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Abstract

Rubisco is a major target for improving crop photosynthesis and yield, yet natural diversity in catalytic properties of 
this enzyme is poorly understood. Rubisco from 25 genotypes of the Triticeae tribe, including wild relatives of bread 
wheat (Triticum aestivum), were surveyed to identify superior enzymes for improving photosynthesis in this crop. In 
vitro Rubisco carboxylation velocity (Vc), Michaelis–Menten constants for CO2 (Kc) and O2 (Ko) and specificity factor 
(Sc/o) were measured at 25 and 35 °C. Vc and Kc correlated positively, while Vc and Sc/o were inversely related. Rubisco 
large subunit genes (rbcL) were sequenced, and predicted corresponding amino acid differences analysed in rela-
tion to the corresponding catalytic properties. The effect of replacing native wheat Rubisco with counterparts from 
closely related species was analysed by modelling the response of photosynthesis to varying CO2 concentrations. 
The model predicted that two Rubisco enzymes would increase photosynthetic performance at 25 °C while only one 
of these also increased photosynthesis at 35 °C. Thus, under otherwise identical conditions, catalytic variation in the 
Rubiscos analysed is predicted to improve photosynthetic rates at physiological CO2 concentrations. Naturally occur-
ring Rubiscos with superior properties amongst the Triticeae tribe can be exploited to improve wheat photosynthesis 
and crop productivity.
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Introduction

Wheat is the most widely grown crop and an important 
source of protein and calories, providing more than 20% of 
the calories consumed worldwide (Braun et  al., 2010). It is 
projected that the world population will rise to over 9 billion 
by the year 2050 (United Nations, Department of Economic 
and Social Affairs, Population Division, 2013). This growth 
in population, along with a rise in per capita consumption 

(Kearney, 2010), will increase the global demand for food. 
Future increases in crop production will rely mainly on new 
strategies to increase yield and cropping intensity (Gregory 
and George, 2011; Alexandratos and Bruinsma, 2012; Fischer 
et al., 2014).

Yield traits that were positively affected by the green revo-
lution appear to have relatively little remaining potential for 
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further exploitation in modern wheat (Zhu et al., 2010), and 
further increases in yield potential will need to come from 
the improvement of photosynthetic efficiency. In this context, 
significant variation in biomass has been identified in exotic 
wheat genetic resources (Reynolds et  al., 2015). Rubisco, 
(EC.4.1.1.39) is a key player in photosynthetic CO2 assimi-
lation, as it catalyses the first step of the Calvin–Benson 
cycle, fixing carbon dioxide through the carboxylation of 
ribulose-1,5-bisphosphate (RuBP). Rubisco also catalyses an 
additional and competing reaction with oxygen, which leads 
to the loss of fixed carbon and energy during photorespira-
tion. This, together with the relatively low catalytic rate of 
Rubisco, limits photosynthetic productivity. Overcoming the 
limitations of Rubisco is therefore a major target in attempts 
to increase photosynthesis and yield (Parry et al., 2007; Parry 
et al., 2013).

There is natural variation in the catalytic properties 
of  Rubisco isolated from various higher plants (Delgado 
et  al., 1995; Galmés et  al., 2005; Kapralov and Filatov, 
2007; Andralojc et  al., 2014; Galmés et  al., 2014a; 
Galmés et  al., 2014b). Relatively few studies report all 
catalytic parameters—the maximum velocities (V) and the 
Michaelis–Menten constants (KM) for the carboxylase (c) 
and oxygenase (o) activities (Vc, Vo, Kc, and Ko, respec-
tively) and the specificity factor (Sc/o=(Vc/Kc)/(Vo/Ko))—or 
measurements at anything other than a single temperature. 
Greater natural diversity is likely to be revealed when the 
catalytic parameters of  Rubisco from a broader range of 
species become available. Current evidence suggests that 
there is a trade-off  between the maximum carboxylation 
rate of  Rubisco (Vc) and the relative specificity for CO2 
(Sc/o) (Bainbridge et al. 1995; Zhu et al., 2004; Savir et al., 
2010), which may limit the extent to which these parameters 
can be independently altered. Clearly, a superior Rubisco 
for improving crop performance will have catalytic proper-
ties that maximize carboxylation, minimize the oxygenase 
activity, and enable enhanced rates of  photosynthesis in rel-
evant environments (Galmés et al., 2014b; Sharwood and 
Whitney, 2014).

Evolution of Rubisco variants with differing catalytic 
properties has been driven by their respective diverse cellular 
environments, which in turn are affected by their respective 
external environments (see Carmo-Silva et al., 2014 and ref-
erences therein). These conditions provide selective pressures 
which favour changes in Rubisco structure that optimize 
performance (Tcherkez et al., 2006). While the chloroplast-
encoded Rubisco large subunits incorporate the catalytic sites 
and therefore contribute directly to the observed catalytic 
properties, recent evidence suggests that changes in expres-
sion of genes within the nuclear-encoded small subunit mul-
tigene family can also cause catalytic variation (e.g. Morita 
et al., 2014).

The goal of this study was to identify Rubisco variants in 
the Triticeae tribe with catalytic properties that are likely to 
improve photosynthetic efficiency in wheat. We focused on 
wheat relatives so that useful traits could be introduced into 
a wheat genetic background by means of wide crossing (thus 
avoiding genetic manipulation), with increased likelihood 

that the available (wheat) chloroplast chaperones and Rubisco 
activase isoforms would subsequently promote the assembly 
and maintenance of catalytic activity in any resulting forms 
of the Rubisco holoenzyme. Triticeae genotypes from diverse 
climates and geographical locations were studied to increase 
the likelihood of identifying forms of Rubisco with differ-
ent (and hopefully superior) kinetic properties from those 
found in Triticum aestivum (bread wheat). The resulting cata-
lytic parameters were assessed in silico using a biochemical 
model of leaf photosynthesis. This approach suggested that 
Rubisco from two of the genotypes studied has the potential 
to improve the photosynthetic capacity and yield potential 
of wheat.

