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Abstract

Context: A Software Product Line (SPL) is a set of software systems (products) that share common functionalities, so-called
features. When different features are related, we consider this as feature dependencies. As the SPL evolves, dealing with feature
dependencies in the source code in a cost- and effort-effective way is challenging. During the code maintenance of SPLs, features
must eventually be updated when changes in other features affect them. In other words, any change in the code associated with a
feature might imply changes to one or more dependent features. Thus, a main concern in product-line maintenance is to preserve
consistency between related features by propagating changes (i.e., change propagation).
Objective: The objective of the study presented in this paper therefore is to examine the relation between feature dependency and
change propagation. It is important to find whether there is a relation between feature dependency and change propagation. If so, it
is also important to understand this relation in order to minimise the maintenance effort.
Method: We investigate change propagations through feature dependencies in perfective maintenance on five evolving medium-
sized SPLs which encompass twenty-one representations of the SPL’s evolution scenarios.
Results: The results have empirically confirmed for the first the close relation between feature dependency and change propagation.
We also identified code parts that are more likely to cause change propagation when changed. The results also revealed that the
extent of change propagation in SPL features might be higher than the one found in studies in modules of stand-alone programs
(i.e., non-SPL). Finally, we also found a concentration of change propagation in a few feature dependencies.
Conclusion: In general, the results show that there is a relation between feature dependencies and change propagation, however
such relation is not alike for all dependencies. This counter-intuitive conclusion indicates that (i) a general feature dependency
minimisation might not ameliorate the change propagation, and (ii) characterising feature dependency properties must be analysed
beforehand to drive maintenance effort to important dependencies.
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1. Introduction

Software product lines (SPLs) emerged as a prominent tech-
nology that aims to generate tailored programs (products) from
a set of reusable assets, speeding up the software development
process [1]. The goals of SPL-based development include man-
aging variability, supporting automated product generation and
facilitating reuse [2]. To achieve those goals, SPL-based de-
velopment focuses on the software decomposition into modu-
lar units of functionality defined as features. Features are used
to describe commonalities and variabilities of the products [3].
For example, in a mobile operating system, individual configu-
rations share a common set of features (e.g. phone call and text
message) but differ in other features (e.g. screen resolution or
media management).

SPLs are usually developed incrementally in a way that new
features are introduced on software products. A continual
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change effort is needed to keep the software up-to-date [4, 5].
In this context, SPL source code should be easy to evolve.
Changes made during the evolution should affect the minimum
of existing features as possible. In other words, the more fea-
tures are affected by changes, the harder it becomes to evolve a
SPL.

Considering the growing complexity and incremental devel-
opment of SPLs, features naturally need to relate to other fea-
tures to fulfil specific tasks [6]. These relationships are the so-
called feature dependencies. In the source code, which is the
focus of this paper, a feature dependency occurs whenever one
or more program elements (e.g. methods or attributes) within
the boundaries of a feature depend on elements external to that
feature. A simple example is an attribute defined in one feature
and used in another feature. The problem is that, in the pres-
ence of feature dependencies, any change in the SPL source
code (e.g. addition of a new feature) might imply changes to
one or more features. This implication of change is the result
of the so-called change propagation [7].

Preprint submitted to Information and Software Technology June 15, 2015



Minimising change propagation stands out as one of the most
desirable attributes of high-quality software. Change propa-
gation involving many modules may cause an increase in the
maintenance effort, and also may introduce errors in the system
if dependencies are not well understood [8]. In addition, the
SPL research community recently began discussing the impact
of feature dependency as one of the indicators of SPL qual-
ity [9, 10, 11, 12]. However, to the best of our knowledge, there
is a lack of empirical studies trying to relate these two concepts
– i.e., feature dependencies and change propagation. It is nei-
ther obvious nor well understood to what extent and how they
affect each other. This lack of knowledge may become a barrier
for the adoption of SPLs.

In this paper, we aim to analyse the change propaga-
tion through feature dependencies during the perfective evolu-
tion [13] of a SPL implemented with conditional compilation
(see Section 2). In particular, we want to understand basically
(i) whether feature dependencies are related to change propaga-
tion, (ii) the extent of change propagation through paths of fea-
ture dependencies, and (iii) whether certain feature dependen-
cies are involved more often in change propagation than other
feature dependencies.To achieve our goals, we conducted an
exploratory study on the evolution of one academic and four
industrial medium-sized SPLs implemented with conditional
compilation. The analysed SPLs comprise a total number of
twenty-six releases1 in sum (i.e., a total number of twenty-
one evolution scenarios. Specifically, we analyse both fea-
ture dependencies and simultaneous changes (as an indicator of
change propagation) in features during an evolution to identify
the change propagation through paths of dependencies.

In summary, we make the following contributions:

• There is a strong relation between feature dependency and
change propagation. In our study, this relation usually hap-
pens when there is a change in fragments of the feature
code that are responsible for realising feature dependen-
cies. So, a change in these fragments is more likely to
demand a change in dependent features.

