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Abstract (max 250 words in SiM)

The spatial distribution of the tumours is relevant to take into account when investigating

the relation between brain tumours and the exposure from radio frequency electromagnetic

fields caused by mobile phone use. This issue resembles investigating spatial aggregation

of a disease around a source of potential hazard which can be analysed using point process

modelling. We propose to use a Poisson point process model similar to one used in envi-

ronmental epidemiology when including tumour localisation in modelling the association

between brain tumours and mobile phones. The spatial distribution is then a distribution

over a sample of patients rather than over multiple disease cases within one geographical

area. We show how the distance relation between tumour and phone can be modelled

nonparametrically and with various parametric functions, how covariates can be included

in the model and how to test for effect of the distance. The models are applied to a subset

of the data from the Interphone Study, a large multinational case-control study on the

association between brain tumours and mobile phones, where we see that the impact of

distance between tumour and preferred ear for mobile phone use on the tumour intensity

is significant.

Keywords (max 6 in SiM)

Poisson point process; spatial point pattern; brain tumours; mobile phones; radiofrequency
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1 Introduction

Analysis of spatial point patterns in geographical or spatial epidemiology can be used to

investigate spatial aggregation of a certain disease in addition to what is due to environ-

mental heterogeneity. This is useful also in environmental epidemiology when examining

a possible raised incidence of cases of a disease around a source of potential environmental

hazard. Diggle [1] proposed a point process modelling approach to test for possible clus-

ters in the vicinity of fixed locations motivated by a concern for an elevated risk of certain

types of cancers near a former industrial waste incinerator[1] and nuclear installations[2].

This concern for clustering of cancer cases near nuclear installations and waste incinerators

had increased in the preceding years[3–6], and in 1989 the Royal Statistical Society held a

meeting on ’cancer near nuclear installations’[7] where Diggle’s point process model were

one of the methodological contributions. The first version of the point process model sug-

gested estimating the background or baseline intensity[1], while a newer version introduced

a conditional approach that eliminates the baseline intensity from the estimation[8, 9].

We have adapted this point process model to a setting where the area of interest is a

part of the human body instead of a geographical area, each person contributes with the

localisation of their disease as only one point within this area, and the putative source of

exposure is a device external to but held near to the body. Hence, we investigate the spatial

distribution of tumour localisations over a sample of persons, and not multiple tumours

within one person. The latter would correspond to the models for cancer cases within a

geographical area. Our setting also differs from the geographical setting since it concerns
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3-dimensional modelling.

Our work was motivated by a wish to use information on brain tumour localisation

when modelling the association between brain tumours and exposure from radio frequency

electromagnetic fields (RF-EMF) emitted by mobile phones. Localisation is crucial to

take into account when investigating this association, since the absorption of energy from

RF-EMF in human tissue depends greatly on the distance from the radiation source. Con-

sequently, studies have dichotomised the distance between the mobile phone and the brain

tumour for use in their analyses[10, 11] or calculated a specific exposure measure related

to the energy absorption for each tumour[12, 13]. We propose in this paper a, for this

setting, new statistical model including the localisations. Our specific aim is to introduce

an analyses plan for investigating the 3-dimensional spatial distribution of disease points

in relation to source points, starting with an exploratory analysis and subsequently using

the point process model together with various regression models for the distance relation

between disease points and point source.

The multinational case-control study Interphone on the association between brain tu-

mours and mobile phone use recorded the specific localisations of the tumours in a 3-

dimensional grid map of a standard human brain[14]. The study comprises detailed in-

formation on past mobile phone use obtained via interviews and diagnostic information

from hospital records from the 13 participating countries (Australia, Canada, Denmark,

Finland, France, Germany, Israel, Italy, Japan, New Zealand, Norway, Sweden, and the

UK), and we have used it as an illustrative example to show how an exploratory analysis

and the point process model can be applied.
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This paper is organized as follows. In Section 2 we present our motivating data from

the Interphone Study. We describe the exploratory analysis and show the results from this

when applied to the Interphone data in Section 3. In Section 4 we formally describe the

point process model, different models for the distance relation, and how to do inference,

together with the relating results. Finally a brief discussion follows in Section 5.

