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Abstract

Log-Gaussian Cox processes are an important class of models for spatial and spa-
tiotemporal point-pattern data. Delivering robust Bayesian inference for this class of
models presents a substantial challenge, since Markov chain Monte Carlo (MCMC) algo-
rithms require careful tuning in order to work well. To address this issue, we describe
recent advances in MCMC methods for these models and their implementation in the R
package lgep. Our suite of R functions provides an extensible framework for inferring
covariate effects as well as the parameters of the latent field.

We also present methods for Bayesian inference in two further classes of model based
on the log-Gaussian Cox process. The first of these concerns the case where we wish
to fit a point process model to data consisting of event-counts aggregated to a set of
spatial regions: we demonstrate how this can be achieved using data-augmentation. The
second concerns Bayesian inference for a class of marked-point processes specified via a
multivariate log-Gaussian Cox process model. For both of these extensions, we give details
of their implementation in R.

Keywords: Cox process, R, spatiotemporal point process, multivariate spatial process, Bayesian
Inference, MCMC.

1. Introduction

A major goal of epidemiological research is to investigate the effects of environmental expo-
sures on health outcomes. Our underlying premise is that cases of a health outcome arise in
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a spatiotemporal continuum through the presence of a population at risk and a combination
of environmental and individual characteristics that affect the risk of disease at each location
in space and time. It is therefore natural to model both population density and risk as con-
tinuous phenomena in time and space whilst recognising, firstly that the available data will
be spatially incomplete and/or aggregated as well as susceptible to measurement error, and
secondly that even after modelling the effects of all candidate variables, there will often be a
residual component of spatiotemporal variation in risk that can only be captured by including
in the model one or more latent, spatiotemporal stochastic processes.

In the present article, our focus is on Bayesian inference for a particular class of statistical
models that in our opinion offer a flexible and intuitive framework for delivering answers
to many scientific questions arising in spatial and spatiotemporal epidemiology: the log-
Gaussian Cox process (LGCP). The spatial LGCP was introduced by Mgller, Syversveen,
and Waagepetersen (1998). Brix and Diggle (2001) and Diggle, Rowlingson, and Su (2005a)
extended this class to include spatiotemporal processes. Diggle, Moraga, Rowlingson, and
Taylor (2013) discuss extensions of the LGCP methodology encompassing aggregated count
data and multivariate data. Open source software delivering the advanced Markov chain
Monte Carlo (MCMC) methods required for inference has been a recent development in the
form of the package lgep (Taylor, Davies, Rowlingson, and Diggle 2013), but these meth-
ods until now have been restricted to spatial and spatiotemporal LGCPs with known model
parameters.

When the goal of the analysis is spatial prediction, parameter uncertainty typically makes
only a small contribution to the overall prediction error, and ad hoc methods of parameter
estimation may suffice (Brix and Diggle 2001). However, in general it is more satisfactory to
account for parameter uncertainty within a single analysis, and important to do so when pa-
rameter values are of scientific interest in themselves, for example when estimating the effects
of putative environmental exposures on the risk of disease. The Bayesian inferential frame-
work provides an elegant and transparent means of encapsulating this uncertainty and also
delivering joint inference on all model parameters including the latent field, the parameters
of the latent field and covariate effects. The aim of this article is to present novel open-source
software routines for Bayesian analysis of spatial, spatiotemporal, aggregated and multivari-
ate LGCPs, delivering joint inference on all model parameters. For each of these classes, we
provide a brief introduction to the statistical model and a walk-through analysis of a relevant
dataset. The new methods are implemented in version 1.3 of the package lgep.

As in previous releases, the package lgep makes extensive use of functions developed in the R
(R Core Team 2014) community. Specifically, many of the data structures are built around
pre-existing structures in the packages sp (Pebesma and Bivand 2005; Bivand, Pebesma,
and Goémez-Rubio 2013); spatstat (Baddeley and Turner 2005); RandomFields (Schlather,
Malinowski, Menck, Oesting, and Strokorb 2015); and nedf (Pierce 2014). New and significant
dependencies include the packages rgeos (Bivand and Rundel 2013) and raster (Hijmans and
van Etten 2013).

To our knowledge, the package lgep is unique as an R package specifically designed for MCMC-
based Bayesian inference for log-Gaussian Cox Processes. Approximate Bayesian inference
for log-Gaussian Cox processes may also be performed using the popular INLA package (Rue,
Martino, and Chopin 2009; Lindgren, Rue, and Lindstrom 2011). The package INLA can
be used for the modelling of general latent Gaussian processes and the integrated nested
Laplace approximation (INLA) methodology has been used for inference with log-Gaussian
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Cox processes, see for example Simpson, Illian, Lindgren, Sorbye, and Rue (2011), Illian,
Sorbye, and Rue (2012a) and Illian, Sorbye, Rue, and Hendrichsen (2012b). In Brown (2015),
the author introduces R packages geostatsp and geostatsinla to make the interface to functions
from the INLA package more user-friendly and furthermore provides an example in which a
spatial log-Gaussian Cox process is used to model incidences of murder in Toronto.

The main advantage of using integrated nested Laplace approximations for inference with
log-Gaussian Cox processes is computational cost, although this issue is not completely clear-
cut, see for example Taylor and Diggle (2014). When using the package INLA, invoking
strategy = simplified.laplace in the control.inla argument list, delivers the fastest,
but least accurate inference. One advantage of the MCMC-based implementation provided
in the package lgep over INLA-based counterparts is that once stationarity has been reached,
MCMC produces unbiased samples from the joint posterior of all model parameters. The
MCMC methods in the package lgep furthermore permit the use of any wvalid covariance
function, rather than being restricted to a subset of the Matérn class.

As pointed out in Taylor and Diggle (2014), we believe that both INLA and MCMC are im-
portant inferential tools in the analysis of spatial and spatiotemporal data. INLA is especially
convenient for model selection, but once this has been reduced to a single model, a long run of
a carefully designed MCMC algorithm may be a safer option for performing inference. Lastly,
the two approaches are not mutually exclusive: in Haran and Tierney (2012), the authors use
a heavy tailed approximation similar to INLA to construct efficient MCMC proposal schemes.

The remainder of this article is structured as follows. In Section 2, we introduce the log-
Gaussian Cox process. In Section 3, we provide a brief introduction to Bayesian inference
and MCMC for LGCPs. In Section 4, we introduce four LGCP models and for each example,
provide a practical R session to be used as guidance on the implemention of our MCMC
routines, diagnostics and post-processing. Specifically, in Section 4.1 we discuss the Bayesian
analysis of spatial point process data; in Section 4.2 we analyse a dataset consisting of case
counts aggregated to regions; in Section 4.3 we perform a Bayesian analysis of a spatiotemporal
LGCP; and in Section 4.4 we analyse a multivariate LGCP. The article concludes with a
discussion in Section 5.

2. The log-Gaussian Cox process

In this section, we introduce the log-Gaussian Cox process; for simplicity, we focus the dis-
cussion on spatial LGCPs. Throughout this article, we let X be the observed data, Z be
measured covariates, 5 be the effect size and Y be the residual process; also let m denote a
generic probability density function.

We begin with some definitions. An intensity process, R : S — [0,00), is a non-negative
valued stochastic process: a function from a non-null measurable set, in this case S C R2,
to the non-negative real line, [0,00). A locally finite random set X C S is known as a Coz
process directed by an intensity process, R, if the conditional distribution of X given R is a
Poisson process with intensity R. This means that for any bounded Borel set B,

card(X N S) ~ Poisson < /B R(s)ds) .

If {Y(s) : s € R%} is a spatial stochastic process with the property that for any finite collection,
{si € S,i=1,...,n}, the joint density 7[Y (s1),...,Y (s,)] is multivariate Gaussian, we say
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that Y is a Gaussian process. A log-Gaussian Cox process is a Cox process whose log-intensity
is a Gaussian process.

In the remainder of the article, we will assume that computation takes place on a regular fine
grid. We think of s as belonging to R2, but use the notation X(s) to denote the number of
events in the computational grid cell containing s. In this article, we therefore notate the
spatial log-Gaussian Cox process as follows:

X(s) ~ Poisson{R(s)}
R(s) = CaA(s)exp{Z(s)B+Y(s)},

where C4 is cell area, A(s) is a known population offset, Z(s) is a vector of covariate values,
with associated effects 3, Y is a Gaussian process; the notational extension to spatiotemporal
and multivariate processes will be obvious. In practice, we aim to make the computational
grid as fine as possible, ideally sufficiently fine that each cell count is either zero or one with
high probability.

Our model for the covariance matrix of the process Y on the computational grid will come
from a parametric family. Typically, these parameters include a variance parameter, o2, and a
scale parameter, ¢. We set E[Y] = —¢2/2 which, using the properties of a log-Normal random
variable, gives E[exp(Y')] = 1; this parametrisation also has an advantage in that exp(Y’) can
be interpreted as covariate-adjusted relative risk. We will use 1 to denote the parameters of
the covariance function transformed onto an appropriate scale for the MCMC algorithm e.g.,
in this article we use n = {log(o),log(¢)}.

3. Inference for log-Gaussian Cox processes

In this section, we provide a brief review of two inferential techniques for LGCPs. In Section
3.1, we explain a computationally simple approach to parameter estimation for the parameters
of the process Y, the minimum contrast estimator. Then in Section 3.2, we explain how
Bayesian inference can be used to deliver inference for all model parameters: 5, n and Y.

3.1. Minimum contrast parameter estimation

It is useful to have fast methods that provide provisional estimates of the parameters of the
latent Gaussian process, Y. Such an estimate can be used to decide how fine the compu-
tational grid must be in order to capture spatial dependence in Y. Moller et al. (1998) use
the method of minimum contrast estimation (also referred to as the least-squares approach).
Minimum contrast methods involve finding the parameter values which minimise the squared
discrepancy between the assumed parametric form of the second-order characteristic of in-
terest (in our context this will represent either the spatial or temporal covariance), and a
corresponding nonparametric estimate thereof. For a comprehensive overview of minimum
contrast estimation for spatial and spatiotemporal LGCPs, including a suite of simulation
studies gauging proximity of minimum contrast parameter estimates to their true values, see
Davies and Hazelton (2013).

The parametric functions typically used for spatial minimum contrast are the pair correlation
function (PCF) g and Ripley’s K function (Ripley 1977). These are convenient because
they are theoretically tractable within the LGCP framework, and they also have accessible
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nonparametric estimators. The functional forms of both of ¢ and K depend upon the choice
of spatial correlation function. Let J,2 , represent either g or K, and let J represent the
corresponding nonparametric estimate based on the observed data. The general form of the
minimum contrast criterion with respect to spatial lags wu is

2du

Moo ) = [ i) o @) ol o)}
~ugh Y wu) [o{J(w)} — vl 4w}, (1)

uelU

where ug is the smallest spatial lag to be considered (typically zero, though this must tech-
nically be > 0 for evaluation of the nonparametric PCF), umax is an upper bound on the
distances to be considered (typically chosen as some fraction the size of the spatial observa-
tion window), w(u) represents an optional set of lag-dependent weights and v{ - } is an optional
transformation to be applied to the quantities of interest. The integral is approximated in
practice by summing over a fine, evenly spaced sequence of values U = {ug, u1, ..., Unax } Such
that ugig is the difference between any two consecutive terms in U. It is worth noting that
dependent upon the design of the model under scrutiny, J may represent either the homoge-
neous or inhomogeneous version of the nonparametric estimator, with the fixed heterogeneous
intensity in the latter case specified by some external means.