Materials and methods

Plant material and growth conditions
For all kinetic measurements, values obtained in test samples were 
compared with those of  T. aestivum cv Cadenza, which was used 
as control. Cadenza is widely grown and has routinely been used 
in transformation experiments, making it a well-known and char-
acterized variety. A total of  25 genotypes were analysed (Table 1). 
Species related to bread wheat were chosen with a range of  char-
acteristics, such as adaption to warmer conditions (T.  aestivum 
SATYN and T. dicoccon CIMMYT), or which had been used to 
introduce desirable traits into bread wheat (Schneider et al., 2008). 
Seeds were obtained from CIMMYT (Mexico); the Royal Botanic 
Gardens, Kew (UK); and colleagues at Rothamsted Research. 
All plants were grown from seed in trays containing Rothamsted 
Research compost mix in a glasshouse at 20 °C with a 16 h photo-
period. Additional lighting was provided whenever the photosyn-
thetically active radiation (PAR) fell below 500 μmol m−2 s−1. All 
plants were well watered. Young, healthy leaves were harvested 
2–3 weeks after sowing and rapidly frozen in liquid nitrogen.

Specificity factor
Rubisco from snap-frozen young leaves (at least 500 cm2) was 
extracted in homogenization buffer (40 mM triethanolamine pH 8.0, 
10 mM MgCl2, 0.5 mM EDTA, 1 mM KH2PO4, 1 mM benzamidine, 
5 mM ε-aminocaproic acid, 50 mM 2-mercaptoethanol, 5 mM DTT, 
10 mM NaHCO3, 1 mM phenylmethanesulfonyl fluoride (PMSF), 
1% w/v insoluble polyvinylpolypyrrolidone (PVPP)) at 0.3 ml cm−2. 
Leaves were homogenized in a pre-cooled blender for 45 s and then 
filtered through four layers of muslin. Homogenate was clarified by 
centrifuging at 13 870×g for 12 min at 4 °C, after which PEG4000 (60% 
w/v) was added to the supernatant to obtain a final concentration of 
20.5% (w/v). MgCl2 was added to the solution to increase the concen-
tration of MgCl2 to 20 mM. The ensuing protein precipitation was 
complete after 30 min at 0 °C, and the precipitate collected by cen-
trifugation at 13 870×g for 20 min at 4 °C. The protein precipitate was 
redissolved in column buffer containing 25 mM TEA–HCl (pH 7.8), 
5 mM MgCl2, 0.5 mM EDTA, 1 mM ɛ-aminocaproic acid, 1 mM ben-
zamidine, 12.5% glycerol, 2 mM DTT and 5 mM NaHCO3. This was 
clarified by centrifugation at 175 000×g for 20 min at 4 °C followed 
by filtration through a 0.45  µm regenerated cellulose syringe filter 
before further purification by anion-exchange chromatography on a 
5 ml HiTrap Q column (GE Healthcare, UK). Rubisco was eluted 
with a 0–1.0 M linear NaCl gradient in the same buffer. Fractions 
with significant absorbance at 280 nm were tested for Rubisco activ-
ity by measuring the RuBP-dependent incorporation of 14CO2 into 
acid-stable products, as detailed below. Fractions showing Rubisco 
activity were pooled and further purified by size-exclusion chroma-
tography on a Sephacryl S-200 column (GE Healthcare, UK) using 
a buffer consisting of 50 mM Bicine–NaOH, pH 8.0, 10 mM MgCl2, 
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0.2 mM EDTA, 10 mM NaHCO3 and 2 mM DTT. Peak fractions 
based on Rubisco activity were pooled and concentrated using Pierce 
Protein Concentrators (150K MWCO, Thermo Scientific, UK). 
Samples were snap-frozen in liquid nitrogen and stored at –80  °C. 
Before use, samples were desalted by gel filtration through Sephadex 
G50 (medium grade; Sigma-Aldrich, UK) pre-equilibrated with 
assay buffer (0.1 M Bicine–NaOH, pH 8.2, 20 mM MgCl2).

Sc/o was determined by measuring the decline in oxygen that 
accompanied the total consumption of RuBP in an oxygen electrode 
(Hansatech Instruments, UK), as described by Parry et al. (1989): 
Rubisco was activated in extracts by adding orthophosphate (4 mM, 
pH 8.2) and NaHCO3 (11 mM), and incubating at 37 °C for 40 min. 
A reaction mixture containing assay buffer and carbonic anhydrase 
(0.001% w/v, ≥2500 W-A units mg protein–1; Sigma-Aldrich, UK) was 
equilibrated in an oxygen electrode vessel at controlled pH and tem-
perature. All subsequent additions were made through a small aper-
ture using glass syringes. Activated Rubisco and NaHCO3 (2 mM) 
were added to the vessel and the oxygen signal allowed to stabilize. 
RuBP (0.37 mM) was added to the reaction, which was allowed to 
run to completion over a few minutes, as indicated by a stabilized 
oxygen signal. The amount of RuBP carboxylated was calculated by 
subtracting the oxygenated amount (represented by the amount of 
oxygen consumed during the reaction) from the amount added. The 
specificity factor was calculated as follows:

 

Sc o

2

RuBP carboxylated RuBP oxygenated

O concentration C
/ /

/

= ( )
× OO concentration2( )  

RuBP was prepared as previously described (Wong et al., 1980).

