was raised previously by Bloomfield et al., (1998).  

Following on from this, it was demonstrated in the study by Stephens et al., (2000) 

that the recovery performance of Salmonella typhimurium varied significantly as a 

consequence of the peptone component used.  This was illustrated by the difference in 

the numbers of recovered cells, whereby the maximum difference exceeded three 

orders of magnitude.  In all of the experiments in this project, Tryptone Soya Broth 

(TSB) was used.  The study by De Spiegeleer et al., (2004) reported that the source of 

tryptone within the broth (LB) used to culture E. coli MG1655  affected the sensitivity 

of organisms to oxidative stress.  Whilst the growth of E. coli MG1655 was almost 

identical in both broths used in the study, LBx and LBy, the physiological properties 

of the organisms grown were significantly different between the broths.  Whilst those 

grown in LBx were more susceptible to growth inhibition to lactoperoxidase and 

oxidative stress, those grown in LBy were significantly less so.  It is therefore possible 

that if different media had been used in the experiments in this project, varying results 

may have been obtained.  
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4.6 Future applications  

4.6.1 Why is there a requirement to develop new antimicrobial technology? 

 

Since their introduction, the use of antibiotics has been accompanied with the 

development of resistance among bacteria (Davies & Davies 2010).  This issue has 

become more problematic as the discovery of new antibiotics has gradually decreased, 

whilst rates of antibiotic resistance among important human pathogens world-wide has 

increased.  There is therefore a requirement to fulfil the following objectives: 

 Conduct an extensive, regulated approach to determine: 

o The percentage of a large range of nosocomial human pathogens that 

is resistant to the different classes of antibiotic. 

o The distribution of antibiotic resistance levels world-wide. 

o  Co-ordinated surveillance of antimicrobial resistance world-wide, for 

both the types of antimicrobials involved and the resistant microbes 

themselves. 

 Search for new antibiotics. 

 Development of new strategies for the control of infections and 

microorganisms within environments such as hospitals and the food industry. 

The above points were outlined and discussed in the ‗Global Report of Surveillance of 

Antimicrobial Resistance‘ compiled by the World Health Organisation in 2014 (WHO 

2014).  It was acknowledged in the report that the extent of antimicrobial resistance 

(AMR) is not fully known and that for this problem to be properly addressed and 

resolved, more information is required. Regarding the last bullet point, a similar 

research project was conducted at the University of Strathclyde; this project was 

discussed by Maclean et al., ( 2010). This study is discussed in detail in section 

1.7.2.5. 

 

4.6.2 Relevance of BL-inactivation of bacteria 

 

As outlined in the above section, there is a requirement to investigate and develop new 

technologies for the control of microorganisms.  An important aspect of this is the 
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effective disinfection of target environments, such as hospitals and the food industry. 

Desirable qualities of such technologies for a light-based environmental 

decontamination system include: 

 Low cost per unit. 

 Efficiency of bacterial inactivation, regarding: 

o Treatment time. 

o Practical effective distance range from the device. 

o Effectiveness for a wide range of important human pathogens. 

o Operational cost. 

 Easy transportation. 

 Minimum labour-intensity/maximum automation.  

 Safe for use in the presence of humans.  

Following on from this, the paper by Abreu et al., (2013) addressed the requirement of 

new disinfecting technologies for application in hospital environments.  Whilst the use 

for traditional light wavelengths, such as UV, was mentioned, the issues with this 

were also addressed.  These include the requirement of the room to be vacated during 

treatment, high acquisition cost and increased room turnover were highlighted (Abreu 

et al., 2013).   

BL could offer a solution for the need for new antimicrobial approaches.  Whilst the 

older studies on aPDT and photoinactivation using visible light featured traditional 

light sources, such as halogen lamps, a range of recent studies have used light-

emitting diodes (LEDs) as the light source.  The evolution of LEDs to produce white 

light in 1993 expanded their horizons (Barolet 2008).  These are superior in terms of 

energy-efficiency (Thakuri et al.,2011), using up to 90 % less energy that halogen 

equivalents (TheGreenAge, 2015).  They emit less heat due to the lower energy 

consumption, and have an approximate lifetime of 25, 000 hours TheGreenAge, 

2015).  Furthermore, they are more concise than traditional lamps and are more 

robust.  This host of desirable qualities has resulted in increasing and widespread use 

of LEDs in modern scientific studies.  
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4.6.3 Current and future possible applications 

 

There are currently some applications.  In addition to this, a device designed 

specifically for the environmental disinfection of hospital rooms was investigated and 

discussed by Maclean et al., (2010).  This produced promising results with regard to 

the effectiveness of keeping levels of important nosocomial pathogens within the 

hospital environment low, even in the presence of patients carrying high levels of 

infectious agents.  

