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Abstract—Adaptive bitrate selection adjusts the quality of
HTTP streaming video to a changing context. A number of
different schemes have been proposed that use buffer state in
the selection of the appropriate video rate. However, models
describing the relationship between video quality levels and
buffer occupancy are mostly based on heuristics, which often
results in unstable and/or suboptimal quality. In this paper,
we present a QoE-aware video rate evolution model based on
buffer state changes. The scheme is evaluated within a real-
world Internet environment, where it is shown to improve the
stability of the video rate. Up to 27% gain in average video rate
can be achieved compared to the baseline ABR. The average
throughput utilisation at a steady-state reaches 100% in some
of the investigated scenarios.

Keywords-HTTP Adaptive Streaming, Adaptive Bitirate Se-
lection, Buffer modelling

I. INTRODUCTION

Nowadays a typical video streaming service is expected
to serve a variety of platforms e.g., smart phones, web
browsers, TVs, etc. Each of these platforms has specific
requirements with respect to transmission and video quality.
Nonetheless, regardless of the access device, users want the
best viewing experience possible. HTTP Adaptive Streaming
(HAS) is the most successful technology so far that allows
content providers to cater for the requirements of these
multitude of devices and different contexts. The process
through which a HAS client chooses a video rate is called
Adaptive Bitrate Selection (ABR). The first generation of
ABRs relied on throughput estimation and selected the
highest video rate lower than the measured throughput. It
later became clear that throughput estimation alone is not
a sufficient parameter for designing efficient ABR. This is
because an accurate bandwidth estimation above the HTTP
layer is difficult to achieve [1]. Consequently, any video rate
selection algorithm that solely depends on such a relatively
inaccurate estimate results in unnecessary rebufferings [2],
undesirable variability of video rates [1] and sub-optimal
video quality [1].

Various attempts have been made to improve some of
the identified issues of throughput-based ABRs by supple-
menting throughput measurements with information about
the playback buffer [3]. However, in the absence of a sys-
tematic model of the relationship between buffer occupancy
and available video rates, researchers resorted to heuristic
according to which the playback buffer is simply divided into
a number of segments separated by thresholds. The problem

with this design, is that, many of these algorithms attempt to
maintain the buffer at the so-called optimal level, but since
the buffer size, the segmentation and the thresholds are at
best conjectured, the ABRs are forced to make a number of
unnecessary trade-offs.

It has been shown in [2] that by basing ABR solely
on playback buffer occupancy, a client can choose the
highest quality level without the fear of an increase in
rebuffering. However, a continuous increase in the video rate
may not always enhance the quality of experience (QoE).
For example, when the video quality is relatively high, an
increase in the current rate does not necessarily translate into
an improvement in the user-perceived quality [4], [5].

To ensure that the video rate evolves in a way that
optimises QoE, there is a need for a rate evolution map
that captures the desirable pattern of video quality transi-
tion. This paper will concentrate on the following research
question: If we have a QoE aware model of the relationship
between the playback buffer state changes and the available
video rates, how much improvement in user-perceived video
quality can be achieved?

In order to answer this question, this paper first identifies
the patterns of video quality changes that are known to affect
QoE, and then develops a QoE-aware model of the rate map
that combines all stages of video rate evolution, while at
the same time incorporating an optimal number of patterns
that improve user-perceived video quality. We demonstrate
how the proposed model can be used in practical systems
by modifying selected ABRs. Experimentation over the
Internet using both wired and wireless connections, based
on objective QoE metrics, shows the performance of the
scheme.

The rest of the paper is structured as follows: Section
II presents background and the related work; Section III
discusses the QoE aware evolution trajectory and the system
model; Section IV details the methodology and experimental
set-up used; Section V covered result presentation and finally
the paper is wrapped with conclusion in section VI.

II. BACKGROUND AND RELATED WORK

HTTP adaptive streaming services usually divide a video
file into a number of chunks of equal temporal size with each
chunk encoded in multiple bitrates. A client progressively
requests a relevant chunk. The quality of a request is based



on the client’s measurement of the available resources. The
ABRs that use throughput estimation as their main factor
are called throughput-based ABRs, while those that solely
rely on buffer occupancy are called buffer-based ABRs.