• Our analysis also evidenced a linear decay in the probabil-
ity of change propagation in the path of feature dependen-
cies. This means that the extent of change propagation in
SPL features might be more severe than the extent in files
of non-SPL systems (see [8]). Moreover, our data revealed
that it is common to find transitive feature dependencies –
i.e, a chain of dependencies – (77% of the SPL releases).
Thus, several sampling-based analysis techniques for SPL
that disregard larger feature combinations might be tuned
in order to consider more features in these combinations.

• Our findings revealed an inequality in the distribution
of change propagation along feature dependencies. This
counterintuitive result basically indicates that a general
minimisation of feature dependencies might not decrease
the change propagation through paths of dependencies.

1Public distribution of a new upgraded version with improvements in func-
tionality and bug fixing.

The remainder of this paper is structured as follows. Sec-
tion 2 presents background on the main topics of this paper. A
complete description of our study is provided in Section 3. Sec-
tion 4 presents the data collected during the exploratory study.
Section 5 presents an analysis of the data collected. Section 6
discusses the limitation of this work. Finally, Section 7 presents
related work and Section 8 concludes the paper with some re-
marks and future directions.

2. Preliminaries

To lay a foundation for subsequent sections, we introduce the
basic concepts of SPLs, features, feature dependency, change
propagation and simultaneous change.

2.1. Software Product Lines and Features

A Software Product Line (SPL) is “a set of software-
intensive systems that share a common, managed set of features
satisfying the specific needs of a particular market segment or
mission” [14]. SPLs enable the systematic construction of in-
dividual systems (i.e. products) with mass customisation. So,
customers choose their products by selecting particular combi-
nations of SPL’s features. The use of SPLs bring significant im-
provements such as reduction of development costs, enhance-
ment of quality and reduction of time-to-market [3, 14].

To gain all of these improvements, SPLs are organised and
structured in terms of features. Features are the semantic units
by which the commonalities and variabilities of the products
are described [15]. There are common features that may be
used among different products within a SPL. One can also
have features by which different programs can be differentiated
and defined. In this way, a SPL development process usually
makes features explicit in requirements, design, code, testing
and maintenance; i.e., across the entire life cycle [16].

Figure 1 illustrates a code snippet of how a feature is repre-
sented in the source code. In this example (Figure 1), we show
part of the feature code WEIGHTED of a SPL to tailor graph
data structures, including weighted edges and traversal strate-
gies and algorithms. The selection of the feature WEIGHTED
in a product allows to associate weight to graph edges. In this
excerpt of code, we show the declaration of the attribute re-
sponsible for representing the weight of an edge in a graph
(lines 3–5), and the methods responsible for getting and setting
this weight (lines 7–19). It is worth to notice that the method
setWeight(int x) (lines 11–18) only assigns positive values
to weights.

The illustrated feature is implemented using the mechanism
of conditional compilation. Conditional compilation is the most
widely used mechanism to implement SPL features [17]. The
preprocessor identifies the code that should be compiled or
not based on preprocessor directives (i.e. #ifdef directives).
Therefore, a feature is a set of program elements surrounded
by preprocessor directives. In other words, directive tags en-
compass code associated with features. Then, to add the fea-
ture WEIGHTED in the final product, we set the corresponding
directive tag to true for this feature. To remove WEIGHTED
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01. public class Edge{

02.  ...

03.  #ifdef WEIGHTED

04.   int weight;

05.  #endif

06.  ...

07.  #ifdef WEIGHTED

08.   public int getWeight(){

09.    return weight;

10.   }

11.   public void setWeight(int w){

12.    if (w==0)

13.     weight = Integer.MAX_VALUE;

14.    else if (w<0)

15.     weight = -1 * w;

16.    else

17.     weight = w;

18.   }

19.  #endif

20.  ...

21. }

Figure 1: Part of the feature code WEIGHTED of a SPL of graph
libraries.

from the final product, we set the corresponding directive tag
to false. Moreover, it is important to notice here that features
might be scattered through several modules of the source code
and tangled with other feature code. In this way, the behaviour
of change propagation (Section 2.3) in feature code may be to-
tally different from change propagation in programming mod-
ules (e.g. classes).

2.2. Feature Dependency

Features depend on each other to fulfil specific SPL require-
ments [6]. In the source code, a feature dependency occurs
whenever one or more program elements within the boundaries
of a feature depend on elements external to that feature, such
as a method defined in one feature and called by another fea-
ture [18]. In other words, feature dependencies are established
by means of structural dependencies in the source code between
elements of different features. It is important to highlight that
structural dependency encompasses different ways of realising
a feature dependency, such as control-flow dependencies or in-
heritance. In this paper, we consider the cases of realisation of
feature dependencies in the source code as described in Sec-
tion 3.2.

