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Abstract—Networked infrastructures underpin most social and
economical interactions nowadays and have become an integral
part of the critical infrastructure. Thus, it is crucial that hetero-
geneous networked environments provide adequate resilience in
order to satisfy the quality requirements of the user. In order to
achieve this, a coordinated approach to confront any challenges is
required. However, there is additional complexity since challenges
manifest themselves under different circumstances in the various
infrastructure components. The objective of this paper is to
present a multi-level resilience approach that goes beyond the
traditional monolithic resilience schemes that focus mainly on one
infrastructure component. The proposed framework considers
four main aspects, i.e. users, application, network and system.
The latter three are part of the technical infrastructure while
the former profiles the service user. Under two selected scenarios
this paper illustrates how an integrated approach coordinating
knowledge from the different infrastructure elements allows a
more effective detection of challenges and facilitates the use of
autonomic principles employed during the remediation against
challenges.

Index Terms—Resilience, Autonomic Networks, Network Ar-
chitectures, Anomaly Detection, Security

I. INTRODUCTION

Computer networks constitute the backbone of today’s in-
formation society by providing connectivity between people
as well as ICT (Information Communication Technology)
systems. Consequently, they are increasingly mission-critical,
especially when used as part of always-on services and appli-
cations (e.g., Web-services, Internet Television, Cloud appli-
cations, etc.), domain specific safety-critical services (e.g., Air
Traffic Control (ATC) networks), critical management services
for operators (e.g., Utility networks), and critical real-time
financial services (e.g., stock-market systems). The security
and resilience of such infrastructures is therefore paramount
but at the same time becomes increasingly difficult to achieve.

Hence, the development of resilience mechanisms has to be
a prime objective within the design and engineering process of
any system or network [1]. However, in the past, availability
was the main concern in the design and operation of computer
networks [1] and less emphasis was placed on resilience
aspects. Moreover, within the actual deployment of networks
and ICT systems resilience aspects have also often been treated
as add-on and resilience mechanisms have been implemented
without reference to a generic resilience framework [1]. Trying

to increase system resilience later by deploying such a generic
resilience framework leads to monolithic solutions that mainly
consider a part or a particular communication layer only.
Thus, they usually focuses on a particular resilience sub-
domain (e.g., security [2], or survivability [3]) and do not
look at the overall system resilience. More advanced resilient
schemes that propose cross-layering methods tend to neglect
higher-layer features that express the explicit requirements
and characteristics of service users. Hence, their formulation
results in one-dimensional performance-oriented solutions that
strictly focus on traditional network performance metrics (e.g.
throughput, delay, jitter) but avoid mapping these metrics onto
the overall end-user QoE and QoS. Therefore, such approaches
lead to what we consider "single-level" approaches.

In this paper we first present a multi-level resilience frame-
work that allows the construction of case-specific resilience
architectures that consider the various infrastructure levels
and further allowing the construction of user related meta-
data to better control and identify challenges. User-specific
requirements are considered in order to ensure that QoE
objectives related to a given resilience strategy are met. Due
to the multi-level persona of this framework it overcomes
the drawbacks of the traditional monolithic, single system
approaches as currently employed in some ICT infrastructure.
This is achieved by the joint analysis of challenge indicators
and co-ordinated detection actions that also help to coordinate
the remediation process at the different system elements.

The remainder of this paper is structured as follows: Sec-
tion II is dedicated at presenting the concepts behind our
resilience framework and Section III illustrates the practical
aspect of our framework within two case studies. Finally
Section IV concludes and summarises this work.

II. MULTI-LEVEL (ML) RESILIENCE FRAMEWORK

As evidenced by Fig. 1, the most important functional block
within our design is the adequate representation of a user of
an infrastructure. Thus, we aim at describing a user based on
three levels of observation; the application/service, network
and system levels. Our design argues that measurements of
features related with any of these three levels is feasible
under the assumption that a given resilience architecture that



Fig. 1. Conceptual representation of Multi-Level Resilience

follows our framework will be deployed under standardized
monitoring and measurement methods (e.g. SNMP, NetFlow,
syslog etc.).

A. Self-awareness & self-defence

All gathered information from all the three different levels
will be pre-processed at the management plane and further
analysed on the knowledge plane. Fig 2 provides a visual
example of how initially a client is meta-represented by the
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Fig. 2. An example of representing a single user based on the three levels
of system, network and application/service.

three different levels within the knowledge plane. The exem-
plar profiling case of Fig 2 illustrates the scenario of a ramp-up
behaviour in all the three levels of observation due to the byte
consumption caused by a particular application/service.