 

4.7 Future work 

 

The inactivation of bacteria by BL is a promising strategy as a control method and 

potentially within medical applications involving treatment of infected patients. 

However, there are extensive gaps in the current literature that need to be addressed to 

enable further development of this antimicrobial approach.  

 

4.7.1 Resistance development 

 

One of the most prominent, and over-looked, aspects of BL-inactivation of bacteria is 

the development of resistance to BL.  Many studies have stated that the risk of 

resistance development is low, due to the multi-target, non-specific nature of the ROS 

produced as a result of BL-exposure (Tavares et al.,2010).  In addition to this, in the 

case of aPDT, the photosensitizers have been said to mainly affect the cell walls and 

cell membranes (Tavares et al.,2010; Thakuri et al.,2011).  Therefore, it is presumed 

that in the event that bacteria acquire efflux systems as a defence against 

photosensitizers, adequate damage will still result from their action from outside of 

the cell.  However, this is a short-sighted view, especially considering that although 

the attack of ROS is non-specific, the nature of the attack is singular: oxidative stress. 
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Therefore, heightened cellular defences, and therefore resistance to, oxidative stress 

would be equivalent to resistance development towards BL-inactivation.  

 

4.7.1.1 Studies that have investigated resistance development of bacteria to 

photoinactivation 

 

Some studies investigating the development of resistance against both aPDT and BL-

inactivation have been performed and reported (Thakuri et al.,2011; Lauro et al.,2002; 

Tavares et al.,2010).  One of these was the study by Lauro et al.,(2002), in which 

resistance development of the organisms Prevotella intermedia, Fusobacterium 

nucleatum,  Peptostreptococcus micros  and Actinobacillus 

actinomycetemcomitans to aPDT was assessed.  This was achieved through repeated 

exposure experiments, using the same conditions, on surviving organisms from 

previously exposed plates in successive light exposure experiments.  The levels of 

inactivation between each individual exposure experiment (1-10) were compared.  

The results were not significantly different for all of the strains, and therefore did not 

suggest resistance development.  However, since this conclusion is based on the 

ability of bacteria to grow on solid media following light exposure, it is not sensitive 

to the possibility of bacteria residing in the viable but non-culturable (VBNC) state. 

Subsequently, if this occurred following the light exposure experiments, then the 

proportions of bacteria in this state could have been different for the repeated 

experiments.  A study that applied a technique that measured metabolic activity 

following aPDT treatment, as opposed to culture viability, was conducted by Tavares 

et al.,(2010).  As with the study by Lauro et al.,(2002), multiple repeated exposures 

featured in the evaluation of bacterial resistance development.  The efficacy of 

inactivation was not shown to be affected by the repeated exposures.  

 

4.7.1.2    Adaptation to oxidative stress 

 

The ability of two strains of S. aureus, termed 101 and 500 respectively, to adapt to 

oxidative stress was investigated by (Lipovsky et al., 2009).  Following determination 

of the strain-specific minimum inhibitory concentration (MIC) of hydrogen peroxide, 

the strains were exposed to sub-inhibitory concentrations of hydrogen peroxide.  This 
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resulted in a 4-fold increase in the MIC of strain 500; strain 101 was unable to adapt. 

Strain 500 possessed a number of advantageous fitness traits that may have enabled 

oxidative stress adaptability.  These include a 10-fold lower porphyrin concentration, 

significantly greater level of carotenoid pigment and lesser production of hydroxyl 

radicals following illumination.  It is therefore plausible that the traits were exploited 

by strain 500 to allow adaptation to oxidative stress.  Furthermore, it was found that 

bacteria displayed heightened resistance to BL therapy following the first exposure in 

the study by (Dai et al., 2013).  