2 Motivating data

The Interphone Study has been described in detail elsewhere[14]. Briefly, cases were be-

tween 30 and 59 years of age, when diagnosed with a first primary glioma, meningioma or

acoustic neurinoma during study periods of 2–4 years between 2000 and 2004. All cases

were histologically confirmed or based on unequivocal diagnostic imaging. Gliomas grow

from glial cells and can therefore occur all over the brain, whereas meningiomas and acous-

tic neurinomas are restricted to certain areas of the brain since they grow from respectively

meningeal cells, the layer of tissue covering the brain and spinal cord, and the nerve sheath

cells covering the acoustic nerve. Even though gliomas are not restricted to parts of the

brain, the spatial distribution is not completely random but there is an unknown spatial

baseline distribution[15, 16].

Considering only gliomas, since their origin in the brain is not spatially restricted, the

Interphone data comprise 2710 glioma cases and 2974 matched controls. Our model is

based only on the cases and hence removing any differential bias between cases and con-

trols both with regard to recall errors and selection of participants[17, 18]. Of the 2710
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cases the specific localisation information is registered for 1530 cases. Tumour localisations

were recorded by neuroradiologists in each study centre on a 3-dimensional grid map of

the human brain made up of 1 cm cubes (voxels) in the program GridMaster[19] made

specifically for the Interphone study. These recordings were based on radiological images,

MRI and CT scans, when available and otherwise on radiology reports. The neuroradiolo-

gists, blind to the data on mobile phone use, were also asked to record their best estimate

of the tumour origin. For 906 tumours only one voxel was marked as the origin and for

the remaining 624 tumours either none or several voxels were marked. The tumours with

none or several voxel origins are discarded from the analyses in this paper, since it is not

straightforward how to define their origin as a single point.

Detailed information on past mobile phone use was collected by interview with study

subjects or proxies, and this included use of hands-free device, preferred side of the head

for mobile phone use and number of calls and call time. Of the 906 glioma cases with one

voxel origin 560 were regular phone users, defined at that time as a person that had at

least one call per week for a period of 6 months or more, and the 346 non-regular phone

users were defined as not exposed. Consequently the non-regular users are not included in

our analyses. The lifetime cumulated call time and number of calls were calculated for all

regular users as part of the original Interphone study using an imputation procedure for

persons with missing responses to questions about mobile phone use[14]. The cumulative

use excluded use of mobile phones with hands-free devices[20], since this reduces the amount

of exposure to the head[21]. Few of the regular phone users had a cumulated call time of

0 hours when accounting for hands-free devices. The interview also had a question about
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which side of the head was generally used for mobile phone use and of the 560 regular

phone users 171 reported left side, 307 reported right side, 60 reported both, and for the

remaining 22 regular phone users the information was missing. We will refer to the persons

preferring the right side of the head as ’right-users’, the persons preferring the left side of

the head as ’left-users’, and accordingly persons preferring both sides as ’both-users’. We

include only the tumours from persons preferring one side in our analyses, because it is

less clear how to define the source point for the both-users.

The exposure from mobile phones can be measured as the specific absorption rate of

energy (SAR), which is a measure of the energy absorbed in the body per unit mass of

tissue, and the spatial distribution of SAR within the head depends on different parameters

such as the position of the phone in relation to the head and the frequency band[22]. Even

though it is a simplification, we assume that the energy is emitted at the ear on the side

of the head where the phone was reported generally used. The ear canals were identified

to be fully contained within 48 voxels on each side of the GridMaster head and we have

defined the geometric midpoint of the outer area of these as the ear.

In total we have 478 glioma cases with localisation data where only one voxel were

marked as origin of the tumour and of which 171 reported left-side use and 307 reported

right-side use. We will refer to the midpoint of the origin voxels as the tumour points. The

spatial reference for the tumour origins is hence the coordinates of the tumour points, and

the source point is either the coordinates for the left ear or the right ear.
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3 Exploratory analysis

Each tumour is identified with a single reference location x = (x1, x2, x3) chosen as the

midpoint of the voxel marked as the tumour origin. The two ears are similarly identified

with locations xL and xR as described in the previous section. For left-users or right-users,

only xL or xR, respectively, enters the model for the spatial distribution of x. The pre-

liminary exploratory analysis we describe here is nonparametric estimation of the density

distributions for the left-users’ tumour points and the right-users’ tumour points. If the

two distributions are different in the direction of the ear, it supports the hypothesis about

the distance from preferred ear being important for tumour localisation.