A similar construction is used in Brix and Diggle (2001) and Diggle et al. (2005a) for esti-
mation of the scale of temporal dependence (parameter #). In that setting, the first step is
to estimate the spatial parameters by Equation 1 using ‘time-averaged’ versions of K or g.
Then, estimation of § proceeds using the temporal autocorrelation function of the frequency
of observations over time. The spatial parameter estimates are plugged-in to the theoretical
formulation of the temporal correlation, expressions for which can be found in Brix and Diggle
(2001) (see also the corrections made in Brix and Diggle 2003; Taylor and Diggle 2013).

Minimum contrast methods suffer from the somewhat arbitrary nature in which one must ‘cal-
ibrate’ the criterion via e.g., Umax, w, and v, not to mention whether use of g is ‘better’ than
K or wvice versa in Equation 1. Use of g also requires selection of a smoothing bandwidth
for its nonparametric estimation. There have been some efforts in the literature to aid in
these decisions, involving both theoretical e.g., (Guan and Sherman 2007) and numerical e.g.,
(Diggle and Ribeiro 2003) endeavours. Concerns over subjectiveness aside, Davies and Tay-
lor (2014) indicate minimum contrast methods perform well against approximate likelihood
methods in terms of practical performance.

3.2. Bayesian inference and the role of MCMC

In this section we introduce Bayesian inference and, using the example of a spatial log-
Gaussian Cox process as an illustration, explain the details of our new methods for the
practical fitting of models from this class.

In a ‘Classical’ or ‘Frequentist’ analysis, statistical inference is usually concerned with making
statements about the asymptotic distribution of the maximum likelihood estimates. When
this maximisation problem is in some sense intractable, either because the likelihood is not
analytic or because the optimisation problem is too hard, an alternative is to use Bayesian
methods (Bernardo and Smith 2008).

The two main ingredients for a Bayesian statistical analysis are 1) a statistical model (or
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likelihood), which determines the density m(X|3,7,Y); and 2) a set of prior beliefs about
the distribution of the parameters, expressed through the probability density 7(3,7n,Y). By
Bayes’ Theorem, the product of the prior and likelihood is proportional to the posterior:

m(X|B,n,Y)m(B,n,Y)
m(X)

m(B,n,Y[X) = o m(X|8,n,Y)m(B,n,Y);

the quantity 7w(X) is called the marginal likelihood. Note that the conditional independence
properties of this model imply that 7(X|8,7n,Y) = n(X|5,Y).

Bayesian statistical inference is concerned with making probabilistic statements about the
posterior, m(3,n,Y|X), however, in almost all non-trivial applications it is not possible to
make analytic probability statements about this density function. In order to proceed, we
therefore must resort to either 1) making statistical inference from an approximation of the
posterior; or 2) sample-based Monte Carlo inference, based on a sample, {80), n0), YU )}évzl,
drawn from 7(8,n,Y|X). In this article, we refer to the former as ‘approximate meth-
ods’ because inference is not based on the true posterior; and we refer to the latter as
‘exact’ methods because as N — oo, any sample-based estimate of a posterior expecta-
tion of interest, %Zf\; f (B(j),n(j),Y(j)), is an unbiased estimator of the exact quantity,
Ex(sn,v|x)Lf(8,n,Y)], for any function f where this expectation exists.

Some advantages of the Bayesian approach are: that it provides a transparent framework
for inference; secondly, it is flexible and often provides an elegant and practical solution to
inference arising from very complex statistical models. Note, in particular, that Bayesian
methods make no formal distinction between estimation of 8 and 1 and prediction of Y, and
in this way naturally incorporate parameter uncertainty into predictive inference. Against
this, obtaining the sample {30), 5, Y(j)}é\f:1 ~ m(8,n,Y|X) can itself be a major challenge.
Along with Gibbs sampling, the most commonly employed method for generating the sam-
ple {30, nl), Y(j)};-\f:1 is the Metropolis-Hastings algorithm (Metropolis, Rosenbluth, Rosen-
bluth, Teller, and Teller 1953; Hastings 1970). The idea is to simulate from a Markov chain
whose stationary distribution is the target of interest, namely 7 (5,7, Y |X). Having initialised
the chain at time 0, {B(O), 77(0), Y(O)}, the ith step of the algorithm involves drawing a candi-
date {8*,n*,Y*} from a proposal density, q(5*, n*, Y*\B(i_l),n(i_l),Y@_l)) and accepting it,
i.e., setting {3, n®, YO} = {B*,*, Y*}, with probability

ind1 (B, n*, Y*|X) q(BU=Y =y (=1)| g p y)
T R (B D, Y G| X) g(B,a, YA D, -, y (-1 [

The design of ¢ is critical and forms a major stem of academic research in this field, see
Gilks, Richardson, and Spiegelhalter (1995) and Gamerman and Lopes (2006) for reviews.
The design of ¢ in the package lgep, discussed below, is a mix of random walk and Langevin
proposal kernels. Whilst in some sense the random walk is a blind proposal mechanism, the
main idea of using a Langevin kernel, known as the Metropolis-adjusted Langevin algorithm
(MALA), is to exploit gradient information on the target to help propose moves towards
areas of higher posterior probability. An alternative to the MALA for log-Gaussian Cox
process is Hamiltonian Monte Carlo (Girolami and Calderhead 2011). Hamiltonian methods
have better theoretical mixing properties compared with a MALA, but are more difficult to
tune, requiring pilot runs of the algorithm (Neal 2011). It is for this reason that we have
chosen to implement a MALA in the package lgep: in practice we can adaptively choose a
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tuning parameter to achieve an approximately optimal acceptance rate of 0.574 (Roberts and
Rosenthal 2001).

As in previous implementations of a MALA for the LGCP, we work with a transform of Y,
namely I', where ¥ = 2717/ T+ iy and a subscript 7 denotes dependence on the parameters
of the latent process, n (Mgller et al. 1998; Brix and Diggle 2001; Diggle et al. 2013). Let
¢ ={B,n,I'}. A full Metropolis-adjusted Langevin algorithm for our target would use the
following proposal kernel:

%) | -(i— i*). ~(i— h? i—
a(¢IC0) = N (0 4 T B Vg (m(CY X)) A e | (2)

where h is a scaling constant. The ideal choice for ¥,,; would be the inverse of the Fisher
information matrix evaluated at the maximum likelihood estimate of ¢ (Girolami and Calder-
head 2011). Unfortunately, due to the high dimensionality of ¢, it is infeasible to work with
this matrix. However, we are at liberty to use an approximation of the optimal choice and it
transpires that in doing this we can still obtain an efficient algorithm.

As mentioned above, we use a proposal kernel that is a mix of random walk and MALA
components. The proposal variance matrix is block diagonal, where each block is an approx-
imation of the inverse of the Fisher information matrix. We mix random walk and MALA
proposals because the gradient of the target with respect to 7 is in general difficult to compute
and also computationally costly. We suggest the following overall proposal:

a(¢UCED) = N (¢ gy, 22 (3)
where
-1 4 12t 5y Ologfr((UZDIV)) RS 0 0
nea-n = | g0 4 Ml R R 0 (4)
n(i_1) 0 0 chnz77

In Equation 4, Y1 is an approximation to the negative inverse of the Fisher information matrix,
{—E[Z(T)]}"!, and similarly for $5 and ¥,. The constants h2, h% and h are approximately
optimal scalings for Gaussian targets explored by Gaussian random walk or MALA proposals,
see Roberts and Rosenthal (2001). We set h% = 1.652/ dim(T")'/3, h% = 1.65%2/ dim(B)"/? and
h% = 2.38%/dim(n), where dim is the dimension. In the package lgep, we construct Xr, Xz
and ¥, based on initial ad hoc guesses at I', 8 and 7 followed by a quadratic approximation
to the target. We tune h so that the MCMC algorithm has an average acceptance rate of
0.574, which is approximately optimal for the MALA components. However, in order to have
the random walk block running at approximate optimality, we introduce the scaling constant
¢ = 0.4 to temper the proposals in the 1 component; we have observed that this choice works
well across a variety of scenarios.

The package lgep allows the user to specify a prior of the form w(8,n,T) = 7(8)n(n)m(T).
Following Mgller et al. (1998) and Brix and Diggle (2001), we set the prior for I' to 7(I") =
N(0, I), where I is the identity matrix. This is a sensible prior for I, given the relationship
with Y, so we do not allow the user to modify this choice. The user is however able to specify
priors for 8 and 7, as will be demonstrated below. Although a prior of the form 7(I')7 (83, n)
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would give the user greater choice, in practical contexts it is difficult to justify an a priori
covariance structure between 8 and 7.

4. Worked examples

In this section, we provide four worked examples. Each of these examples assumes a different
statistical model for the data: in Section 4.1, we use a spatial LGCP to model cases of
primary biliary cirrhosis in Newcastle-Upon-Tyne; in Section 4.2, we re-visit the cirrhosis
data, but pretend the case counts had been aggregated to regions; in Section 4.3, we use
a spatiotemporal LGCP to model cases of gastrointestinal infection in Hampshire; lastly,
in Section 4.4, we use a multivariate LGCP to investigate the spatial segregation of four
genotypes of bovine tuberculosis in Cornwall.

Due to the computationally demanding nature of some aspects of the model fitting process, we
recommend the user follows the procedure detailed in Algorithm 1. Although pilot runs are
not strictly necessary for implementing the adaptive MCMC algorithm, it is nevertheless wise
to perform some short runs to make sure everything appears to be in order before committing
a large chunk of computation time to a long MCMC run for the final analysis. We have found
that printing the current value of h to the console is invaluable as an online check in step 5 of
Algorithm 1; this is done in all our implementations below. The scaling parameter h tends to
converge very quickly, so using this in pilot runs of 1,000-5,000 iterations as a guide to help
choose the number of iterations for the final run is well worthwhile.

In our experience of using this MCMC algorithm, we have found that values of h between
0.5 and 1 usually indicate that the chain is mixing very well and 500,000—-1,000,000 iterations
is usually sufficient to achieve convergence; values between 0.2 and 0.5 will likely need to be
run for slightly longer to achieve convergence e.g., 1,000,000-3,000,000 iterations; and values
around 0.02-0.05 will likely need a considerable number of iterations to achieve stationarity
e.g., 20,000,000 iterations.

4.1. PBC in Newcastle-Upon-Tyne, a spatial point process model

Introduction

In the next two sections we re-visit a point process dataset originally analysed in Prince,
Chetwynd, Diggle, Jarner, Metcalf, and James (2001). These data consist of geo-referenced
cases of definite or probable primary biliary cirrhosis (PBC) alive between 1987 and 1994. In
this section, we treat these data as they were collected: as a spatial point process dataset.
Our statistical model is given in Equation 5:

X(s) = Poisson[R(s)], (5)
R(s) = Cas)exp{Z(s)8+Y(s)}.

Here X (s) is the number of events in the cell of the computational grid containing s, R(s)
is the Poisson rate, C4 is the cell area, A(s) is a known offset, Z(s) is a vector of measured
covariates and Y'(s) is the latent Gaussian process on the computational grid. The other
parameters in the model are (3, the covariate effects; and n = {log(o),log(¢)}, the parameters
of the process Y on an appropriately transformed (in this case log) scale.
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Algorithm 1 Recommended procedure for Bayesian modelling of log-Gaussian Cox processes
in lgep

1: We recommend computing approximate values of the parameters, 1, of the process Y
using ad hoc methods. These approximate values are used for two main reasons: (1) to
help inform the size of the computational grid, since we will need to use a cell width that
enables us to capture the dependence properties of Y and (2) to help inform the proposal
kernel for the MCMC algorithm.