Due to short-term throughput fluctuations, as a result of
the TCP congestion control mechanism and the difficulty
in accurately estimating throughput above the HTTP layer,
throughput-based algorithms use a weighted average to
smooth-out the estimated network capacity [3]. However,
using historical data impedes the responsiveness of an algo-
rithm [3]. A number of measurement studies have shown that
throughput-based algorithms are unstable [6], unnecessarily
rebuffer [1], request sub-optimal video rates [3], and are
unfair [1].

A significant amount of research is focused on how to
improve the throughput measurement for ABR. The authors
of [6] propose a probe and adapt technique. The algorithm
mimics the congestion control of TCP but at the application
layer. It uses TCP throughput as an input only when it is an
accurate indicator of the fair-share of bandwidth. In the same
vein, the authors of [7] use machine learning techniques
to predict the achievable throughput by using network state
information.

In order to improve some of the downsides of the
throughput-based services, various researchers have used
the buffer level as a feedback signal to complement the
throughput estimation [8]. Tian and Lui [7] went further by
using the playback buffer state change as the key feedback
signal. Usually, most of the existing ABRs divide the whole
buffer into segments: S0, S1, ... < Sn, which are separated
by thresholds: B1 < B2 < ... < Bmax. This forced
ABR designers to use heuristic in deriving almost everything
regarding buffer, for instance, the maximum buffer size, the
respective sizes of the buffer segments, how much buffer is
required for the ramping-up period, etc. Consequently, the
ABRs are forced to make a number of, perhaps, false trade-
offs. An oft-cited trade-off is between video quality and the
amount of rebuffering.

Huang et al. [2] propose an algorithm that completely
relies on buffer occupancy for video rate selection. The
model employed separates the buffering from the steady-
state phase, which obviously creates a disconnected flow.
Furthermore, at the start-up period — called reservoir, the
lowest available video rate is downloaded, hence, there is
a substantial loss in video quality. During the ramping-up
period, quality was linearly incremented. However, in [9]
it has been shown that the probability of buffer starvation
decreases exponentially with respect to the initial buffer
level. Therefore, a linear evolution of the video quality when
ramping-up will unnecessarily prolong the convergence time.
It is also worth noting that an uncontrolled increase in
video rate may not always enhance QoE. In [4] it was
demonstrated that when video quality is high, an increase
in the current rate does not necessarily translate into an

improvement in the user-perceived quality. Nevertheless the
paper made an important observation: when buffer is used
as the main factor of an ABR, the trade-off between video
quality and the amount of rebuffering is unnecessary.

Earlier, Mok et al. [5] have studied the effect of video
quality transition on QoE. They found that a sudden drop
in video rate has a negative impact on user experience. To
improve QoE, they opted to switch down the video rate to
an intermediate level even when the target video level is
lower. The problem with this design is that the user will be
downloading higher bitrate than the download rate, hence
increasing the risk of buffer starvation, especially since
both the intermediate level and the maximum buffer size
are heuristically determined. While this work narrowed its
investigation to a pattern, in this paper we pay attention to
the whole sequence of the trajectory through the space of
all possible system states.

III. SYSTEM MODELLING AND IMPLEMENTATION

A. Quality Evolution Trajectory

At any given time t after the video streaming started the
buffer may contain an array of chunks of different quality
levels. However, chunks of different video rates generally
have different sizes in bytes. We shall assume that all chunks
contain an equal amount of video time V in seconds. Since
there is no direct mapping between buffer size in bytes and
video time, we calibrate buffer in time i.e. by the second.
This has also been assumed in [2], [7].

At the beginning of a streaming session (t = 0), a
server presents to a client a set of different video rates
Q = {q0, q1, q2...qn}, with |Q| = n + 1. Let us suppose
q0 < q1 < ... < qn, therefore q0 is the minimum quality
level (referred here also as qmin) and qn is the maximum
available quality level (called qmax). Suppose Bt is the
buffer occupancy at time t and Bmax is the maximum buffer.
Let ĉt denote the estimated throughput at time t with C(t)
being the system capacity (i.e., ĉt ≤ Ct).