Given an initial user (or group of users) profiling, the
knowledge plane will enforce a dedicated component within
its internal structure to perform a statistical characterisation
of a user’s activities within the observational timeframe.
Apart from developing a user-specific profile, this statistical
characterisation will also be aggregated for all the users
and further correlated with the monitoring and measurement
components of the control and the data plane. Hence, an
overall characterisation of the environment is achieved and
self-awareness is ensured.

Naturally, the overall characterisation complies with a par-
ticular mathematical model which is in a position to determine
the levels of normality, thus detecting abnormal characteristics
in real-time. Under the scenario of detecting an anomalous
pattern, components within the management plane will be in
charge of informing the knowledge plane. Consequently, the
knowledge plane will update the overall statistical characteri-
zation of its profiling on a set of users and further trigger fine-
grained analysis in order to diagnose the exact cause of the
anomaly. Given the outcome of this fine-grained analysis, the
knowledge plane will inform the management plane in order to
trigger remediation techniques and dimension the environment
resources accordingly. Thus, the property of self-defence is
accommodated.
B. Self-management & self-optimization

Remediation of challenges is resulted after a coordinated act
by the management and knowledge planes. In particular, the
management plane is the actual co-ordinator at the onset of an
event. Thus, the decision regarding the type of anomaly pro-
duced by the knowledge plane is sent over to the management
plane. Subsequently, the management plane initiates a policies
component that holds all the rules regarding the optimisation
and management procedures that need to be taken within the
ICT environment.

According to the rules provided by the policies compo-
nent, immediate policies regarding traffic engineering actions
(e.g. refined routing decisions, blocking) will be triggered
and further received by the control plane. Eventually, the
internal mechanisms of the control plane will re-configure
the associated settings on the hardware (e.g. routers, sensors)
and subsequently update the forwarding schemes within the
data plane. Given all the remediation operations described,
the properties of self-management and self-optimization for
the ICT environment are empowered by our generic multi-
level resilience framework.

III. ML RESILIENCE FRAMEWORK : IN PRACTISE

A. Case Study 1: ML Resilience over the Cloud for Malware
Detection

Based on the generic ML resilience framework we have
derived a prototype resilience architecture explicitly for the
identification and detection of malware over cloud environ-
ments where its detailed description can be found in [4].
The overall architecture of our approach can be seen in
Figure 3 where for simplicity only three nodes are shown
and the network connections between nodes are omitted.
Each node has a hypervisor, a host Virtual Machine (VM)
and a number of guest VMs. Within the host VM of each
node there is a dedicated Cloud Resilience Manager (CRM)
which comprises one part of the wider detection system.
The software components within the CRM are the Network
Analysis Engine (NAE), the System Analysis Engine (SAE),
the System Resilience Engine (SRE) and the Coordination
and Organisation Engine (COE). Nevertheless, the case study
of this section is explicitly addressing the operations of the
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Fig. 3. Resilience Architecture over a Cloud Scenario for Malware Detection

NAE and SAE engines using the example of characterising
and detecting the Kelihos malware [5].

Both SAE and NAE are composed by mechanisms that
automate all the processes referring to the pre-processing of
either network or system data. Their pre-processing outputs
are subsequently fed as the primitive input for the analysis
algorithms which are also integrated and they employ Principal
Component Analysis (PCA) [6] and statistical timeseries on
the jointly gathered system and network features. Hence the
produced outputs are also considered as important aiding
elements towards the establishment of the self-awareness and
self-defence properties where the former enables the adequate
characterisation of the three levels of network, system and
application/service and the latter achieves malware detection.

In our experiments, we aimed at assessing the fundamental
property of VM/service “live” migration of an HTTP server as
initiated in todays’ cloud environments and further investigate
on how malware can be detected in such a scenario within
a controlled experimental testbed. The experiment lasted for
20 minutes and the Kelihos malware strain, Trojan.Kelihos-5,
was injected on the 9th minute in one of the HTTP servers
whereas on the 10th minute the infected VM was migrated to
the second ”clean” physical host as manually commanded by
the management host. Throughout the whole experiment there
was the consistent aggreagted monitoring of system-related
features (e.g. counts of processes) and network packets for all
VMs on both physical hosts from the hypervisor level using
custom monitoring scripts embedded in the NAE and SAE.
Finally, the aggregated system and network features where
subsequently fed to our implemented PCA algorithm in order
to firstly chartacterize the joint dataset and further pinpoint
possible anomalous characteristics.