2: We recommend that the user choose an appropriate grid on which to perform inference;
this will partly be determined by the results of the first stage and partly by the available
computational resources available to perform inference.

3: If environmental covariates are used in the analysis, we suggest that the user next
constructs an overlay of these data (in the form of SpatialPixelsDataFrame or
SpatialPolygonsDataFrame objects) onto the computational grid that will be used in
the subsequent analysis. This can be an expensive step, as lgep employs polygon/polygon
overlays to infer covariate values on the grid. We further recommend that the user saves
this object after it has been constructed, and in future reference to the data reloads this
object, rather than having to re-compute it.

4: Decide on which covariates are to play a part in the analysis and use the lgcp functions
to interpolate these onto the computational grid. Note that having saved the results from
step three, this is a relatively quick operation, and allows the user quickly to construct
different design matrices, Z, from different candidate models for the data.

5: Set up the population offset and specify the priors and, if desired, the initial values for
the MCMC.

5: Run the MCMC algorithm and save the output to disk. We recommend dumping infor-
mation to disk because it offers much greater flexibility in terms of MCMC diagnosis and
post-processing.

6: Perform post-processing analyses including MCMC diagnostic checks and produce sum-
maries of the posterior expectations we require for presentation.

Analysis of a point-process dataset

We start by loading the lgep package and data for this example.

R> library("lgcp")
R> load("sd_liver.RData')

The point process data are contained in an object sd of spatstat class ppp; these are a subset of
the original data consisting of 415 cases located in the Newcastle-Upon-Tyne area, illustrated
in Figure 1; the background of this figure was obtained using the OpenStreetMap package
(Fellows 2013).

Along with the case data, our covariate information consists of population counts and socio-
demographic information in a SpatialPolygonsDataFrame object.

R> load("popshape_liver.RData")

This loads an object called popshape consisting of population counts (total and male/female
counts) and the 7 individual domains of the Index of Multiple Deprivation (IMD) measured
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Figure 1: Plot of cases of primary biliary cirrhosis in Newcastle-Upon-Tyne.

at the Lower Super Output Area (LSOA) level. Since this is only an illustrative example of
our methodology and R code, we used population data from the 2001 census and IMD data
from the 2007 report. We constructed a variable propmale equal to the proportion of males
in each of the LSOAs.

We now have all the raw information required to fit the model in Equation 5 and begin,
according to Algorithm 1, by obtaining approximate estimates of the parameters.

R> minimum.contrast(sd, model = "exponential", method = "g",
+ intens = density(sd), transform = log)
$estimates

scale variance
[1,] 275.6771 1.560087

$discrepancy
Squared discrepancy
[1,] 299.1335

As the approximate spatial scale of dependence, 275 metres, is quite small, this tells us that
quite a fine grid might be necessary to capture the dependence structure in the process Y.
We use the command chooseCellwidth interactively to choose an appropriate grid size:

R> chooseCellwidth(sd, cwinit = 300)

Running this command several times with different values of cwinit produces plots of the
computational grid overlaid on top of the observation window; the size of the output grid
appears in the subtitle. Figure 2 shows two such plots; note that computation grids of size
2™ x 2™ for some positive integers m and n are the most efficient sizes for the Fast Fourier
Transform (Wood and Chan 1994; Taylor and Diggle 2014). Both of the plots in this figure
show output grids of size 128 x 64, but the right-hand plot, using a cellwidth of 300, is the
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Figure 2:  Left: Output of chooseCellwidth(sd, cwinit = 450). Right: Output of
chooseCellwidth(sd , cwinit = 300). The right hand plot shows a more efficient use
of the computational resources, since there are more cells inside the observation window but
the output grid, and hence the computational cost, is the same.

more efficient, since more of the cells in the computational grid fit inside the observation
window. We chose a cellwidth of 300m because it just sufficient to capture the dependence
properties of Y (if they are assumed a posteriori to be the estimated approximate value of
275 metres) and also leads to an efficient computational grid size.

As we will be using environmental covariates in the analysis, the next step in Algorithm 1 is to
perform and save the polygon overlay operations. The result of this step is a polygon/polygon
overlay of the computational grid onto the SpatialPolygonsDataFrame containing the co-
variate information. In the section of code below, we define objects CELLWIDTH, the chosen
cell width; and EXT, the amount by which the computational grid will be extended in the
x and y directions in order to obtain a block circulant matrix see Wood and Chan (1994),
Taylor et al. (2013) and Davies and Bryant (2013). Typically the parameter EXT will be set
to 2, unless there is suspected long-range dependence in the process Y (see Appendix E).

R> CELLWIDTH <- 300

R> EXT <- 2

R> polyolay <- getpolyol(data = sd, regionalcovariates = popshape,
+ cellwidth = CELLWIDTH, ext = EXT)

It would be ideal to use a finely sampled pixel image of population as a Poisson offset.
However, since we only have access to population in LSOA, we instead enter the variable
pop as a covariate (technically we require log-population, see below for further details): in
rural areas population counts in LSOA do not give an accurate representation of small-scale
variation in the underlying population. In Appendix B, we give an example of how to specify
a Poisson offset.

Other covariates in this model include propmale, the proportion of males in each LSOA;
Income, income deprivation; Employment, employment deprivation; Barriers, deprivation
in access to housing and services; Crime deprivation due to crime; and Environment, living

11
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environment deprivation. Each of these variables is defined in the documentation available
from the UK Government archives: http://webarchive.nationalarchives.gov.uk/, /http:
/www.communities.gov.uk/communities/neighbourhoodrenewal/deprivation/deprivation07/.

The next step in Algorithm 1 is to define our model,

R> FORM <- X ~ pop + propmale + Income + Employment + Education +
+ Barriers + Crime + Environment

and interpolate the independent variables in this model onto the computational grid. Further
details on the interpolation methods are available in Appendix A. Note that the Bayesian
MCMC functions in lgep expect at least one spatial covariate (e.g., X ~ 1 for an intercept, or
X ~ pop - 1 for a population covariate without intercept).

In the case where our model takes the form X ~ 1, i.e., the intercept-only case, the latest
version of lgep can be used to perform Bayesian inference for the models discussed in Taylor
et al. (2013). The only minor difference is that using the Bayesian methods discussed here,
the exponential of the posterior mean of the intercept would then be proportional to the
expected number of cases over the observation window, which in Taylor et al. (2013) was
estimated and fixed at the observed number of cases. Diggle et al. (2013) discuss another use
of intercept-only models: as a model-based alternative to kernel smoothing of point-patterns.

Returning to the example at hand, we first guess at the type of interpolation for each variable:

R> popshape@data <- guessinterp(popshape@data)

LSOAO4CD interpolation via Majority

LSOAO4NM interpolation via Majority

pop interpolation via Majority

males interpolation via Majority

females interpolation via Majority

propmale interpolation via ArealWeightedMean
IMD interpolation via ArealWeightedMean

Income interpolation via ArealWeightedMean
Employment interpolation via ArealWeightedMean
Health interpolation via ArealWeightedMean
Education interpolation via ArealWeightedMean
Barriers interpolation via ArealWeightedMean
Crime interpolation via ArealWeightedMean
Environment interpolation via ArealWeightedMean

The function guessinterp assigns interpolation by area-weighted mean for any numeric vari-
able and otherwise assigns interpolation by majority. It can be see that the population vari-
ables, pop, males and females, have by default been assigned interpolation by majority: this
is not correct, as we wish population to represent the number of people in each computational
grid square. We replace this with an area-weighted sum instead:

R> popshape@data <- assigninterp(df = popshape@data,
+ vars = c("pop", "males", "females"), value = "ArealWeightedSum")


http://webarchive.nationalarchives.gov.uk/
/http:/www.communities.gov.uk/communities/neighbourhoodrenewal/deprivation/deprivation07/
/http:/www.communities.gov.uk/communities/neighbourhoodrenewal/deprivation/deprivation07/
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Figure 3: Plots of the interpolated covariates for the liver example.

so that,
R> class(popshape@data$pop)
[1] "ArealWeightedSum" "integer"

Next, we interpolate the covariate data onto the computational grid:

R> Zmat <- getZmat(formula = FORM, data = sd, regionalcovariates = popshape,
+ cellwidth = CELLWIDTH, ext = EXT, overl = polyolay)

As mentioned above, since we are using population as an explanatory variable, before we
proceed to analyse the data we need to replace this covariate with the logarithm of population.
This is because under a Poisson model, we expect the number of cases to be proportional to
the population at risk (and not the exponential of population). Having interpolated the raw
population counts above, we can now construct the logarithm as follows:

R> Zmat[, "pop"] <- log(Zmat[, "pop"]l)

R> Zmat[, "pop"][is.infinite(Zmat[, "pop"])] <- min(

+ Zmat[, "pop"][!is.infinite(Zmat[, "pop"I1)]1)

In the second line, we replace any zero population cell counts with the minimum value over
the observation window; this avoids numerical problems handling negative infinite values. To
see what the covariate data look like, we use

R> plot(Zmat)

which brings up a sequence of plots shown in Figure 3.

13
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According to Algorithm 1, the next step is to define the population offset and priors. Since
we are not using an offset in this example, we move onto defining the priors; note that more
information on Poisson offsets together with an example are given in Appendix B.

The current version of lgep allows two types of prior densities: a multivariate Gaussian prior
for 8 and a multivariate Gaussian prior on the log-scale for the positive parameters o and ¢
(and also 6 in the spatiotemporal version) i.e.,

B~ N(M,Ba Eﬁ) and n= {log o,log ¢} ~ N(Mm Zn)
We define these priors in lgep as follows:

R> priors <- lgcpPrior(etaprior = PriorSpec(

+ LogGaussianPrior (mean = log(c(1, 500)), variance = diag(0.15, 2))),
+ betaprior = PriorSpec(
+ GaussianPrior(mean = rep(0, 9), variance = diag(1076, 9))))

Note that the priors for n are always given in the order {logo,log ¢}. Lastly, we specify the
initial values and choice of covariance function for Y:

R> INITS <- lgcpInits(etainit = log(c(sqrt(1.5), 275)), betainit = NULL)
R> cf <- CovFunction(exponentialCovFct)

It is not necessary to specify an initial value for n or 8 as in the first line of code: by default,
Igep will initialise the MCMC using the prior mean for 7, and for £ it will initialise using
the estimate obtained from an overdispersed Poisson glm fit of the cell counts against the
covariates, and offset if appropriate. In the second line of code, we specify that the spatial
dependence properties of Y should follow an exponential covariance function. For details on
how to specify other sorts of covariance function, see Appendix C.

We are now in a position to run the MCMC algorithm. The following code runs the MALA
chain for 1,000,000 iterations, with an initial burn-in of 100,000 iterations, followed by a
further 900,000 iterations, of which every 900th sample is saved to disk. Note that the call
to this function is not dissimilar to previous versions of the code, and we refer the reader to
Taylor et al. (2013), for an explanation of the options not discussed below.