Usually, after the receipt of the media description file at
t0, playout buffer is often empty (Bt0 = 0), a client starts
requesting a chunk with quality level qmin so as to minimise
the start-up period. However, a prolonged download of qmin

will negatively affect the user experience. Hence, the client,
immediately, starts a gradual improvement of the quality of
the requested chunks as soon as it receives the initial chunk.
Therefore, the download of chunk i > 1 with video rate
qk , where {k ∈ n : 0 ≤ k ≤ n}, starts at time tsk and
finishes at tek using a video rate selection function R(t),
this continues until the last chunk is requested. Let us also
assume that the rate at which the client’s requested video rate
evolves with respect to time dR(t)/dt is g′(R). Assuming
that C(t) > R(t) = qmax, therefore g′(R) is positive at
any time after the start of streaming except when R(t) =
qmax and Bt = 0 in which case g′(R) = 0. To ensure that
the client gets its fair share of the available bandwidth, we



rely on the recommendation of [2], which states that highest
rate is selected only when buffer is full or nearly full (i.e.,
R(t) = qmax when Bt → Bmax).

To avoid high amplitude variations (e.g. an abrupt drop
of the video quality), which are known to be detrimental
to QoE [5] and to minimise the negative impact of Recency
Effect [10], transition decision to qk+1 should depend on qk.
Furthermore, since users are not known to be appreciative of
increase in video quality when video rate is relatively high
[4] we recommend a non-linear g′(R). However, since it is
not yet clear at what point users begin to be less receptive to
the quality increase, we suggest that after reaching qmax/2 a
client should start reducing the rate at which it increases its
video quality. The trajectory of g′(R) that we deduced from
the foregoing discussion is a concave path pinned at two
points q = 0 and q = qmax with the amplitude at qmax/2,
this can easily be described by a quadratic function with
q = 0 and q = qmax and a positive constant a.

g′(R) = aq(qmax − q) (1)
B. Modelling

Knowing that at time t0 R(t) = q0 and Bt0 = 0, how can
we predict video quality (qk) to be streamed at ti, where
i > 1, in conformance with the desired trajectory, given that
Bti = Bi for {Bi : Bmin ≤ Bi ≤ Bmax}.

1) Continuous Rate: We first look at a case where R(t)
results in any value between qmin to qmax. With this
assumptions we can model R(t) as a continuous function
1.

Clients usually infer C(t) from ĉ(t) for the purpose of rate
selection. Now, suppose c(ti) is the estimated throughput
when t = ti derived from the average of h number of
chunks, we have

c(ti) =
1

ti − ti−h

∫ h

i−h
ĉ(t)dx.

Let us assume that a HAS client requests chunk i imme-
diately after chunk i − 1 is completely downloaded except
when the buffer is full. In this case it waits for V seconds
(chunk size) before sending a request. Except during the off
period, the playback buffer drains at the one buffer second
every real time second and fills at C(t)/R(t), therefore the
rate at which buffer changes is

dB(t)

dt
=
C(t)

R(t)
− 1 (2)

In most contexts, C(t) is time-varying, therefore, if the
client is to avoid buffer starvation, the output of R(t) has to
adapt to this changing environment with time.

dR(t)

dt
=
dR(t)

dB
.
dB

dt
(3)

We want R(t) to closely match C(t), therefore dB(t)
dt ≈ 0.

From equation 1 and 3

1This is without loss of generality, in fact, in the next section we drop
this assumption.

dR(t)

dt
=
dR(t)

dB
= aq(qmax − q) (4)

dR(t)

q(qmax − q)
= adB

after simplification using partial fraction method and using
R(t) = q we have∫

1

q
dq +

∫
1

qmax − q
dq =

∫
aqmaxdB (5)

By integrating Equation 5 we have

ln q − ln |qmax − q| = aqmaxB + e (6)

Recall we start streaming with a minimum quality level,
therefore q = qmin and B = Bt0 . Using this information
to evaluate e.

e = ln
qmin

qmax − qmin
− aqmaxBt0 (7)

Substituting equation 7 into 6 and simplifying we have

ln
q

qmax − q
− qmin

qmax − qmin
= aqmax(Bt −Bt0) (8)

finally solving for q and (Bt − Bt0 ≈ Bt), since {Bt0 :
0 < Bt0 ≤ V }

R(t) =
qmax

1 + [ qmax

q0
− 1]e−aqmaxBt

(9)

lim
B→∞

R(t) = qmax (10)

From Equation 10 it can be deduced that the limiting
factor of R(t) is qmax, in other words the maximum value
q can reach assuming an infinite buffer size is qmax. This
means after reaching qmax any increase in the buffer size
does not result in a commensurate rise in q. Therefore, at
this point we have the Bmax.

