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Abstract

In signal processing applications, it is often necessary to extract oscillatory components and their properties from time-frequency
representations, e.g. the windowed Fourier transform or wavelet transform. The first step in this procedure is to find an appropriate
ridge curve: a sequence of amplitude peak positions (ridge points), corresponding to the component of interest and providing a
measure of its instantaneous frequency. This is not a trivial issue, and the optimal method for extraction is still not settled or
agreed. We discuss and develop procedures that can be used for this task and compare their performance on both simulated and real
data. In particular, we propose a method which, in contrast to many other approaches, is highly adaptive so that it does not need
any parameter adjustment for the signal to be analysed. Being based on dynamic path optimization and fixed point iteration, the
method is very fast, and its superior accuracy is also demonstrated. In addition, we investigate the advantages and drawbacks that
synchrosqueezing offers in relation to curve extraction. The codes used in this work are freely available for download.

Keywords: Ridge analysis, Wavelet ridges, Time-frequency representations, Wavelet transform, Windowed Fourier transform,
Instantaneous frequency, Synchrosqueezing

1. Introduction

A recurring problem in many areas of science is that of iden-
tifying curvilinear structures in noisy data and, in many cases,
following them as the system evolves in time. The object of
study may be spatial, as in automated screening for diabetic
retinopathy [1] and in astronomy [2], or it may be a wavelet
transform as in the identification of substances through tera-
hertz tomography measurements [3], or it can be a prehistory
probability density whose ridge represents the most probable
fluctuational path for a nonlinear system undergoing a large
fluctuation [4]. It has recently been shown that time-dependent
dynamics can be of particular importance, and effective meth-
ods have been devised for characterising the time-dependent
amplitudes and phases [5, 6]. In these and enumerable other
cases the basic problem is that of putting a best-fit curve through
a set of points, typically tracing a sequence of extrema, in a
digital object. Difficulties to be overcome, in addition to the
noise, may include possible crossings, self-crossings or closure
of the extracted curves. The approaches that have been pro-
posed include, for example, a variety of ridge-based methods
based on locally-defined principal curves [7–11] and a method
based on an adaptive short-time Fourier transform [12]. In what
follows we will focus on the problem as it arises in the analysis
of recorded signals.
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Separation of the amplitude and frequency-modulated com-
ponents (AM/FM components) in a given signal, and estimation
of their instantaneous characteristics, is a classical problem of
signal analysis. It can be approached by projecting the signal
onto the time-frequency plane, on which the changes of its spec-
tral content can be followed in time. Such projections are called
time-frequency representations (TFRs), typical examples being
the windowed Fourier transform (WFT) and the wavelet trans-
form (WT). If the construction of the TFR is well-matched to
the signal’s structure, then each AM/FM component will appear
as a “curve” in the time-frequency plane, formed by a unique
sequence of TFR amplitude peaks – ridge points. Based on the
properties of these curves, one can estimate the time-varying
characteristics of the corresponding components (such as am-
plitude, phase and instantaneous frequency), an idea that was
first expressed in [13]. In other words, to separate a signal into
its AM/FM components one can: (a) trace the ridge curves cor-
responding to the individual components in the signal’s TFR;
(b) feed these curves into a chosen reconstruction method in
order to recover the components and their characteristics (see
[14] for a detailed study of the different reconstruction methods
together with evaluations of their performance).

However, the first step of such an approach, namely finding
the TFR peak sequences associated with the individual signal
components, is not a trivial issue. In real cases there are of-
ten many peaks in the TFR amplitude at each time, and their
number often varies. In such circumstances it can be unclear
which peak corresponds to which component, and which are
just noise-induced artifacts.

In the present paper, we concentrate solely on the prob-
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lem of ridge curve identification, which is of great importance
in time-frequency signal processing. Ridge analysis is widely
used for e.g. machine fault diagnosis [15], fringe pattern anal-
ysis [16], studies of cardiovascular dynamics [17] and system
classification [18, 19]. Although curve extraction has been ad-
dressed explicitly in the past [17, 20–23], there seems to be
no agreement as to the optimal procedure to be used for this
task. Here we discuss and generalize some existing algorithms,
present new ones, and compare their performance. We end up
with a method that is accurate and of almost universal applica-
bility, so that it works well for a large class of signals and, in
most cases, does not require adjustment by the user; this is the
main contribution of the work. The effects of synchrosqueezing
[23–26] on curve extraction are also studied.

The plan of the work is as follows. After reviewing the
background and notation in Sec. 2, we discuss different schemes
for curve extraction in Sec. 3. In Sec. 4 we compare the perfor-
mance of these schemes, while the advantages and drawbacks
of synchrosqueezing in relation to curve extraction are studied
in Sec. 5, and the limitations of the proposed methods are dis-
cussed in Sec. 6. We draw conclusions and summarize the work
in Sec. 7. A dynamic programming algorithm for fast optimiza-
tion of a path functional of particular form over all possible
peak sequences is discussed in the Appendix.

2. Background and notation

In what follows, we denote by f̂ (ξ) and f +(t), respectively,
the Fourier transform of the function f (t) and its positive fre-
quency part:

f̂ (ξ) =

∫ ∞

−∞

f (t)e−iξtdt ⇔ f (t) =
1

2π

∫ ∞

−∞

f̂ (ξ)eiξtdξ,

f +(t) ≡
1

2π

∫ ∞

0
f̂ (ξ)eiξtdξ,

(2.1)

Next, by an AM/FM component (or simply component) we will
mean a signal of the form:

x(t) = A(t) cos φ(t) (∀t : A(t) > 0, φ′(t) > 0), (2.2)

which is additionally required to satisfy A(t)eiφ(t) ≈ 2[A(t)eiφ(t)]+,
so that A(t) and φ(t) are determined uniquely and, in the case of
a single component, can be found using the analytic signal ap-
proach; more detailed discussions of issues related to the defini-
tion and estimation of the amplitude A(t), phase φ(t) and instan-
taneous frequency ν(t) ≡ φ′(t) of the component can be found
in [14, 27–30].

In real cases, a signal usually contains many components
xi(t) of the form (2.2), as well as some noise ζ(t) (that can be of
any form, and is not necessarily white and Gaussian [30]):

s(t) =
∑

i

xi(t) + ζ(t), (2.3)

The goal of ridge analysis is to extract these components, either
all or only those of interest, from the signal’s TFR.

The two main linear TFRs suitable for components extrac-
tion and reconstruction are the windowed Fourier transform

(WFT) Gs(ω, t) and the wavelet transform (WT) Ws(ω, t). Given
a signal s(t), they can be constructed as

Gs(ω, t) ≡
∫ ∞

−∞

s+(u)g(u − t)e−iω(u−t)du

=
1

2π

∫ ∞

0
eiξt ŝ(ξ)ĝ(ω − ξ)dξ,

Ws(ω, t) ≡
∫ ∞

−∞

s+(u)ψ∗
(ω(u − t)

ωψ

)ωdu
ωψ

=
1

2π

∫ ∞

0
eiξt ŝ(ξ)ψ̂∗(ωψξ/ω)dξ,

(2.4)

where s+(t) is the positive frequency part of the signal (as de-
fined in (2.1)), g(t) and ψ(t) are respectively the window and
wavelet functions chosen, and ωψ ≡ argmax |ψ̂(ξ)| denotes the
wavelet peak frequency (for the WFT we assume argmax |ĝ(ξ)| =
0). Note that the WT is commonly defined through the scales
a = ωψ/ω, but that in (2.4) we have already transformed to
frequencies.