Figure 2 illustrates an example of the realisation of a fea-
ture dependency in the SPL for generating tailored graph data
structures. The code snippet in Figure 2 illustrates part of the
feature code DIJKSTRA. This feature solves the shortest path
problem for a non-negative edge path of a weighted directed
graph [19]. The feature dependency of this example is re-
alised by the method call getWeight() (highlighted in line
05). The method getWeight() is a method that belongs to fea-
ture WEIGHTED (lines 8–10, Figure 1). So, a part of the DIJK-
STRA feature code depends on elements of other feature, thus
establishing a dependency between the features WEIGHTED
and DIJKSTRA.

01. public class Algorithms{

02.  ...

03.  #ifdef DIJKSTRA

04.   ...

05.   calculatePath(obj.getWeight());

06.   ...

07.  #endif

08.  ...

09. }

Figure 2: Part of the feature code DIJKSTRA with the realisation of a
feature dependency.

In this study, we also consider transitive dependencies. A
transitive feature dependency happens whenever a feature C de-
pends on feature B, and B is in turn dependent on a feature
A, then C depends on A by transitivity (a.k.a. indirect depen-
dency). For instance, let us say a feature AUXILIARY, respon-
sible for providing additional support to calculate the shortest
path in a graph, depends on feature DIJKSTRA. In this case,
the feature AUXILIARY also depends on feature WEIGHTED
due to the dependency between DIJKSTRA and WEIGHTED.
So, from hereafter, feature dependency refers to either a direct
dependency or a transitive dependency. Moreover, there is a
distance between AUXILIARY and WEIGHTED in the path
of feature dependencies linking these features. So, since we
consider that a feature dependency is a directional relationship,
we say the distance between AUXILIARY and WEIGHTED is
two, and the distance between WEIGHTED and AUXILIARY
is zero.

2.3. Simultaneous Change and Change Propagation
Let us suppose an evolution where the feature BELLMAN-

FORD is included (lines 9–13, Figure 3). This feature, simi-
larly to feature DIJKSTRA, implements an algorithm that com-
putes the shortest path in a weighted directed graph. However,
this feature is capable of handling graphs with negative weight
edges [20].

Figure 3 illustrates the inclusion of part of the BELLMAN-
FORD feature code. It is important to notice that the fea-
ture responsible for implementing the Bellman-Ford algorithm
also depends on feature WEIGHTED, similarly to feature DI-
JKSTRA. The dependency between BELLMAN-FORD and
WEIGHTED happens by means of the method getWeight(),
highlighted in line 11.

Due to all capabilities of the Bellman-Ford algorithm, the de-
veloper needs to allow the assignment of negative weight values
to edges in the SPL. So, it is necessary to change the method
setWeight(int x) in order to assign negative weight values
to edges. Figure 4 shows the method setWeight(int x) after
the change.

Moreover, since the Dijkstra algorithm is not capable of han-
dling negative weight values of edges, a change in the DIJK-
STRA feature code also must be made to treat a possible neg-
ative value. In our example, the developer decided to consider
the weights as unsigned values. Figure 5 illustrates a possible
change in the code of the feature DIJKSTRA (lines 3–10).

In this example, it is important to highlight and understand
the simultaneous changes that happened due to the presence of
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01. public class Algorithms{

02.  ...

03.  #ifdef DIJKSTRA

04.   ...

05.   calculatePath(obj.getWeight());

06.   ...

07.  #endif

08.  ...

09.  #ifdef BELLMAN-FORD

10.   ...

11.   calculatePath(obj.getWeight());

12.   ...

13.  #endif

14.  ...

15. }

Figure 3: Part of the code of the added feature BELLMAN-FORD
with the realisation of a feature dependency.

01. ...

02. #ifdef WEIGHTED

03.  ...

04.  public void setWeight(int w){

05.   if (w==0)

06.    weight = Integer.MAX_VALUE;

07.   else

08.    weight = w;

09.  }

10. #endif

11. ...

Figure 4: Change in the method setWeight(int x).

a feature dependency between features WEIGHTED and DI-
JKSTRA. Simultaneous change is an event where different fea-
tures have changed in the same evolution. The inclusion of the
feature BELLMAN-FORD in a SPL evolution caused a change
in the feature WEIGHTED to adjust the SPL to manage neg-
ative values of edge weights. Moreover, there was a change
in feature DIJKSTRA. So, code of features WEIGHTED and
DIJKSTRA were changed from one release to the next one.

The change in feature DIJKSTRA happened because there
was a change propagation through the dependency during the
evolution of the SPL. Change propagation are the changes re-
quired to other entities of a software system to ensure the con-
sistency of the already existing assumptions after a change
in a particular entity [21]. In other words, the addition of
the feature BELLMAN-FORD demanded a change in fea-
ture WEIGHTED. As a consequence, the change in feature
WEIGHTED demanded a change in the dependent feature DI-
JKSTRA to ensure the consistency of the SPL. So, we can say
that features WEIGHTED and DIJKSTRA changed simultane-
ously in the evolution due to a change propagation from feature
WEIGHTED to feature DIJKSTRA.

In general, when features exhibit dependencies, a change
propagation may happen. Thus, since these features are
changed together in the same evolution, one can say that a si-
multaneous change can indicate a change propagation when it
involves dependent features.