R> BASEDR <- getwd()
R> 1g <- lgcpPredictSpatialPlusPars(formula = FORM, sd = sd, Zmat = Zmat,

+ model.priors = priors, model.inits = INITS, spatial.covmodel = cf,

+ cellwidth = CELLWIDTH, poisson.offset = NULL, mcmc.control = mcmcpars(
+ mala.length = 1000000, burnin = 100000, retain = 900,

+ adaptivescheme = andrieuthomsh(inith = 1, alpha = 0.5, C = 1,

+ targetacceptance = 0.574)),

+ output.control = setoutput(gridfunction = dump2dir(

+ dirname = paste(BASEDR, "/liver/", sep = ""), forceSave = TRUE)),

+

ext = EXT)
R> save(list = 1s(), file = file.path(BASEDR, "liver", "liver.RData"))

The last step in Algorithm 1 is to perform diagnostic checks and then summarise the results:
the package lgep provides functions to aid in this process.
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Figure 4: Diagnosing convergence to a posterior mode: a plot of the log target.

Diagnostic checks include (1) checking that the Markov chain is mixing well and (2) checking
convergence of the Markov chain. Establishing convergence for models of this class is difficult
due to the fact that the target is high-dimensional: there are 32,779 parameters to estimate in
this case. A simple, but effective method to check that the chain has converged to a posterior
mode is to examine a plot of the log-target, log{m (8,7, Y|X)}+c up to an additive constant c:

R> plot(ltar(lg), type = "s", xlab = "Iteration/900", ylab = "log target')

the results of which appear in Figure 4.

The plot shows that initially the chain was far away from a mode with the log-target having
a value of around —6,000, but it quickly appears to have settled around values at about
—22,000; note that these values have been thinned by the same amount as the original chain.
If this plot does not appear to have converged, then this indicates that the Markov chain has
not converged, and needs to be run for a longer period of time.

We next check the mixing of the latent field Y:

R> lagch <- c(1, 5, 15)
R> Sacf <- autocorr(lg, lagch, inWindow = NULL)
R> for(i in 1:3) {
image.plot(xvals(lg), yvals(lg), Sacf[, , il, zlim = c(-1, 1),
axes = FALSE, xlab = "", ylab = "", asp = 1,
sub = paste("Lag:", lagch[i]))
plot (sd$window, add = TRUE)
scalebar (5000, label = "5 km")
}

+ + + + + +

which produces the plots in Figure 5. These plots show from left-to-right the lag 1, 5 and
15 cellwise autocorrelation in the Y chain. Note that producing such plots is only pos-
sible if the chain has been dumped to disk (set using the dump2dir option in the call to
lgcpPredictSpatialPlusPars).
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Figure 5: Left to right: lag 1, 5, 15 autocorrelation in the field Y).
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Figure 6: Autocorrelation plots of the parameters 8 and n from the spatial point process
model for PBC.

These plots show that there is very little autocorrelation in the sampled V'), Similarly, we
can produce autocorrelation plots for the parameters 5 and 7 using parautocorr(1lg), shown
in Figure 6; and trace plots using the command traceplots(lg), shown in Figure 7. For
manual extraction of the § and 7 chains, use betavals(lg) and etavals(lg) respectively.

Having established satisfactory convergence of the chain, we can now proceed to making
inferences from the model. We first produce a table of parameter estimates:
R> parsum <- parsummary(lg)

which can then be printed to the console by typing parsum. Alternatively, using

R> parsum <- parsummary(lg, LaTeX = TRUE)

R> library("miscFuncs")

R> latextable(parsum, rownames = rownames (parsum),

+ colnames = c("Parameter", colnames(parsum)), digits = 4)

converts the output to a XTEX table, which can be copied and pasted into a INTEX document
and later edited by the user; the results are shown in Table 1.
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Figure 7: Trace plots of the parameters § and 7 from the spatial point process model for
PBC.
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Figure 8: Plots of the prior and posterior values of each parameter.

A TEX formatted verbal summary of the table can also be produced:
R> textsummary(lg, digits = 4)
The output can be copied and pasted into a I TEX document and later edited by the user,

the result is shown in quote style below. In the user’s report, it remains to edit the text as
desired and add details of the variables and units, where appropriate.
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Parameter Median Lower 95% CRI Upper 95% CRI
o 0.7999 0.6033 0.9695
é 637.1 389.3 1098
exp(B(imtercepry)  4111x1077  8.735x1077 3.019x107°
exp(Bpop) 3.162 2.633 3.84
exp(Bpropmate)  1.328x107° 3.937x1079 4.62x1072
exp(Brmcome) 0.5449 1.425x1072 23.05
exp(BEmployment ) 52.73 0.2343 9981
exp(BEducation) 0.9961 0.9797 1.012
exp(BBarriers) 0.982 0.9594 1.007
exp(Bcrime) 0.9034 0.6956 1.223
exp(BEnvironment ) 1.015 0.9967 1.035

Table 1: Parameter estimates for the LGCP point pattern model for the PBC data.

A summary of the parameters of the latent field is as follows. The parameter o
had median 8x10~! (95% CRI 0.603 to 0.97) and the parameter ¢ had median
637 (95% CRI 389 to 1098).

The following effects were found to be significant: each unit increase in propmale
led to a reduction in relative risk with median 1.33x107° (95% CRI 3.94x10~°
to 4.62x1072); each unit increase in pop led to a increase in relative risk with
median 3.16 (95% CRI 2.63 to 3.84).

The remainder of the main effects were not found to be significant: each unit
increase in Income led to a reduction in relative risk with median 0.545 (95% CRI
1.42x1072 to 23); each unit increase in Education led to a reduction in relative
risk with median 0.996 (95% CRI 0.98 to 1.01); each unit increase in Barriers led
to a reduction in relative risk with median 0.982 (95% CRI 0.959 to 1.01); each
unit increase in Crime led to a reduction in relative risk with median 0.903 (95%
CRI 0.696 to 1.22); each unit increase in Employment led to a increase in relative
risk with median 52.7 (95% CRI 0.234 to 9981); each unit increase in Environment
led to a increase in relative risk with median 1.01 (95% CRI 0.997 to 1.03).

It is also of interest to examine plots of the prior and posterior distributions of the parameters.
This is particularly important to help us interpret of the posterior density of the spatial scale
parameter, ¢, which tends not to be well identified by the data, see Zhang (2004) for an
example in the classical geostatistical context. Typing

R> priorpost(lg)

produces the plots in Figure 8. These plots confirm that whilst the covariate effects, 5, are
well identified by the data, the parameters of the process Y are not so well identified. The
parameter o shows a greater departure from the prior compared with the parameter ¢; one
must therefore exercise caution in making strongly probabilistic inferential statements about
these parameters, since they appear to be influenced by the prior.

Next we produce a plot of the posterior covariance function using:

R> postcov(lg)
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Figure 9: Plot of the posterior estimated covariance function of Y.
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Figure 10: Left: Plot of the posterior probability that the relative risk exceeds 2. Right: Plot
of the posterior probability that the relative risk is below 0.5. Note that by setting sub =
NULL, or omitting sub from the call to plotExceed above, the threshold will be printed as a
subtitle in each of the plots (i.e., printing the threshold as a subtitle is the default behaviour
for plotExceed).

the results are shown in Figure 9.

Finally, it is also of interest in epidemiology to understand if there are some spatial areas
of (covariate-adjusted) particularly high or low incidence. These exceedance (or respectively
lower-tail exceedance) probabilities, are P{exp(Y) > k|X} or P{exp(Y) < k|X} for a pre-
specified threshold k. These quantities can be expressed as a posterior expectation,

Plexp(Y') > k|X] = Ex(g,,vx){I[exp(Y) > K]} = %ZH[GXD(Y“)) > k],

=1

where I is the indicator function. We use the exceedProbs function to set up these probabil-
ities and 1gcp: : :expectation.lgcpPredict to compute the Monte Carlo expectation; note
that an explicit call to 1gcp: : :expectation.lgcpPredict is necessary here as in the latest
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version of lgep there is a new method expectation for functions of 5, n and Y for objects
generated by the function 1lgcpPredictSpatialPlusPars. See Appendix D for examples of
more complex expectations. The code below generates the plots in Figure 10.

R> ep <- exceedProbs(c(1.5, 2, 5, 10))

R> sp <- exceedProbs(c(2/3, 1/2, 1/5, 1/10), direction = "lower")
R> ex <- lgcp:::expectation.lgcpPredict(lg, ep)

R> su <- lgcp:::expectation.lgcpPredict(lg, sp)

R> plotExceed(ex[[1]1], "ep", lg, zlim = c(0,1), asp = 1,

+ axes = FALSE, xlab = "", ylab = "", sub = "")

R> scalebar (5000, label = "5 km")

R> plotExceed(sul[1]], "sp", 1lg, zlim = c(0, 1), asp = 1,

+ axes = FALSE, xlab = "", ylab = "", sub = "")

R> scalebar (5000, label "5 km")

4.2. PBC in Newcastle-Upon-Tyne, an aggregated count model

Introduction to continuous models for areal count data

Now suppose that instead of observing the exact location of events we instead observe T, the
total number of cases in region A;, where A; N A; = 0 for i # j, U~ A = W and W is the
observation window; see Figure 11.

Aggregated exposure or outcome data are often used because individual-level information is
not available for economic or confidentiality reasons (Beale, Abellan, Hodgson, and Jarup
2008; Diggle, Guan, Hart, Paize, and Stanton 2010). Area-level analyses are prone to so-
called ‘ecological bias’ (Wakefield and Lyons 2010; Wakefield, Haneuse, Dobra, and Teeple
2011); the name refers to differences in effect sizes that result from modelling association

Figure 11: Plot of cases of primary biliary cirrhosis in Newcastle-Upon-Tyne, case counts
aggregated to regions.
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between exposure and outcome at different spatial resolutions. Spatial models for aggregated
data include the popular Besag, York, and Mollié (1991) model, as well as conditional and
simultaneous autoregressive models. Whilst aggregated count models such as these are com-
putationally quick to fit, there is an argument against using them when the regions are quite
varied in shape and size, as the definition of what it means to be a neighbour is then somewhat
contrived and can lead to undesirable properties in parameter estimates, see Wall (2004).

Other authors e.g., Moller et al. (1998), Brix and Diggle (2001) and Diggle et al. (2005a), take
the intuitively more natural approach of modelling variation in risk as a spatially continuous
process, but their methods do not directly handle areal data. Kelsall and Wakefield (2002)
model area-level counts as a product of the expected number of counts (based on population
demography) and a relative risk term, which they model as a spatially continuous log-Gaussian
process, from which they were able to compute covariances between regions accounting for
each region’s size and shape.

Our aim in the present article is to fit a model of the form given in Equation 5 to areal count
data: the number of events T; in each region A;. In this case, it is not only Y, n and 3 that
are unknown, but also the event counts in each computational grid cell. In order to proceed,
we use the technique of data augmentation, see van Dyk and Meng (2001) for a review. We
augment the list of parameters, {3,7,Y}, with an additional variable N, the cell counts and
sample from,

w(B,n,Y,N|T1,...,Tp).

This can be achieved using a Gibbs scheme, alternately sampling from 7 (3,7, Y |N, T1.,) and
w(N|B,n,Y,T1.m), see Li, Brown, Gesink, and Rue (2012) and Diggle et al. (2013). Note
that the random variable N is akin to the observed data X in Equation 5. Conditional
independence properties imply that

7T(67777 Y’Na Tl:m) - '/T(,B, n, Y‘N)

We sample from this density using exactly the same MALA algorithm as for the spatial point
process. The density m(N|3,1,Y,T1.,) turns out to be multinomial, and so is straightforward
to sample from. Of critical importance to the data augmentation is the way in which lgcp
handles the polygon/polygon overlay operations: each non-trivial intersection between the
computational grid cells and the SpatialPolygonsDataFrame is computed, allowing accu-
rate sampling from w(N|, 8,n,Y, T1.;). Although straightforward in principle, sampling from
w(N|B,n,Y, T1.m) nevertheless incurs a computational cost. Rather than doing this every it-
eration, the MCMC function for aggregated data, 1gcpPredictAggregateSpatialPlusPars,
has an argument Nfreq, which allow the user to set this frequency; by default, this is set to
draw a new N ~ 7(N|B,n,Y,T1.») every 101 iterations.