The main difference between the two TFRs mentioned is
that the WFT distinguishes the components on the basis of their
frequency differences (linear frequency resolution), while the
WT does so on the basis of ratios between their frequencies
(logarithmic frequency resolution). In effect, while the time-
resolution of the WFT is fixed, for the WT it is linearly propor-
tional to frequency, so that the time-modulation of the higher
frequency components is represented better than that for the
components at lower frequencies.

In numerical simulations we use a Gaussian window for the
WFT and a lognormal wavelet [14] for the WT:

ĝ(ξ) = e−( f0ξ)2/2 ⇔ g(t) =
1
√

2π f0
e−( f −1

0 t)2/2,

ψ̂(ξ) = e−(2π f0 log ξ)2/2, ωψ = 1,
(2.5)

where f0 is the resolution parameter determining the tradeoff

between the time and frequency resolution of the resultant trans-
form (we use f0 = 1 by default). While the methods devel-
oped below are generally applicable for any window/wavelet,
the forms (2.5) seem to be the best choice [14], at least for the
extraction and reconstruction of components.

As illustrated in Fig. 1, the components present in the signal
appear in its TFR as “curves” (which will be referred to as ridge
curves), i.e. time sequences of close peaks. Generally, the com-
ponent’s ridge curve can be defined as the sequence of TFR
amplitude peaks into which most of the energy of that com-
ponent is mapped at each time (for further discussion see e.g.
[13, 21, 24, 31]). In the case when the signal consists of only
one component, and there is no noise, and the TFR resolution
is sufficient to represent all of the related time and frequency
variability, there will only be one ridge curve: it can be found
as a simple arg max of the TFR amplitude at each time; but in
real cases there are usually many peaks, noise, and other com-
plications.

The problem of curve extraction therefore lies in selecting
from among all possible trajectories the sequence of peaks that
corresponds to a single component; the positions of these peaks
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then form a specific frequency profile, which will be denoted
as ωp(t). Having found the ridge curve, the parameters of the
corresponding component can be estimated in a number of ways
[14, 24, 31]. In the present work, however, we concentrate on
curve extraction only and, except where it is unavoidable, do
not consider the reconstruction issues; for a detailed study of
the latter, see [14]. Note that, in practice, it is convenient to
find the ridge curve associated with the dominant component
present, which can then be reconstructed and subtracted from
the signal; the procedure can then be repeated to extract any
other possible ridge curves.

In what follows, we denote the ridge frequencies, i.e. posi-
tions of the peaks at each time, as νm(t), the corresponding TFR
amplitudes as Qm(t), and their numbers as Np(t):

νm(t) :


[
∂ω|Hs(ω, t)|

]
ω=νm(t)

= 0,[
∂2
ω|Hs(ω, t)|

]
ω=νm(t)

< 0,

Qm(t) ≡ |Hs(νm(t), t)|, m = 1, ...,Np(t),

(2.6)

where Hs(ω, t) is the chosen TFR of a given signal (WFT Gs(ω, t)
or WT Ws(ω, t)). The ridge curve can then be parametrized as
ωp(t) = νmc(t)(t), where mc(t) is the sequence of peak indices
at each time t, which we need to find. Note that the number
of peaks Np(t) can vary in time and in practice is often greater
than the number of components present in the signal, with the
additional peaks being attributable e.g. to noise.

For simplicity, we have treated ω and t as continuous vari-
ables. In practice, however, both time and frequency are dis-
cretized, and so also are many other related quantities (e.g.
the ridge curve ωp(t) becomes a discrete set of points). In
what follows we therefore assume that the signal is sampled
at tn = (n − 1)∆t for n = 1, ...,N, so that N is the signal’s length
in samples, while the TFRs (2.4) are calculated for the frequen-
cies ωk = ωmin + (k − 1)∆ω (WFT) or ωk = 2

k−1
nv ωmin (WT),

where k = 1, ...,N f . The discretization parameters ∆ω and nv

are generally selected by the user, but one can use e.g. the cri-
teria suggested in [14] to make an appropriate choice.

3. Curve extraction schemes

The most straightforward way to extract the ridge curve is
first to choose some starting point ωp(t0), and then to follow
from it forwards and backwards in time, selecting next ridges
as those maximizing some suitably chosen functional of the cor-
responding peak amplitudes and the previously selected ridges.
This approach, which we will call one-step optimization, can be
formulated mathematically as

for n = n0 + 1, . . . ,N do:

mc(tn) = argmax
m

{
F
[
tn,Qm(tn), νm(tn),

ωp(tn−1), ωp(tn−2), . . . , ωp(tn0 )
]}

ωp(tn) = νmc(tn)(tn),

(3.1)

and similarly backwards in time, for n = n0 − 1, n0 − 2, . . . , 1.
In (3.1), n0 denotes the discrete index of the starting time t0

(for which ωp(tn0 ) is known), and F
[
...
]

is the chosen functional
of the current discrete time tn, the peak positions νm(tn) and
amplitudes Qm(tn) at this time, and all previously selected ridge
points {ωp(tn0 ≤ t ≤ tn−1)}. For scheme (3.1) to be O(N), the
functional F

[
...
]

should either depend on the finite number of
previously selected ridges, or on the set of parameters which
can be updated in O(1) steps whenever a new point becomes
available (e.g. the moments of ωp(t)).

To implement (3.1), one needs to choose the starting time
index n0 and the corresponding ridge ωp(tn0 ). It seems natural
to select this starting point (among all times and ridges) as be-
ing that for which the functional in (3.1) is likely to attain its
maximum:

ωp(tn0 ) =νm0 (tn0 ),

{m0, n0} =argmax
{m,n}

{
F0[tn,Qm(tn), νm(tn)]

}
,

(3.2)

where F0[...] denotes a “zero-step” version of the original func-
tional, obtained from the latter by taking its maximum among
all the other parameters. For example, if one has

F[...] = f (Qm(tn), νm(tn)) + g(νm(tn) − ωp(tn−1)),

then F0[...] = f (Qm(tn), νm(tn)) + max∆ξ g(∆ξ); if additionally
f (Qm(tn), νm(tn)) does not depend on νm(tn) and is proportional
to Qm(tn), then (3.2) will correspond to the highest TFR ampli-
tude peak over all time. The criterion (3.2) works well in most
cases, although it could still provide a “bad” starting point when
sharp time events are present or the noise is too strong.

A serious drawback of the outlined one-step approach (3.1)
is that even a single wrongly-selected point might completely
change all the following curve being extracted. Consequently,
it is more accurate to optimize the functional not over each con-
secutive point, as in (3.1), but over the whole profile ωp(t), se-
lecting the ridge curve as being that which maximizes the full
integral of F[...] over time:

{ωp(t1), ..., ωp(tN)} ={νmc(t1)(t1), ..., νmc(tN )(tN)},

{mc(t1), ...,mc(tN)} = argmax
{m1,m2,...,mN }

N∑
n=1

F
[
tn,Qmn (tn),

νmn (tn),
{
νm1 (t1), ..., νmN (tN)

}]
.