4.7.1.3  Implication of overlap between stresses in bacteria 

 

The fact that carbon starvation is known to increase resistance to certain stresses 

within E. coli (Battesti et al., 2011; Youn et al., 2001) means that practical 

applications of using BL for disinfection may be compromised by the fact that the 

most common state of bacteria in environments such as hospitals is the stationary 

phase, due to lack of nutrients.  In addition to this, the regulon for oxidative stress in 

Eschericia coli and Salmonella spp. also regulates heat shock proteins (Youn et al., 

2001).  It was concluded in the study by Dai et al.,, (2011) that a possible route for 

resistance development to aPDT is through heat shock proteins.  Prior to drawing this 

conclusion, they conducted a series of experiments to determine the extent of 

involvement of HSPs during aPDT treatment.  This was focussed on two particular 

HSPs, GroEL and DnaK.  These are part of two major HSP families: GroEL/GroES 

and DnaK/DnaJ/GrpE.  These have been conserved across a range of bacterial species 

and have remained through bacterial evolution (Chamberlain et al.,, 2007).  Since 

these proteins are responsible for protein repair and lipid membrane stabilisation, in 

addition to providing protection from oxidative stress, it is essential that these be 

included in studies assessing resistance development in bacteria in response to 

external stresses.  This is reinforced by the fact that expression of HSPs has been 

previously demonstrated to be up-regulated in response to external stresses and they 

have been implicated in the development of antibiotic resistance.  
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4.7.2  Success of inactivation of bacterial biofilms 

 

It has been estimated that up to 80% of infections are biofilm-associated (Lebeaux et 

al., 2013).  Consequently, there has been development of numerous in vitro biofilm 

models to enable a better understanding of the functioning and behavioural aspects of 

bacteria in these systems.  Whilst research in the safety of exposure of mammalian 

cells to BL is currently incomplete (refer to section 1.7.1.1), the effectiveness of BL-

inactivation of biofilms within living systems and abiotic environments is a topic of 

high-importance to ensure that inactivation systems are effective towards bacteria in 

this state.    

4.8 Limitations and lessons learnt from this study 

 

The experiments in this study have provided valuable information regarding bacterial 

inactivation of a range of important human pathogens using BL.  Results were gained 

for each of the objectives listed in section 4.1.  Due to time restraints, there are a 

variety of further parameters that should be included in future investigations of BL-

inactivation of bacteria.  These are detailed in section 4.7.  

Following on from this, the experiments featured in this project should be expanded to 

provide a more in-depth investigation into the topic.  An issue that was presented 

during experimentation was that the limited time allocated for experiments resulted in 

the use of methods that would allow all of the desired strains to be included in the 

experiments within the time scale provided.  Combined with that fact that only one 

custom-made light source was available, this resulted in the selection of a method that 

would allow rapid screening of the range of bacterial strains to BL.  Furthermore, a 

variety of parameters were investigated, including the impact of exposure-time, 

sample-distance and bacterial concentration on BL-inactivation of bacteria.  The 

method devised for this was the droplet method (section 2.6).  This method allowed 

eight dilutions of a bacterial suspension to be measured simultaneously, speeding up 

the screening process.  



102 
 

However, a disadvantage to this method is that accurate and reliable colony counting 

is not possible; the data is therefore arbitrary as opposed to qualitative.  To overcome 

this, a smaller selection of strains was selected following the general screening.  This 

contained strains ranging from very sensitive to very resistant.  Spread plates were 

performed for these strains, under both pulsed and continuous conditions.  The data 

generated from these experiments provided data that was more statistically reliable.  