Rubisco catalytic properties
Rubisco was extracted from 20–30 cm2 of leaf material that was light-
adapted immediately before being snap-frozen, then stored at –80 °C. 
Leaves were ground in an ice-cold mortar with 100 mg quartz sand 
and 3.5 ml of ice-cold extraction buffer, consisting of 100 mM Bicine–
NaOH, pH 7.9, 5 mM MgCl2, 1 mM EDTA, 2 mM benzamidine, 
5 mM ε-aminocaproic acid, 10 mM NaHCO3, 50 mM 2-mercaptoetha-
nol, 5% (w/v) PEG4000, 10 mM DTT, 1% (v/v) plant protease inhibitor 
cocktail (Sigma-Aldrich, UK), 1 mM PMSF and 2% (w/v) insoluble 
PVPP. After centrifugation for 5 min at 14 000×g and 4 °C, samples 
were desalted by gel filtration through PD-10 columns (Sephadex 
G-25 Medium, GE Healthcare, UK) that had been pre-equilibrated 
with 100 mM Bicine–NaOH, pH 8.0, 10 mM MgCl2, 1 mM EDTA, 
1 mM benzamidine, 1 mM ε-aminocaproic acid, 1 mM KH2Pi, 10 mM 
NaHCO3, 10 mM DTT and 2% (w/v) PEG4000, 2% (v/v) protease inhibi-
tor cocktail (Sigma-Aldrich, UK) and 20 mM MgCl2 was added before 
samples were snap-frozen and stored in liquid nitrogen, awaiting assay.

Catalytic parameters were measured essentially as previously 
described (Carmo-Silva et al., 2010). Carboxylation activity was meas-
ured at 8, 16, 24, 36, 68, and 100 µM CO2 (aq) in equilibrium with a gas 
phase of N2 supplemented with 0, 21, 60, or 100% (v/v) O2. KM and Vmax 
for carboxylation (Kc and Vc, respectively) were calculated at each O2 
concentration using a Michaelis–Menten kinetic model. KM and Vmax 
for oxygenation (Ko and Vo, respectively) were calculated as follows:

 
K K Ko 2 M app cO 1= [ ] ( ) / /, −  

and

 V V K K So c o c c o= ×( ) ×( )/ /  

Table 1. Triticeae genotypes used to survey Rubisco catalytic properties for improving photosynthesis of UK bread wheat (T. aestivum 
cv Cadenza)

Haploid genome according to Van Slageren (1994). First letter denotes chloroplast genome.

Identity Species name Other species name(s) and additional information Haploid genome

T. aestivum (C) Triticum aestivum Spring wheat var. Cadenza BAuD
T. aestivum SATYN1 Triticum aestivum SATYN_II_9410 PUB94.15.1.12/FRTL (CIMMYT line) BAuD
T. aestivum SATYN2 Triticum aestivum SATYN_II_9440 WHEAR//2*PRL/2*PASTOR (CIMMYT line) BAuD
T. aestivum SATYN3 T. aestivum SATYN_II_9428 MTRWA92.161/PRINIA/5/SERI*3//RL6010/4*YR/3/PASTOR/4/ 

BAV92 (CIMMYT line)
BAuD

T. dicoccon1 Triticum dicoccon CI12214 Emmer wheat; INTRID:CWI47369 ENT:2129 (CIMMYT line) BAu

T. dicoccon2 Triticum dicoccon CI12214 Emmer wheat; INTRID:CWI47368 ENT:2128 (CIMMYT line) BAu

T. dicoccon3 Triticum dicoccon PI355483 Emmer wheat; INTRID:CWI45495 ENT:255 (CIMMYT line) BAu

T. dicoccon4 Triticum dicoccon CI12214 Emmer wheat; INTRID:CWI47366 ENT:2126 (CIMMYT line) BAu

T. timonovum Triticum timonovum Synthetic octoploid of T. timopheevii GAm

T. timopheevii Triticum timopheevii Sanduri wheat GAm

Triticale (Talentro) Secale cereale × Triticum aestivum × Triticosecale cv Talentro; frost and drought tolerant BAuR
Triticale (Rotego) Secale cereale × Triticum aestivum × Triticosecale cv Rotego; frost and drought tolerant BAuR
H. vulgare Hordeum vulgare Barley var. Lenins; relatively drought tolerant, not cold tolerant H
Ae. tauschii Aegilops tauschii Aegilops squarrosa; drought tolerant D
Ae. juvenalis Aegilops juvenalis DMU
Ae. vavilovii Aegilops vavilovii Drought tolerant DMS
Ae. biuncialis Aegilops biuncialis Drought tolerant UM
Ae. triuncialis Aegilops triuncialis Barbed goatgrass; Millenium Seed Bank 47689; winter annual UC
Ae. comosa Aegilops comosa M
Ae. uniaristata Aegilops uniaristata N
S. cereale Secale cereale Rye var. Agronom; frost and drought tolerant R
T. monococcum Triticum monococcum Millenium Seed Bank 11008, einkorn Am