(3.3)

This approach, where the optimization is performed over all
possible sequences of peak numbers {m1,m2, ...,mN}, will be
referred to as the path optimization. In general, it is computa-
tionally very expensive. However, if the functional depends on
only a finite number of previous points {ωp(tn−i), ..., ωp(tn−1)},
rather than on the full history, then the optimal path in terms
of (3.3) can be selected in O(N) computations using a dynamic
programming algorithm (see Appendix). Note that, in this way,
the widely-used method of Carmona et. al. [20] can also be per-
formed in O(N) steps instead of the computationally-expensive
simulated annealing used previously.

It will be demonstrated in Sec. 4 (Figs. 3 and 4) that path
optimization (3.3) usually gives much better results than the
one-step optimization (3.1), and should therefore always be pre-
ferred to the latter. Furthermore, it has no problem associated
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with the selection of the starting point (3.2), as all the trajecto-
ries are explored.

What remains is to select an appropriate functional in (3.3).
We consider below some curve-extraction schemes defined by
particular classes of F[...]. We first develop these schemes for
the WFT, and then discuss how they can be adjusted for the WT.
In all cases, we perform path optimization using the algorithm
discussed in the Appendix. Taking into account its complexity,
and the fact that one needs to locate all peaks (2.6) in the TFR
prior to applying any extraction procedure, the computational
costs of the methods discussed below are O(N f N)+O(M2

pN)
(scheme I) and O(N f N)+O(M2

pN log N) (scheme II), with log N
corresponding to the number of iterations as discussed below;
N f and Mp ≡ maxt Np(t) are respectively the number of fre-
quencies ωk for which the TFR is calculated, and the maximum
number of TFR amplitude peaks present at any one time. Both
N f and Mp are independent of N.

Remark 3.1. Because in practice the frequency scale for the
WFT/WT is discretized, the ridge frequencies νm(t) also take
discrete values at each time. As a result, e.g. the differences
between consecutive ridges ∆ωp(tn) ≡ ωp(tn)−ωp(tn−1) cannot
reliably be calculated, being “quantized” in steps determined
by the widths of the frequency bins, so that in typical cases it
will be zero for most of the time and have relatively high values
otherwise. To avoid consequential problems, and to improve the
quality of the ridge frequency estimates, we find peak positions
νm(t) more precisely by using parabolic interpolation based on
the TFR amplitudes at the peak and the two adjacent bins: see
e.g. the discussion of ridge reconstruction in [14]. Because the
TFR amplitudes take continuous values, the estimates of νm(t)
(and therefore those of ∆ωp(t)) also become continuous. One
then does not need to worry about the related discretization ef-
fects, which could otherwise influence significantly the perfor-
mance of methods that are based on the differences between
ridge frequencies.

3.1. Scheme I(α): penalization of frequency jumps

A widespread approach is to penalize the frequency differ-
ence between the consecutive ridge points, so that

F
[
...
]

= log Qm(tn) + w(νm(tn) − ωp(tn−1), α), (3.4)

where w(∆ξ, α) is some weighting function, aimed at suppress-
ing frequency jumps, and α is its set of adjustable parame-
ters. Note that in (3.4) one can choose another function of
Qm(tn) instead of the logarithm, e.g. |Qm(tn)|2; however, the log-
arithm seems to be the most appropriate choice because the path
functional (3.3) then depends on the product of all the ampli-
tudes and thus can be significantly influenced even by a single
“wrong” point, making selection of the latter less probable.

The class of functionals (3.4) is a popular choice. The ap-
proach of [22] corresponds to w(∆ξ, α) = 0 for ∆ξ ∈ [−1/α, 1/α]
and = −∞ otherwise, while the procedure used in [23, 30] uti-
lizes the quadratic weights w(∆ξ, α) = α∆ξ2 (though in these
methods the optimization is carried out over all frequency bins
ωk at each time rather than using only the peaks νm(t), as we do

here). The algorithm of [17] also represents a variant of (3.4).
Finally, the approach of Carmona et. al. [20] can be viewed as
a modified version of (3.4) with additional penalization of the
second order frequency differences.

The main disadvantage of the approaches mentioned is that
they require fine tuning of each method’s parameters to obtain
an accurate result, with different choices being needed for dif-
ferent signals and different characteristics of the TFR in use. To
make the parametrization more universal, the weighting func-
tion should utilize the resolution properties of the WFT, which
are determined by the window function g(t). Thus, for a given
window there exists a minimum frequency (resp. time) differ-
ence ∆ξg (resp. ∆τg) for which two frequency events, e.g. tones
(resp. time events, e.g. delta-peaks) can be resolved in the WFT.
In other words, the larger ∆τg is (the smaller f0 is in (2.5)), the
less time-variability is allowed for the components, so that one
expects smaller frequency jumps.

We therefore penalize the ratio of the observed time-deriv-
ative of the ridge frequency difference to its characteristic value,
which can naturally be taken as ∆ξg/∆τg. This leads to the
choice

w(∆ξ, α) = αw̃
( fs|∆ξ|

∆ξg/∆τg

)
= −α

fs|∆ξ|

∆ξg/∆τg
, (3.5)

where fs is the signal sampling frequency, while ∆ξg and ∆τg

are chosen resolution measures. We use those introduced in
[14], taking ∆ξg and ∆τg as being the widths of the regions in
time and frequency encompassing 50% of the window function:

∆ξg = ξ(2)
g (0.5) − ξ(1)

g (0.5), ∆τg = τ(2)
g (0.5) − τ(1)

g (0.5);

ξ(1,2)
g (ε) : |Rg(ξ ≤ ξ(1)

g )| < ε/2, |1 − Rg(ξ ≥ ξ(2)
g )| < ε/2;

τ(1,2)
g (ε) : |Pg(τ ≤ τ(1)

g )| < ε/2, |1 − Pg(τ ≥ τ(2)
g )| < ε/2;

Rg(ω) ≡

∫ ω

−∞
ĝ(ξ)dξ∫ ∞

−∞
ĝ(ξ)dξ

, Pg(τ) ≡

∫ τ

−∞
g(t)dt∫ ∞

−∞
g(t)dt

.

(3.6)

For a Gaussian window (2.5) one obtains ∆ξg/∆τg = 1/ f 2
0 , and

this result remains the same even if using as ∆ξg and ∆τg the
conventional standard deviations of |ĝ(ξ)|2 and |g(t)|2, respec-
tively.

With the choice (3.5), the parameter α is expected to be
nearly universal, so that the same value should work well for
different window functions. Note that, although in (3.5) we use
w̃(r) = −|r|, other functions can be utilized instead. However,
for any reasonable choice, the method remains qualitatively the
same, i.e. one expects it to suffer from the same drawbacks and
to have similar issues.

It is important to note that scheme I corresponds to the sim-
ple cases of “global maximum” and “nearest neighbour” curve
extraction for α = 0 and α→ ∞, respectively:

• Global Maximum (α = 0). In this case the functional
(3.4) reduces to F[...] = log Qm(tn), so that the maximum
peak will be selected at each time, taking no account of
the previous ridge points.