01. public class Algorithms{

02.  ...

03.  #ifdef DIJKSTRA

04. int w = obj.getWeight();

05. ...

06.   if (w<0)

07.    w = -1*w;

08.   calculatePath(w);

09.   ...

10.  #endif

11.  ...

12.  #ifdef BELLMAN-FORD

13.   ...

14.   calculatePath(obj.getWeight());

15.   ...

16.  #endif

17.  ...

18. }

Figure 5: Change in the feature DIJKSTRA.

3. Research Setting

This section presents the research questions and motivates
the relevance of this study, followed by a definition of the sta-
tistical analysis designed to answer the questions. Also the tar-
get systems are presented. The section is concluded with a de-
scription of the evaluation procedures. The design of our study
was inspired in the work of Geipel and Schweitzer [8] because
such design allows to better understand how and to what extent
feature dependency and change propagation affect each other.
However, they analysed only simultaneous changes involving
classes rather than features of SPL. The method used in their
work was adapted for the context of features and SPLs in this
study with several changes in formulas and experimental de-
sign. The reuse and adaptation of their study design would en-
able us to contrast their results with ours (Section 5).

3.1. Research Questions

During the evolution of a SPL, it is important to minimise
changes in already existing features. Changes in several fea-
tures may be costly to the evolution of the SPL. However, it is
not uncommon to have changes in some existing features dur-
ing an evolution. Moreover, several of these changes happen in
dependent features. Thus, it is important to find whether there is
a relation between feature dependency and change propagation.
If so, it is also important to understand this relation in order to
minimise the evolution effort.

In this context, one can hypothesise: if there are simulta-
neous changes in dependent features, they may be caused by
a change propagation along the path of dependencies between
features. In other words, a simultaneous change in the pres-
ence of a feature dependency may indicate a change propaga-
tion through this dependency. So, it should be a relation be-
tween feature dependency and change propagation. Thus, the
first research question addresses whether this is the case: [RQ1]
Are dependent features more likely to change simultaneously?

If there is a relation between feature dependency and change
propagation, we can assume that changes might be propagated
along the path of feature dependencies. In other words, a
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change in one feature may cause a change cascade along the
path of feature dependencies even to distant features. In this
context, the more features are affected by changes, the harder
it may be to evolve a SPL. So, it is important to understand
the extent of the change propagation through the dependency
network, since programmers often inspect the code of direct
neighbour features at best. Thus, the second research ques-
tion is concerned about the relation between change propaga-
tion and distance between features in the path of dependencies:
[RQ2] What is the relation between probability of simultaneous
change and the distance between features in the path of depen-
dencies?

The last research question was inspired by the assumption
that all feature dependencies are assumed to equally impact
change propagation [9, 18, 22]. In other words, these studies
assume that each dependency between features incurs the same
impact on change propagation, whatever be their characteris-
tics.

The equality regarding the impact of feature dependencies on
change propagation has important ramifications. If the majority
of feature dependencies equally impact on change propagation,
they should be reduced. On the other hand, if only specific de-
pendencies matter, ad hoc reduction of dependencies might not
reduce change propagation. In this case, an identification of fea-
ture dependencies that causes more change propagation would
ameliorate this problem. Thus, the third research question of
this paper is concerned about the equality of the impact of fea-
ture dependencies on change propagation: [RQ3] Are feature
dependencies equally involved in the change propagations?

3.2. Feature Dependency
Two mathematically equivalent notations are commonly used

to represent dependencies between elements: the graph notation
and the adjacency matrix notation. In this paper, we chose the
adjacency matrix notation to represent feature dependencies be-
cause it is the most widely used notation to represent software
dependencies [8].

We refer to the feature dependency matrix as FD, where
each feature appears in one row and one column of the ma-
trix. FDa,b ≥ 1 means that a (row) depends on b (column).
Therefore, FDa,b = 0 is interpreted as independence. There is
a dependency between features a and b if: (i) a references an
attribute of b, or (ii) a calls a method of b. We set FDa,b = 1
if at least one of these cases happen. To add more representa-
tive power to this approach, we also represent the distance d of
transitive dependencies between features in the matrix entries.
For instance, let us suppose that a feature A depends on feature
B, and feature B depends on feature C. In this case, FDa,b = 1,
FDb,c = 1 and FDa,c = 2. Therefore, the value of FD repre-
sents the distance d between two features. The values of dis-
tance between features in paths of feature dependencies are cal-
culated by using the Floyd-Warshal algorithm [23]. Moreover,
it is worth to notice that FD is an asymmetric matrix since we
consider dependency as a directional relationship.

To illustrate the extraction of feature dependencies from the
code, we use the same example shown in Section 2. Consider-
ing the situation previously described for features WEIGHTED,

DIJKSTRA, BELLMAN-FORD and AUXILIARY, we have the
FD matrix presented in Figure 6. For instance, the dependency
of DIJKSTRA on WEIGHTED is represented by FDD,W = 1.