Areal count data in lgep

We now discuss how to fit a spatially continuous log-Gaussian Cox process model to areal
count data. These data were contained in a SpatialPolygonsDataFrame object spdf,

R> load("liver_spdf.RData")
R> spdf

class : SpatialPolygonsDataFrame
nfeatures : 177
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extent : 409144 .1, 439753.8, 556265.4, 574219.4 (xmin, xmax, ymin, ymax)
coord. ref. : NA

nvariables : 1

names : X

min values : O

max values : 24

a plot of these data is in Figure 11. The object spdf has a column X containing the event
counts in each polygon.

We initially used the same CELLWIDTH and EXT parameters as for the point process version of
our model. However, in pilot runs it became apparent that for this model, we needed to use a
larger value of EXT, see Appendix E for details on this matter. Otherwise, we used the same
formula, FORM; priors, priors; and covariance function, cf, as in the point process version of
this model discussed in the previous section. This allows us to compare inferences where the
point locations are known and where the point locations are unknown.

For this example, we did not use minimum contrast methods to obtain initial estimates of the
parameters. Had the collection of polygons in spdf been on a sufficiently fine scale to capture
spatial variation in population reasonably well, then the function spSample could have been
used to impute cases into the observation window, from which minimum contrast estimates
could have been obtained using minimum.contrast as before. However, in this instance the
set of polygons do not capture this fine scale variation, so we instead opt to initialise the
MCMC algorithm using the prior mean.

Running the following commands,

R> CELLWIDTH <- 300

R> EXT <- 3

R> polyolay <- getpolyol(data = spdf, cellwidth = CELLWIDTH,

+ regionalcovariates = popshape, ext = EXT)

R> Zmat <- getZmat(formula = FORM, data = spdf, cellwidth = CELLWIDTH,
+ regionalcovariates = popshape, ext = EXT, overl = polyolay)

R> Zmat[, "pop"] <- log(Zmat[, "pop"])
R> Zmat[, "pop"]l[is.infinite(Zmat[, "pop"l)] <- min(
+ Zmat[, "pop"]['!is.infinite(Zmat[, "pop"1)1)

sets up the polygon/polygon overlay and performs interpolation onto the computational grid
and replaces population with log-population as in the point process model.

The function call to run the MCMC routine is:

R> BASEDR <- getwd()

R> 1g <- lgcpPredictAggregateSpatialPlusPars(formula = FORM, spdf = spdf,

Zmat = Zmat, overlayInZmat = FALSE, model.priors = priors,

spatial.covmodel = cf, cellwidth = CELLWIDTH, mcmc.control = mcmcpars(
mala.length = 3100000, burnin = 100000, retain = 3000,
adaptivescheme = andrieuthomsh(inith = 1, alpha = 0.5, C

targetacceptance = 0.574)),
output.control = setoutput(gridfunction = dump2dir(

+
+
+
+ 1,
+
+
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+ dirname = paste(BASEDR, "/liveraggregated/", sep = ""),
+ forceSave = TRUE)),

+ ext = EXT)

R> save(list = 1s(), file = file.path(

+ BASEDR, "liveraggregated", "liveraggregated.RData'))

In this call, the option overlayInZmat is used to declare when the regionalcovariates
object from the calls to getpolyol and getZmat is the same as the object spdf: if these
objects are not the same, then a new polygon/polygon overlay of the computational grid onto
spdf is computed. The MALA chain was run with a initial burn-in of 100,000 iterations and
followed by a further 3,000,000 iterations, of which every 3,000th sample was retained.

As before, we can produce convergence diagnostics including a plot of the log-target with
ltar(1g); plots of the autocorrelation in the latent field, using autocorr(1lg, c(1, 5, 15))
for example; trace plots, using traceplots(1lg); and autocorrelation plots for the other model
parameters using parautocorr(lg).

Having established convergence and ascertained satisfactory mixing of the MCMC, we can
proceed to produce plots of the prior and posterior for n and 8 using priorpost(lg), not
shown; producing plots of the posterior covariance function using postcov(lg), shown in
Figure 12; summarising parameter estimates in a table using parsummary, shown in Table 2;
and computing exceedance probabilities, see Figure 13.

The main differences between the results from the point process model compared with the
aggregated model can be seen on comparing Figure 10 with Figure 13: the latter shows a
much more attenuated relative-risk surface; this is expected due to the uncertainty in the
precise location of cases.

The point estimates of o from the two models were similar: 0.80 (CRI 0.60, 0.97) from the
point process version and 0.84 (CRI 0.56, 1.22) from the aggregated version, though the
confidence interval from the latter was wider. The point estimate of ¢ from the aggregated
model: 595 metres (CRI 283, 1269 metres) was comparable with the 637 metres (CRI 389,
1098) from the point process version; again there was greater uncertainty in the estimates
from the aggregated model.

4.3. Spatiotemporal point process data

Introduction

In this section, we show how to fit a spatiotemporal log-Gaussian Cox process. Our model
for the spatiotemporal data is given in Equation 6:

X(s,t) Poisson[R(s, t)] (6)
R(s,t) = CaA(s,t)exp{Z(s,t)B+Y(s,t)}

In this model, X (s,t) is the number of events in the cell of the computational grid containing
the point s at time ¢, R(s,t) is the Poisson rate, C4 is the cell area, A(s,t) is a known
offset, Z(s,t) is a vector of measured covariates and Y'(s,t) is the latent Gaussian process
on the computational grid. The parameters in the model are 3, the covariate effects; and
n = {log(o),log(¢),log(8)}, the parameters of the spatiotemporal Gaussian process Y. We
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Figure 12: Plot of the posterior estimated covariance function of Y for the aggregated cirrhosis
example.
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Figure 13: Exceedance probabilities from the aggregated count model for the liver data. Left:
Plot of the posterior probability that the relative risk exceeds 2. Right: Plot of the posterior
probability that the relative risk is below 0.5.

Parameter Median Lower 95% CRI Upper 95% CRI
o 0.8423 0.5642 1.217
¢ 594.9 283 1269
exp(B(imtercepr))  7-86x1077 1.702x10~12 3.817x107°
exp(Bpop) 3.546 2.693 4.729
exp(Bpropmate)  2.625x1072  7.451x10710 1.246x106
exp(Bmcome) 7.808 1.547x1072 4049
exp(BEmployment ) 1.645 5.116x107° 54304
exp(BEducation) 0.9882 0.959 1.014
exp(BBarriers) 0.986 0.9468 1.023
exp (B crime) 0.9067 0.6043 1.412
exp(BEnvironment) 1.001 0.9631 1.034

Table 2: Parameter estimates from the aggregated cont model for the liver data.
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assume a separable spatiotemporal covariance function for Y:
COV[Y(Sl,tl), Y(Sg,tg)] = 02 eXp{—HSQ - 31H/¢ - |t2 — tl‘/e}

The parameter # determines the temporal correlation in the process Y.

This model is an extension of the one proposed in Brix and Diggle (2001); Diggle et al. (2005a)
and implemented in Taylor et al. (2013), in which,

R(s,t) = Capo(t)Ao(s) exp{Y (s, )},

where pg and Ay were respectively known temporal and spatial offsets, and the parameters of
Y were assumed known.

Our new model in Equation 6 not only allows the user to specify an offset of the form A(s,t),
but also includes estimation of covariate effects and model parameters via Bayesian infer-
ence. In this section we will illustrate how to fit this model using as an example a short
section of observed data from the AEGISS project (Ascertainment and Enhancement of Gas-
troenteric Infection Surveillance Statistics, see http://www.maths.lancs.ac.uk/"diggle/
Aegiss/day.htmlY,3Fyear=2002&month=2&day=11&exceed=2) for an example of the output
that was updated on a daily basis, see Diggle, Knorr-Held, Rowlingson, Su, Hawtin, and
Bryant (2003) for a full description of the project.

Suppose we have data up to the present, time 7", then we should ideally like to obtain samples
from w(8,n,Y|Xo, ..., Xr), the posterior of the parameters given the complete history of ob-
servations at each time, Xj, ..., Xp. Brix and Diggle (2001) argue that since (1) the complete
posterior grows with time, making the inferential problem increasingly challenging and (2)
the alternative of solving the filtering recursions for this target is not tractable, a pragmatic
approach is to ignore data from far in the past, and sample from 7(8,n,Y|Xpr_, ..., X71)
instead, where [ is a lag parameter to be set by the user. The methods we present in this
section adopt the same strategy.

A spatiotemporal analysis

The points in this dataset are the geo-locations of callers to the NHS Direct telephone service
who reported symptoms of diarrhoea or vomiting. The main idea of the AEGISS project was
to perform daily spatiotemporal surveillance of the rate of such calls, which could be a used
as a proxy for the incidence of gastrointestinal illness.

The data for our example are shown in Figure 14. These are case counts observed over a
period of two weeks ending on 18th August, 2002.

We begin by loading the data: an object xyt of class stppp. Following Algorithm 1, we begin
by computing approximate parameter estimates to help inform the computational grid size
and initial values for the MCMC routine.

R> load("aegiss.RData")

R> minc <- minimum.contrast.spatiotemporal (xyt, model = "exponential,
+ method = "g", transform = log, spatial.dens = density.ppp(xyt),
+ temporal.intens = muEst(xyt))

R> minc
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Figure 14: Plot of locations of calls to NHS Direct reporting suspected gastrointestinal infec-
tion in Hampshire.

$estimates

scale (spatial) variance (spatial) scale (temporal)
[1,] 1286.983 2.86001 0.5336735
$discrepancy

Squared discrepancy (spatial)
[1,] 5455.624

In the above, we use the kernel-smoothed estimates density.ppp(xyt) and muEst (xyt) to
account for the inhomogeneity in the spatial and temporal intensity of events, respectively.
We chose a cell width of 1,400 metres by running the command chooseCellwidth(xyt,
cwinit = 1400) for various values of cwinit; this value is just sufficient to capture the
spatial correlation. Looking at values of exp(—(0 : 7)%0.53) shows that, under the assumption
that the estimated temporal correlation parameter is approximately 0.53, we expect temporal
correlation in the Y process to drop to 0.02 after 7 days. We therefore initially used an
observation window width of 7 days. However, on running the MCMC algorithm, it was noted
that the quadratic approximation to the posterior with respect to the latent parameters of Y
was poor, leading to a proposal variance matrix that was not symmetric and positive definite.
In cases such as these, the MCMC routine will produce a warning;:

Warning: Cannot find good approximation of posterior
variance w.r.to eta: using the following variance instead:

and the default is instead to use a 3, (see Equation 4) that is diagonal with entries equal to
1/100 times the prior variance for these parameters. Occasionally, this choice will lead to an
algorithm that mixes reasonably well, but in our case, we wanted a better choice of proposal
variance. We therefore decided to use 14 days of data, which enabled a sensible proposal
matrix to be computed via the quadratic approximation.
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Our next task is to set up the computational grid and overlay onto the covariate data; we set
the extension parameter equal to 2:

R> CELLWIDTH <- 1400

R> EXT <- 2

R> polyolay <- getpolyol(data = xyt, regionalcovariates = popshape,
+ cellwidth = CELLWIDTH, ext = EXT)

We use three covariates in this analysis: population (pop); IMD (IMD); and day-of-the-week
(dotw) as an indicator. Our population variable comes from the 2001 census and is therefore
only available in aggregated form, as before. As in the liver example, we use IMD data from
the 2007 survey as a proxy for deprivation in 2002; we emphasise that this is for illustrative
purposes and is not ideal.