• Nearest Neighbour (α → ∞). This case differs for one-
step optimization (3.1) and path optimization (3.3). The
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former approach corresponds to selecting at each new
step the peak which is nearest to the previous one, tak-
ing no account of its amplitude. The latter approach will
give simply the least frequency-varying curve.

3.2. Scheme II(α,β): adaptive parametrization
In the previous scheme, an adjustable parameter α deter-

mines the suppression of the frequency variations. Although
some choices (e.g. α = 1) appear to be almost universal, they
still remain highly non-adaptive, so that a particular parameter
value might be suitable for one type of the signal, and a differ-
ent value for another type. For example, in the case of chirps
∼ cos(at + bt2) it is clear that one should penalize not simply
the frequency derivative |∆ωp(t)/∆t|, but its difference from the
true value (2b), i.e. |∆ωp(t)/∆t − 2b|.

To make the scheme adaptive, the parameters of the func-
tional should be matched to the properties of the component be-
ing extracted, such as the typical variations of its instantaneous
frequency. The latter can be characterized by the averages and
standard deviations of the ridge frequencies ωp(t) and their dif-
ferences ∆ωp(tn) ≡ ωp(tn) − ωp(tn−1); or, which appears to be
more stable in practice, by the corresponding medians m[...]
and interquartile ranges IQR[...], defined for an arbitrary func-
tion f (t) as

m[ f (t)] ≡ perc
0.5

[ f (t)], IQR[ f (t)] ≡ perc
0.75

[ f (t)] − perc
0.25

[ f (t)],

(3.7)
where percp[ f (t)] denotes the pth quantile of f (t).

An adaptive functional can then be constructed by suppress-
ing not the absolute frequency jumps, as before, but the relative
deviations of the component’s ridge frequency and its derivative
from their typical values:

F
[
...
]

= log Qm(tn) + w2
(
νm(tn),m[ωp], IQR[ωp], β

)
+ w1

(
νm(tn) − ωp(tn−1),m[∆ωp], IQR[∆ωp], α

)
.

(3.8)

where α and β denote sets of adjustable parameters control-
ling suppression of atypical variations of the ridge frequency’s
derivative and value, respectively. Similarly to (3.5), we choose
the first order penalization functions:

w1
(
∆ξ,m[∆ωp], IQR[∆ωp], α

)
= −α

∣∣∣∣∆ξ −m[∆ωp]
IQR[∆ωp]

∣∣∣∣,
w2

(
ξ,m[ωp], IQR[ωp], β

)
= −β

∣∣∣∣ξ −m[ωp]
IQR[ωp]

∣∣∣∣. (3.9)

By maximizing the path integral (3.3) based on the functional
(3.8), one is in fact trying to extract the curve which is most con-
sistent with itself. Thus, the strength of the respective frequency
variations becomes unimportant, and it is only their agreement
and similarity at different times that matters.

Even the most adaptive method can be parametrized to tackle
special cases, and in (3.8) we have introduced the adjustable
parameters α and β controlling the strengths of suppression of
the corresponding relative deviations. However, although there
are now two parameters, they are in fact more universal than
the single parameter of scheme I, and the particular choice of

α, β for scheme II is expected to work well for a larger class
of signals than the particular choice of α in the scheme I, as
will be seen below. This is because in (3.8) we take explicitly
into account the actual properties of the component being ex-
tracted, penalizing deviations from its typical behavior rather
than simply the frequency jumps. Additionally, by suppress-
ing the relative deviations of the component’s frequency from
its mean, scheme II stabilizes the curve in its characteristic fre-
quency range (thus decreasing the possibility that it will “es-
cape” and switch to another component), while there is no such
mechanism in scheme I.

The functional (3.8) depends, however, on the whole time-
evolution of ωp(t), so that the path optimization (3.3) cannot
be performed in O(N) steps, as before (see Appendix); nor is
it evident how to update the functional at each step if using the
one-step optimization (3.1). Nevertheless, one can approach the
approximately optimal curve ωp(t) by use of a kind of fixed-
point iteration [32]. Starting with some initial guess ω(0)

p (t), one
calculates the corresponding medians and ranges, fixes them
in (3.8) (so that the functional now depends on only two con-
secutive ridges rather than on the full history, meaning that the
algorithm discussed in Appendix becomes applicable), and ex-
tracts the newer profile ω(1)

p (t) in the usual way. The (fixed)
medians and ranges are then updated to those of the ω(1)

p (t) and,
based on these newer estimates, the next approximation ω(2)

p (t)
is found in the same manner. The procedure is repeated until
the curves obtained in two consecutive iterations coincide per-
fectly (ω(n)

p (t) = ω(n−1)
p (t) for all t). For the first iteration, we use

a simple Global Maximum curve ω(0)
p (t) = argmaxω|Gs(ω, t)|.

The convergence of the fixed-point algorithm outlined above
is in general hard to prove. In practice, however, the procedure
converges not only exactly (so that the next iterations produce
absolutely identical curves), but also rapidly. To show this, we
have analysed the performance of the method for white noise
signals with different sampling frequencies and time lengths,
thus trying to model the worst case (as the method will obvi-
ously converge faster if the signal contains some pronounced
components). The results are presented in the Supplementary
Material (its Fig. 1). The number of iterations needed is always
relatively small, being proportional to log N; it is determined
primarily by the signal’s time length, while the sampling fre-
quency only has a very minor effect. Note also that one can set
some maximum number of allowed iterations if desired, though
in our simulations the procedure always converged exactly and
rapidly.

3.3. Adjustments for the WT

Due to the logarithmic frequency resolution of the WT, one
should consider not the frequencies but their logarithms, which
is the only significant difference from the WFT case. In the case
of the WT one uses the same schemes and functionals, but now
everything is taken on a logarithmic frequency scale (ωp(tn)→
logωp(tn), ∆ωp(tn) ≡ ωp(tn) − ωp(tn−1) → ∆ logωp(tn) ≡
logωp(tn) − logωp(tn−1), and similarly for all the other fre-
quency variables). We now summarize briefly the required ad-
justments.
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Scheme I: Instead of w(νm(tn) − ωp(tn−1), α), in (3.4) one
uses w(log νm(tn)−logωp(tn−1), α). The form of the penalization
function (3.5) remains qualitatively the same:

w(∆ log ξ, α) = αw̃
( fs|∆ log ξ|
∆ log ξψ/∆τψ

)
= −α

fs|∆ log ξ|
∆ log ξψ/∆τψ

,

(3.10)
but one now uses the wavelet’s characteristic log-frequency and
time differences ∆ log ξψ and ∆τψ, respectively. The estimates
given in [14] are calculated as

∆ log ξψ = log
ξ(2)
ψ (0.5)

ξ(1)
ψ (0.5)

, ∆τψ = τ(2)
ψ (0.5) − τ(1)

ψ (0.5);

ξ(1,2)
ψ (ε) : |Rψ(ξ ≤ ξ(1)

ψ )| < ε/2, |1 − Rψ(ξ ≥ ξ(2)
ψ )| < ε/2;

τ(1,2)
ψ (ε) : |Pψ(τ ≤ τ(1)

ψ )| < ε/2, |1 − Pψ(τ ≥ τ(2)
ψ )| < ε/2;

Rψ(ω) ≡

∫ ω

0 ψ̂∗(ξ)dξ/ξ∫ ∞
0 ψ̂∗(ξ)dξ/ξ

, Pψ(τ) ≡

∫ τ

−∞
ψ∗(t)eiωψtdt∫ ∞

−∞
ψ∗(t)eiωψtdt

.