Let the probability density for the left-users’ tumour points x be a product of a baseline

density f0, a normalising constant c(θ) and a function h that shifts the density towards the

left ear xL as a function of the distance x− xL. The spatial distribution of RF energy in

the brain is similar for the left half and the right half of the brain[22], hence we assume h

to be the same for the left-users and the right-users. We write the two probability densities

as in (1).

fL(x) = c(θ)f0(x)h(x− xL; θ) and fR(x) = c(θ)f0(x)h(x− xR; θ) (1)

We used the R-package ks[23] for computing the kernel estimators with a Gaussian kernel

and a multivariate smoothed cross-validated bandwidth selector, but it is important to

note that the nonparametric density estimates can be sensitive to the choice of bandwidth

selector[24]. In Figure 1 are shown the 3-dimensional kernel density estimates as a series of

nested contours, where the contours are the boundaries of the highest density regions[25].
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We see that the density for the left-users is skewed towards the left ear and the density

for the right-users is skewed towards the right ear, clearly indicating that the two densities

differ. A test of the hypothesis fL = fR using the integrated L2-error with the optimal

plug-in bandwidth selector for functional estimators, also implemented in ks, gives however,

p = 0.29 indicating that the densities are not significantly different. Since this might reflect

that the sample size is quite small for nonparametric estimation we find it, based on the

skewness in Figure 1, sensible to continue with the point process model.

4 The point process model

The incidence of tumours, still assumed to be 3-dimensional points, in a human brain can

be regarded as a realisation of a spatio-temporal point process. Not allowing for multiple

tumours, the interest here is only on the first realisation of the process in each person. These

first realisations are independent of each other and together they form an inhomogenouos

Poisson process on the volume of the brain A with a certain intensity denoted λ0(x) for

persons not using a mobile phone.

Following Diggle and Rowlingson [8] we consider a model where the left-users and

the right-users form independent Poisson processes with respective intensities λL(x) and

λR(x). We write these intensities as a product of a baseline intensity λ0(x) and a function

that depends on the distance from the point to the source point, that is the distance

from tumour to the left ear for the left-users and to the right ear for the right-users, and

covariates z. The intensities are given by (2) and (3), where ρ is a nuisance parameter that
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relates to the relative number of left- and right-users.

λL(x) = λ0(x)g(x− xL, z; θ) (2)

λR(x) = ρλ0(x)g(x− xR, z; θ) (3)

We still assume the spatial distribution of RF energy in the two brain halves to be sym-

metrical by having the same distance relation g in the two intensities. Different forms of

the distance relation will be discussed in Section 4.1.

The superposition of the two Poisson processes is also a Poisson process with intensity

λL(x) + λR(x). In this superposition we define a binary random variable Y with Yi = 1 if

the ith event in the superposition is from the process of the left-users and Yi = 0 if it is

from the process of right-users. Hence all events are labelled either left-user or right-user.

Conditional on the locations the labels are mutually independent, and consequently we

now have a binary regression model with spatially dependent probabilities defined as the

conditional probability of seeing a left-user point given the location x as in (4).

p(Y = 1|X = x) =
λL(x)

λL(x) + λR(x)
=

g(x− xL, z; θ)

g(x− xL, z; θ) + ρg(x− xR, z; θ)
(4)

This model has several advantages, since it eliminates the nuisance function λ0(x) rep-

resenting the spatial baseline distribution of the tumours, and provides us with an easy

framework to do inference and introduce covariates z. It should be noted that covariates

introduced here only influence g and not the baseline intensity λ0(x).