WEIGHTED 
(W)

DIJKSTRA 
(D)

BELLMAN-
FORD (BM)

AUXILIARY 
(A)

WEIGHTED (W) 0 0 0 0

DIJKSTRA (D) 1 0 0 0

BELLMAN-FORD (BM) 1 0 0 0

AUXILIARY (A) 2 1 0 0

Figure 6: Matrix representing feature dependencies of a SPL.

To perform this extraction automatically, two authors of this
paper used the tool CIDE [24, 25] that supports mapping of
features in the source code. CIDE was also used to relate pro-
gram elements to features. The CIDE output was used by an
extension of the tool GenArch+ [26] to generate the matrix of
feature dependencies. GenArch+ uses an AST (Abstract Syn-
tactic Tree), based on the source code, with information about
features in its nodes to extract feature dependencies. Each pro-
gram element (or block of program elements) is represented by
a node in the tree, and it is associated to one or more features.
Thus, when one program element from one feature is used by a
program element of another feature directly, we consider this as
a feature dependency. The transitive dependencies of the fea-
ture dependency matrix were calculated by a program imple-
mented for the purpose of this study. This program implement
the Floyd-Warshal algorithm [23] in order to find the distance
between features in a path of feature dependencies. All tools
are available in the website of this study [27].

It should be noted that each SPL release has a FD matrix.
However, since we are interested in analysing the evolutions,
we focus on the latest snapshot of FD (last release) which ag-
gregates information of all dependencies.

3.3. Simultaneous Changes

Similarly to feature dependencies (Section 3.2), we use a ma-
trix structure notation to represent the simultaneous changes of
features in the evolutions of the SPL. Moreover, we model our
simultaneous changes matrix adapting the simultaneous change
model presented in the work of Geipel and Schweitzer [8]. This
matrix represents the dynamic view of the SPL evolution based
on simultaneous changes. Its entries indicate the number of
times the features have been changed simultaneously. Let us re-
fer to this matrix as C, and the event of features being ”changed
at the same time” in an evolution as a simultaneous change.

To construct C, we need (i) the set of features, and (ii) the
evolution scenario which record changes of the features. Let
us use n to denote the number of the feature and m to refer to
the number of evolutions. An event in the SPL evolution can
be expressed as a n-dimensional vector ~e. Each entry shows in
binary form whether a feature has been modified. For instance,
in the first evolution of a SPL we have three features. The evo-
lution scenario ~e1 = (101)T indicates that features one and three
were modified simultaneously in the first evolution. Thus, each
~e corresponds to one SPL evolution.
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The evolution matrix of a SPL can be written by considering
each ~e as a column of the evolution matrix E of size n × m:

E = (~e1~e2 . . . ~em) (1)

To have a matrix representing the whole evolution scenario
of a SPL, we need to multiply E with its transposed ET , and
thus the simultaneous changes matrix C is derived:

C = EET (2)

The matrix C has dimension n × n and indicates how many
times each feature has been modified simultaneously with other
feature. An entry Ca,b = 4, for instance, indicates that features
a and b have been changed four times together considering all
SPL evolutions. Note that C, in contrast to FD, is a symmetric
matrix.

We consider only existing features changed during an evo-
lution in our n-dimensional vector ~e. For instance, in our ex-
ample of SPL evolution presented in Section 2, we do not con-
sider the addition of the feature BELLMAN-FORD as a change
in this feature for this specific evolution. Thus, we have a
four-dimensional vector ~e1 = (1100)T to represent the fea-
tures changed in the evolution where BELLMAN-FORD was
added. The values of the vector corresponds to the following or-
der of features: WEIGHTED, DIJKSTRA, BELLMAN-FORD
and AUXILIARY. So, the first two values indicate that features
WEIGHTED and DIJKSTRA were changed in the same evo-
lution. Moreover, the last two vector positions indicate that
the features BELLMAN-FORD and AUXILIARY were not
changed in this specific evolution. If we consider only this
change and this evolution, C would be like the matrix presented
in Figure 7.

WEIGHTED	  
(W)	  

DIJKSTRA	  
(D)	  

BELLMAN-‐
FORD	  (BM)	  

AUXILIARY	  
(A)	  

WEIGHTED	  (W)	   0	   0	   0	   0	  

DIJKSTRA	  (D)	   1	   0	   0	   0	  

BELLMAN-‐FORD	  (BM)	   0	   0	   0	   0	  

AUXILIARY	  (A)	   0	   0	   0	   0	  

Figure 7: Matrix representing simultaneous changes in all evolutions
of a SPL.

To perform this extraction automatically, two authors of this
paper used an extension of the tool GenArch+ [26] to analyse
the evolutions and extract the change in the features. The si-
multaneous changes matrix was calculated by a program im-
plemented for the purpose of this study. It should not be left
unmentioned that the tools used in this experiment are available
in the website of the study [27].