Ae. cylindrica Aegilops cylindrica Jointed goatgrass; cold tolerant DC
Triticale (Cando) Secale cereale × Triticum aestivum × Triticosecale cv Cando; frost and drought tolerant BAuR
Ae. speltoides Aegilops speltoides Not frost tender S
B. distachyon Brachypodium distachyon Purple false brome; Accession BD21; diploid inbred
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where Kc is the Michaelis–Menten constant for CO2 in the absence of 
O2, and KM,app is the apparent Michaelis–Menten constant for CO2 
as measured in the reactions equilibrated with 21, 60, or 100% O2. 
Specific mixtures of N2 and O2 were prepared using a gas divider 
(Signal Group, UK) and concentrations of O2 in solution were cal-
culated at 100% relative humidity and standard atmospheric pressure 
(101.3 kPa). At 25 °C, the solubility of O2 was taken as 257.5 μM and 
the saturation vapour pressure of water as 11.6 kPa. At 35 °C, the sol-
ubility of O2 was taken as 216.6 μM and the saturation vapour pres-
sure of water as 12.0 kPa (http://www.eidusa.com/Theory_DO.htm). 
The concentration of CO2 in solution (in equilibrium with HCO3

−) 
was calculated assuming a pKa of 6.11 at 25 °C and a pKa of 6.06 at 
35  °C for carbonic acid, taking into consideration the pH of each 
buffer solution (measured on the day of assay). Carbonic anhydrase 
(≥77 WA units per 1 ml reaction; Sigma-Aldrich, UK) was present in 
the reaction solution to maintain equilibrium between NaHCO3 and 
CO2. Control reactions were performed by measuring CO2 fixation 
(acid-stable 14C) in reaction solutions lacking RuBP or NaHCO3, as 
well as following total inhibition of Rubisco by prior treatment with 
an excess of the tight-binding inhibitor 2-carboxyarabinitol-1,5-bis-
phosphate (CABP). These controls confirmed that the activity meas-
ured was entirely due to Rubisco.

Radioactive content of 14C-labelled compounds was measured in 
0.4–0.45 ml aqueous solutions to which were added 3.6 ml Ultima 
Gold Scintillation cocktail (Perkin-Elmer, UK), in a Tri-Carb 
2100TR Liquid Scintillation Analyser (Perkin-Elmer, USA).

Turnover number (kcat: mol product mol active site−1 s−1) was cal-
culated from the corresponding Vmax values (Vc and Vo: µmol acid-
stable 14C mg Rubisco−1 min−1).

Rubisco quantification
Rubisco was quantified by the [14C]CABP binding assay described 
by Parry et al. (1997). For this, aliquots of the leaf extracts used in 
the assays described above, which had been snap-frozen immediately 
after extraction, were used. Each assay was performed in duplicate. 
Radioactive content of 14C-labelled compounds was measured as 
described above in ‘Rubisco catalytic properties’. Radiolabelled [2′-
14C]CABP was prepared as previously described (Pierce et al., 1980).

Sequencing of Rubisco large subunit genes (rbcL)
Genomic DNA was extracted from young leaf tissue using the 
Qiagen DNEasy Plant Kit (Qiagen, UK). Partial rbcL fragments 
(equivalent to codons 1–463, c. 98% of the rbcL coding region) were 
amplified (Phusion HF polymerase, Invitrogen, USA) using the 
primers 5′rbcL_F2 (5′-TAATTCATGAGTTGTAGGGAGGG-3′) 
and cp063R (5′-TTTCCATACTTCACAAGCAGCAGCTAG-3′, 
from Dong et  al., 2013), and cloned using the pGEM T-Vector 
Easy System (Promega, UK) with blue-white selection. For each 
genotype, multiple colonies with the fragment incorporated were 
identified and sequenced using the Eurofins Genomics service 
(Eurofins Genomics EU, Germany). Sequencing was performed 
using the primers M13 rev (5′-CAGGAAACAGCTATGACC-3′), 
M13 uni (5′-TGTAAAACGACGGCCAGT-3′), DRS15 
(5′-CAAAAGTAGTAGAAACCATTTTAGTTCAGGTGG-3′ and 
DRS19 (5′-GKGYTCCTATTGTAATGCATGACTACTTAAC-3′). 
Sequence data were analysed using Geneious 7 (Biomatters; 
Kearse et  al., 2012). Sequences obtained have been submitted to 
EMBL (http://www.ebi.ac.uk/ena/) and are publicly available (see 
Supplementary Table S1 at JXB online for accession numbers). 
Corresponding residue differences in the predicted large subunit 
(LSu) sequences appear in the format [Cadenza residue][residue 
position][test species residue] throughout the text.

Photosynthesis modelling
The effect of replacing native Rubisco in a wheat leaf with Rubisco 
from another species was modelled at 25 and 35 °C by entering the 

measured Rubisco catalytic constants into the biochemical mod-
els of carboxylation-limited and RuBP-limited C3 photosynthesis 
(equations 2.20 and 2.23, respectively, in von Caemmerer (2000)). 
To accomplish this, values of Kc, Ko, and Sc/o were converted from 
units of concentration (mol l−1) to those of partial pressure (bar), 
assuming solubilities of 3.34 × 10–2 and 1.26 × 10–3 mol (l bar)−1 for 
CO2 and O2, respectively, for assays performed at 25 °C. At 35 °C, 
the respective solubilities were taken as 2.51 × 10–2 and 1.083 × 10–3 
mol (l bar)−1. We assigned a value of 38 μmol m−2 for the estimated 
number of Rubisco active sites and kept this value constant for 
all samples. Rd was calculated as 0.015Vcmax. We assumed Jmax as 
1.5Vcmax at 25 ºC and 35 ºC giving a good fit above Ca. Equations 
used to generate the A–Ci curves were: 

 
A C V C K K Rc i cmax i c 2 o d1 O=< ( )  + +( ) { } >– * / / –Γ

 

and 

 
A C J C Rj i max i d4 8= ( )  +( ){ }– * / * –Γ Γ

 

(von Caemmerer, 2000).

