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The precise mechanisms underlying general anæsthesia
pose important and still open questions. To address
them, we have studied anæsthesia induced by the
widely-used (intravenous) propofol and (inhalational)
sevoflurane anæsthetics, computing cross-frequency
coupling functions between neuronal, cardiac, and
respiratory oscillations in order to determine their
mutual interactions. The phase domain coupling
function reveals the form of the function defining the
mechanism of an interaction, as well as its coupling
strength. Using a method based on dynamical
Bayesian inference, we have thus identified and
analyzed the coupling functions for six relationships.
By quantitative assessment of the forms and strengths
of the couplings, we have revealed how these
relationships are altered by anæsthesia, also showing
that some of them are differently affected by
propofol and sevoflurane. These findings, together
with the novel coupling function analysis, offer a new
direction in the assessment of general anæsthesia and
neurophysiological interactions in general.
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1. Introduction
General anæsthesia plays a crucial role in many surgical procedures, and it therefore has an
enormous impact on human health. It is a drug-induced, reversible, state characterized by
unconsciousness, anti-nociception or analgesia, immobility and amnesia [1,2]. On rare occasions,
however, the patient can remain unconscious longer than intended, or may regain awareness
during surgery. There are no precise measures for maintaining the correct dose of anæsthetic,
and there is currently no fully reliable instrument to monitor depth of anæsthesia. Although
a number of devices for monitoring brain function or sympathetic output are commercially
available [3], the anæsthetist also relies on clinical assessment and experience to judge
anæsthetic depth. The undesirable consequences of overdose or unintended awareness might
in principle be ameliorated by improved control if we could understand better the changes
in function that occur during general anæsthesia, in particular the dynamical brain states, the
dynamics of cardiovascular oscillations, and their mutual interactions [4].

General anæsthesia can be induced by different anæsthetics which can affect different
physiological regions, receptors and channels [5,6]. In this study we used two of the most widely
used anæsthetics – propofol and sevoflurane, i.e. we used one of the two in each anæsthesia
measurement. Propofol is introduced intravenously, while sevoflurane is a sweet-smelling,
nonflammable type of ether that is inhaled [7–10].

The central enigma in general anæsthesia is the nature of the unconscious state mediated in the
brain. Neuronal states often manifest themselves as changes in brain electrophysiological activity,
which emanates from the dynamics of large-scale cell ensembles oscillating synchronously [11,12]
within characteristic frequency intervals. Individual ensembles communicate to integrate their

local information flows into a common brain network. One way to describe such an integration or
communication is through cross-frequency coupling, a method that has led to numerous studies
elucidating the respective roles of cognition, attention, memory and anæsthesia [9,10,13–15]. Jirsa
and Müller [13] recently identified different types of cross-frequency coupling based on use of
the power, phase or frequency domains; in what follows, we focus on phase-phase cross-frequency
couplings. Unlike earlier cross-frequency coupling methods, the approach that we will discuss
assesses neuronal states through the computation of coupling functions describing the functional
forms of individual cross-frequency interactions.

Coupling functions prescribe the physical rule specifying how the inter-oscillator interactions
occur. They determine the possibility of qualitative transitions between the oscillations e.g.
routes into and out of phase synchronization [16]. Their decomposition can describe the
functional contribution from each separate subsystem within a single coupling relationship. In
this way, coupling functions offer a unique means of describing mechanisms in a unified and
mathematically precise way. It is a fast growing field of research, with much recent progress on the
theory [17,18] and especially towards being able to extract and reconstruct the coupling functions
between interacting oscillations from data, leading to useful applications in cardiorespiratory
interactions [19–21], chemistry [16], mechanics [22] and communications [23]. We will show that,
in neuronal analysis, the cross-frequency coupling function describes much more than just a new
way of measuring effects: it opens up a whole new perspective on the functional mechanisms
underlying the functionality of the brain network.

The oscillatory processes of the brain are not only individually important to the function of the
central nervous system, but they can also interact, both mutually and with other physiological
oscillations. The latter comprise e.g. the oscillatory processes of the cardiovascular system [24]
including the heart and the lungs which are closely associated because, working together,
they provide the blood supply, with oxygen and nutrients for the whole body including the
brain. The brain’s functional state is obviously of crucial importance in general anæsthesia
and as such it provides the basis for number of measures [3], (including for example
the BIS (Bispectral index) monitor by Medtronic (formerly Aspect Medical), the Entropy
monitor by GE Healthcare, the Narcotrend index by MonitorTechnik, and others). However,
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Figure 1. Schematic representation
of the main aims of the study. We
seek to investigate the interactions
between oscillatory processes in
the brain, lungs and heart, and to
establish how they are affected by
general anæsthesia. The interactions
are assessed by reconstruction
of the coupling functions. The
analyses are performed on non-
invasive measurements of the
electroencephalogram (EEG),
the respiration signal from
expansion of the thorax, and the
electrocardiogram (ECG). Samples
of raw measurements are shown
adjacent to each of the organs, as
are also the relevant cross-frequency
intervals.