 

4.9 Conclusions 

 

A number of conclusions regarding the inactivation of a variety of clinically relevant 

bacterial pathogens using BL can be drawn from the results of this study.  Some of 

these have parallels with results gained from other studies investigating the 

photoinactivation of bacteria.  This study has directed research into photoinactivation 

of bacteria using visible light wavelengths, and has built upon some fundamental 

discoveries made by scientists in the mid- to late-19
th

 century (Reed 1974; Mitton & 

Ackroyd 2005; Rajesh et al. 2011).  Namely, the relationships between bacterial 

inactivation and properties of the light used, including wavelength, intensity and 

duration of exposure by Downes and Blunt in 1877 (Reed 1974).  This chapter has 

discussed the implications of the results gained from the experiments in this study, 

why the development of new antimicrobial technologies, such as BL-inactivation of 

bacteria, are required, and areas for future research.  The inactivation of bacteria by 

BL is highly complex.  From the literature, there are a large number of factors that can 

influence the success of BL-inactivation.  Therefore, a large, coordinated research 

effort using standardised techniques is necessary to attain comparable inactivation 

results of a diverse selection of bacterial species, under different conditions, in 

different physiological states.  Determination of true bacterial inactivation is essential, 

since transition into the VBNC state (section  1.6) could result in inaccurate 

inactivation danger and present a risk to the public.  Although there is a range of 

potential industrial and medical applications of BL-inactivation, the aforementioned 

parameters must be thoroughly investigated prior to the design of these. 
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Appendices 

 

The tables constructed in excel for the sample-distance and exposure-time are 

displayed on the next two pages.  
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Position 1* Position 2* Position 3*

Bacterial Strain 2** 3** 4** 2** 3** 4** 2** 3** 4** Dilution

Escherichia coli 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 2

1 0 0 0 0 0 0 0 0 3

2 1 0 1 0 0 1 0 0 4

3 1 0 2 1 0 1 0 0 5

3 3 2 3 2 0 4 0 0 6

n/a n/a n/a n/a n/a n/a n/a n/a n/a 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

Citrobacter spp. 2 0 0 1 0 0 0 0 0 1

3 0 0 2 0 0 0 0 0 2

4 0 0 3 0 0 1 0 0 3

4 1 0 4 0 0 2 0 0 4

4 1 1 4 0 0 3 0 0 5

4 3 2 4 0 0 3 1 0 6

4 4 4 4 4 4 n/a n/a n/a 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

Acinetobacter spp. 4 4 4 4 4 4 3 3 3 1

4 4 4 4 4 4 4 3 3 2

4 4 4 4 4 4 4 4 4 3

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 5

4 4 4 4 4 4 4 4 4 6

n/a n/a n/a n/a n/a n/a n/a n/a n/a 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

Enterobacter cloacae 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 0 0 5

2 0 0 2 0 0 0 0 0 6

n/a n/a n/a n/a n/a n/a 0 0 0 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

Enterobacter spp. 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 2

1 1 0 1 0 0 0 0 0 3

2 1 0 1 0 0 0 0 0 4

4 2 0 4 1 0 0 0 0 5

n/a n/a n/a 4 0 0 0 0 0 6

n/a n/a n/a n/a n/a n/a 4 3 0 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

Enterobacter aerogenes 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 2

2 0 0 1 0 0 0 0 0 3

3 1 0 2 1 0 0 0 0 4

4 2 0 4 2 1 2 1 0 5

4 4 0 4 4 2 4 1 0 6

n/a n/a n/a n/a n/a n/a 4 1 0 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

Serratia liquifaciens 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 2

1 0 0 1 0 0 0 0 0 3

2 1 0 1 1 0 1 0 0 4

3 1 0 3 1 0 1 0 0 5

4 2 1 3 1 0 2 0 0 6

n/a n/a n/a n/a n/a n/a n/a n/a n/a 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

Acinetobacter baumannnii 4 4 3 4 4 2 1 1 1 1

4 4 4 4 4 3 2 2 1 2

4 4 4 4 4 4 4 3 2 3

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 5

4 4 4 4 4 4 4 4 4 6

n/a n/a n/a n/a n/a n/a n/a n/a n/a 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

Raoultella ornithinolytica 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 0 0 5

3 0 2 0 0 2 0 2 1 6

n/a n/a n/a n/a n/a n/a 0 0 4 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

Pseudomonas aeruginosa 4 2 0 4 1 0 0 0 0 1

4 3 0 4 2 0 2 0 0 2

4 4 0 4 2 0 3 0 0 3

4 4 0 4 4 0 4 2 0 4

4 4 2 4 4 0 n/a n/a n/a 5

n/a n/a n/a n/a n/a n/a n/a n/a n/a 6

n/a n/a n/a n/a n/a n/a n/a n/a n/a 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