Statistical methods
Best-fit values of Michaelis–Menten constants (Kc and Ko) and 
maximum velocities (Vc and Vo) were derived from the kinetic data 
using Sigmaplot (v12.5). There was one determination per test geno-
type, with Cadenza values calculated from n=7 for catalytic prop-
erties and n=9 for Sc/o. Values of Sc/o at 25 °C were normalized to 
the corresponding value for the Rubisco of T. aestivum cv Cadenza  
(Sc/o=100), which was determined in parallel to each test sample 
measured (Parry et  al., 1989). For Sc/o, the mean±SEM for every 
Rubisco preparation was calculated from a minimum of five tech-
nical replicates. Correlation coefficients were calculated using the 
Pearson product moment correlation test. The interaction between 
genotype and temperature was analysed using a non-parametric 
statistical approach. Ranking was done in descending order with 
the highest rank assigned number 1. Ranks of the measured vari-
ables for each genotype at 25 °C and 35 °C were correlated using 
Spearman’s rank correlation coefficient and these were tested for 
statistical significance using Genstat (17th edn, VSN International 
Ltd, Hemel Hempstead, UK).

Results

Rubisco catalytic properties at 25 and 35 °C were determined 
for 25 genotypes of Triticeae. For all genotypes, the maxi-
mum carboxylation velocity (Vc) was significantly higher at 
35 °C than at 25 °C, ranging from 1.34 times higher in Ae. 
juvenalis to 2.65 times higher in T.  dicoccon3 (Fig.  1 and 
Supplementary Tables S2 and S3). At 25  °C, H.  vulgare 
ranked the highest for Vc, followed by Ae. cylindrica, T. aes-
tivum SATYN3, and Triticale (Cando) above T. aestivum cv 
Cadenza (reference genotype). At 35 °C, T. dicoccon4 (a line 
developed by CIMMYT for warm climates) ranked the high-
est for Vc, followed by the other CIMMYT lines (T. aestivum 
SATYN and T. dicoccon genotypes) and H. vulgare, before 
Cadenza, which ranked seventh. At both temperatures B. dis-
tachyon ranked the lowest for Vc.

There is statistical evidence of a correlation between the 
performance of the genotypes with respect to Vc across 
temperature, with a Spearman’s rank correlation coefficient 
ρ=0.707 (P<0.001) (see Supplementary Tables S2 and S3). 
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This value was slightly lower when comparing genotypes 
grouped according to rbcL sequence, although still significant 
(ρ=0.607, P=0.035) (Table 2).

Rubisco from 14 genotypes had a higher affinity for CO2 
(lower Kc) than Cadenza at 25 °C, with B. distachyon rank-
ing the highest (see Supplementary Table S2). Similarly, at 
35 °C 13 genotypes showed a higher affinity for CO2 (lower 
Kc) compared with Cadenza (Supplementary Table S3). Of 
these, only Rubisco from H. vulgare showed both a higher Vc 
and a higher affinity for CO2 compared with Cadenza based 
on rank.

Regardless of the measurement temperature, Rubisco from 
most of the genotypes had a lower maximum oxygenation 
velocity (Vo) than Cadenza. Rubisco from genotypes that had 
a low affinity for O2 (i.e. a high Ko) at 25 °C also showed a rela-
tively low affinity for O2 at 35 °C (Table 2 and Supplementary 
Tables S2 and S3).

Rubisco specificity factor (Sc/o) ranged from 90.4 (for Ae. 
juvenalis) to 111.0 (for B. distachyon) at 25 °C and was lower 
at 35 °C for all species (Fig. 2 and Supplementary Tables S2 
and S3), ranging from 68.8 for T. aestivum SATYN1 to 94.0 
for B. distachyon. In contrast to its ranking with respect to Vc, 
B. distachyon, ranked the highest for Sc/o at both temperatures. 
The CIMMYT lines T. aestivum SATYN3, T. dicoccon1, and 
T. dicoccon2 ranked much higher at 35 °C than at 25 °C with 
respect to Sc/o, although only T. dicoccon1 and T. dicoccon2 
ranked higher than Cadenza. A correlation was identified in 
the performance of the genotypes across temperature with 
respect to Sc/o (ρ=0.857, P=0.003; Fig. 2 and Supplementary 
Tables S2 and S3). The correlation coefficient for Sc/o across 
temperature was lower but still significant when genotypes 
were grouped according to rbcL (ρ=0.503, P=0.002; Table 2). 
To compare Sc/o across temperatures, the respective ranks 
of individual genotypes were added up and compared (see 
Supplementary Tables S2 and S3). This revealed that B. dis-
tachyon (sum of ranks=2), Ae. tauschii (sum of ranks=8), 

T.  monococcum (sum of ranks=8), Ae. cylindrica (sum of 
ranks=9) and Ae. triuncialis (sum of ranks=10) maintained 
their ranking much better than Cadenza (sum of ranks=28) 
across different temperatures.

A positive correlation was observed between Rubisco 
Vc and Kc for all 25 genotypes, with this correlation being 
stronger at 35 °C (r=0.798, P<0.001) than at 25 °C (r=0.372, 
P=0.062) (Fig.  3). Rubisco from two genotypes (Ae. cylin-
drica and H.  vulgare) appeared to have superior catalytic 
properties at 25  °C, possessing higher Vc and lower Kc val-
ues than Cadenza. From these, only Rubisco from H. vulgare 
retained superior properties at 35 °C compared with Cadenza, 
which performed remarkably well at this higher temperature. 
A strong positive correlation was found between Vc and Vo at 
25 °C (r=0.726, P<0.001), while a moderate negative correla-
tion was found between Vc and Sc/o at both temperatures (r=–
0.428, P=0.029 at 25 °C and r=–0.528, P=0.006 at 35 °C).