although traditional anæsthetic monitoring includes only the on-off awake vs. unconscious
classification, indirect or surrogate measures of brain function, such as movement, blood
pressure, heart rate, sweating, and other anæsthesia-induced changes to the cardiovascular
system [25–29] also provide valuable indicators [1]. Moreover, the two systems are connected in
many ways, and some signatures of causal interaction have already been demonstrated [15]. For
a comprehensive assessment of general anæsthesia one should therefore add a consideration
of the (complex) interactions between the cardiovascular and brain oscillations [4] and the
integration of their functions into what are interconnected physiological networks [4,15,30].
One may thus investigate the mechanisms and connections between the brain and the loss of
consciousness [1,2] on the one hand, and on the other the cardiovascular system which is closely
related to the function of the autonomous nervous system including anti-nociception, analgesia
and the perception of pain [31–34].

In this paper, we seek to establish the functional laws defining the mutual interactions between
the brain, heart, and the lungs (see Fig. 1) in general anæsthesia. The study is based on three
complementary pillars: (i) anæsthesia with two of the most widely-used anæsthetics, using the
same experimental setup; (ii) application of the novel methodology of cross-frequency coupling
functions to determine phase-causal links and to probe the interaction mechanisms directly; and
(iii) assessment of general anæsthesia based on the combined dynamics and interactions of the
brain, lungs and heart oscillations.

2. Methods

(a) Inference of cross-frequency coupling functions
Cross-frequency couplings are usually inferred by methods based on the statistics of the coupled
signals, such as the correlation and (bi-) coherence measures. Such approaches tell one about the
functional connectivity [35], but they do not provide information about causality or about the form
of the coupling functions. In contrast, however, we now show that inference of cross-frequency
couplings based on a model of coupled phase oscillators [36,37] and dynamical Bayesian inference
[19,38,39] enables us to infer the effective connectivity [35], i.e. to estimate the coupling functions
and the underlying causality. We note that the effective connectivity was initially discussed in
relation to the spatial segregation of brain functions [40] and is often used in this sense by the
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neuroscience community. In the present work we do not study spatial connectivity but, rather,
we exploit the mathematical concept of effective connectivity in determining the influence that
one oscillator exerts on another, under a particular model of causal dynamics [35,41]. With its
ability to infer time-evolving coupled dynamics in the presence of noise, dynamical Bayesian
inference is ideal for the calculation of effective connectivity from neuronal oscillations.

The signals derived from the chosen cross-frequency intervals are oscillatory, and their
interactions can be studied effectively through their phase dynamics. We therefore consider a
model of two coupled phase oscillators [36] described by the stochastic differential equation:

φ̇i(t) = ωi(t) + qi(φi, φj , t) + ξi(t), (2.1)

with i 6= j for i, j = {1, 2} and where ωi(t) is the parameter for the natural frequency.
The deterministic part given by the base functions qi(φi, φj , t) describes the self and the
interacting dynamics. The external stochastic dynamics ξi(t) is considered to be Gaussian
white noise 〈ξi(t)ξj(τ)〉= δ(t− τ)Dij . Due to the periodic nature of the deterministic
dynamics, the base functions can be decomposed into infinite Fourier series qi(φi, φj , t) =∑∞
s=−∞

∑∞
r=−∞ c̃(t)i;r,s e

i2πrφi(t)ei2πsφj(t). In practice, however, the dynamics is well-
described by a finite number of Fourier terms, so that one can rewrite the phase dynamics as
φ̇i(t) =

∑K
k=−K c̃

(i)
k (t)Φi,k(φi, φj , t) + ξi(t), where c̃(i)0 = ωi, and the rest of Φi,k and c̃(i)k are the

K most important Fourier components. The Fourier components Φi,k act as base functions for

the dynamical Bayesian inference, through which the parameters c̃(i)k are evaluated. In the
analysis we used a second-order Fourier expansion (K = 2). Two phase time-series and the
order of expansion K act as inputs for the phase model which is inferred for each interaction
(e.g. δ-α), from each subject.

Dynamical Bayesian inference [19,39] enables us to evaluate the model parameters c̃, which
give the time-evolving coupling functions and coupling strength in the presence of noise. From
Bayes’ theorem one can derive the minus log-likelihood function, which is of quadratic form.
Assuming that the parameters are represented as a multivariate normal distribution (with mean c̄,
and covariance matrixΣ ≡Ξ−1), and given such a distribution for the prior knowledge using the
likelihood function, one can calculate recursively [19] the posterior distribution of the parameters
c̃k using only the following four equations:

D =
h

L

(
φ̇n − ckΦk(φ∗·,n)

)T (
φ̇n − ckΦk(φ∗·,n)

)
,

rw = (Ξprior)kw cw + hΦk(φ∗·,n) (D−1) φ̇n+

− h

2

∂Φk(φ·,n)

∂φ
,

Ξkw = (Ξprior)kw + hΦk(φ∗·,n) (D−1)Φw(φ∗·,n),

c̃k = (Ξ−1)kw rw,

(2.2)

where summation over n= 1, . . . , N is assumed, and summation over repeated indices k andw is
implicit. We used informative priors and a special procedure for the propagation of information
between consecutive data windows [19], which permitted the inference parameters that varied
with time (for implementation and usage see [42,43]). Given its ability to infer time-varying and
noisy dynamics, our Bayesian method is especially well-fitted for applications to EEG, ECG and
respiration signals. A block diagram summarising the analysis procedure is provided in the
Supplementary Material.