2) Discrete Rate : By dropping our assumption about the
continuous nature of video rates, the video quality has to be
chosen from a finite discrete set. Furthermore, q can only
move from one valid value to another. We assume the quality
level change is done only between adjacent video rates, that
is, qk can only move either to qk−1 or qk+1.

The model is now modified to reflect this. To change a
video rate a buffer must have grown or contracted by a
certain buffer distance. Precisely, to change quality level we
need ∆Bk = R−1(qk+1)−R−1(qk). When ∆Bk is positive
the quality level is going to be increased and when it is
negative the quality level going to be reduced.

C. Implementation

As a proof of concept, we apply the proposed model
within the following two selected rate adaptation algorithms:
the buffer-based algorithm proposed by Huang et al. [2], and
the throughput-based ABR by Miller et al. [8].

When modifying the implementation of the algorithm
proposed in [2], we do not change anything except that we
drop the reservoir. Hence from the start, the algorithm now



Figure 1. Experimental Set-up

relies on our model (for a detail discussion of the algorithms
see [2]).

To retrofit the model into [8], we had to slightly mod-
ify the algorithm. Though none of the changes affect the
throughput related logic. In order to closely map the original
buffer dynamics, we divide the playback buffer into three
phases. The first phase is when video rate change is slow,
with a threshold at Bqt1 . The next phase is when the video
rate grows exponentially, which ends at Bqt2 . The third is
when video quality level increase reaches saturation, which
starts at Bmax. The threshold can be calculated thus:

Bqtx = R−1(qmin + β(qmax − qmin))

For x = 1 the β = 0.1 and for x = 2 the β = 0.73.
IV. PERFORMANCE EVALUATION

This section presents the experimental set-up and the
performance evaluation metrics

A. Experimental Set-up

The test-bed set-up is shown in Fig. 1. The client is
connected to the Internet either via an Ethernet switch or
EE’s 3G networks. The web server is located at the Alpen-
Adria-Universität Klagenfurt, which hosts the Big Buck
Bunny dataset [11].

All the players used are implemented in Python, and run
on top of Ubuntu 12.04.2 LTS. The host that runs the players
also hosts: Dummynet, tcpdump, lsof, and Wget.

Throughout the wireline experimentation, we limit the
maximum downstream available bandwidth to 6mbps. While
for the wireless, we conduct a “blue-sky” test. For all
players, we set Bmax = 240s, and for the player running
the Huang et al. [2] original algorithm, we set its reservoir
to 40s. The player using the original throughput-based
algorithm retain the same configurations as in [8]. We found
through experiments the values between 0.05 to 0.1 are
appropriate for the growth constant a of the proposed model,
therefore, we use a = 0.05 throughout. Each experiment was
conducted 10 times and the average result is used.

B. Evaluation Metrics
Research in the field of QoE is still ongoing, and no

definite model has so far been established. However, the
following objective QoE metrics are used to evaluate the
model.
• Rebuffers: this is the total number of video freeze per

streaming session.
• Average video rate: is calculated as t1q1+t2q2...tnqn

tn−t1 and
measured in kb/s

Table I
ADAPTATION FOR VARIABLE BANDWIDTH

Players Maximum
Video rate
(kb/s)

Average
Video
rate(kb/s)

Throughput
Utilisation
(%)

Original[2] 4000 2982 67

Modified[2] 6000 3827 100
Original[8] 4000 2212 67
Modified[8] 5000 2645 85

• Instability: is the fraction of successive chunk requests
by a player in which the requested video rate changes
[12], measured at the steady-state.

• Utilisation of available network resource: is calculated
by dividing of average video rate by the average net-
work capacity [7].

• Convergence time: is the time taken to settle at the
sustainable video rate.

V. RESULTS

This section discusses the result of the various test-bed
experiments conducted in both wired and wireless environ-
ments.
A. Client with Wireline Access

1) Variable Bandwidth: these experiments are aimed at
demonstrating the elasticity of the proposed model, i.e. how
it adapts to a rapidly changing bandwidth. As can be seen
from Fig. 2, the streaming started with a maximum available
bandwidth of 6mb/s, after 80s the bandwidth dropped to
2mb/s at 150s it dropped again to 900kb/s, finally at 270s
it rose back to 6mb/s and stayed until the end.