S1 1 0 0 1 0 0 1 0 0 1

2 1 0 1 0 0 1 0 0 2

2 2 1 2 2 1 2 1 1 3

3 3 2 4 3 3 2 1 2 4

4 2 2 4 3 4 4 4 4 5

n/a n/a n/a n/a n/a n/a n/a n/a n/a 6

n/a n/a n/a n/a n/a n/a n/a n/a n/a 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

S2 4 2 1 4 1 1 2 1 0 1

4 3 2 4 2 2 2 1 1 2

4 4 4 4 4 3 4 2 2 3

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 5

n/a n/a n/a n/a n/a n/a n/a n/a n/a 6

n/a n/a n/a n/a n/a n/a n/a n/a n/a 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

S3 1 0 0 1 0 0 0 0 0 1

1 1 0 1 1 0 1 1 0 2

2 2 1 2 2 1 2 2 1 3

4 4 1 4 4 1 3 3 1 4

4 1 1 4 4 4 4 4 4 5

4 4 4 4 4 4 4 4 4 6

n/a n/a n/a n/a n/a n/a n/a n/a n/a 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

S4 1 0 0 1 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 2

1 1 0 1 0 0 0 0 0 3

2 2 0 2 0 0 0 0 0 4

3 3 0 0 0 0 0 0 0 5

4 4 0 3 1 0 0 0 0 6

n/a n/a n/a 4 2 0 n/a n/a n/a 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

S5 4 2 0 2 2 0 1 1 0 1

4 3 1 3 2 1 1 1 0 2

4 4 2 3 2 1 1 1 1 3

4 4 2 4 3 2 2 1 1 4

4 4 4 4 4 2 4 2 2 5

4 4 4 4 4 4 4 4 4 6

n/a n/a n/a n/a n/a n/a n/a n/a n/a 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

S6 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 2

2 1 0 1 0 0 0 0 0 3

4 1 0 2 1 0 0 0 0 4

4 2 1 3 1 2 2 1 2 5

4 4 0 4 0 2 1 0 3 6

n/a n/a n/a n/a n/a n/a n/a n/a n/a 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

S7 4 4 2 4 3 1 2 2 1 1

4 4 3 4 4 2 3 2 2 2

4 4 4 4 4 3 3 3 3 3

4 4 4 4 4 4 4 3 3 4

4 4 4 4 4 4 4 4 4 5

n/a n/a n/a n/a n/a n/a n/a n/a n/a 6

n/a n/a n/a n/a n/a n/a n/a n/a n/a 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

S8 2 0 0 1 0 0 1 0 0 1

2 0 0 1 0 0 1 0 0 2

3 1 0 2 1 0 1 1 0 3

4 2 1 3 2 2 2 1 2 4

4 4 1 4 3 1 4 3 1 5

4 0 0 4 0 0 4 3 0 6

n/a n/a n/a n/a n/a n/a n/a n/a n/a 7

n/a n/a n/a n/a n/a n/a n/a n/a n/a 8

pseud1 4 4 0 4 4 0 3 1 0 1

4 4 0 4 4 0 3 1 0 2

4 4 1 4 4 0 4 2 0 3

4 4 3 4 4 0 4 4 2 4

4 4 4 4 4 0 4 4 4 5

pseud2 4 4 0 4 4 0 3 1 0 1

4 4 0 4 4 0 4 2 0 2

4 4 2 4 4 0 4 3 0 3

4 4 3 4 4 0 4 4 0 4

4 4 1 4 4 1 4 4 1 5

pseud3 4 4 2 4 4 1 4 3 1 1

4 4 2 4 4 1 4 3 1 2

4 4 4 4 4 2 4 4 1 3

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 5
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pos1 pos2 pos3

Bacterial Species/Strain Dilution 5* 10* 15* 20* dilution 5* 10* 15* 20* dilution 5* 10* 15* 20* dilution 

Escherichia coli 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2

3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 3

4 0 0 1 2 4 0 0 1 1 4 0 0 0 1 4

5 0 0 2 3 5 0 0 1 4 5 1 0 1 2 5

6 0 2 0 4 6 0 0 2 3 6 3 0 0 4 6

7 n/a n/a n/a n/a 7 4 4 4 4 7 0 4 4 4 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

c4 (Cirobacter freundii) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 1 2 0 0 0 1 2 0 0 0 0 2