Once we have the inferred parameters c̃, we can calculate the coupling quantities and
characteristics. The coupling functions are evaluated on a 2π × 2π grid using the relevant base
functions i.e. Fourier components scaled by their inferred coupling parameters. The coupling
strength is calculated as the Euclidean norm of the inferred parameters for a particular coupling
[42]. The correlation ρ of the coupling parameters from two coupling functions gives the similarity



5

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

1
ω1

2
ω2

φ̇1 = ω1 + q1(φ1, φ2) + ξ =

= ω1 + d1(φ2) + i1(φ1, φ2) + ξ

IN
DI
RE
CT

D
IR
E
C
T

ξ

Figure 2. Model of the coupling decomposition.
The dynamical equation (top) represents how
one phase oscillator (index 1) is influenced by
another (index 2). The net coupling q1(φ1, φ2)

is decomposed into two functional entities:
the direct d1(φ2) and the indirect ii(φ1, φ2),
coupling functions. The dynamics is also
characterized by a natural frequency parameter
ω1 and external noise perturbations ξ.

of the forms of the coupling functions, irrespective of amplitude [20]. All coupling characteristics
can be evaluated either for the net coupling, or for individual coupling components.

(b) Coupling decomposition model
The form of a coupling function depends on the differing contributions from individual
oscillations. Changes in form may depend predominantly on only one of the phases (along one-
axis), or they may depend on both phases, often resulting in a complicated and intuitively unclear
dependance. This demonstrates the need for a model able to distinguish the individual functional
contributions to a coupling. Accordingly, following the cardiorespiratory model [21], we present
a generalised coupling decomposition model (Fig. 2).

Previous coupling treatments, including the cross-frequency coupling in neuroscience, have
focused on the net coupling in one direction. Instead, we decompose the net coupling into two
components depending on their functional roles: the direct and the indirect couplings (Fig. 2).
Direct-coupling describes the influence of the direct (unidirectional) driving that one oscillator
exerts on the other. Arguably, it is the most studied interaction in physiology, often linked to
modulation mechanisms. We will see that direct-coupling is the dominant mechanism in most of
the coupling functions. The second component, indirect-coupling, often called common-coupling,
depends on the shared contributions of the two oscillators. The indirect coupling includes also the
diffusive coupling given with the phase difference terms. The mechanism behind this coupling
component (the small circle on the arrow in Fig. 2) can lie in some functional dependence from
both of the current phase states, or it can be induced by a third system or process. Although
we present the model in relation to phase dynamics, a similar functional decomposition of the
couplings can also be applied to amplitude state dynamics.

In terms of the general theory of phase dynamics [36] (and Eq. (2.1)), the coupling function
q1(φ1, φ2) can be expressed as the product of two functions:

q1(φ1, φ2) =Z1(φ1)I1(φ2), (2.3)

where Z1(φ1) is the phase response curve (PRC) of the first oscillator and shows how it
responds to external perturbations, while I1(φ2) is the perturbation function through which
the second oscillator acts on the first one. (The perturbation function is often given in a more
general form like I1(φ1, φ2) [36]). In terms of Eq. (2.3), the direct-coupling component results
from the existence of the constant part of the PRC Z1(φ1), while the common or indirect-
coupling component results from the existence of the phase-dependent part of the PRC Z1(φ1)

and the perturbation function I1(φ2).

(c) Subjects and protocol
We measured 25 awake and 29 anæsthetized heathy subjects, aged 18 to 60 years, who were about
to undergo elective surgery, all of whom had given their informed consent in writing. The research
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was approved by the relevant research ethics committees in Norway and UK. Of 29 anæsthetized
subjects, 14 were anæsthetized with propofol and 15 with sevoflurane.