In the following, we load the SpatialPolygonsDataFrame containing the spatial covariate
data and specify the interpolation method for each of the variables

R> load("popshape_aegiss.RData")

R> popshape@data <- guessinterp(popshape@data)

R> popshape@data <- assigninterp(df = popshape@data,

+ vars = c("pop", "males", "females"), value = "ArealWeightedSum")

We next construct a list of design matrices Z to feed into the prediction algorithm. Since we
use data from 14 time points in the analysis, we are required to create a list of 14 objects,
each element having been constructed in one of four ways:

1. where Z(s,t) cannot be decomposed, i.e., Z are true spatiotemporal covariates. In
this case, each element of the list must be constructed separately using the getZmat
command 14 times on the covariates for each time point.

2. Z(s,t)B = Z1(s)B1 + Za(t)B2: the spatial and temporal effects are separable; in this
case, the package lgep provides a function, addTemporalCovariates, to aid in the con-
struction of the list, as illustrated below.

3. Z(s,t)B = Z(s)B, in which case the user only needs to perform the interpolation using
getZmat once: each of the fourteen elements of the list will be identical.

4. Z(s,t)B = Z(t)B, in which case we follow the procedure for the separable case in item 2
above. For example, if we did not have a spatial population covariate, but a temporal
day-of-the-week covariate, then we would follow the example below, but with FORM <- X
~ dotw, FORM.spatial <- X ~ 1, followed by TEMPORAL.FORMULA <- t ~ dotw - 1.
This would result in a design matrix incorporating an intercept and indicator variables
for the six other levels of the day-of-the-week effects.

In this example, we treat day-of-the-week and population/IMD as separable effects. We define
three formulae in this case:

R> FORM <- X ~ pop + IMD + dotw
R> FORM.spatial <- X ~ pop + IMD
R> TEMPORAL.FORMULA <- t ~ dotw - 1

27
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The first object, FORM, is the overall model for these data and will eventually be passed on to
the MCMC algorithm lgcpPredictSpatioTemporalPlusPars; the second, FORM.spatial,
will be used to construct a design matrix for the spatial element of the model; the last,
TEMPORAL . FORMULA will be used to ‘bolt on’ the temporal covariate information. Note that
in the latter, there is no intercept term in the formula: this is important, as the intercept is
already included in the formula for the spatial covariates.

We begin by interpolating the spatial covariates and taking the logarithm of population in a
similar way to our first two analyses in the preceding sections:

R> Zmat <- getZmat(formula = FORM.spatial, data = xyt, cellwidth = CELLWIDTH,
+ regionalcovariates = popshape, ext = EXT, overl = polyolay)

R> Zmat[, "pop"] <- log(Zmat[, "pop"])

R> Zmat[, "pop"][is.infinite(Zmat[, "pop"])] <- min(

+ Zmat[, "pop"][!is.infinite(Zmat[, "pop"])])

In this example, the inferential observation window in the object xyt had been artificially
constructed by hand, whereas the covariate data were obtained using a more accurate rep-
resentation of the Hampshire border. This discrepancy between the inferential owin-type
observation window and the covariate SpatialPolygonsDataFrame leads to missing covariate
values because there are cells touching the observation window for which covariate values
cannot be inferred. In principle, this can be avoided by making the inferential observation
window equal to the covariate SpatialPolygonsDataFrame, but this is not always possible
in practice. The issue in this dataset partly arises because Hampshire is not landlocked; had
it been landlocked we could have used covariate data from Hampshire plus a buffer to allow
the interpolation step, called by getZmat, to function without a warning being issued.

Typing plot (Zmat,misscol="yellow",obswin=xyt$window) at the console allows the user
to check which cells have had covariate values imputed (this will affect all covariate values
for those cells). Running this command plots the covariates and highlights by a yellow +
symbol which cells had missing values, allowing the user to check that the imputed median is
a sensible choice. We emphasise that median imputation is only one option. The user can also
replace any missing value value manually; note that attr(Zmat,"missingind") is a vector
with a 1 in position i if the covariates Zmat [i,] were imputed, a O if the covariates were not
imputed and NA if the cell is not part of the inferential observation window.

We now construct a second data frame, tdata, from which the temporal effects will be ex-
tracted and Zmat turned into the required list object, each element of which is the design
matrix for the appropriate time point in the analysis. Day 1 of the AEGISS project was the
1st January 2001, a Monday. The data frame tdata contains the time variable t and the
day-of-the-week variable dotw:

R> days <- c("Mon", "Tue", "Wed", "Thur", "Fri", "Sat", "Sun")
R> tvec <- xyt$tlim[1]:xyt$tlim[2]

R> da <- rep(days, length.out = length(tvec))

R> tdata <- data.frame(t = tvec, dotw = da)

The subset of data we use in this analysis ends on time point 595, stored in the object T
below, and includes the preceding 13 days of data, specified by the object LAGLENGTH.
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R> T <- 595

R> LAGLENGTH <- 13

R> ZmatList <- addTemporalCovariates (temporal.formula = TEMPORAL.FORMULA,
+ T = T, laglength = LAGLENGTH, tdata = tdata, Zmat = Zmat)

Note that as in the construction of the Zmat argument, in general the poisson.offset for
the spatiotemporal LGCP must also be provided as a list of offset terms, see Appendix B for
further details. The last task before we can run the MCMC algorithm is to specify the priors
and initial values. We initialise the MCMC routine using the minimum contrast estimates
above. For the priors, the main difference compared with the previous two analyses is that
the prior for 7 is now a multivariate normal with 3 parameters, as opposed to 2. The prior
for «, is an informative prior, and based on the initial value of log 6 either specified by the
user, or by default equal to the exponential of the mean of the prior for log 6:

2 2
IOg’ﬂ'(’}/) — const — Z ||71|| H’YOH 7 (7)
=1

where g; = 1 — exp{—2At;0init }, Ginit is the initial value of # and At; is the time difference
between the observations at time t; and those at t;_;, with the convention that gg = 1 , see
Taylor and Diggle (2013).

We choose an exponential covariance function to model the spatial dependency in Y, stored
in the object CF.

R> INITS <- lgcpInits(etainit = log(c(sqrt(2.8), 1286, 0.5)),

+ betainit = NULL)

R> lgprior <- PriorSpec(LogGaussianPrior(mean = log(c(1, 2000, 1)),
+ variance = diag(0.2, 3)))

R> gprior <- PriorSpec(GaussianPrior(mean = rep(0, 9),

+ variance = diag(le6, 9)))

R> priors <- lgcpPrior(etaprior = lgprior, betaprior = gprior)

R> CF <- CovFunction(exponentialCovFct)

Now there is sufficient information to run the MALA algorithm. In the code below, we run
the chain for 1,000,000 iterations including a 100,000 iteration burn in and retain every 900th
post-burn-in sample for inference.

R> DIRNAME <- getwd()
R> 1g <- lgcpPredictSpatioTemporalPlusPars(formula = FORM, xyt = xyt, T =T,

laglength = LAGLENGTH, ZmatList = ZmatList, model.priors = priors,
model.inits = INITS, spatial.covmodel = CF, cellwidth = CELLWIDTH,
mcmc. control = mcmcpars(mala.length = 1000000, burnin = 100000,

retain = 900, adaptivescheme = andrieuthomsh(inith = 1, alpha = 0.5,
C = 1, targetacceptance = 0.574)),
output.control = setoutput(gridfunction = dump2dir(
dirname = file.path(DIRNAME, "aegiss"), forceSave = TRUE)),
ext = EXT)
R> save(list = 1s(), file = file.path(DIRNAME, "aegiss", "aegissout.RData"))

+ + + + + + + +
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Parameter Median Lower 95% CRI Upper 95% CRI
o 0.7797 0.4475 1.164
é 1848 787.2 4513
9 0.9249 0.4084 2.319

exp(B(mtercepry)  5.268x1071  1.396x10713 1.694x10712

exp(Bpop) 3.462 2.974 4.108
exp(Bup) 0.99 0.9683 1.01
exp(Bdotwiton) 1.485 0.8402 2.701
exp(Bdotwsat) 1.152 0.6674 2.169
exp(Bdotwsun ) 1.352 0.7298 2.561
exp(Bdotw Thur) 1.141 0.5918 2.089
exp(BdotwTue) 1.287 0.7168 2.378
exp(BdotwWed) 1.038 0.5549 1.93

Table 3: Table of parameter estimates from the AEGISS aexample.
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Figure 15: Plot of the posterior probability that the relative risk exceeds 1.5 (left) and 2
(right).

Having run the MCMC routine, we next establish convergence and good mixing as in the
previous two sections, before summarising the results in the form of tables (e.g., Table 3) and
computing Monte Carlo estimates of exceedance probabilities (Figure 15).

We edited text from the output to textsummary(lg, digits = 4) to produce the following
summary of the main effects model and parameters of the latent field.

A summary of the parameters of the latent field Y is as follows. The parameter o had median
0.78 (95% CRI 0.448 to 1.16); the parameter ¢ had median 1848 metres (95% CRI 787 to
4513); and the parameter 6 had median 0.925 days (95% CRI 0.408 to 2.32). Examining plots
of the priors and posteriors for these paramters suggested that whilst there was information
in the data on o, the parameters ¢ and 6 were not well-identified by the data, and the
confidence intervals for these parameters follow what would have been obtained from the
prior. A plot of the posterior spatial covariance and temporal correlation in Y was produced
using postcov(lg), see Figure 16.
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Figure 16: Plots of the posterior spatial covariance (left) and temporal correlation (right).

The following effects were found to be significant: each unit increase in log-population led to
a increase in relative risk with median 3.46 (95% CRI 2.97 to 4.11). The remainder of the
main effects were not found to be significant. Reporting rates were lower in areas of higher
deprivation: each unit increase in IMD led to a reduction in relative risk with median 0.99
(95% CRI 0.968 to 1.01). The other effects in Table 3 show the relative risk on other days of
the week compared with Friday.

4.4. BTB in Cornwall, a multivariate log-Gaussian Cox process

Introduction

In this section, we discuss the fitting of a multivariate log-Gaussian process to a multitype
point pattern. The general form of our model is:

Xi(s) = Poisson[Rg(s)] (8)
Ri(s) = Cadp(s)exp{Z(s)iBr + Yi(s) + Yri1(s)} kel,....K

Here X} (s) is the number of events of type k in the computational grid cell containing the
point s, Ry(s) is the Poisson rate, C'4 is the cell area, A\;(s) is a known offset, Zx(s) is a vector
of measured covariates and Y;(s) where i = 1,..., K + 1 are latent Gaussian processes on the
computational grid. The other parameters in the model are S, the covariate effects for the
kth type; and n; = {log(o;),log(¢i)}, the parameters of the process Y; fori =1,..., K +1 on
an appropriately transformed (again, in this case log) scale.