3 0 0 1 2 3 0 0 1 2 3 0 0 0 1 3

4 1 1 2 3 4 1 1 2 3 4 0 0 0 2 4

5 2 3 3 4 5 1 2 3 3 5 1 1 1 3 5

6 2 3 3 4 6 2 2 3 4 6 1 1 2 4 6

7 0 2 3 4 7 2 2 3 3 7 1 1 2 3 7

8 2 4 4 4 8 0 n/a n/a n/a 8 n/a 2 3 4 8

c8 (C. spp.) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 1 2 0 0 0 0 2 0 0 0 0 2

3 0 0 0 2 3 0 0 0 1 3 0 0 0 0 3

4 0 1 0 3 4 0 0 0 1 4 0 0 0 1 4

5 1 2 2 4 5 3 1 1 3 5 1 0 1 2 5

6 0 4 2 4 6 0 2 2 0 6 0 0 4 0 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

c13 (E. cloacae) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2

3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 3

4 0 0 0 0 4 0 0 0 0 4 0 0 0 0 4

5 0 1 0 0 5 0 0 0 0 5 0 0 0 0 5

6 0 2 0 1 6 1 0 0 0 6 0 0 0 0 6

7 1 0 0 0 7 0 2 4 2 7 n/a 0 0 0 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

c25 (E. sakazakii) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2

3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 3

4 0 0 0 0 4 0 0 0 0 4 0 0 0 0 4

5 2 0 1 1 5 0 0 0 0 5 0 0 0 0 5

6 2 2 3 3 6 2 0 0 0 6 0 0 0 0 6

7 0 0 0 0 7 0 2 4 2 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

c29 (E. aerogenes) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2

3 0 0 0 0 3 0 0 0 0 3 0 0 0 1 3

4 0 0 0 1 4 0 0 0 1 4 0 0 0 1 4

5 0 0 1 2 5 0 0 1 1 5 0 0 0 1 5

6 1 1 2 3 6 0 0 1 2 6 1 0 1 2 6

7 0 0 1 2 7 2 0 1 0 7 1 0 4 4 7

8 0 0 4 4 8 2 0 4 0 8 0 0 4 4 8

c30 (S. liquifaciens) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2

3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 3

4 0 0 0 1 4 0 0 0 1 4 0 0 0 1 4

5 1 1 1 1 5 0 0 1 1 5 0 0 1 1 5

6 1 1 2 4 6 0 1 1 2 6 0 0 1 1 6

7 2 1 3 4 7 0 0 1 2 7 0 2 1 2 7

8 0 0 4 0 8 4 0 0 4 8 2 2 3 4 8

c31 (A. baumannii) 1 0 3 4 4 1 0 1 4 4 1 0 1 4 4 1

2 0 4 4 4 2 0 4 4 4 2 0 2 4 4 2

3 0 4 4 4 3 0 4 4 4 3 1 4 4 4 3

4 2 4 4 4 4 0 4 4 4 4 1 4 4 4 4

5 4 4 4 4 5 0 4 4 4 5 3 4 4 4 5

6 4 4 4 4 6 4 4 4 4 6 2 4 4 4 6

7 4 4 4 4 7 4 4 4 4 7 4 4 4 4 7

8 4 4 4 4 8 n/a n/a n/a n/a 8 4 4 4 4 8

c38 (A. spp.) 1 0 0 1 1 1 0 0 2 2 1 0 0 1 2 1

2 0 0 4 4 2 0 0 3 4 2 0 0 1 4 2

3 0 0 4 4 3 0 0 3 4 3 0 0 1 4 3

4 0 0 4 4 4 0 0 2 4 4 0 0 1 4 4

5 0 0 4 4 5 0 0 4 4 5 0 0 0 4 5

6 4 1 4 4 6 4 4 4 4 6 0 4 0 4 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

c39 (S. liquifaciens) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2

3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 3

4 0 0 0 1 4 0 0 0 1 4 0 0 1 1 4

5 0 1 1 2 5 0 1 1 2 5 0 0 1 2 5

6 1 1 1 3 6 0 2 3 3 6 0 1 0 2 6

7 0 4 4 4 7 0 0 0 4 7 2 4 2 2 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