Since the labels ’right-user’ and ’left-user’ given the locations are then independent

Bernoulli trials it is straightforward to write down the loglikelihood for ρ and θ. Let
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x1, . . . ,xnL
be the nL left-users and xnL+1, . . . ,xnL+nR

the nR right-users, then the loglike-

lihood is defined as in (5).

logL(θ, ρ) =

nL∑
i=1

log(p(Yi = 1|X = xi)) +

nL+nR∑
i=nL+1

log(1− p(Yi = 1|X = xi))

=

nL∑
i=1

log(g(xi − xL, zi; θ)) +

nL+nR∑
i=nL+1

log(ρg(xi − xR, zi; θ))

−
nL+nR∑
i=1

log(g(xi − xL, zi; θ) + ρg(xi − xR, zi; θ)) (5)

When g = 1 the loglikelihood reduces to

logL0(ρ) = nR log ρ− (nL + nR) log(1 + ρ)

with maximum at ρ̂0 = nR/nL. Otherwise the parameter estimates ρ̂ and θ̂ are ob-

tained by numerical maximization of (5). Model-based standard errors can be obtained

by evaluation of the observed information matrix if these are proven reliable, otherwise

Monte Carlo standard errors can be computed by bootstrapping. Tests of hypotheses

about θ can be accomplished by the usual likelihood ratio test comparing the test statistic

D = 2(logL(θ̂, ρ̂)− logL(θ0, ρ̂0)) with critical values from the χ2-distribution with degrees

of freedom equal to the number of parameters constrained. However, consistency between

the χ2-distribution and the empirical null distribution should be examined. The empirical

null distribution of the likelihood ratio test statistic can be found via a simulation study

by simulating left- and right-marks for the existing tumour points based on the conditional

probability in (4) using ρ̂0 from the original dataset. The χ2-approximation to the null

distribution can then be evaluated by plotting the observed quantiles from the empirical

null distribution against the quantiles from the relevant χ2-distribution. If the Q-Q plot
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does not follow the diagonal, the χ2-approximation is questionable, and the empirical p-

value calculated from the simulation should be used. The empirical p-value is calculated

as p = (r + 1)/(nsim + 1), where r is number of simulated test statistics larger than or

equal to the observed and nsim is the number of simulations.

4.1 Specification of the distance relation

The distance relation between tumour points and ear points is described via the function g,

and therefore the functional form of g should depend on knowledge about how the energy

from RF-EMF is distributed within the human brain. The obvious form is a continuous

decreasing function with g → 1 for x − xL → ∞ or x − xR → ∞, so that the impact

from the phone is highest where the phone is held and disappears when the distance to

the phone grows large. In fact, the absorption rate of RF energy is declining through the

brain[26]. Furthermore g should be parameterised such that if the intensity is independent

of the distance between tumour and ear then g = 1 for all x.

First, however, it is useful to introduce a semiparametric model to visualise g and

suggest suitable parametric forms. Using the framework of generalised additive modelling

as in Rodrigues et al. [27] we have logit(P (Y = 1|x)) = log (g(x− xL)/ρg(x− xR)) which

we modelled by a smooth nonparametric function depending on the distance to the left

ear for all users s(x − xL), and logit(P (Y = 0|x)) = log (ρg(x− xR)/g(x− xL)) which

we modelled by a smooth nonparametric function depending on the distance to the right

ear for all users t(x − xR). We used the function gam in the R-package mgcv[28] with a
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penalised regression spline, where the smoothness is estimated as part of the fitting, to

fit s and t. The two smoothing functions are shown in Figure 2 together with pointwise

95% confidence limits. The vertical marks on the x-axis indicate the actual distances in

the data explaining why the confidence bands are very large for distances below 50 mm.

From the figure we conclude that a decreasing function is justified and that we, due to

the similarity between the fitted s and t, can use the same function to model the distance

relation to the left ear and to the right ear.

Turning to parametric specifications of g the safe approach is to start with a simple

piecewise constant function, analogous to plotting the impact from the phone as a his-

togram over distance between tumour and ear. We defined this function as in (6) where

the change points were defined using the actual distances in the data to make sure there

were sufficiently many cases within each interval to estimate the value of the function.

When the discontinuities are known the model corresponds to a logistic regression model.