Our model for the kth data stream (type) is a log-Gaussian Cox process in which the stochastic
part is composed of two elements: a within-stream and a between-stream component. The
idea of this model is that it allows us to decompose the spatial variation in events of multiple
types into variation associated with a particular type of event and variation common to all
types. Thus, although each point type may display an individual spatial pattern, the process
Y41 captures areas of high or low intensity that are common to all types.
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Figure 17: Maps showing cases of bovine tuberculosis between 1989-2002: genotype 9 (top
left), genotype 12 (top right), genotype 15 (bottom left), genotype 20 (bottom right).

In Diggle et al. (2013), the authors introduce the idea of using the LGCP as a form of
density estimation and provide a multivariate example in which they model cases of bovine
tuberculosis (BTB) in Cornwall. BTB is endemic in parts of the United Kingdom, and as part
of a national control strategy for the disease, herds undergo regular inspection. If the disease
is found in a herd, scientists then attempt to determine the genotype of the tuberculosis
bacterium that caused the outbreak.

In the present article, we revisit the BTB data discussed in Diggle, Zheng, and Durr (2005b)
and Diggle et al. (2013). These data, shown in Figure 17, are locations of breakdowns in
herds in the period 1989-2002. In the present article, we will consider the 873 such events
corresponding to the four most common genotypes (there were a further 46 cases classified
as one of six additional genotypes). It is of interest to scientists to determine whether there
is segregation in the spatial distribution of BTB, since this is informative about potential
transmission mechanisms of the disease.
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Analysis of a multitype dataset

We begin by loading the point pattern dataset, a marked ppp object. Here, we extend the
analysis presented in Diggle et al. (2013) by including covariate information to help explain
some of the spatial variation in cases of BTB.

R> load("BTBppp.RData")
R> load("farmspdf.RData")

The covariates in the object farmspdf, loaded above, are a proxy for cattle density in Cornwall
derived from the June Census in 2010. We would ideally like to have used the true cattle
densities for this example, but these data are not available to us. The June census provides
animal counts on 5 kilometre grid squares; for more common animal types, these counts are
further divided into subsets. For cattle, as well as the total number of animals, there are
counts on a further 11 age/sex/useage subsets. Since some of these 11 divisions are highly
correlated, we used the findCorrelation function from the package caret to select a subset
of these variables so as to reduce pairwise correlations between the putative covariates and
hence improve identifiability.

R> library("caret")

R> d <- farmspdf@datal[, 30:40]
R> d <- d[!is.na(d[, 1]), ]
R> findCorrelation(cor(d))

[1] 1 5 4 211 3 6

The resulting vector gives the column indices to be excluded: 1-6 and 11. The following
variables were chosen for the main analysis:

e K207 Male cattle >2 years old.
e K208 Female beef cattle > 2 years old, no offspring.
e K209 Female dairy cattle > 2 years old, no offspring.

e K210 Female beef cattle > 2 years old, with offspring.

We begin according to Algorithm 1 by computing approximate values of the parameters of the
process. The function minimum.contrast also handles multivariate data on a type-by-type
basis (i.e., ignoring correlation between types). Because some of the genotypes in the original
data have a low number of counts, minimum. contrast fails for these types, we therefore run
the approximate estimation procedure on the subset of data we are interested in:

R> W <- pppdata$window
R> simpW <- simplify.owin(W, 1000)

R> ttx <- pppdata$x[pppdata$marks == "x1" | pppdata$marks == "x4" |
+ pppdata$marks == "x5" | pppdata$marks == "x7"]
R> tty <- pppdata$yl[pppdata$marks == "x1" | pppdata$marks == "x4" |

+ pppdata$marks == "x5" | pppdata$marks == "x7"]

33
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R> ttm <- as.character(pppdata$marks[pppdata$marks == "x1" |

+ pppdata$marks == "x4" | pppdata$marks == "x5" | pppdata$marks == "x7"])
R> tempppp <- ppp(x = ttx, y = tty, window = simplW, marks = as.factor(ttm))
R> denls <- lapply(as.character(levels(tempppp$marks)), function(x) {

+ density.ppp (tempppp [tempppp$marks == x]) })

R> mn <- minimum.contrast (tempppp,model = "exponential', method = "g",
+ intens = denls, transform = log)
$estimates

scale variance
x4 1118.5076 1.558636
x1 446.3812 1.742495
x7 1938.9902 1.226359
x5 2207.9740 2.131337

$discrepancy

Squared discrepancy
x4 1465.281
x1 43508.423
x7 2635.801
x5 10467.575

In the above, we used simplify.owin to speed up the computation time for the inhomo-
geneous pair correlation function, which depends on how complex the observation window
is.

The function minimum. contrast is not able to identify parameters from a type-specific ran-
dom component, Y, and the cross-type random component, Y 1. Therefore the approximate
estimates obtained refer to the stochastic process Yi + Yx 1. In the case that the correlation
function is exponential and Yy, 1L Y11, we would have,

Var[Yy + Yiy1] = Var[Yy] + Var[Yk11],
= opexp{—d/dr} + o1 exp{—d/dx 11},
= 20% exp{—d/¢},

under the assumption that ¢ = o, = 041 and ¢ = ¢, = ¢x1 and where d is the Euclidean
distance. We do not know a priori that this is the correct thing to do, but it does provide a
pragmatic way of understanding which cell widths and initial values might be appropriate for
the MCMC run. The above implies that as a rule of thumb, we could think of the variance
of Yy (or Yi41) to be approximately 1/2 the estimated variance and the scale parameter to
be approximately equal to the estimated scale.

In our analyses in this section, we use the following settings:

R> CELLWIDTH <- 1800
R> EXT <- 2

This is just sufficient for three of the processes, based on the approximate estimates of the
scale parameters. Since minimum contrast methods tend to underestimate the true parameter
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values (Davies and Taylor 2014), for reasons of computational cost we opted for a cell width
of 1,800 metres instead of one of 900 metres. This was a risk in our analysis, and had the
posterior showed a strong preference for a small scale parameter in the x5 data stream, then
we would have had to re-run it on a finer computational grid.

We next compute an overlay of the computational grid onto the SpatialPixelsDataFrame
containing the animal counts:

R> polyolay <- getpolyol(data = pppdata, pixelcovariates = farmspdf,
+ cellwidth = CELLWIDTH, ext = EXT)

We specify a model for the main effects in each of the data streams as below:

R> f1 <- formulaList(list(

+ x1 ~ K207 + K208 + K209 + K210,
+ x4 ~ K207 + K208 + K209 + K210,
+ x5 7 K207 + K208 + K209 + K210,
+ x7 ~ K207 + K208 + K209 + K210))

Note that each of these models can comprise different sets of terms. We next set the in-
terpolation type for each of our covariates. Since these are population counts, we chose the
ArealWeightedSum interpolation to be the most appropriate.

R> farmspdf@data <- guessinterp(farmspdf@data)
R> farmspdf@data <- assigninterp(df = farmspdf@data,
+ vars = c("K207", "K208", "K209", "K210"), value = "ArealWeightedSum")

In our multivariate algorithm, in order to perform the interpolation step we must first collect
together the set of unique independent variables from the list £1 and create a new main effects
model, in this case,

R> FORM <- X ~ K207 + K208 + K209 + K210

R> Zmat <- getZmat(formula = FORM, data = pppdata, cellwidth = CELLWIDTH,
+ pixelcovariates = farmspdf, ext = EXT, overl = polyolay)

R> for(x in c("K207", "K208", "K209", "K210")) {

+ Zmat[, x] <- log(Zmat[, x])

+ Zmat[, x][is.infinite(Zmat[, x])] <- min(

+ Zmat[, x"][!is.infinite(Zmat[, x])])

+ }

The purpose of the object Zmat in this case is purely to store information on the spatial
covariates (regardless of the type of point with which they are associated): the internal
routines of the package lgep will construct appropriate design matrices, Zy, for each of the
types. Note that we again transform the animal covariates to the log scale since these are
population counts.

We next set up priors for this analysis as follows:

R> pr.mn <- log(c(1, 1500))
R> pr.vr <- ¢(0.2, 0.05)

35



36 Bayesian Inference for Log-Gaussian Cox Processes in R

—— 0.5 quantile N —— 0.5 quantile
-- 0.025-0.975 CRI k -- 0.025-0.975 CRI

20
|
0.30
1

0.25
1

15

Covariance
1.0
Covariance
0.15
I

0.5
0.05
1

0.0
|
0.00
1

o

5000 10000 15000 20000 25000 0 2000 4000 6000 8000 10000 12000

Range Range

Figure 18: Plot of the posterior estimated covariance function of Y; (left) and Y5 (right) for
the bovine TB data.

R> priors <- list()

R> for(i in 1:4) {

+ priors[[i]] <- lgcpPrior(etaprior = PriorSpec(

+ LogGaussianPrior(mean = pr.mn, variance = diag(pr.vr))),
+ betaprior = PriorSpec(GaussianPrior (mean = rep(0,5),

+ variance = diag(1076,5))))

+ }

R> priors[[5]] <- lgcpPrior(etaprior = PriorSpec(

+ LogGaussianPrior(mean = pr.mn, variance = diag(pr.vr))),
+ betaprior = NULL)

Notice that in the prior for Yx 41, no prior is specified for 3. As for previous examples, the
package lgep provides multivariate Gaussian priors for 8 and 7 (the latter on the log-scale),
but in this case the structure of the prior variance is block diagonal: each pair of parameters,
e = {log o, log ¢}, has its own multivariate prior independent of the other types. In this
example, we will use the prior mean to initialise the MCMC algorithm.

The last remaining task before we run the MCMC algorithm is to choose a covariance function
for each of the processes Yi,...,Yki1:

R> cfs <- 1ist()

R> for(i in 1:4) cfs[[i]] <- CovFunction(exponentialCovFct)

R> cfs[[5]] <- CovFunction(RandomFieldsCovFct(model = "matern",
+ additionalparameters = 1))

This defines an exponential covariance function for Y7,...,Y; and a Matérn covariance func-
tion for Yx 1 = Y5 with differentiability parameter, nu, set to 1. The choice of the Matérn
covariance function was for illustrative purposes, see Appendix C for further details. The
MCMC routine can now be run:

R> BASEDR <- getwd()
R> 1g <- lgcpPredictMultitypeSpatialPlusPars(formulalist = fl, sd = pppdata,
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Saint Austell J

Figure 19: Maps showing the conditional probability that a point at each location is of a
particular type: genotype 9 (top left), genotype 12 (top right), genotype 15 (bottom left),
genotype 20 (bottom right). The code for this figure appears in the replication materials.

Zmat = Zmat, model.priorsList = priors, spatial.covmodellList = cfs,
cellwidth = CELLWIDTH, mcmc.control = mcmcpars (mala.length = 1000000,
burnin = 100000, retain = 900, adaptivescheme = andrieuthomsh(inith = 1,
alpha = 0.5, C = 1 ,targetacceptance = 0.574)),
output.control = setoutput(gridfunction = dump2dir(
dirname = file.path(BASEDR, "BTB"), forceSave = TRUE)),
ext = EXT)
R> save(list = 1s(), file = file.path(BASEDR, "BTB", "BTB.RData"))

+ + + + + + +

As in the other analyses, we first examine convergence and mixing diagnostics; this proceeds
in the same way as before, with the exception of the autocorrelation of the latent fields, Y;
which is achieved using the autocorrMultitype function as follows

R> for(i in 1:4) {



38 Bayesian Inference for Log-Gaussian Cox Processes in R

Saint Austell J-

Genotype 9
Genotype 12
= Genotype 15
Genotype 20

Figure 20: Illustrating the areas Ay(0.8,q) for each of ¢ = 0.6 (top left), 0.7 (top right),
0.8 (bottom left) and 0.9 (bottom right). The code for this figure appears in the replication
materials.