Analysis of the rbcL coding sequences (codons 1–463) of 
the 25 genotypes revealed differences relative to the Cadenza 
reference sequence in 12 corresponding large subunit (LSu) 
residues, at positions spanning a number of domains within 
the Rubisco large subunit structure (Table 3). For 11 geno-
types, all of which were either Triticum or Triticale, LSu 
sequences were identical to Cadenza at the amino acid level 
(Table 3 and Supplementary Table S1). Of the remaining 14 
genotypes, each possessed at least one different amino acid 
from the Cadenza LSu. The LSu residue differences K14Q 
and S95N were the most common, and were found to occur 
together in all but one Aegilops species. These two residue dif-
ferences were also found in S. cereale and T. monococcum. In 
H. vulgare, K14Q was the only difference relative to Cadenza 
rbcL. In Ae. cylindrica, in addition to K14Q and S95N, the 
LSu sequence also contained the difference V17A compared 
with Cadenza.

The catalytic efficiency of Rubisco in air (21% O2) can 
be measured as the ratio between the carboxylase turnover 

Fig. 1. Rubisco carboxylation velocity (Vc) at 25 °C (black bars) and 35 °C (hatched bars) in 25 Triticeae genotypes. Data organized in decreasing rank at 
25 °C, except for T. aestivum cv Cadenza, which is shown on the far left-hand side for comparison.
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number and the Michaelis–Menten constant for CO2 (i.e. 
kcat/Kc at 21% O2, Table 2). Rubisco from Ae. cylindrica and 
H. vulgare appeared to have a superior efficiency to Cadenza 
(and other genotypes with the reference LSu sequence) at 
25  °C. Rubisco from H.  vulgare also showed superior effi-
ciency at 35 °C, along with Triticale (Cando).

From the relationship between catalytic efficiency (kcat/Kc 
at 21% O2) and Sc/o it is also possible to identify Rubisco 
enzymes with superior catalytic performance (Fig.  4). In 
general, catalytic efficiency was higher, but Sc/o was lower, at 
35 °C compared with 25 °C. Forms of Rubisco with the same 
LSu sequence (residues 1–463) showed considerable variation 
in their combination of catalytic properties. Rubisco from 
H. vulgare, which only differs from Cadenza by virtue of the 
alternative residue Q14 (K14 in Cadenza), stood out as hav-
ing a promising combination of kcat/Kc and Sc/o at both tem-
peratures. Rubisco from Ae. cylindrica, differing by K14Q, 
V17A and S95N relative to Cadenza, showed promise only 
at 25 °C. Rubisco from Ae. vavilovii showed a similar catalytic 
response, despite the LSu sequence being identical to that 
from a number of other species that did not show such cata-
lytic advantage compared with Cadenza. In B. distachyon, six 
residue changes compared with Cadenza (Table 3) might be 
associated with a higher Sc/o, but at the expense of catalytic 
efficiency (Fig. 4).

The Rubisco catalytic constants measured in vitro at 25 
and 35  °C for Cadenza, Ae. cylindrica and H. vulgare were 
used to assess the theoretical impact on photosynthetic per-
formance of wheat leaves over a range of intercellular CO2 
concentrations, including those corresponding to ambient 
air (c. 210  µbar). This modelling exercise predicted that at 
25 °C photosynthetic rates would be improved by replacing 
wheat Rubisco with the enzyme from either Ae. cylindrica or 
H.  vulgare (Fig.  5A, B). At 25  °C Rubisco from Ae. cylin-
drica showed a maximal increase in assimilation rate of 23% 
(6.3  µmol m−2 s−1) compared with Cadenza at 270  μbar Ci 
(Fig. 5A), while Rubisco from H. vulgare maximally increased 
assimilation rate by 22% (6.7 µmol m−2 s−1) at 300 μbar Ci 
(Fig. 5B). Rubisco from H. vulgare also showed promise for 
the improvement of photosynthesis in wheat at 35 °C, while 
the enzyme from Ae. cylindrica was inferior to Cadenza wheat 
at the higher temperature (Fig. 5C, D).

Discussion

The catalytic properties and primary sequence of the Rubisco 
large subunits (LSu, encoded by rbcL) from 25 Triticeae gen-
otypes revealed diversity relevant to improving wheat pho-
tosynthetic performance in current and projected warmer 
temperatures. In the major wheat producing countries, grain 
filling is accompanied by increasing daytime temperatures 
(Asseng et al., 2015). Within the limits of resources available 
to this study, measurements were taken at an ideal growth 
temperature (25 °C, Nagai and Makino, 2009), and at an ele-
vated temperature at which a pronounced negative impact on 
yield would be expected (35 °C, Duncan et al., 2014). At the 
higher temperature Vc was higher, but Sc/o was lower, which 
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is consistent with previous research (Brooks and Farquhar, 
1985; Tcherkez et al., 2006; Savir et al., 2010; Galmés et al., 
2014b). Differences were observed in the Rubisco response to 
temperature that suggests some acclimation to different geo-
graphical locations.

As reported previously (Savir et al., 2010), a positive cor-
relation between Vc and Kc, the determinants of Rubisco car-
boxylase efficiency, was observed at both temperatures for the 
Triticeae genotypes studied here, indicating that genotypes 
with a high Vc tend to have lower affinity for CO2. The cata-
lytic efficiency of Rubisco in air was a useful tool to identify 
Rubiscos with superior performance. Furthermore, the com-
bined results suggest that all of the Rubisco catalytic proper-
ties, including the specificity factor, must be taken into account 
during the search for forms of Rubisco with improved perfor-
mance in air. This follows from the parameters required for 
biochemical modelling of photosynthetic performance, which 
include Vc, Kc, and Sc/o (=Vc.Ko/Vo.Kc), the latter being used 
to determine the compensation point (Γ*=0.5[O2]/Sc/o) in the 
absence of dark respiration (von Caemmerer, 2000).