There are two sets of recordings for every subject: the first while the subject was awake and
resting, and the second while anaesthetized either with propofol or sevoflurane by random choice.
Propofol anaesthesia was induced by infusing propofol until a plasma target concentration of 6.0
µgm l−1 was reached [44]. A laryngeal mask airway was inserted 2 minutes after the start of the
infusion. After insertion, the target concentration was reduced to 3.0 µgm l−1 and the infusion
was maintained at this rate throughout the measurement period. Some of the propofol patients
became restless during induction (while unconscious) and 8 of them were given a small dose
(50-100 µg) of the very short-lived (Thalf−life ' 4 min.) opioid, remifentanil, during induction.
Due to the small dose and the short half-life, this would not have significantly affected the
signals. The other group of subjects were asked to breathe 8% sevoflurane through a close-
fitting facemask until an end-tidal concentration of 5% was reached. A laryngeal mask airway
was inserted, and then the sevoflurane turned off until the end-tidal concentration fell to 2%.
The sevoflurane was then reinstituted to maintain the end-tidal concentration at 2% throughout
the measurement period. After a further stabilization period, the anaesthetized set of signal
recordings took place. Subjects breathed spontaneously during both sets of recordings. The BIS
EEG electrode was placed frontally on the forehead (similarly to the FP1 electrode from the 10-
20 international system). All data were recorded simultaneously using a Cardio&Brain Signals
signal conditioning system (Jožef Stefan Institute, Ljubljana, Slovenia) specially designed for
the BRACCIA study. Following 24-bit A/D conversion at 1200 Hz, the signals were stored on a
computer for subsequent analysis. They included the 3-lead ECG, and the respiration signal
measured with a thorax-belt, as well as the frontal EEG signal. All were of 22-32 minutes
duration. The analyses were performed on equal-length segments of 20 minutes.

(d) Signal processing and statistical analysis
The signals were first inspected visually, followed by automated artefact removal by
interpolation. Data from subjects whose signals had many artefacts were disregarded and
not analyzed. The cross-frequency intervals were estimated by standard digital filtering
procedures, including a FIR filter followed by a zero-phase digital filtering procedure (filtfilt in
Matlab) to ensure that no time or phase lags were introduced by the filtering. The boundaries of
the intervals extracted from the EEG signal were: δ= 0.8− 4Hz, θ= 4− 7.5Hz, α= 7.5− 14Hz,
β = 14− 22Hz, and γ = 22− 100Hz; the interval extracted from the respiration signal was r=

0.145− 0.6Hz; and the extraction of the heart activity from the ECG signal was h= 0.6− 2Hz.
Wavelet power and coherence analyses, together with further clinical interpretation, will be
presented elsewhere. For the EEG oscillations special care was taken in dealing with frequency
spillage between intervals, heart artefacts and powerline artefacts [45].

The cardiac activity has been widely studied through heart rate variability (HRV) analysis [46].
Usually the HRV signal is constructed by interpolation of the times of the R-peaks marked in an
ECG signal, whence the variations in heart rate can be obtained up to a frequency of ∼0.5Hz, i.e.
up to half of the main (fundamental) cardiac oscillation frequency at ∼1Hz. In the present study,
we focused on the coupled-oscillator approach [36,47], which meant that we required the carsiac
main oscillation mode at∼1Hz, which would of course get lost in an HRV estimation. In contrast,
by band-filtration of the signal in the interval h= 0.6− 2Hz around the main oscillation we were
able to obtain well-defined phase estimates with intra-cycle resolution. Hence we could analyse
the phase interactions of the cardiac main oscillation mode, as required; we note, however, that
this procedure would have led to the loss of some of the HRV variations, and especially those at
the lower frequencies.

The phases of the filtered signals were estimated by use of the Hilbert transform [48], and
the protophase-to-phase transformation [22] was then applied to the resultant protophases to
obtain invariant observable-independent phases. To determine whether the coupling strength
and coupling functions were not genuine i.e. whether they happened by chance, the coupling
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Figure 3. Cross-frequency coupling functions between δ and α brain oscillations. Each δ-to-α
coupling function qα(φδ, φα) is evaluated from the α-dynamics and depends on the bivariate
(φδ, φα) phases. (a), (b) and (c) show the coupling functions for one individual subject, while (d),
(e) and (f) show the average coupling functions from all subjects within the group. Note that for
comparison the vertical scale of coupling amplitude is shown on same interval for (a), (b), (c),
and then for (d), (e), (f). Here, and throughout, we refer to Awake as the state when the subject is
awake and resting; and Propofol and Sevoflurane when the subject is anæsthetized with propofol
or sevoflurane respectively.

of each of the relationships investigated was tested against intrasubject and intersubject
surrogates [49]: the former were generated by randomizing the phase signals, and the latter
by taking one of the phases from a different subject. In this way, the surrogates should be
independent and any apparent coupling from the surrogate phases should be very low. From
the large number of investigated relationships, only those exhibiting a statistically significant
difference compared to their corresponding surrogates are discussed in the study. Similarly, for
simplicity we present only the coupling in the predominant direction because that in the weaker
direction was usually insignificant. To assess the statistical difference between groups of awake,
propofol- and sevoflurane-anæsthetised subjects (and because of the non-normal distributions),
we used the Wilcoxon statistical test, with p < 0.05 considered as significant. The couplings were
assessed independently; they did not form a statistical family; and multiple comparison tests were
not used. To present visually the differences between the distributions we used standard boxplots
which refer to the descriptive statistics (median, quartiles, maximum and minimum).