c44 (R. ornithinolytica) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2

3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 3

4 0 0 0 1 4 0 0 0 1 4 0 0 0 1 4

5 0 1 1 1 5 0 0 0 1 5 0 0 0 1 5

6 0 1 1 3 6 0 0 0 2 6 0 0 0 2 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

c45 (S. marcescens) 1 0 2 3 3 1 2 2 2 1 1 2 2 2 1 1

2 0 3 3 3 2 3 3 2 1 2 3 4 2 1 2

3 3 3 3 3 3 3 3 2 2 3 3 3 2 2 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 4 4 4 4 5 4 4 4 4 5 4 4 4 4 5

6 4 4 4 4 6 4 4 4 4 6 4 4 4 4 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

e19 (P. aeruginosa) 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1

2 1 1 1 2 2 1 1 1 2 2 1 0 1 2 2

3 2 2 2 3 3 1 2 2 3 3 1 2 2 3 3

4 2 2 2 3 4 1 2 2 3 4 1 2 2 3 4

5 2 2 2 3 5 1 2 2 3 5 1 2 2 3 5

6 2 2 2 3 6 1 1 2 3 6 1 1 2 3 6

7 2 3 3 3 7 2 2 2 3 7 1 2 2 3 7

8 3 3 3 3 8 3 2 3 3 8 2 2 3 3 8

P1 (P. aeruginosa) 1 0 0 0 2 1 1 1 1 2 1 1 1 1 2 1

2 0 0 0 3 2 1 1 1 2 2 1 1 1 3 2

3 1 1 1 4 3 1 1 3 4 3 1 1 3 4 3

4 2 2 2 4 4 2 2 3 4 4 2 2 3 4 4

5 3 3 3 4 5 3 2 2 4 5 3 2 2 4 5

6 3 3 3 4 6 3 3 4 4 6 3 3 2 4 6

7 3 3 3 4 7 3 3 4 4 7 3 3 4 4 7

8 4 4 4 4 8 3 4 4 4 8 3 4 4 4 8

P16 (P. aeruginosa) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2

3 0 0 1 1 3 0 0 0 1 3 0 0 0 1 3

4 0 1 1 2 4 0 1 1 2 4 0 1 1 2 4

5 0 1 1 2 5 0 1 1 2 5 0 1 1 2 5

6 0 1 1 2 6 0 1 1 2 6 0 1 1 2 6

7 0 1 1 2 7 0 1 1 2 7 0 1 1 2 7

8 0 1 1 2 8 0 1 2 2 8 0 1 2 2 8

P24 (P. aeruginosa) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 0 2 0 0 0 1 2 0 0 0 1 2

3 0 0 0 1 3 0 0 1 2 3 0 0 1 2 3

4 1 0 1 2 4 1 0 1 2 4 1 0 1 2 4

5 1 1 2 3 5 1 0 1 3 5 1 1 1 3 5

6 1 1 2 4 6 1 1 2 3 6 1 1 2 3 6

7 2 2 3 4 7 1 1 2 4 7 1 1 2 4 7

8 2 3 3 4 8 1 1 3 4 8 1 1 3 4 8

P28 (P. aeruginosa) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 0 2 1 0 0 0 2 0 0 0 0 2

3 1 1 0 1 3 1 1 1 1 3 1 1 1 1 3

4 2 1 1 2 4 2 1 1 2 4 1 1 1 2 4

5 3 2 3 4 5 4 4 2 4 5 1 1 1 3 5

6 3 2 3 3 6 4 3 3 4 6 4 2 2 3 6

7 3 4 4 4 7 4 4 4 4 7 0 4 0 4 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

pseud 1 1 0 0 0 4 1 0 0 0 4 1 0 0 0 3 1

2 0 0 3 4 2 0 0 1 4 2 0 0 1 4 2

3 1 2 4 4 3 0 2 3 4 3 0 0 4 4 3

4 3 4 4 4 4 2 4 4 4 4 3 4 4 4 4

5 0 4 4 4 5 0 4 4 4 5 0 4 4 4 5

6 n/a n/a n/a n/a 6 n/a n/a n/a n/a 6 n/a n/a n/a n/a 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