In wheat, variation in Vc has been observed across differ-
ent genotypes and it has been suggested that many of the 

catalytic properties of Rubisco are determined by the large 
subunit (Evans and Austin, 1986; Terachi et al., 1987; Kasai 
et al., 1997), which contains the catalytic sites. The rbcL gene 
is chloroplast encoded (Spreitzer and Salvucci, 2002) and the 
chloroplast genome tends to be evolutionarily highly con-
served. However, within the Poaceae, rbcL has evolved at a 
relatively rapid rate compared with other families of flower-
ing plants (Bousquet et al., 1992; Gaut et al., 1992). Since the 
large subunits contribute directly to catalytic function, varia-
tion in this sequence in wheat relatives represents a potential 
source of improved catalytic activity.

The majority of the Triticeae genotypes characterized in 
this study are highly inter-related and this was reflected in 
the similarity of the respective rbcL sequences. Some of the 
observed differences in Rubisco catalytic activity correlated 
with differences in rbcL sequence. For example, differences in 
catalytic properties determined for H. vulgare, Ae. cylindrica, 
Triticale (Cando) and B. distachyon compared with Cadenza 
Rubisco might be associated with their specific rbcL sequences. 
Conversely, differences in catalysis for genotypes with the 
same rbcL sequence (e.g. the Cadenza group represented by 
black symbols or the Aegilops group represented by yellow 

Fig. 2. Specificity factor of Rubisco (Sc/o) at 25 °C (black bars) and 35 °C (hatched bars) in 25 Triticeae genotypes. Data organized in decreasing rank at 
25 °C, except for T. aestivum cv Cadenza, which is shown on the far left-hand side for comparison.

Fig. 3. Relationship between Vc and Kc for Rubisco from 25 Triticeae genotypes at 25 °C (A) and 35 °C (B) in the absence of O2. Regression lines 
indicate the best fit through the data. Correlation coefficients (r) and P-values shown. The data point represented by Triticum aestivum cv Cadenza is 
highlighted by a circle. The area in the graph where Rubiscos with superior characteristics would be found is outlined. Arrows indicate genotypes with 
potentially superior Rubisco properties compared with Cadenza wheat. (i) H. vulgare; (ii) Ae. cylindrica.
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symbols in Fig. 4) may be associated with either changes in the 
extreme C-terminus whose sequence was not determined or, 
more likely, diversity in the small subunit sequence (Guo et al., 
1997; Spreitzer, 2003; Spreitzer et  al., 2005; Ishikawa et  al., 
2011; Cai et al., 2014; Morita et al., 2014). Future studies to 
characterize the exact number and relative expression of small 
subunit genes in wheat and wheat relatives may reveal novel 
avenues for improving Rubisco catalysis and photosynthesis.

When comparing kinetic parameters between species 
grouped by LSu sequence (Table  2), H.  vulgare (difference 
K14Q) ranked highest in Vc at both 25 and 35 °C, with only 
Ae. cylindrica (K14Q, V17A, and S95N) also ranking higher 
than species with the control sequence at 25 °C. Rubisco from 
Ae. cylindrica also had a lower Kc (higher affinity for CO2) at 
both temperatures compared with Rubisco from species with 
the reference rbcL sequence.

When present as lysine, large subunit residue 14 is known 
to be a site of post-translational tri-methylation in many flow-
ering plant species, but not T. aestivum (Houtz et al., 2008). 
Available data show that glutamine is the only alternative res-
idue found at this position (K14Q, Houtz et al., 1989; Houtz 
et al., 1992; Trievel et al., 2003), although the importance of 
this position and its modification remains unresolved (Houtz 
et al., 2008). The results presented here suggest the possibil-
ity that either the amino acid difference itself  (K14Q) or the 
absence of methylation at this position alters Rubisco kinetics 
in a manner favourable to photosynthesis.

The other residue difference common to most of  the 
Aegilops, S.  cereale and T.  monococum, S95N, occurs in 
a poorly conserved region of  the rbcL gene, which is in 
the proximity of  residues known to be involved in inter-
actions with Rubisco activase (Portis, 2003; Portis et  al., 

Table 3. Amino acid differences in the Rubisco large subunit predicted protein sequences for 25 Triticeae genotypes relative to 
T. aestivum cv Cadenza

Residues under positive selection (Kapralov and Filatov, 2007, Galmés et al. 2014b) are indicated with an asterisk. Functional interactions 
described in the literature for these residues as indicated (AS, active site; ID, intradimer interactions; DD, dimer:dimer interactions; RA, 
interactions with Rubisco activase; SSU, interaction with small subunits). Symbols and colours match those used in Fig. 4. na, not applicable. 