3. Results

(a) Cross-frequency coupling functions
The application of dynamical Bayesian inference to bivariate phase signals leads to the parameters
of the coupled phase model, from which the coupling functions can then be reconstructed. For
clarity, we first present in detail the coupling function for one relationship only – the delta-alpha
coupling Fig. 3. Examples of the delta-alpha coupling function for single representative subjects in
their awake and anæsthetized states are shown in Fig. 3(a)-(c). In the averaged coupling function
for all subjects (Fig. 3(d)-(f)) the inter-subject variations are averaged out, and the remaining
coupling function signifies a functional form that represents a deterministic law for all of the
subjects.
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Figure 4. Cross-frequency coupling functions between neuronal and cardiorespiratory oscillations:
(a)-(d) δ-α; (e)-(h) θ-γ; (i)-(l) α-γ; (m)-(p) r-θ; (q)-(t) h-θ; and (u)-(x) r-h. The coupling functions
are arranged in columns, and the states and surrogates are aligned horizontally. The coupling
functions shown are the average over all subjects within a group and the vertical coupling scales
are the same for each state within a relationship. The notation and interpretation of the individual
coupling functions are the same as in Fig. 3.

Comparison of the coupling function shapes for individual subjects (Fig. 3(a)-(c)) with the
corresponding averages over all subjects (Fig. 3(d)-(f)) reveals considerable similarity between
subjects. The coupling functions for awake resting [50], propofol, and sevoflurane (Fig. 3(a),(b),(c),
and Fig. 3(d),(e),(f)) are, however, quite different from each other, both in the form and strength of
the coupling. The delta-alpha coupling function for the awake state has a relatively complex and
varying form, and low amplitude. The coupling functions for propofol and sevoflurane are similar
and they look significantly different from those for the awake state. The sevoflurane coupling
function has the largest coupling amplitude. The qualitative form of the delta-alpha coupling
function (Fig. 3(f)), has a sine-like wave form along the φδ-axis, while it is nearly constant along
the φα-axis. This strongly implies that much of the delta-alpha coupling comes from the direct
contribution of the delta oscillation. The specific form of the delta-alpha coupling function (e.g.
Fig. 3(f)) reveals the underlying functional coupling mechanism i.e. shows that, when the delta
oscillations are between π and 2π, the sine-wave coupling function is higher and the delta activity
accelerates the alpha oscillations; similarly, when the delta oscillations are between 0 and π, the
coupling function is decreased and delta decelerates the alpha oscillations.

In Fig. 4 we summarize our results for the coupling functions of all significant coupling
relationships. They include the cross-frequency coupling functions that emerge within the brain,
and between the brain, the lungs and the heart oscillations (figures with enhanced resolution are
provided in the Supplementary Material). The delta-alpha relationship is presented again for
completeness and comparison. The theta-gamma coupling functions (Fig. 4(e)-(h)) have different
forms, depending on the state of awakeness, with propofol and sevoflurane taking similar
forms. The coupling amplitude of the propofol theta-gamma coupling (Fig. 4(f)) is lowest. The
form of the functions looks like a second order sine wave which changes predominantly along
the φθ-axis. The alpha-gamma coupling functions (Fig. 4(i)-(l)) are of similar form, but their
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Figure 5. Anæsthesia-induced changes
in coupling strength. Each boxplot
shows the coupling strength
distribution of a specific coupling
relationship for the awakeness state
indicated by the letter A (awake), P
(propofol), or S (sevoflurane) on the
abscissa. The coupling relationships
are shown on the vertical axes, with
each interaction as a separate row,
including δ-α shown in (a)-(c), θ-γ
(d)-(f), α-γ (g)-(i), r-θ (j)-(l), and
r-h (m)-(o). The h-θ row is omitted
because there were no significant
changes. The columns correspond
to the net, direct, and indirect
coupling components respectively.
The line connectors on the tops of
individual panels indicate cases
where the difference between two
boxplot distributions was statistically
significant (for statistical procedures
see Sec. 2(d)).

coupling amplitudes increase in anæsthesia, with the sevoflurane coupling function again being
the highest. Interestingly, the qualitative form of the functions changes along both axes. This
implies that the alpha-gamma coupling depends on both of the oscillations (alpha and gamma),
or on the same indirect influence that affects them both.

The influence of respiration on brain theta oscillations is shown in Fig. 4(m)-(p). There exist
similarities in the form of the coupling functions between the awake and sevoflurane states, while
the form of the propofol function seems qualitatively different. The direct influence of the phase
φr of respiration is dominant in the awake and sevoflurane coupling functions. The coupling
of the heart to theta oscillations is weak with a less-stable and time-varying form (Fig. 4(q)-(t)).
The two anæsthetized heart-theta coupling functions are of similar form and are stronger than
in the awake state. The strong coupling function between respiration and the heart oscillations
(Fig. 4(u)-(x)) is the only one to have been studied previously, and our results confirm the earlier
work [19–21]. More importantly, the propofol and sevoflurane anæsthesia made the form of the
cardiorespiratory coupling function more time-varying and unstable – which is opposite to the
effect of anæsthesia on the delta-alpha coupling (cf. Fig. 4(a)-(d)).