1) Case Study 1: Results: As evidenced by Fig. 4, each
joint dataset is divided into 3-second bins, and each bin
is converted into a feature vector per each VM node. The
combined feature vector was submitted to PCA to obtain
the k-subspace which corresponds to the normal behaviour
of the traffic, and spans from a principal component pc1,
through pck, whereas the remaining subspace with the less
significant principal components (i.e, pck+1 through pcm)
maps the anomalous behaviour with respect to the variance of
the dataset. Subsequently, we compute a distance metric that
describes the magnitude of the projection of the original data

points into the anomalous subspace to quantify their malicious
behaviour which we use to produce the anomaly score graph
(ASG) in Fig. 4. In practise, this plot that is generated by
the NAE is a time-series representation which summarizes the
anomalous score of each bin in the trace and thus indicates
the level of how anomalous is each tested timebin with respect
to the other measurement bins. Overall, the PCA performed
extremely well and was able to show a sharp increase on the
ASG plot as demonstrated by Fig. 4 as soon as the Kelihos
malware was injected (≈ 160th bin in Fig. 4). Moreover,
the ASG plot also shows that the PCA algorithm could also
identify anomalous activity after the VM migration performed
right after the 200th time bin.

B. Case Study 2: Multi-level Resilience in Access Networks
for Characterization & Detection of Systematic Downloads

Given the properties of the ML resilience framework we
have derived timeseries analysis formulations in order to
adequately detect systematic downloads that have become
commonplace and consequently lead academic institutional
campus networks being blacklisted.

In this work, the number of requests per second made to a
specific publisher as obtained from the proxy logs captured at
a proxy server on the Indian Institute of Technology Madras
campus is used to model the time series. In order to build
robust models, the data is obtained for 106 such publishers
where each one is represented by a different timeseries since
license agreements with each is likely to be different. In
particular we have considered the number of downloaded files,
the files downloaded at random intervals, the file sizes and
the random ordering of files of different sizes as our data
features. We formed the timeseries by computing the number
of requests at different polling intervals varying from 5-30
seconds in 5 second bins. The time-dependent AR process
was modelled with a framelength of 3 minutes and we further
computed the AR process roots.

1) Case Study 2: Results: The type and order of our model
is obtained by first considering the autocorrelation function
(ACF) of the time series. It was observed that the ACF of the
differenced timeseries was stationary and could be modeled as
an Auto Regressive (AR) process

∆(xn) = yn = xn − xn−1 (1)
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Fig. 4. Output of the resulting PCA-based anomaly detection as jointly performed on network and system data that were monitored by the NAE and SAE.

yn =

p∑
k=1

akyn−k + en (2)

where en is the prediction error assumed to be a generated
by a white noise process. In parallel, the order of the model
is estimated again from the ACF of the differenced series as
shown in Figure 6. The differencing operation aims to address
the non-anomalous structural breaks disclosed within network
data where average statistics can vary depending upon the
downloading time (prime versus nonprime time).
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Fig. 5. Autocorrelation function of differenced data before (left) and after
differencing (right) in order to estimate the order of the model regarding a
publisher(s) timeseries.
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Fig. 6. Roots of the time-varying AR model during periods of both systematic
downloads (clusters A,B) and normal downloads (cluster C)

We have identified a specific root that characterised the
anomaly and was obtained by using ground truth data (i.e.
the location of the region when systematic downloads are
in progress), and feature selection was performed. The AR
process roots are shown in Figure 5 where different colours are
associated with the roots corresponding to that of systematic
download and normal traffic. It is evidenced that the roots
associated to that of systematic downloads (marked with A
and C) are closer to the unit circle and belong to a different
cluster compared to a normal download (marked with B).

IV. CONCLUSIONS

Today’s networked ICT environments are increasingly chal-
lenged by misuse and security issues manifested at different
levels of the system architecture and are so far dealt with
independently. This paper introduces a multi-level resilience
framework in which the resilience activities (such as anomaly
detection) are co-ordinated in order to provide better and
early defence and awareness regarding threats and challenges.
This paper illustrates that architectures that comply with the
requirements derived from the generic multi-level resilience
framework can adequately relate several types of information
with respect to application, system and network-specific char-
acteristics. Further, we show how mechanisms that confront
particular challenges at the different levels at which they
are likely to manifest themselves can be co-ordinated and
hence produce a better result. This is demonstrated through
case studies focusing on the central aspects of analysis and
aggregation of heterogeneous types of information.
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