(3.11)
Scheme II: In (3.8) the w1(...) and w2(...) are changed to

w1(log νm(tn) − logωp(tn−1),m[∆ logωp], IQR[∆ logωp])

and
w2(log νm(tn),m[logωp], IQR[logωp]),

respectively, with their basic forms (3.9) remaining the same.

4. Comparison of schemes

As discussed above, the general form of scheme I is moti-
vated by many previously proposed algorithms for curve extrac-
tion [17, 20, 22, 23, 30], most of which can be considered as its
specific variants and which should therefore have qualitatively
similar properties and issues. Scheme II, on the other hand, pro-
vides the main novelty of the present work. We now compare
the performance of both schemes for various parameter choices
and signals.

4.1. Test signals

We test the relative performances of the different methods
on two signals. The first signal is an AM/FM component with
simple sinusoidal amplitude modulation and two-sinusoidal fre-
quency modulation, plus a weaker component:

s1(t) =
(
1 +

1
3

cos
2πt
9

)
cos

(
2πt + 6 sin

2πt
30

+ cos
2πt
12

)

+ 0.8 cos
(
2π × 1.75t + 0.5 sin

2πt
5

)
.

(4.1)

Note that, although an AM/FM component around 1 Hz is dom-
inant in terms of both maximum amplitude and mean squared
amplitude, there are certain times at which the amplitude of the
other component (at around 1.75 Hz) becomes higher, thereby
introducing additional complications for curve extraction. The
second test signal is taken from real life, representing the cen-
tral 200 s part of a 30 min electrocardiogram (ECG) signal

recorded from a 30-year-old male subject [17]. The WFTs for
both signals are shown above in Fig. 1.

The main complications that arise in curve extraction relate
to the appearance of other WFT amplitude peaks near ωp(t),
which can be due either to noise or to other components. We
model these complications by corrupting the signal with col-
ored noise η(t) of unit deviation and a particular Fourier ampli-
tude (while the phases of its Fourier coefficients are random):

s(t) = s(t) + ση(t), |η̂(ξ)| ∼
1

4π2 + ξ2 . (4.2)

Being asymmetric, the noise amplitude at frequency 0.5 Hz is
around 2.5 times higher than at 1.5 Hz, corrupting the dominant
components (which have a mean frequency around 1 Hz in both
test signals) unequally in frequency on the two sides. This gives
an opportunity to study reliably the relative performance of the
different methods, as colored noise can additionally model the
effect of other components that are asymmetrically distributed
in frequency around the component of interest. The WFTs of
the two test signals corrupted with noise are presented in Fig. 2.

It is well known that, even in the absence of noise, the ridge
points are not located exactly at the true instantaneous frequen-
cies ν(t) ≡ φ′(t) [14, 31]. If we compare the ωp(t) obtained with
the true frequency profile then, even in the case when the curve
extraction works perfectly (e.g. when there is a single peak at
each time, and hence only one possible ridge curve) there will
be some discrepancy between the two. At the same time, what
we want to test is how well the methods presented can iden-
tify the peak sequence corresponding to the component of in-
terest, and not how well one can then reconstruct the compo-
nent’s parameters from this sequence. Therefore, to assess the
performance of the curve identification method, rather than the
performance of the TFR itself or the accuracy with which fre-
quencies are estimated from ridges, we compare the extracted
ωp(t) with the “ideal” ridge curve ω̃p(t) obtained in the noise-
free case. The corresponding error ε f can then be defined as

ε2
f ≡
〈[ωp(t) − ω̃p(t)]2〉

〈[ω̃p − 〈ω̃p〉]2〉
, (4.3)

where 〈...〉 denotes the time-average. An additional complica-
tion is that, because noise changes the ridge profile as it appears
in the WFT, there always exists some deviation between the ex-
tracted profiles with and without noise, which is unrelated to
the performance of the extraction method. Consequently, the ε f

(4.3) contains both an irreducible, inherent, error related to the
effect of noise on the TFR, and the error of the curve extraction
method. Therefore, we only compare the performance of dif-
ferent methods, without aiming to find the profile as it would be
without noise (which is generally impossible).

In the simulations, both test signals are sampled at 20 Hz.
We will test curve extraction only for the WFT, but the results
remain qualitatively the same for the WT as well. To eliminate
boundary distortions in the TFR, we simulate the first test sig-
nal (4.1) for 1000 s, calculate the corresponding WFT and then
use only its central 200 s part; the same procedure is applied for
the ECG signal. Also, since there are two strong components in
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the first signal, we find two ridge curves for it and choose that
lying closer in frequency to the dominant component (around 1
Hz). We use a Gaussian window (2.5) with f0 = 1 and calcu-
late the WFTs at frequencies ωk/2π = 0.25 + (k − 1)∆ω/2π ∈
[0.25, 2.25] (this range of frequencies is chosen based on a pri-
ori knowledge that all components of interest are contained in
it) with ∆ω = ∆ξg/25 ≈ 2π × 0.008. For both signals, we use
40 noise realizations, which are the same for each method, pa-
rameters and noise intensities σ being tested.

4.2. Results

The results of applying the different curve extraction
schemes to the WFT of the first test signal (4.1) are presented
in Fig. 3. The performance of each method is quantified by its
maximum tolerable noise level σmax, indicated by vertical dot-
ted lines in Fig. 3: we define it as the noise intensity σ at which
the mean error ε f (4.3) plus its standard deviation over noise re-
alizations reaches 0.5, implying that in many cases the resultant
ωp(t) is inaccurate. Note that, in each case, the default path op-
timization (3.3) approach has clear and significant advantages
over the one-step optimization (3.1), with the mean errors for
the latter being shown by dashed gray lines in Fig. 3(b,d).

From Fig. 3, it can be seen that the worst performance in the
case of the first test signal (4.1) is exhibited by the I(0) (Global
Maximum) method, which is to be expected, given that the am-
plitude of the weaker component is sometimes higher than that
of the dominant one. With increasing α above zero, the per-
formance of method I(α) greatly improves (Fig. 3(a,b)), reach-
ing its optimum at some 0 < α < 10, and then deteriorating
again. For scheme I and the parameters tested, the best results
are achieved at α = 1.

Nevertheless, much better performance is demonstrated by
schemes II(1,1) and II(10,10), which can trace the ridge curve
reliably even in the presence of very strong noise. Methods
II(10,1) and II(1,10) do not work so well, indicating that large
asymmetries between α and β are not advantageous, which is to
be expected given that we use relative (i.e. normalized) devia-
tions.