Notice that for the ’standard brain’ used here there is no brain tissue within 15 mm from

the ear, and the midline of the brain is 85 mm from the ear.

g(x− xL;α) =



α1 if x− xL ∈ (0; 55]

α2 if x− xL ∈ (55; 75]

α3 if x− xL ∈ (75; 95]

α4 if x− xL ∈ (95; 115]

1 if x− xL > 115

(6)

The value of g is fixed at 1 for the last interval, since g can only be determined up to a

constant, and in agreement with there being no effect of the phone after a certain distance.
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To ensure that the distance relation is a decreasing function we can add the constraint

α1 ≥ α2 ≥ α3 ≥ α4 ≥ 1 to (6). The maximum likelihood estimates and the Monte Carlo

standard errors for this model both without and with the decreasing restriction are shown

in Table 1 and the functions are shown in Figure 3. The estimate of the nuisance parameter

ρ is not shown for any of the models we present, but is each time estimated close to nR/nL

as expected. We have reported the Monte Carlo standard errors from bootstrapping 1000

times and not the model-based standard errors, since simulations (not shown) suggested a

poor consistency between the two. Even though the function starts with an increase from

the first to the second interval, there is such a large uncertainty around the first interval

due to few cases, that it does not contradict the hypothesis about the distance relation

being decreasing, especially when also taking the nonparametric modelling shown in Figure

2 into account. Testing g = 1 results in the likelihood ratio test statistic D = 21.8 for the

model with the piecewise constant function and D = 20.5 when the decreasing restriction

is added. Simulation studies (not shown) suggested that the consistency betwen the null

distribution and the χ2
4-distribution was poor and therefore we calculated the empiral p-

values based on 1000 simulations to be p = 0.00100 for both, hence the hypothesis of no

point source effect is rejected for both models. We tried also to model g with different

change points and smaller intervals which gave similar results (not shown).

The spatial distribution of RF energy in the human brain is continuous and the es-

timates for the piecewise constant and decreasing g-function can be used to decide on a

continuous form for g. Diggle [2] suggested the function g(u;α, β) = 1 + α exp(−βu′u),
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but based on the results from the previous g-functions we chose the continuous form

g(x− xL;ψ, d0, d1) = 1 + ψ


1 if x− xL ∈ (0; d0]

1−
(

1
d1−d0

)
(x− xL − d0) if x− xL ∈ (d0; d1]

0 if x− xL > d1

(7)

where ψ ≥ 0 and 0 < d0 < d1. The function (7) is constant equal to 1+ψ until the distance

from the ear reaches d0 and then it declines linearly until it equals 1 from d1 and onwards.

The estimate of d0 has to be close to the boundary of the brain at 15 mm for it to be

in agreement with the knowledge about spatial distribution of SAR. We maximised the

loglikelihood over a grid of (d0, d1)-values and the grid pair with the highest loglikelihood

value and corresponding estimate of ψ are shown in Table 2 together with the bootstrapped

standard error. The grid values were chosen such that there were at least both one left-user

and one right-user with distance to preferred ear in the interval (0; d0] and at least one of

both in the interval (d1;∞), consequently, our (d0, d1)-values were ranging from 45 mm to

140 mm in steps of 5 with the minimum distance between the two d-values being 10 mm.

The g-function is shown together with the two previous in Figure 3. We do not obtain

usual standard errors for the parameters d0 and d1 when estimating the loglikelihood over a

grid of (d0, d1)-values, however, we would still like to know how well the estimates for these

parameters are determined. A simple way to do this is to plot the maximum loglikelihood

values for each pair in the (d0, d1)-grid and see whether this is a monotone function of the

two parameters with a unique maximum. Figure 4 shows the maximum likelihood value

for all pairs of (d0, d1) with the red square showing the maximum value. The maximum is

unique, but the estimates d̂0 = 90 and d̂1 = 100 imply that the level of energy absorption
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is constant until 90 mm away from the phone, which in the horisontal plane is in the

opposite brain half, contradicting that almost all energy is absorbed within the nearest

half[22, 29]. The relevant hypothesis to test is ψ̂ = 0, since this corresponds to no effect.

The likelihood ratio test statistic for this hypothesis was D = 20.9, and since the χ2
1-

distribution approximated the null distribution poorly we calculated the empirical p-value

based on 1000 simulations, of which less than 1% did not converge, to be p = 0.00101.

This is in agreement with what we have seen for the previous models, but because of the

high estimates of d0 and d1 this model is biologically implausible.