(b) Effect of anæsthesia on the coupling strength
In order to assess the influence of anæsthesia we first quantify the coupling (amplitude) strength.
The latter has been extensively studied in earlier work [13,15,45,51]: wherever reference was made
to coupling causality and directionality, it was in fact the net coupling strength, or a measure
proportional to it, that was being evaluated. Our coupling decomposition enables us to go beyond
this by quantifying the coupling strengths of the individual components of the net coupling.

In Fig. 5 we summarize the changes of coupling strength induced by anæsthesia. The different
effect on the separate coupling components is evident in the delta-alpha relationships shown
in the top row of Fig. 5(a)-(c). The net coupling with sevoflurane is significantly different from
the awake and propofol states (Fig. 5(a)); for direct coupling all the states are different (Fig.
5(b)), while the indirect coupling for propofol was significantly the smallest (Fig. 5(c)). Note
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Figure 6. Influence of anæsthesia on the
form of the coupling functions. The
similarity of functional forms is presented
as the correlation coefficient ρ for the net
((a), (d) and (g)), the direct ((b), (e) and
(h)) and the indirect coupling functions
((c), (f) and (i)). The columns correspond
to the three coupling relationships: (a)-(c)
δ-α; (d)-(f) r-θ; and (g)-(i) r-h. The inter-
subject similarity correlation boxplots are
shown for the awake(A), propofol (P)
and sevoflurane (S) states as indicated on
the abscissa. The line connectors on the
tops of individual panels indicate cases
where the difference between two boxplot
distributions was statistically significant.

also that direct coupling is the dominant component of the net coupling. For the theta-gamma
interaction, it is only the indirect coupling that differs between the awake and sevoflurane
states (Fig. 5(f)). Anæsthesia increased significantly the net and indirect coupling strengths in
alpha-gamma (Fig. 5(g)-(i)). This coupling is mostly defined by the indirect coupling component.
The respiration-theta net coupling differed slightly between the two anæsthetics (Fig. 5(j)).
Sevoflurane anæsthesia induced the strongest cardiorespiratory coupling strength, and this
difference compared to other states is significant for all coupling types (Fig. 5(m)-(o)).

(c) The effect of anæsthesia on the form of coupling functions.
The other useful characterization of coupling functions is their functional form. It defines the
functional law or mechanism and it is a specific feature of coupling functions. To quantify
the forms of a given coupling relationship we use a correlation measure that quantifies the
similarity of the forms of two coupling functions, irrespective of their coupling strengths [20].
If the similarities of form for between the intersubject pairs for some interaction is high enough, it
means that there exists a common deterministic functional form which underlies the mechanisms
of that interaction. From the coupling decomposition model we can investigate, separately, the
similarity of form for each individual component of the coupling functions (Fig. 6).

The similarity in form of the delta-alpha coupling functions is shown in Fig. 6(a)-(c). There is
a large difference due to anæsthesia in the net and direct similarity (Fig. 6(a) and (b)), while the
indirect similarity is different only for sevoflurane (Fig. 6(c)). The similarity of form is especially
high for the direct component, while very low for the indirect component. The respiration-
theta interaction had relatively small similarity of its functional forms, and there is only a small
significant increase for sevoflurane in the net and direct similarities (Fig. 6(d) and (e)). The
respiration-heart interaction also had all the significant differences seen in the net coupling, but
now decreased with anæsthesia (Fig. 6(g)). The similarity of these interactions is mostly due to the
high direct similarity (Fig. 6(h)), where awake is different from when under the two anæsthetics.
We note that anæsthesia had opposite effects on the similarity of the functional forms for delta-alpha
and respiration-heart – cf. Fig. 6(a) and (g). This quantitative description is consistent with the
observations of the coupling functions made in Fig. 4.
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Figure 7. Anæsthesia-induced changes in noise strength. Each boxplot shows the group
distribution of all subjects’ noise strengths for a specific oscillation interval during the three
awakeness states A, P and S. Noise strengths are shown (a) for the δ oscillation interval, (b) α,
(c) θ, (d) γ, (e) r, and (f) h. The line connectors on the tops of individual panels indicate cases
where the difference between two boxplot distributions was statistically significant.

(d) The effect of anæsthesia on the noise strength.
Dynamical Bayesian inference can decompose the dynamics into two parts: what is believed
to be the deterministic part of the model; and a part originating from random (white) noise
perturbations. The noise strength represents the level of random fluctuations relative to the
frequency of the oscillation and its interactions with the other oscillations considered. So we
also investigated whether and how anæsthesia affects the noise strength D of the brain and
cardio-respiratory oscillations, with results as shown in Fig. 7. Correlated noise strengths e.g.
Dα,δ were found to be very small and not statistically different between the awakeness states,
so they are not reported. Also, the noise strength for each of the intervals had (qualitatively)
the same statistical difference when coupling was investigated with different intervals, e.g.
Dα,α Fig. 7 (b) was the same whether δ − α interactions or α− γ interactions were inferred.