The first thing to note is that the video rate of segments
downloaded by the player employing the proposed model
(Fig. 2(b) and 2(d)), are able to converged at a relatively
higher video rate, in fact, for the modified buffer-based
player, it converged at exactly the system capacity (see Fig.
2(b)). Table I shows that the modified players achieved
a maximum video rate of 6mb/s and 5mb/s against the
4mb/s for the unmodified players. This translated to 100%
and 85% throughput utilisation, which is an improvement
of 33% and 18% utilisation for the original buffer-based
and throughput-based players respectively. Furthermore, we
recorded an improvement in the video rate of 854kb/s in
the case of the buffer-based player and 433kb/s in the case
of the throughput-base player.

2) Video Rate Convergence: we investigated two scenar-
ios: when bandwidth suddenly rises and when it instantly
drops and both cases stay there for the remaining duration
of the streaming session. Fig. 3 shows the former, while Fig.
4 presents the later scenarios.

Fig. 3(a) shows when the bandwidth suddenly increases
at 120s both players running the buffer-based algorithm are
able to converge at the right quality level, albeit at different
times. While it only took the player using the proposed
model 65s to reach the convergence state, it took the original
player three times longer (i.e. 165s). Furthermore, from Fig.
3(b) it can be seen that by using the proposed model we can
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Figure 2. Video quality change, for both the original and the modified algorithms, operated in an environment with changing bandwidth.

reduce the convergence time by up to 80s in comparison to
the original throughput-based player.

However, a player needs not to always converge to a high
video quality level. It can as well converge to a lower quality
level. Fig. 4 presents such a scenario. When the bandwidth
suddenly drops, it takes the player using the original buffer-
based logic longer to converge even though it is coming
from a lot lower quality level (see Fig. 4(a)). That is 102s
against 146s for the unmodified buffer-based algorithm.

Furthermore, Fig. 4(b) shows when the bandwidth sud-
denly drops, the player running the unmodified throughput-
based algorithm was so aggressive in its reduction of the
video rate that the player had to reach the lowest available
video quality before it later stabilises at a sub-optimal rate.
Such a large amplitude in video switch in detrimental to
QoE. However, the player running the proposed model was
much more conservative in its reduction and was able to
converge at the appropriate quality level.
B. Client with Wireless Access

As can be seen from Fig. 5 the throughput of the wireless
network is highly fluctuating, which makes it difficult to
ascertain the actual capacity of the link. Therefore, we leave
out any test on utilisation. From Fig. 5(a) and 5(c) the
maximum quality level attained by the original players are
600kb/s and 700kb/s respectively. However, the modified
versions of the players are able to achieve 1500kb/s each
(see Fig. 5(b) and 5(d)). Importantly, this helps the modified
players achieve 45% increase in the average video quality.
The summary results are presented in Table II.

Finally, a stability test for the players is conducted (see
Table II). Both the original throughput-based and buffer-
based players suffer a high degree of instability, at the
steady-state the players are respectively 12.6% and 11.8%
unstable. However, the instability is significantly reduce,
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Figure 3. Video quality convergence, for both the original and the modified
algorithms, when bandwidth increases.

Table II
ADAPTATION IN WIRELESS ENVIROMENT

Players Maximum
Video rate
(kb/s)

Average
Video
rate(kb/s)

stability (%)

Original[2] 600 567 12.6
Modified[2] 1500 1247 2.6
Original[8] 700 536 11.8
Modified[8] 1500 1239 4.0

when the proposed model is used, to 2.6% for the buffer-
based player and 4.0% for the throughput player.

VI. CONCLUSION

The task of an adaptive bitrate selection module of HTTP
adaptive streaming is to ensure that the quality of video
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Figure 4. Video quality convergence, for both the original and the modified
algorithms, when bandwidth.

is appropriate to its context. Selecting which resource is
used as a situational indicator, in video rate adaptation, is
context dependant, however, it is difficult to build an ABR
that maximises QoE without the knowledge of buffer state.
Relying on heuristic for such an important aspect of ABR, as
is currently the practise, is not the best option. In this paper,
we propose a QoE-aware model of the relationship between
video quality and buffer state changes. The model is able
to find the optimal buffer requirement for any given set of
video quality levels. The scheme is evaluated within a real-
world Internet environment and the result is encouraging. In
future we plan to conduct more tests and incorporate more
factors into the model, for example power level.
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