3.4. The Target Systems
As target systems, we selected five product lines available in

open repositories and managed by different developers. All of
them have been developed in Java with conditional compilation
for different purposes and, besides the Graph Product Line (see
below), all of them are non-academic SPLs. In the following
we describe each target system:

• Berkeley DB. It is an open source database engine that can
be embedded as a library into applications [28, 29]. The
core features represent basic data management and trans-
actional behaviour support whilst the variabilities include
logging and statistics, among others. The evolution sce-
narios comprise the addition of optional features such as
logging and file handle cache.

• Mobile RSS. It is a portable RSS reader for mobile phones
on the Java ME platform [29, 30]. Mobile RSS basically
provides features to parse, browse and read RSS feeds.
Moreover, for instance, there are features to deal with
compatibility issues of mobile phones and features for log-
ging. The evolution scenarios comprise the addition of op-
tional features.

• Lampiro. It is a messaging client for mobile devices based
on a protocol called XMPP [29, 31, 32]. It is possible to
connect with contacts of ICQ, Gtalk and Windows Mes-
senger. There are many features including compression,
encryption and languages supported. The evolution sce-
narios comprise the addition of different features.

• Graph Product Line (GPL). It is a SPL of graph libraries
that allows programmers to tailor graph data structures,
including weighted and directed edges as well different
traversal strategies and algorithms [33]. The evolution sce-
narios comprise the addition of new features.

• Java Chat. It is a simple chat application with features
such as GUI, encryption and logging [29]. The evolution
scenarios comprise the inclusion of optional features.

Table 1 shows general data about the target SPLs, such as
lines of code (KLOC), number of features (# of Features), num-
ber of preprocessor directives implementing features found in
the source code (# of IFDEFS) and number of SPL releases (#
of releases).

Table 1: General information about the target SPLs

KLOC # of Features # of IFDEFS # of Release
Berkeley DB 39 56 4051 6
Mobile RSS 18 31 2990 6
Lampiro 31 18 164 6
GPL 1 26 582 4
Java Chat 0.6 9 105 4

We focused only in evolutions with perfective mainte-
nance [13]. A perfective maintenance comprises enhancements
intended to make the system better – i.e. mainly the addition
of new features in the context of SPLs [22, 34, 35]. Evolutions
with perfective maintenance alter the intended outward seman-
tics of the system, thus justifying the creation of a new SPL
release. Moreover, more than 60% of the maintenance tasks are
associated to a perfective maintenance [36]. In other words, it
is the most common maintenance type in software evolution.

Based on the respective original systems from open repos-
itories [24, 28, 29, 30, 31], three authors created represen-
tations of evolutions scenarios comprising only addition of
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new features. The representation of the evolution scenar-
ios were created based on information of the open reposito-
ries [24, 28, 29, 30, 31], source code analysis and informa-
tion about evolution scenarios extracted from studies about SPL
evolution [22, 34]. In this way, each evolution of our target
SPLs comprises one or more type of change, such as inclu-
sion of optional features, inclusion of alternative features, in-
clusion of mandatory features, and implementation of new SPL
constraints due to the inclusion of new features. For instance,
the evolution of BerkeleyDB involves the inclusion of optional
features such as logging and file handle cache, whereas GPL
evolution comprises the addition of mandatory and alternative
features

These evolutions scenarios were retrospectively imple-
mented by undergraduate and postgraduate students based on
the latest release of each SPL. In other words, based on the
representation of the evolutions created by some authors of the
papers, the students could isolate and simulate in the source
code evolutions considering only the addition of new features.
Good design principles and practices were used, enforced, and
reviewed throughout the creation of all the SPL releases. These
practices were applied to ensure that the purpose of each feature
was achieved as expected. In all the cases, the evolution scenar-
ios were also reviewed by experts in the field. The source code
of all target SPL are available in the website of the study [27].

3.5. The Evaluation Procedures
This section describes our evaluation procedures to answer

the research questions presented in Section 3.1.

3.5.1. The Relation Between Feature Dependency and Change
Propagation (RQ1)

To understand the relation between feature dependency and
change propagation, we make a twofold comparison: (i) prob-
ability of simultaneous changes in dependent features (point
of view of simultaneous changes), and (ii) probability of de-
pendent features with simultaneous changes (point of view of
dependencies). We are using probabilistic analysis because
we want to analyse typical behaviour of feature dependencies
on change propagation. Specifically, we are using conditional
probability to analyse the data and answer RQ1. A conditional
probability measures the probability of occurrence of an event
given that (by assumption, presumption, assertion or evidence)
another event has occurred [37].
Simultaneous changes view. We express the fact that two fea-
tures (a and b) have been changed at least once simultaneously
by Ca,b ≥ 1. Moreover, the fact that there is a dependency
between two features (a and b) is expressed by FDa,b ≥ 1.
So, in our first comparison, to measure the impact of feature
dependencies on simultaneous change we use the conditional
probability PFD = P(Ca,b ≥ 1|FDa,b ≥ 1) given a , b. In
other words, the probability that two different features have
been changed at least once simultaneously, given that there is
a dependency between them. PFD is calculated as follows:

PFD =
P(FDa,b ≥ 1 ∧Ca,b ≥ 1)

P(FDa,b ≥ 1)
(3)

This means that we divide the number of simultaneous
changes happened in pairs of features involved in a feature de-
pendency by the total number of feature dependencies.