Yi <- autocorrMultitype(lg, lags = c(1, 5, 15), fieldno = i,
inWindow = NULL)
plot(Yi, zlim = c(-1, 1), xlab = "", ylab = "")

+ + + +

}

The argument fieldno specifies the Y; on which to perform computation. The command
postcov(lg) plots the posterior covariance function of each Y; in turn; in Figure 18, we show
the plot for fields 1 and 5.

The package lgep has a function to compute the conditional probability that at a particular
location there will be an event of type k, which we denote pg. This function requires dumpdir
to have been set in the call to the MCMC routine:

R> cp <- condProbs(1g)
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Parameter Median Lower 95% CRI  Upper 95% CRI
o 1.257 1.073 1.485
b1 5056 3829 6620
02 1.641 1.257 2.257
b2 3408 2387 4840
03 1.484 1.19 1.82
b3 4546 3311 6339
o4 1.979 1.572 2.506
b4 4851 3757 6387
o5 0.3619 0.2031 0.5438
b5 1592 997.4 2485
exp[B(1)((Intercept))] 1.178x107%  4.907x107° 2.693x1078
exp[B(1)(K207)] 1.027 0.968 1.085
exp[B(1)(K208)] 1.033 0.9193 1.155
exp[B(1)(K209)] 1.023 0.9912 1.059
exp[B(1)(K210)] 1.016 0.992 1.041
exp[B(2)((Intercept))] 2.298x1079  5.422x10710 9.345x107"
exp[B3(2)(K207)] 0.7945 0.6654 0.925
exp[3(2)(K208)] 1.547 1.173 2.07
exp[B3(2)(K209)] 1.019 0.955 1.086
exp[B3(2)(K210)] 0.9719 0.9154 1.031
exp[B(3)((Intercept))] 8.327x107?  2.723x107° 2.344x1078
exp[B(3)(K207)] 1.029 0.9554 1.107
exp[B3(3)(K208)] 1.011 0.8417 1.209
exp[B(3)(K209)] 0.9875 0.9413 1.039
exp[3(3)(K210)] 1.014 0.971 1.058
exp[B(4)((Intercept))] 3.825x1072  9.023x10719 1.455%x1078
exp[B(4)(K207)] 1.039 0.9381 1.154
exp[B(4)(K208)] 0.9265 0.7057 1.202
exp[3(4)(K209)] 1.074 1.008 1.145
exp[B(4)(K210)] 1.012 0.9468 1.078

Table 4: Table of parameter estimates from the BTB analysis.

The result, cp, is an object of class 1gcpgrid, which can be converted to an array object
using as.array(cp), or a raster object using raster(cp). The latter is particularly useful
for adding the results of analyses to background maps, where a change of projection is required.
An example of what can be produced is shown in Figure 19.

Similarly, it is of interest to scientists to be able to illustrate spatial regions where a genotype
dominates a posteriori. Let A(c, q) denote the set of locations x for which P{py(z) > | X} >
q. As the quantities ¢ and ¢ tend to 1 each area Ag(c,p) shrinks towards the empty set; this
happens more slowly in a highly segregated pattern compared with a weakly segregated one.
We compute P{pg(x) > ¢|X} using the following code:

R> sr <- segProbs(lg, domprob = 0.8)

Again, the result is an 1gcpgrid. In Figure 20, the areas A (0.8, ¢) are illustrated for each of
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q=0.6,0.7,0.8 and 0.9. A table of parameter estimates from this model is given in Table 4.

The main points of interest from the main effects are as follows. For types 1 and 3 (respectively
genotypes 9 and 15), none of the covariate effects are statistically significant. For type 2
(genotype 12), the rate of cases are significantly lower areas with larger numbers of Male
cattle over 2 years old. For type 4 (genotype 20), the rate of cases are significantly higher
in areas with larger numbers of Female dairy cattle over 2 years old with no offspring. We
emphasise that these results are illustrative and should not be interpreted scientifically, since
our covariate information was collected much later than the cases were observed.

5. Discussion

In this article, we have introduced four statistical models based around the log-Gaussian Cox
process: a spatial point process model, an aggregated count model, a spatiotemporal point
process model and a multivariate point process model. Implementing Bayesian inference for
each of these LGCP models is extremely challenging, both from a coding perspective and
from the perspective of algorithm heuristics. However, our open-source algorithms and data
structures, together with the walk-through examples in this article, provide practitioners with
a good basis to start using MCMC for Bayesian spatial and spatiotemporal modelling.

Although it takes patience and experience to get to grips with MCMC, we would argue that
this is time worth spending. In an epidemiology study that might last for many years, it is
surely justifiable that a statistical analysis might take of the order of weeks: especially when
the results of such an analysis can lead to a better understanding of the phenomenon of inter-
est. Computational time is the main perceived disadvantage of MCMC, but in compensation
for this, we are able to work in a transparent modelling framework, provide joint inference for
all model parameters and add additional hierarchies to our models with only modest effort;
furthermore, the convergence and mixing diagnostics offer insight into the statistical problem
we are addressing.

If we were to re-run the two liver examples, we would likely exclude propmale and employment:
we note again that these examples are purely to illustrate the code. Principled model selection
can be achieved with reversible jump MCMC (Green 1995) but this is likely to be challenging
due to having to calibrate cross-model jumps. As a practical solution, we would recommend
the user attempts model selection via other means before running the MCMC, for example
with a simple call to glm, ignoring spatial correlation.
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A. Interpolation of covariate information

The role of the interpolation step is to put covariate information onto the computational
grid. This information may come from an object that is more or less spatially refined than
the computational grid. Here, we assume that the covariate information is on a finer scale
than the computational grid, so that information in a computational grid cell is comprised of
multiple pieces of information from the covariate dataset.

The three types of interpolation methods employed in the package lgcp are:

e Majority The interpolated value corresponds to the value of the covariate occupying
the largest area of the computational cell.

e ArealWeightedMean The interpolated value corresponds to the mean of all covariate
values contributing to the computational cell weighted by their respective areas.

e ArealWeightedSum The interpolated value is the sum of all contributing covariates
weighed by the proportion of area with respect to the covariate polygons. For example,
suppose region A has the same area as a computational grid cell and has 500 inhabitants.
If that region occupies half of a computational grid cell, then this interpolation type
assigns 250 inhabitants from A to the computational grid cell.

B. Poisson offsets in lgcp

In the package lgep, the user specifies a Poisson offset by setting A(s), or A(s,t) directly
(rather than the log of those quantities, as would be the case in a call to glm with family =
"poisson" for example).

We specify offsets using the SpatialAtRisk class of objects. Note that this object class was
originally designed so that fW A(s)ds = 1 over the observation window, W. However, since the
normalising constant of this operation is stored, the class can also be used to define Poisson
offsets.

The example below can be constructed using data from the example in Section 4.1. In this
example, we set up an offset on the computational grid with values corresponding to the
population counts as measured by the census data. We interpolate the census counts onto
the computational grid, then use an object of class SpatialAtRisk.fromXYZ to encode the
information.

R> FORM_pop <- X " pop - 1

R> Zmat_pop <- getZmat(formula = FORM_pop, data = sd,

+ regionalcovariates = popshape, cellwidth = CELLWIDTH,

+ ext = EXT, overl = polyolay)

R> mm <- length(attr(Zmat_pop, "mcens"))

R> nn <- length(attr(Zmat_pop, "ncens"))

R> poisson.offset <- spatialAtRisk(list(X = attr(Zmat_pop, "mcens"),
+ Y = attr(Zmat_pop, "ncens"), Zm = matrix(Zmat_pop, mm, nn)))

It is always best to construct the offset directly onto the computational grid: the x-values of
the grid are in this case attr(Zmat_pop, "mcens") and the y values are attr(Zmat_pop,
"ncens").
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In the case of a spatiotemporal or multivariate model, the user must supply a list of such
SpatialAtRisk offsets.

C. More choices of covariance function
In Section 4.4 we saw the following example of code:

R> cfs[[5]] <- CovFunction(RandomFieldsCovFct(model = "matern",
+ additionalparameters = 1))

used to specify a Matérn covariance function. In fact, the function RandomFieldsCovFct
gives the user access to all covariance models from the RandomFields package in the function
CovarianceFct (see the help file). The user simply has to choose the argument model from
the available models and in the call to RandomFieldsCovFct above and set the values of any
additional parameters for the family of choice in the order they appear in the documentation
of CovarianceFct.

D. More complex expectations

For spatial processes, including point process and aggregate process models, the package lgcp
enables the user to compute joint expectations over all model parameters using the function
lgcp: ::expectation.lgcpPredictSpatialOnlyPlusParameters. In the example below, we
examine the function numCases, a function with parameters Y, beta, eta, Z and otherargs.

R> numCases

function (Y, beta, eta, Z, otherargs){
ca <- diff (otherargs$mcens[1:2]) * diff (otherargs$ncens[1:2])
return(ca * otherargs$poisson.offset[1:otherargs$M, 1:otherargs$N] *
exp(matrix(Z %=J t(beta), otherargs$M * otherargs$ext,
otherargs$N * otherargs$ext) [1:otherargs$M, 1:otherargs$N] + Y))
}

R> ex <- expectation(lg, numCases)[[1]]

The function numCases returns the expected number of cases in each computational grid cell
from one iteration of the algorithm,

Cal(s)exp{Z(s)B +Y(s)};

the object ex is a 128 x 64 grid with the expected number of events in each cell. Note that
whilst Y, beta, eta and Z have obvious definitions, the argument otherargs is not so obvious.
In fact, this will take the output prediction object 1g as input, so any information returned
in 1g can be used in constructing these expectations.

E. MCMC warnings

Sometimes during an MCMC run, the following warning message will be issued:
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Warning: One possible cause of this warning is that there may
be evidence in the data for quite large values of the spatial
correlation parameter. If this is the case, then this warning
means that the MCMC chain has wandered into a region of the
phi-space that causes the variance matrix of Y (computed by
the DFT) to become non positive-definite. One possible way of
rectifying this issue is to restart the chain using a larger
value of 'ext' in the call to lgcpPredictSpatialPlusPars. You
should do this if the warning message is repeated many times.
If this warning message appears at all then you should be
warned that inference from this run may not be reliable: the
proposed move at this iteration was rejected.

To find out on which iterations this message appeared, type lg$reject_its at the console
(assuming the MCMC object is called 1g). If this message only appears during the burn-
in phase, then it is fine to continue analysing the data as normal, however, if this message
appeared during the ‘run’ phase of the algorithm, then formally the run should be repeated
with different settings.

The message appears because the 7 chain has wandered into an area for which the covariance
matrix as computed by the FFT is not positive definite. As the message suggests, one way
of rectifying this is by increasing the value of ext used in the call to the MCMC algorithm;
this incurs computational expense.

An alternative is to tighten the prior on ¢ to discourage moves into regions which lead to
instability. In practice, we have found that when the parameter ext is set to 2, priors for ¢
that do not place too much probability mass outside the range of approximately 1/5 of the
width of the observation window are sufficiently tight to avoid this warning messsage.

Short pilot runs of 1,000-5,000 iterations are useful to discover issues like this before commit-
ting serious computation time.
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