Results for the second test signal, the ECG, are presented in
Fig. 4. Clearly, the situation there is similar to the one observed
for the first test signal in Fig. 3. However, the performance of
methods I and II is now almost independent of their parameters
(except I(0)), at least for the parameter values considered.

Summarizing, the best results were achieved with scheme
II, in particular with II(1,1) and II(10,10). Scheme I(α) seems
to be most accurate when α = 1 (at least for the parameters
tested), while the Global Maximum method, corresponding to
I(0), is largely useless and should not be used. In all cases, the
path optimization (3.3) approach was superior to the one-step
optimization (3.1).

5. Extraction of curves from the synchrosqueezed trans-
forms

Synchrosqueezing [23–25] represents a particular reassign-
ment method [26, 33] that can be used to construct a more

concentrated representation from the WFT and WT by utiliz-
ing relationships between the rates of phase growth of the cor-
responding coefficients, and it would appear at first sight that
transforms of this kind would be optimal for ridge extraction.
The synchrosqueezed WFT (SWFT) Vs(ω, t) and synchrosquee-
zed WT (SWT) Ts(ω, t) can be constructed as

Vs(ω, t) = C−1
g

∫ ∞

−∞

δ
(
ω − νG(ω, t)

)
Gs(ω̃, t)dω̃,

Ts(ω, t) = C−1
ψ

∫ ∞

0
δ
(
ω − νW (ω, t)

)
Ws(ω̃, t)

dω̃
ω̃
,

Cg ≡
1
2

∫ ∞

−∞

ĝ(ξ)dξ = πg(0), Cψ ≡
1
2

∫ ∞

0
ψ̂∗(ξ)dξ/ξ,

(5.1)

where νG ≡ Im
[ ∂tGs(ω,t)

Gs(ω,t)
]

and νW ≡ Im
[ ∂tWs(ω,t)

Ws(ω,t)
]

are the instan-
taneous phase velocities of the WFT and WT, respectively. In
practice, the frequency scale is discretized, so one calculates
the SWFT and SWT as Vs(ω, t) and Ts(ω, t) already integrated
over the corresponding frequency bin (see e.g. the discussion in
[14]).

Figure 5 shows SWFTs constructed from the WFTs de-
picted in Figs. 1 and 2 (see also [30] for a systematic anal-
ysis of the effects of different kinds of noise on performance
of the SWT). Clearly, synchrosqueezed TFRs are very concen-
trated and visually appealing. However, it has been found [14]
that they do not possess better time or frequency resolution, i.e.
do not allow for better reconstruction of components that are
close in frequency or have high time variability (as compared to
the original WFT/WT). The synchrosqueezing just sums all the
interferences and other complications present in the WFT/WT
into a more compact frequency regions so that, even if the com-
ponents appear to be more widely separated as a result, this does
not mean that their parameters can be better estimated. In this
respect the SWFTs/SWTs are somehow similar to the WFT/WT
skeletons (the corresponding transforms with only their ampli-
tude peaks left) which, although being perfectly concentrated,
do not obviously possess better resolution properties than the
respective WFTs/WTs; see [14] for a more detailed discussion
of this issue.

Nevertheless, it still remains to be established whether or
not synchrosqueezing provides any advantages in terms of curve
extraction, i.e. whether the “correct” amplitude peak sequences
can be identified more easily in the SWFT/SWT than in the
original WFT/WT. In other words, the following question is to
be addressed: will performing synchrosqueezing first, and then
applying curve extraction methods to the resultant SWFT/SWT,
give more accurate results than just applying these methods di-
rectly to the original WFT/WT?

Evidently, the schemes developed for the WFT/WT can be
applied straightforwardly for tracing ridge curves in the SWFT/

SWT. Nothing qualitatively changes, except that now one uses
the amplitude peaks of the synchrosqueezed transforms. How-
ever, an immediate and serious drawback of this approach is
that, in contrast to the case of the WFT/WT, the peak amplitudes
in the synchrosqueezed transforms are not universally propor-
tional to the amplitudes of the corresponding components; in-
stead, they are largely determined by the parameters of fre-
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quency discretization being used, as illustrated in Fig. 6. Hence
it can be seen that, even if one component has a smaller ampli-
tude than the other, it may still have a much higher peak in the
SWFT (see Fig. 6(a,c)).

Generally, the relationships between the peaks will depend
on the discretization step ∆ω, and this dependence proves to be
highly nonlinear and time-varying, being influenced by many
factors such as the instantaneous amplitude and frequency mod-
ulation of the component, its interference with other compo-
nents, and noise. Hence, the outcomes of different curve ex-
traction methods when applied to synchrosqueezed transforms
will also depend on the widths of the frequency bins used. This
effect is additionally augmented by the fact that, due to the non-
smoothness of the SWFT/SWT, one cannot apply peak inter-
polation to better locate the ridges νm(t), so that they remain
discrete, and such a discretization in turn affects the perfor-
mance of the extraction schemes (see Remark 3.1). Because
of all these issues, the use of the SWFT/SWT peak amplitudes
for discriminating between the components is in general not
appropriate and can lead to unpredictable results, introducing
considerable instability.

One way to avoid the drawbacks discussed above would be
to use “integrated” ridges instead of peaks. It is well-known
[14, 24, 26] that in the case of the synchrosqueezed transforms
the amplitude of the component should be estimated based on
the overall sum of the SWFT/SWT over the (time-dependent)
frequency region where it is concentrated. The problems at-
tributable to use of the peaks can therefore be solved by us-
ing more appropriate amplitude/frequency estimates. Hence, at
each time t we break the SWFT/SWT into the widest regions
of non-zero amplitude [ω(m)

− (t), ω(m)
+ (t)]. Then, instead of using

peak values (2.6), the ridge amplitudes Qm(t) and frequencies
νm(t) (which are used in all procedures) are estimated from the
corresponding regions as

Qm(t) = |x(a)
m (t)|, x(a)

m (t) ≡
∫ ω(m)

+ (t)

ω(m)
− (t)

Vs(ω, t)dω,

νm(t) ≡ Re
[(

x(a)
m (t)

)−1
∫

ωS s(ω, t)dω
]
,

(5.2)

for the SWFT, and similarly (Vs(ω, t)→ Ts(ω, t)) for the SWT.
Since such Qm(t) do not depend on the widths of the frequency
bins, being directly proportional to the true amplitudes of the
corresponding components, while νm(t) now take continuous
values, curve extraction methods based on integrated ridges are
expected to give consistent results that are relatively unaffected
by frequency discretization.

However, in both cases of using usual and integrated ridges,
we have found most of the methods considered to perform ei-
ther similarly, or often worse, if applied to the SWFT/SWT in-
stead of the original WFT/WT. The corresponding results for
the two test signals are shown in the Supplementary Material
Figs. 2–5; in all cases, the best performance was demonstrated
by scheme II(1,1). Note that, in the case of weak frequency
modulation (such as in the ECG signal), the performance of the
schemes for some parameters might be slightly improved by us-
ing the SWFT/SWT peaks instead of the WFT/WT peaks; but,

on the other hand, this would cause the same schemes to fail
completely for other parameter choices (see e.g. Supplemen-
tary Fig. 3). In any case, as discussed previously, the use of
the SWFT/SWT peaks in the context of curve extraction is not
generally appropriate.