As a reference, we compute the conditional probability
P¬FD = P(Ca,b ≥ 1|FDa,b = 0) given a , b. This means
that we are interested in calculating the probability that two dif-
ferent features have been modified together at least once given
that they are independent. P¬FD is calculated as follows:

P¬FD =
P(FDa,b = 0 ∧Ca,b ≥ 1)

P(FDa,b = 0)
(4)

This means that we divide the number of simultaneous
changes happened in pairs of features that are not involved in a
feature dependency by the total number of pairs of features that
do not present a dependency.

The comparison of PFD with P¬FD reveals the possible de-
gree of correlation between feature dependency and simultane-
ous change in terms of dependency.

Feature dependency view. In our second comparison, we are
interested in analysing the other way: the probability of existing
a feature dependency given that there is a simultaneous change
or not. As aforementioned, we express the fact that there is a
dependency between two features (a and b) by FDa,b ≥ 1 and
that two features (a and b) have been changed at least once si-
multaneously by Ca,b ≥ 1. A measure for the relation between
simultaneous change and feature dependency is the conditional
probability PC = P(FDa,b ≥ 1|Ca,b ≥ 1) given a , b meaning
the probability that a feature dependency exists given that two
different features have been changed at least once simultane-
ously. PC is calculated as follows:

PC =
P(Ca,b ≥ 1 ∧ FDa,b ≥ 1)

P(Ca,b ≥ 1)
(5)

This means that we divide the number of simultaneous
changes happened in pairs of features involved in a feature
dependency by the total number of pairs of features which
changed simultaneously.

As a reference, we compute the conditional probability
P¬C = P(FDa,b ≥ 1|Ca,b = 0) given a , b. This means that
we are interested in calculating the probability that a feature de-
pendency exists in the absence of a simultaneous change. P¬C

is calculated as follows:

P¬C =
P(Ca,b = 0 ∧ FDa,b ≥ 1)

P(Ca,b = 0)
(6)

This means that we divide the number of simultaneous
changes happened in pairs of features involved in a feature de-
pendency by the total number of pairs of features which have
not changed simultaneously during the SPL evolution.

The comparison of PC with P¬C reveals the possible degree
of correlation between feature dependency and simultaneous
change from the point of view of dependencies.

3.5.2. Feature Dependency Distance (RQ2)
Features might propagate changes along the path of feature

dependencies. In this context, one can assume that there is
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a decreasing probability of simultaneous changes of features
as the distance between features increases in the path of fea-
ture dependencies. In this context, we extend the concept of
PFD to PFD(d), giving the probability that two features con-
nected by a dependency with distance d are changed together at
least once. So, if changes propagate along a path of dependen-
cies, which function PFD in d would indicate the probability of
change propagation?

It is known that, when only one dependent variable is being
modelled, a scatterplot can suggest the form and strength of the
relationship between variables. In our study, the scatterplots of
all target systems suggest that there is a relationship between
d and PFD, and this relationship can be approximated as a lin-
ear function. Consequently, the most simple approximation for
PFD(d) is:

PFD(d) = −ad + b (7)

We add a constant a with a minus sign to the equation be-
cause (i) we are supposing that there is a decreasing probability
of change propagation related to distance, and (ii) as a rule, the
constant term is always included in the set of regressors, which
in our case is d. Moreover, since P¬FD may be nonzero, we also
add an intercept b to the equation.

Having the possible equation that delineates PFD(d), we need
to test the goodness of fit of the statistical model proposed re-
garding our data. Measures of goodness of fit typically sum-
marise the discrepancy between observed values and the val-
ues expected under the model in question. Since our statistical
model proposed is a linear function, we fit the observed data
PFD(d) to equation 7 with the ordinary least squares method.
Ordinary least squares is a method for estimating the unknown
parameters in a linear regression model. This method min-
imises the sum of squared vertical distances between the ob-
served responses in the dataset and the responses predicted by
the linear approximation. To check whether the model explains
the patterns found in the data, the quality of the fit needs to be
quantified. To measure the quality of fit, we consider the ad-
justed coefficient of determination (ad j.R2).

The coefficient of determination of a linear regression model
is the quotient of the variances of the fitted values and observed
values of the dependent variable. If we denote yi as the observed
values of the dependent variable, ȳ as its mean, and ŷi as the
fitted value, then the coefficient of determination is:

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2 (8)

The adjusted coefficient of determination (ad j.R2) of a lin-
ear regression model is defined in terms of the coefficient of
determination (equation 8). R2 is adjusted to account for the
residual degrees of freedom (number of observations minus the
number of fitted coefficients). If we denote n as the number of
observations in the dataset, and p as the number of independent
variables, the adjusted coefficient of determination is:

ad j.R2 = 1 − (1 − R2)
n − 1

n − p − 1
(9)

The adjusted coefficient of determination (ad j.R2) takes a
value between -1 and 1, with values of ad j.R2 close to 1 de-
noting that the model fits the data well. In other words, high
values of ad j.R2 provide evidence for the existence of change
propagation, and thus a relation between probability of simul-
taneous change and distance along the paths of dependencies.