The results in Fig. 7 demonstrate that the noise strength for some rhythms was unaffected
by anæsthesia, Dδ,δ in Fig. 7 (a) and Dh,h in Fig. 7 (f); for other rhythms anæsthesia made
a significant difference, either increasing like Dθ,θ in Fig. 7 (c), or decreasing like Dα,α in
Fig. 7 (b) and Dγ,γ in Fig. 7 (d), with anæsthesia relative to the awake state; or the result was
statistically different in all three states, like Dr,r in Fig. 7 (e).

4. Discussion
The present investigation relies on three complementary factors: (i) general anæsthesia under
either intravenous and inhalational anæsthetics; (ii) the novel methodology of cross-frequency
coupling functions to probe interaction mechanisms directly; and (iii) assessment of the
combined dynamics and interactions of the cortical, respiratory and cardiac oscillations.
We have thus been able to analyse the coupling functions between brain activity, which
involves information processing and control of the human body, on the one side, and the
cardiorespiratory systems, which take care of energy transport and the supplies of nutrients
and oxygen, on the other.
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While interactions have already been studied in lizards [52], mice [53], rats [15] and dogs
[54], here we report the first insights into cardio-respiratory-cortical interactions in humans, in
both the awake and anaesthetised states. Moreover, our extension of cross-frequency coupling
to include the analysis of coupling functions has allowed us to investigate the interactions
in greater depth by introducing the notion of the functional form, which represents a new
dimension in the analysis of neuronal effective interactions. Thus, we have been able to present
two quantitative dynamical properties of the phase interactions: the coupling strength; and
the form of the coupling function. The functional description of the couplings has enabled us
to propose a coupling decomposition model that reveals the separate contributions, in turn
providing deeper insight into the causality within a coupling. The model was strongly supported
by the results (Figs. 5 and 6) where the effect of anæsthesia often differed for the individual
coupling components.

Coupling functions describe the underlying mechanisms that gives rise to the qualitative states
of the interacting systems, e.g. the phase synchronization state which is of great importance in
neuronal [37] and cardiorespiratory [20,29] interactions. By knowing the form of the coupling
function, one can predict the occurrence of phase synchronization for given parameters [16].
Although the discussion was only for large-scale cross-frequency couplings, the coupling
functions presented have wide implications at different scales and levels of the heavily connected
brain network [35]. Thus one can also describe the functional form of the edges, and can use the
coupling decomposition model to investigate the separate contributions from the nodes.

One of the most prominent coupling relationships we identified is delta-alpha. It reflects how
delta activity, associated with deep dreamless sleep [55], influences the alpha oscillations which
are said to reduce the information processing [55,56] and play a key role in consciousness [57,58].
During the maintenance of general anæsthesia, the alpha and delta activities were increased
[2,59]. The delta-alpha coupling has been linked to the coding mechanism of feedback valence
information [60]. Even though the anæsthetized state differs from sleep and from the resting state
generally, a strong delta-alpha link was observed during non-REM sleep [30] and recently it was
suggested that delta-alpha coupling is mostly located within the frontal and the parieto-occipital
regions when it is stronger during the eyes-closed state [13]. Our results are consistent with,
and further extend and deepen, these findings. Namely, the form of the delta-alpha coupling
functions (Figs. 3 and 6) indicates that the influence is direct modulation from delta to alpha,
where the couplings are significantly stronger in anæsthesia than when awake. This shows that,
once the subject is anæsthetized, delta activity influences the alpha oscillations by contributing to
the reduction of information processing and integration.

Gamma activity, associated with attention, memory and sensory processing, is known to
decrease in anæsthesia [61]. In seeking to reveal the underlying mechanisms, we identified two
significant couplings: theta-gamma and alpha-gamma. They have been widely studied already,
mostly with phase-to-power cross-frequency couplings and higher gamma intervals, and various
functional roles have been attributed to them in different states and tasks [62,63]. It has been
suggested that theta-gamma coupling plays a prominent role in memory tasks, whereas alpha-
gamma interactions are more important for attention processing [64]. The coupling function
analysis (Fig. 4) indicated that these two couplings are affected differently by anæsthesia. Namely,
propofol decreased and sevoflurane increased the theta-gamma coupling, while both anæsthetics
increased the alpha-gamma coupling (Figs. 4 and 5). These two couplings evidently have different
functional mechanisms. The theta-gamma couplings in anæsthesia result from the direct influence
of theta on gamma, while alpha-gamma is dominantly an indirect coupling, implying that there
might be a third process which influences both of the oscillations.