Typical examples of the extracted curves are presented in
Fig. 7, where one can see that, in contrast to the case of the
WFT, the results of curve extraction from the SWFT become
very sensitive to the method and parameters being used. This
is mainly because, in contrast to the usual WFT and WT, the
synchrosqueezed transforms often contain a lot of “spikes” with
small Qm(t) not corresponding to any component (see Fig. 6(a,b)).
These small peaks occur both due to noise and as a side ef-
fect of amplitude/frequency modulation or interference. Con-
sequently, at any given time, there are numerous closely spaced
candidate ridge points νm(t) in the SWFT/SWT, which makes
it easier to switch between the curves corresponding to differ-
ent components by building “bridges” between them (cf. blue
lines in Fig. 7(a) and (b,c)), while for the WFT/WT this would
require large discontinuous frequency jumps. Furthermore, this
structure of the synchrosqueezed transforms allows selection of
an almost straight curve formed mainly from the spurious ridges
due to close frequencies, and such a curve will indeed be re-
turned if the penalization of frequency or of its time-derivative
is strong enough (cf. black lines in Fig. 7(a)–(c)). Note that a
similar situation would occur for the WFT/WT if we used all
available frequencies as candidate ridge points νm(t), but use
only of the peaks (2.6) avoids the problem.

Finally, it should also be noted that the computational cost
of curve extraction from the synchrosqueezed transforms is usu-
ally considerably higher than for the conventional smooth TFRs:
the number of computations is roughly proportional to the sum
of the squares of the numbers Np(t) of the ridge points νm(t) at
each time (see Appendix), and these numbers are much larger
for the SWFT/SWT than for the original WFT/WT.

6. Limitations

The methods proposed are subject to a few important limi-
tations. First, all the schemes are designed to extract accurately
the curves corresponding to components that persist throughout
the whole signal (or disappear only briefly). This is typically the
case for signals of biological origin, such as recordings of ECG,
EEG, respiration, or blood flow. On the other hand, when the
signal contains transient components that are present only dur-
ing short time frames, as is often the case e.g. in sound analysis,
the curves returned by schemes I and II will most likely consist
of the curves corresponding to different components appearing
at similar frequencies but different times. This is because the
proposed techniques do not have any built-in criteria to termi-
nate curve extraction after a component ceases to exist. How
best to formulate such a criterion is a separate topic, and will be
the subject of future research.

Secondly, in common with virtually every other curve ex-
traction method, the proposed schemes can have problems with
the signals containing components whose frequencies cross each
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other. In such cases it becomes unclear which path to follow af-
ter the crossing occurs. In practice one would like to select the
profile which seems “most consistent”, which in mathematical
terms can be formulated as the most smooth. If the differences
between components’ amplitudes and/or frequency derivatives
are high at the crossing point, then it is likely that the proposed
schemes will return appropriate curves; otherwise they can gen-
erally select any path. Suppressing deviations of the higher
derivatives of the component’s frequency (in addition to the first
one in both schemes) is likely to improve the situation, albeit
with increased method complexity and computational cost.

Finally, it should be noted that, quite generally, to obtain
reliable results from any method applied to the signal’s TFR,
the latter should represent appropriately at least the basic sig-
nal structure. How to achieve this is a general topic of time-
frequency analysis (see e.g. [14, 34? , 35]).

7. Conclusions

We have developed and compared techniques that can be
used for ridge curve extraction from the WFT/WT, and dis-
cussed a number of related issues. Among the proposed ap-
proaches, scheme II(α,β) with α = β was shown to produce
the best results. Its parameters β and α control the strengths
of suppression of the relative deviations of ridge frequency and
its time-derivative from the corresponding median values, re-
spectively. Although these parameters can be adjusted to better
match any specific problem, due to high adaptivity of the ap-
proach the default choice α = β = 1 works well in the majority
of cases (within the limitations discussed in the previous sec-
tion). Scheme II(1,1) appears to be of almost universal utility,
being a type of “just apply” method that does not require any
tuning by the user. The corresponding MatLab codes, as well as
other useful time-frequency analysis tools, are freely available
at [36].

We have also tested the effects of synchrosqueezing [23–
26] in relation to curve extraction, and found that its drawbacks
heavily outweigh its advantages. Although scheme II(1,1) still
remains the best and works reasonably well if applied to the
synchrosqueezed transforms, in general the structure of the
SWFT/SWT seems to be less suitable for curve extraction com-
pared to that of the WFT/WT, at least for the methods consid-
ered.
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Appendix: Fast path optimization of the functional with fi-
nite memory

Finding the solution ωp(t) to the path optimization problem
(3.3) is generally very expensive computationally, often being
carried out by simulated annealing. However, if the functional
F[...] has finite memory, i.e. depends on the finite number of

points selected at previous times (rather than the full history),
then the optimal path can be found in O(N) operations using
dynamic programming techniques [37]. The corresponding al-
gorithm is discussed in detail below.

Consider first the functional F[Qm(tn), νm(tn), ωp(tn−1)],
which depends only on the ridge point at the current time tn
(characterized by Qm(tn) and νm(tn)) and the frequency of the
previous one ωp(tn−1). This is basically the case utilized in
all schemes presented in this work. The optimization prob-
lem (3.3) consists of finding the sequence of ridge point indices
mc(tn) maximizing the integral of this functional over time:

argmax
{m1,m2,...,mN }

N∑
n=1

F
[
Qmn (tn), νmn (tn), νmn−1 (tn−1)

]
. (7.1)

The ridge curve is then recovered as ωp(tn) = νmc(tn)(tn).
It is clear that at each time tn for each ridge νm(tn) there ex-

ists a history of previous peaks {m̃c(m, tn, t1), . . . , m̃c(m, tn, tn−1)}
which maximizes the integral to this point

U(m, tn) = F[Qm(tn), νm(tn), νm̃c(m,tn,tn−1)(tn−1)]

+

n−1∑
i=1

F[Qm̃c(m,tn,ti), νm̃c(m,tn,ti)(ti), νm̃c(m,tn,ti−1)(ti−1)].
(7.2)

What makes a fast path optimization possible is that, for func-
tionals depending only on the current and previous points, if the
profile {mc(t)} maximizing (3.3) includes νm(tn), then it should
include the best path to νm(tn) as well: {mc(t1), . . . ,mc(tn)} =

{m̃c(m, tn, t1), . . . , m̃c(m, tn, tn−1),m}. This is because the behav-
ior of mc(ti=n+1,..,N) does not influence the integral over the pre-
viously extracted points mc(ti=1,..,n−1). Therefore, at each step
we can leave only the best paths to each peak νm(t) and discard
all the others.

It is useful to express m̃c(m, tn, ti) through the matrix q(m, tn)
which maps the peak number m at time tn to the previous peak
number in such a way that (7.2) is maximized. We therefore
introduce

q[i](m, tn) ≡ m̃c(m, tn, tn−i) = q(q[i − 1](m, tn), tn−i+1) :

q[0](m, tn) = m,

q[1](m, tn) = q(m, tn) = m̃c(m, tn−1),
q[2](m, tn) = q(q(m, tn), tn−1) = m̃c(m, tn−2),

. . .