Residue change Symbol Interaction Location of residue Species

na ◼ ◆ T. aestivum cv. Cadenza

na ▲ ● T. aestivum SATYN1

T. aestivum SATYN2
T. aestivum SATYN3
T. dicoccon1
T. dicoccon2
T. dicoccon3
T. dicoccon4
T. timonovum

T. timopheevii

Triticale (Talentro)
Triticale (Rotego)

K14Q* ▲ ● N-terminal H. vulgare cv. Lenins

K14Q* ▲ ● N-terminal Ae. tauschii

S95N* ID, RA Ae. juvenalis

Ae. vavilovii

Ae. biuncialis

Ae. triuncialis

Ae. comosa

Ae. uniaristata

S. cereale cv. Agronom
T. monococcum

K14Q* ▲ ● N-terminal Ae. cylindrica

V17A N-terminal
S95N*
G47W ▲ ● ID Strand B Triticale (Cando)

K81R ▲ ● Ae. speltoides

I225T* SSU Helix 2
G10S ▲ ● N-terminal B. distachyon

K21R N-terminal
A91P* RA
I251M* DD, ID, SSU Helix 3
S328A* AS Loop 6
M341I AS, ID Helix 6
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2008; Carmo-Silva et  al., 2014). Recently, this residue 
was highlighted during a search for residues under posi-
tive selection, and it is in proximity to residues involved 
in L2 intradimer interactions (Galmés et  al., 2014b). 

Interestingly, species combining the K14Q and S95N resi-
due differences (but having no other differences) showed 
no consistent catalytic difference compared with the refer-
ence LSu sequence group.

The valine at position 17 is known to be involved in intra-
dimer interactions (Knight et al., 1990; Kellogg and Juliano, 
1997). Rubisco from Ae. cylindrica containing V17A in com-
bination with K14Q and S95N had improved carboxylation 
catalytic efficiency at 21% O2 and 25 °C compared with the 
reference Cadenza (Table 2). This form of  Rubisco was pre-
dicted by modelling to improve photosynthetic performance 
at all CO2 levels relative to Cadenza at 25  °C (Fig.  5A). 
Hence, the influence exerted by the relatively conservative 
Val–Ala (V17A) difference, when combined with K14Q 
(and S95N), may explain the positive impact on Rubisco 
catalysis.

H.  vulgare Rubisco had improved kcat/Kc compared with 
Cadenza, while only containing the K14Q difference. Studies 
in Anacystis nidulans found that a K14Q or K14L mutation 
had no influence on enzyme activity (Kettleborough et  al., 
1991). While the present study did not cover the extreme 
C-terminus of the large subunit, available sequences showed 
a KV extension in that region of the H.  vulgare sequence 
(Petersen and Seberg, 2003), which may be relevant to its 
superior catalysis in comparison to Cadenza. Confirmation 
of this hypothesis would be valuable, given that modelling of 
the photosynthetic response to intercellular CO2 predicts a 
benefit at both 25 and 35 °C by replacing the native Rubisco 
with the barley enzyme.

Fig. 4. The relationship between the catalytic efficiency of Rubisco at 21% 
O2 (kcat/Kc, µM s−1) and the specificity factor (Sc/o) of Rubisco at 25 °C 
(circles) and 35 °C (triangles). Each colour denotes an rbcL sequence (as 
per Table 3) and Cadenza wheat (C, used as reference) is represented by 
the diamond and square at 25 and 35 °C, respectively.

Fig. 5. Modelling photosynthesis at 25 °C (A, B) and 35 °C (C, D), to demonstrate the benefit of replacing Rubisco of T. aestivum cv Cadenza (red) with 
Rubisco from Ae. cylindrica (A, C; blue) or H. vulgare (B, D; blue). Rubisco-limited (Ac, solid lines) and RuBP regeneration-limited (Aj, dashed lines) rates of 
net CO2 assimilation (A) were derived using the model of Farquhar et al. (1980) and the Rubisco catalytic constants measured in vitro for each genotype. 
Blue shading indicates where Rubisco from the test genotypes showed higher assimilation rates than native Cadenza Rubisco.
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As with Ae. cylindrica (Colmer et al., 2006), barley is con-
sidered to be a valuable genetic resource for improving stress 
tolerance in wheat (Dulai et  al., 2011; Molnar-Lang et  al., 
2014). Barley–wheat hybrids have been investigated before 
(Kruse, 1973; Malik et al., 2011; Dulai et al., 2011; Rodríguez-
Suárez et al., 2011; Pershina et al., 2012; Zou et al., 2012), but 
without a focus on yield improvement. One notable exception 
is the development of Tritordeum, which is a hybrid between 
wild barley (H. chilense) and durum wheat (T. turgidum ssp. 
Durum, haploid genome BA; Martin et al. 1996), which has 
been commercialized (http://www.agrasys.es/). Tritordeum 
has particularly high protein content and has shown toler-
ance to drought conditions in field trials (Martin et al., 1999; 
Villegas et al., 2010). While Tritordeum does not include the 
D genome present in T. aestivum, data in this study suggest 
that this hybrid warrants further investigation with respect to 
Rubisco kinetics and yield potential.

This study has identified residues that warrant further 
study, e.g. by mutagenesis. Well targeted single amino acid 
changes can have a dramatic impact on catalytic performance 
(e.g. Whitney et  al., 2011). However, at present there is no 
available expression system to test the effect of amino acid 
substitutions on Rubisco from monocots. An alternative, and 
possibly more promising approach, which utilizes available 
technology, is the introgression of traits through wide-cross-
ing of Triticeae genotypes.

Conclusion

The Rubisco catalytic properties determined for 25 genotypes 
showed that variation exists even amongst closely related gen-
otypes. Rubisco from Ae. cylindrica and H. vulgare showed 
promising catalytic properties that should be explored in the 
context of improving photosynthesis, and ultimately yield, in 
wheat. Ideally, this could be carried out by crossing a number 
of the species examined here with bread wheat and studying 
the resulting plants with respect to Rubisco catalytic activ-
ity, photosynthesis and yield. This study supports the case for 
investment in genetic resource screening for photosynthesis-
related characteristics.
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