4.2 Adding covariates

Covariates influencing the distance relation can easily be added to the model. As an

example an obvious covariate to include in our case is phone use zph. Lifetime cumulative

mobile phone use measured as call time accounting for hands-free devices was reported as

a continuous covariate. The unit is 1000 hours and since the variable is skewed we have

taken the 4th root of it. Figure 5 shows distance to the preferred ear for left-users and

right-users plotted against the transformed call time together with the best linear fit and a

smoothed polynomial fit. There is no clear trend in the figures and therefore no support to

the hypothesis that cumulative call time influences the distance relation. However, we will

add cumulative call time as a covariate to our model, since the only observed association

in the main Interphone article was for this exposure metric[20]. We would expect the level

of phone use to increase the intensity no matter how large the distance between tumour
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and phone is. Therefore we include it in the piecewise constant and decreasing g as in (8)

with the restrictions α1 ≥ α2 ≥ α3 ≥ α4 ≥ 1 and φ ≥ 0 or in the continuous g as in (9)

with ψ, φ ≥ 0 and 0 < d0 < d1.

g(x− xL, zph;α, φ) =



(1 + φzph) · α1 if x− xL ∈ (0; 55]

(1 + φzph) · α2 if x− xL ∈ (55; 75]

(1 + φzph) · α3 if x− xL ∈ (75; 95]

(1 + φzph) · α4 if x− xL ∈ (95; 115]

1 if x− xL > 115

(8)

g(x− xL, zph;ψ, φ, d0, d1) = 1 + (ψ + φzph) ·
1 if x− xL ∈ (0; d0]

1−
(

1
d1−d0

)
(x− xL − d0) if x− xL ∈ (d0; d1]

0 if x− xL > d1

(9)

The resulting maximum likelihood estimates are shown in Table 1 and Table 2. The

estimate of φ in the piecewise constant model lies on the border of the sample space, φ̂ = 0,

but a plot of the loglikelihood (not shown) as a function of φ keeping all other parameters

fixed at the maximum likelihood estimates in Table 1 shows that the maximum is indeed

reached at 0. With the continuous model the estimate for ψ also lies on the border of

the sample space, and a plot of the loglikelihood contours (not shown) as a function of ψ

and φ keeping the other parameters fixed at the maximum likelihood estimates shows that

the maximum is indeed reached at 0. Figure 6 shows the maximum loglikelihood values

for each pair in the (d0, d1)-grid with the red square showing the maximum value. The

maximum is unique, but as seen in the figure several d0-estimates gave loglikelihood values
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very close to the maximum, indicating that this parameter was poorly estimated. Testing

no effect of cumulative call time φ̂ = 0 gave the likelihood ratio test statistic D = 0.000

for the piecewise constant decreasing model and D = 1.53 for the continuous model. The

χ2
1-approximation to the null distribution did not hold in any case, and 1000 simulations

(less than 1% did not converge for the continuous model) gave respectively the empirical

p = 0.522 and p = 0.401. As expected from Figure 5 we cannot reject the hypothesis of

call time not affecting the distance relation.

It is preferable to include covariates in the continuous model but our data fit this poorly

as seen in the estimates for the d-parameters, and in such a case it can be relevant to use

the piecewise constant model instead. Adjustment for covariates influencing the spatial

baseline distribution can obviously also be added to the distance relation.

5 Discussion

It is relevant to include tumour localisation in the model, when modelling the association

between brain tumours and the use of mobile phones, and this might add interesting

knowledge about the association. We have shown how a spatial point process model can

be used to investigate the association between brain tumours and mobile phones taking

the tumour localisation into consideration. Our approach has the advantage of only using

cases eliminating the differential bias between cases and controls, and of using the specific

tumour localisations instead of the more cruder approaches using brain regions[20] or a

dichotomised exposure measure based on the distances calculated from the localisations[11].
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The approach requires all included subjects to be either labelled as a left-user or a right-

user, which is a limitation since all users did not have a preferred side. Furthermore the

information on preferred side is self-reported and exposed to reporting bias, since cases

were aware of which side of the head their tumour occured when answering the question on

preferred side of phone use, which raises concern about the direction of association[30, 31].

Our suggestion on how to deal with the uncertainty about preferred side is to write the

intensities for left- and right-users as functions of both the distance to the right ear and

the distance to the left ear. The two distance functions in each intensity should then be

assigned weights reflecting which side was preferred. This approach can also be used to

include the persons not preferring one side by setting both weights equal to 0.5.