pseud2 1 0 0 0 2 1 0 0 0 2 1 0 0 0 2 1

2 0 0 1 4 2 0 1 2 4 2 0 1 2 4 2

3 0 2 3 4 3 0 1 3 4 3 0 2 2 4 3

4 2 4 4 4 4 2 4 4 4 4 0 4 4 4 4

5 3 4 4 4 5 3 3 4 4 5 0 4 4 4 5

6 n/a n/a n/a n/a 6 n/a n/a n/a n/a 6 n/a n/a n/a n/a 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

pseud3 1 0 0 3 4 1 0 0 3 4 1 0 0 2 4 1

2 1 4 4 4 2 1 2 4 4 2 1 2 4 4 2

3 0 4 4 4 3 2 4 4 4 3 3 4 4 4 3

4 n/a n/a n/a n/a 4 4 4 4 4 4 4 4 4 4 4

5 n/a n/a n/a n/a 5 n/a n/a n/a n/a 5 n/a n/a n/a n/a 5

6 n/a n/a n/a n/a 6 n/a n/a n/a n/a 6 n/a n/a n/a n/a 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

s1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 2 2 0 0 0 1 2 0 0 0 1 2

3 0 0 1 3 3 0 0 0 2 3 0 0 1 2 3

4 0 0 2 3 4 0 0 1 3 4 0 0 1 3 4

5 0 0 4 3 5 0 0 0 4 5 0 0 0 4 5

6 n/a n/a n/a n/a 6 4 0 4 4 6 n/a n/a n/a n/a 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

1 0 0 0 2 1 0 0 0 2 1 0 0 0 1 1

s2 2 0 0 2 4 2 0 0 1 4 2 0 0 1 4 2

3 0 1 3 4 3 0 1 2 4 3 0 1 2 4 3

4 0 2 4 4 4 0 1 4 4 4 0 0 3 4 4

5 2 2 4 4 5 1 0 4 4 5 1 0 4 4 5

6 4 4 4 4 6 4 4 4 4 6 0 4 4 4 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

s3 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2

3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3

4 0 1 1 3 4 0 1 1 3 4 0 1 1 3 4

5 0 2 2 4 5 0 1 2 4 5 0 1 2 4 5

6 0 0 2 4 6 0 1 4 4 6 0 1 4 4 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

s4 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2

3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 3

4 0 0 0 0 4 0 0 0 0 4 0 0 0 0 4

5 0 0 0 0 5 0 0 2 0 5 0 0 0 0 5

6 0 0 0 0 6 0 0 0 0 6 0 0 0 0 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

s5 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1

2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2

3 0 0 2 3 3 0 0 2 2 3 0 0 2 2 3

4 0 1 2 4 4 0 1 2 3 4 0 0 2 3 4

5 0 0 0 4 5 0 1 0 4 5 0 1 2 4 5

6 0 0 4 4 6 n/a n/a n/a n/a 6 4 0 4 4 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

s6 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2

3 0 0 0 0 3 0 0 0 0 3 0 0 0 0 3

4 0 0 1 0 4 0 0 1 0 4 0 0 1 0 4

5 0 0 2 0 5 0 0 1 0 5 0 0 2 3 5

6 4 0 2 4 6 4 0 4 4 6 0 0 2 2 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

s7 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2

3 0 0 1 2 3 0 0 1 1 3 0 0 1 1 3

4 1 1 2 3 4 1 1 1 2 4 1 1 1 2 4

5 0 1 2 4 5 1 1 2 4 5 1 1 1 4 5

6 3 3 4 4 6 0 2 4 4 6 4 4 3 4 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8

s8 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2

3 0 0 1 2 3 0 0 1 2 3 0 0 1 2 3

4 0 1 2 3 4 0 1 2 3 4 0 1 2 4 4

5 0 0 2 4 5 0 1 2 4 5 0 1 2 4 5

6 0 2 4 4 6 0 4 4 4 6 0 3 0 4 6

7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7 n/a n/a n/a n/a 7

8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8 n/a n/a n/a n/a 8



118 
 

 