(7.3)

What remains is to find at each time tn (starting from t1), and for
each ridge m = 1, . . . ,Np(tn), the maximum value U(m, tn) of
the integral up to this point and the index of the previous ridge
q(m, tn) for which this maximum is achieved:

for n = 1, ...,N and m = 1, ...,Np(tn) do:

q(m, tn) =argmax
k

{
F[Qm(tn), νm(tn), νk(tn−1)]

+U(k, tn−1)
}
,

U(m, tn) =F[Qm(tn), νm(tn), νq(m,tn)(tn−1)]
+U(q(m, tn), tn−1),

(7.4)
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Then U(m, tN) represents the full integral (7.1) to each of the
last ridges νm(tN), and one has mc(tN) = argmaxm U(m, tN),
with the sequence corresponding to this index being the optimal
path: {mc(t)} = {q[N−1](mc(tN), tN), . . . , q[1](mc(tN), tN),mc(tN)}.

For example, for the functional F[...] = log Qm(tn) +

w(νm(tn) − ωp(tn−1), α) (scheme I (3.4)), we calculate

t1 : for m = 1, ...,Np(t1)
q(m, t1) = 0, U(m, t1) = log Qm(t1),

t2 : for m = 1, ...,Np(t2)
q(m, t2) = argmax

k

{
log Qm(t2) + w(νm(t2) − νk(t1), α)

+ U(k, t1)
}
,

U(m, t2) = log Qm(t2) + w(νm(t2) − νq(m,t1)(t1), α)
+ U(q(m, t2), t1),

t3 : for m = 1, ...,Np(t3)
q(m, t3) = argmax

k

{
log Qm(t3) + w(νm(t3) − νk(t2), α)

+ U(k, t2)
}
,

U(m, t3) = log Qm(t3) + w(νm(t3) − νq(m,t2)(t2), α)
+ U(q(m, t3), t2),

...

(7.5)

where q(m, t1) is set to zero because there are no peaks before
the starting time t1.

Numerically, the q(m, tn) and U(m, tn) represent Mp × N
matrices, updated at each step, where Mp = maxn Np(tn) is
the maximum number of peaks; the excess entries q({Np(tn) +

1, ..,Mp}, tn) and U({Np(tn)+1, ..,Mp}, tn) are set to Not-a- Num-
bers (NaNs). Since at each time tn we need to calculate for each
of the Np(tn) peaks the functional with each of the Np(tn−1) of
the previous peaks (to find the one maximizing it), the overall
computational cost of the procedure is O(M2

pN) (or, more pre-
cisely, O(〈Np(ti)Np(ti+1)〉N)). The outcome of the algorithm is
illustrated below on a schematic example:

Note, that in this example there are two ways of going from the
second peak at time t1: either to the second row (mc(t2) = 2),
corresponding to U(2, t2) = 2.0, or to the third one, correspond-
ing to U(3, t2) = 2.4. The one-step scheme (3.1) would select

the third peak, but using the path optimization scheme we ex-
plore all the possibilities, and find out that going through the
second one leads at the end to the higher path functional (3.3).

The path optimization for functionals depending on any fi-
nite number of previous peak positions (and not only one, as in
(7.1)) can be performed in a manner analogous to that outlined
above. For example, if the functional F[...] depends on two pre-
vious points ωp(tn−1) and ωp(tn−2), then one will need to apply
the same procedure but, instead of single ridges, treat their one-
step sequences. In this case one selects at time tn the trajectory
maximizing the path functional (3.3) to each of the Np(tn−1) ×
Np(tn) point combinations {νk(tn−1), νm(tn)}. The general case of
accounting for d previous points is qualitatively similar, so the
computational cost of the procedure is O(Md+1

p N).
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Figure 1: Windowed Fourier transforms (WFTs): (a) of the signal s(t) =
(
1+ 1

3 cos 2πt
9

)
cos

(
2πt +6 sin 2πt

30 +cos 2πt
12 )+0.8 cos

(
2π×1.75t +0.5 sin 2πt

5
)
; and (b) of the

electrocardiogram (ECG) signal. Black lines show the ridge curves ωp(t), i.e. the sequence of the WFT amplitude peaks, corresponding to the dominant component
in each case.

Figure 2: WFTs of the same signals as in Fig. 1, but additionally corrupted by noise of the form (4.2), with a standard deviation σ = 0.6 for the signal corresponding
to (a), and σ = 0.3 for the signal corresponding to (b).
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Figure 3: Performance of the different schemes for ridge curve extraction from the WFT of the first test signal (4.1) for different I(α), as illustrated by: (a,c) examples
of the extracted ωp(t) when the noise standard deviation is σ = 0.6 (the WFT of the particular signal realization at this noise level is presented in Fig. 2(a)); (b,d)
dependence of the relative error ε f (4.3) on the standard deviation σ of the noise. In (a,c) the wide gray background line shows the extracted frequency profile in
the noise-free case, the bold black lines correspond to the mean ωp(t) over all noise realizations, while the (mostly almost coincident) thin lines show individual
extracted curves for 10 (out of 40) noise realizations. In (b,d) the bold black lines show the mean ε f over all noise realizations, with the gray regions around
them indicating ±1 standard deviation; the bold gray dashed lines show the ensemble mean of ε f if the schemes were performed using the one-step optimization
(3.1) instead of the (default) path optimization (3.3); vertical dotted lines indicate the values of σ for which the mean error plus its standard deviation over noise
realizations crosses the level ε f = 0.5, shown by horizontal dashed lines.
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Figure 4: Results for the second test signal; otherwise same as Fig. 3. In (a,c) the examples of extracted ωp(t) are now shown for σ = 0.3 (the WFT of one particular
signal realization at this noise level is presented in Fig. 2(b))
.

Figure 5: Synchrosqueezed WFTs: (a,b) constructed from the WFTs shown in Figs. 1; (c,d) constructed from the WFTs shown in Fig. 2. Thin red lines show the
ridge curves corresponding to the dominant components in each case.
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Figure 6: Snapshots (a,b) of the SWFT amplitudes and (c,d) of the WFT amplitudes for the first test signal (4.1) corrupted with noise (4.2) of standard deviation
σ = 0.6. Thick gray lines and thin black lines show the values obtained using frequency bin widths of ∆ω/2π = 0.02 and ∆ω/2π = 0.01, respectively. Dotted
vertical lines indicate the instantaneous frequencies of each of the two AM/FM components in signal (4.1) at the corresponding times. This figure shows that, while
the WFT peaks (c,d) are generally proportional to the amplitudes of the components, peaks in the SWFT (a,b) depend on the choice of the discretization step ∆ω in
a nonuniversal and quite sophisticated way.

Figure 7: Comparison of the curves extracted by different methods from the WFT (a) and SWFT (using the peaks (b) or integrated ridges (c)) for the first test signal
(4.1) at a noise level σ = 0.6 (4.2). The lower panels (d,e,f) show the component’s amplitude as reconstructed from the corresponding ridge curve by (5.2) for the
SWFT, and in a similar manner (by integrating over the widest frequency regions of unimodal TFR amplitude around ωp(t) at each time, see [14]) for the WFT.
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