Before applying the point process model to our data we started with nonparametric

density estimation for the left-side users and the right-side users seperately as an explorative

analysis. We did not use edge correction for this, but it was seen in Figure 1 that the kernels

smooth off before reaching the edge of the brain, and therefore edge correction is not crucial

here. The distance relation in the point process model described by the function g was

modelled in various ways. All our specifications of g only considered radial distance effects

from the phone. This is in agreement with how RF energy is distributed through the brain,

but with other exposure sources directional preference in the spatial effects[32] might be

relevant to consider. The shortest distance between tumour and preferred ear in our data

was 39 mm and therefore it was not possible to estimate g close to the ear. This is the

main reason why we did not model g as a strictly monotone continuous function, though

others have used the exponential function to describe the absorption of RF energy from
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mobile phones in the brain[33]. The continuous distance function we modelled resulted

in estimates hard to interpret, but this does not imply general problems with the model,

but is again a consequence of how our data were spatially distributed. We included the

covariate cumulative phone use in the model in (8) and in (9) but of course covariates can

be included differently. The choice of how to include a covariate should depend on how it

is thought to influence the distance relation. If a high level of cumulative phone use was

assumed to have a higher influence on the intensity than a low, then (1+φzph) in (8) could

be replaced by (exp(φzph)). Another assumption could be that the influence of phone use

decreased with the distance and then the expression in (8) would be (1 +φ · zph/(x−xL)).

Hence, it is possible to include various covariates in the model. Typical covariates such as

age and sex that affect the prevalence of gliomas[34] should be included as an adjustment

if they are thought to also influence the spatial baseline distribution of gliomas.

We have shown for our motivating data that distance to the preferred ear for mobile

phone use had an influence on the intensity of brain tumours for mobile phone users.

However, we have not used the full Interphone data but only the subset of gliomas where a

single voxel was marked by neuroradiologists as the tumour origin and the person reported

either left- or right-side as preferred for mobile phone use.
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Tables

Estimate (se) α̂1 α̂2 α̂3 α̂4 φ̂

g piecewise const. 1.33 (0.46) 2.03 (0.41) 1.50 (0.26) 1.13 (0.25) -

g piecewise const., decr. 1.82 (0.33) 1.82 (0.29) 1.48 (0.23) 1.09 (0.17) -

g piecewise const., decr. 1.82 (0.33) 1.82 (0.31) 1.48 (0.24) 1.09 (0.12) 0.00 (0.33)

with phone use

Table 1: Maximum likelihood estimates and Monte Carlo standard errors with piecewise

constant g functions

Estimate (se) ψ̂ d̂0 d̂1 φ̂

g continuous 0.656 (0.78) 90 (-) 100 (-) -

g continuous 0.00 (0.64) 45 (-) 100 (-) 1.78 (1.03)

with phone use

Table 2: Maximum likelihood estimates and Monte Carlo standard errors with continuous

g function
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Figures

Figure 1: Left : Probability density for the left-side phone users shown as nested 3-d

contours at 25%, 50%, 75% and 100% as the upper percentages of highest density regions.

The red polygons bound the brain, the blue point is the left ear. Right : Similar figure for

the right-side users with right ear shown as blue point.
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Figure 2: Left : The smooth function of the distances to the left ear. The rug marks on

the x-axis show the distance to left ear for both left- and right-users. Right : Similar figure

for the distances to right ear.
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Figure 3: Estimated g functions: piecewise constant, piecewise constant and declining, and

continuous. The rug marks on the x-axis show the distances to preferred ear.
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Figure 4: Left : Maximum loglikelihood values for grid of (d0, d1)-values. The maximum

value is marked as red. Right : Exchanged d0 and d1 on the axis for different view.
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Figure 5: Left : Distance to left ear plotted against transformed phone use for the left-users.

Red line is best linear fit and blue curve a smoother using locally-weighted polynomial

regression. Right : Similar for right-users.
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Figure 6: Left : Maximum loglikelihood values for grid of (d0, d1)-values for model including

phone use. The maximum value is marked as red. Right : Exchanged d0 and d1 on the axis

for different view.
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