We extended the analysis of cross-frequency neuronal couplings to include the interactions
of two important parts of the cardiovascular system – the respiration and the heart [4,15]. We
identified a coupling function from respiration to theta oscillations. The coupling function was of
complex form, with strong direct component and relatively low intensity. The respiration-theta
coupling was affected more by the sevoflurane than the propofol anæsthesia.
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Of special interest are the brain-heart interactions as they have been linked to cardiac
arrhythmias, psychophysiological coordination and vascular dementia [65–67]. Our analysis
identified a coupling function from the heart to the brain theta oscillations. The form of
the coupling function was relatively complex, its intensity was not very high, and the
influence was predominantly with a direct component from the heart to the theta oscillations.
This coupling function was not greatly affected by the onset of anæsthesia. The origin of
the cardiac-theta couplings could be linked to the haemodynamic function of the heart in
providing blood, together with oxygen and other metabolic substances, to the brain. Astrocytes
and other glial cells might be responsible for mediation of these processes on the neural
level [68,69].

The cardiorespiratory coupling function has been extensively studied [19–21] and its direct
coupling component [21] and phase resetting curve [20] have been associated with respiratory
sinus arrythmia (RSA). The functional connectivity of cardiorespiratory interactions was affected
in different ways by propofol and sevoflurane anæsthesia [29]. Interestingly, we found that
the effect of anæsthesia on the cardiorespiratory coupling functions showed that the coupling
strength increased with anæsthesia, whereas the similarity of form decreased (cf. Figs. 5(m)
and 6(g)). This indicates that the inter-subject similarity of forms becomes more varied with
anæsthesia, while maintaining stable and strong interactions – perhaps reflecting the chronotaxic
nature of the cardiorespiratory interactions [70].

These alterations of the cardiorespiratory coupling functions and their links to the theta
brain oscillations (Fig. 5 and Fig. 6) may reflect partially the onset of analgesia and the reduced
perception of pain [31,32], with possible links to consciousness. Therefore, such results could have
implications for the quest of quantifying analgesia in the absence of consciousness [71,72].

The noise strength analysis in Fig. 7 shows that anæsthesia changes, not only the
deterministic couplings, but also some of the random fluctuations acting on the oscillations.
The decrease of the noise level in α, γ and respiratory oscillations (Fig. 7 (b), (d), (e)) might be a
consequence of the higher determinism associated with the onset of anæsthesia which induces
e.g. order, coupling and coherence of the oscillations: see [2,15] and Fig. 5. More puzzling is the
result that the noise strength for θ oscillations increased with anæsthesia, Fig. 7 (c). It may
perhaps be linked to the origin of the θ oscillation and its role in the hippocampus [73]. These
results are intriguing and invite further investigation using dynamical Bayesian inference,
which has clearly demonstrated its potential for studies of this kind as well as for the analysis
of (biological) experiments of a stochastic nature quite generally.

Unconsciousness is the most striking change in the state of a subject when general anæsthesia
occurs [1,2,74]. The transition to unconsciousness and back can be traced through assessment
of the cognitive EEG dynamics [9,10,75] and the recovery of consciousness has been found
to differ in elderly subjects [76]. It has been noted that the standard clinical assessments of
consciousness (motor, verbal, and eye-opening responses [77]) are not sufficient and that there is
a need for techniques which also assess the function and effective connectivity [1]. Our statistical
comparisons of coupling functions in the awake and anæsthetized states demonstrate that there
are significant differences, especially for the delta-alpha and alpha-gamma couplings (Fig. 3, Fig.
5 and Fig. 6). These coupling-induced changes of the phase advanced/delayed oscillations alter
the attention and memory processes, and suppress information integration which is known for
mediating the unconscious state [1].

The roles of propofol and sevoflurane in the induction of unconsciousness as a common
mechanism was studied and power differences were outlined [75,78]. Our coupling function
results have revealed that these anæsthetics often exhibit similar functional forms, perhaps
implying hence similar mechanisms (Figs. 3 and 4), but that there are some quantitative
differences (Figs. 5 and 6). In general, we observe similar forms of coupling function, but the
strength and effect were significantly stronger for sevoflurane. This could be on account of the
doses used. It is also possible that the molecular and neuronal processes associated with propofol
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and sevoflurane are largely similar, perhaps because both act on the same receptor (e.g. GABAA)
but that there are minor differences in relation to the potassium channels affected [1,5,6].

In conclusion, coupling functions have enabled us to unveil a new perspective on how the
neurophysiological mechanisms are affected by general anæsthesia. This initial application has
been in a sense overwhelming in that we have identified six important and very illuminating
coupling relationships. This was partly because we analyzed, not only neuronal oscillations, but
also how the latter are affected by cardiorespiratory activity. The work has opened the door
to a host of new questions and problems needing to be tackled. For example, can one apply
coupling function analysis to assess spatial neuronal couplings using additional EEG electrodes,
perhaps using different anæsthetics? The possibility of following time-evolving dynamics could
lead to new insights based on studies of how the evolution of the coupling functions mechanisms
lead to unconsciousness. Coupling functions can also be used to study the mechanisms of other
neurophysiological perturbations, as well as to revisit known problems, states and diseases in
order to reveal the underlying functional mechanisms. Needless to say, the findings and the
methodology of this work also have wide implications for coupled oscillators in general, with
the possibility of biomimetic [79] solutions to a diversity of difficult problems [23,80].
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