We are using the adjusted coefficient of determination to
quantify the quality of the fit because (i) it is bound between -1
and 1 making the comparison between the target systems easier
than unbound measures, and (ii) it overcomes specific problems
of the coefficient of determination (R2) in order to provide ad-
ditional information by which we can evaluate our regression
model’s explanatory power.

3.5.3. Equality on the Impact of Change Propagation (RQ3)
Given the number of feature dependencies per release of SPL

(e.g., 235 in the last release of MobileRSS), there are too many
data points to permit a comparison of all feature dependencies
individually. Thus, to address our research question, we apply
data aggregation [38] using concentration statistics. The idea is
to analyse the equality of the impact of feature dependencies on
change propagation. This analysis allows us to make statements
such as “10% of the feature dependencies are responsible for
over 70% of change propagation”.

As a statistic concentration, we adopt a method to analyse
and visualise income inequalities in a population of a country
called Lorenz inequality or Lorenz curve [38, 39]. In this paper,
we use it to analyse the concentration of change propagation
in feature dependencies. For a more in-depth description of
Lorenz inequality, the reader may refer to the original work of
Lorenz [39].

First, we need the number of simultaneous changes for each
dependency. Let us refer to this set as Π:

Π = {Ca,b : FDa,b ≥ 1 ∧Ca,b ≥ 1} (10)

The next step is to normalise Π, so the entries of the result π
sum up to one:

πn = Πn/

|Π|∑
l=1

Πl (11)

After that, the entries of π must be rearranged in ascending
order:

m < n⇒ πm < πn (12)

Finally, the Lorenz curve L(x) with 0 ≤ x ≤ 1 is calculated
by cumulating the first x percent of the elements of π:

L(x) =

bx∗|π|c∑
n=0

πn (13)

L(x) is the percentage of simultaneous changes accumulated
in the x percent least active feature dependencies. An equal
distribution leads to L(x) = x. To compare the Lorenz con-
centration between the target SPLs we compress it to one num-
ber named Gini coefficient [40]. The Gini coefficient indicates
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the degree of distributional inequality of simultaneous changes
amongst the feature dependencies of a SPL. Let us refer to the
Gini coefficient as g:

g = 1 − 2
∫ 1

0
L(x) dx (14)

The Gini coefficient takes a value between 0 and 1, with
g = 0 denoting perfect equality meaning that x percent of the
feature dependencies are responsible for x percent of the simul-
taneous changes. Conversely, g = 1 denotes perfect inequality
with only one feature dependency for 100 percent of the cumu-
lative feature dependencies. By using Gini coefficient we are
able to compare different concentrations since such coefficient
represents a concentration in a scalar value.

4. Results

This section presents the results of the analysis described in
Section 3. Section 4.1 describes the results of the probabilities
extracted to answer research question RQ1. Section 4.2 checks
whether the statistical model proposed to represent change
propagation along the path of dependencies represent the pat-
terns found in our data in order to answer RQ2. Finally, ad-
dressing RQ3, Section 4.3 shows the results obtained regarding
the concentration of change propagation in certain feature de-
pendencies.

4.1. Feature Dependency and Change Propagation

As pointed out in Section 3, the probabilities PFD, P¬FD, PC

and P¬C can provide evidence of the relation between feature
dependency and change propagation. Table 2 shows the proba-
bility values for PFD and P¬FD for the five SPLs. These values
indicate the probability that two features change simultaneously
in the presence of feature dependency (PFD) or in the absence
of feature dependency (P¬FD). The comparison between these
values indicates the influence of a feature dependency in the
occurrence of a possible change propagation. It is important
to notice that the amount of feature dependencies or simultane-
ous changes affect the probabilities results, but not the differ-
ence between them. A change in the amount of these variables
should affect both the conditional probability and its reference
probability. Since we are comparing a conditional probability
with its reference, the difference between them is supposed to
be the same (or similar) when the amount of one or both vari-
ables change.

Looking at the values of PFD and P¬FD, we can notice that
PFD ranges between 0.16 and 0.75, and P¬FD is less than 0.16
for all SPLs. This basically means that it is likely that change
propagation happens when a feature dependency exists. This
superiority of PFD against P¬FD can be seen in the mean of
these values (PFD = 0.504 vs. P¬FD = 0.114). Moreover, this
behaviour can be observed in all SPLs analysed as shown in
Figure 8.

In Figure 8 we can notice that the probability of simultaneous
changes in dependent features (PFD) is much higher than the
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Figure 8: Comparison between PFD and P¬FD.

probability in independent features (P¬FD). The smallest differ-
ence between PFD and P¬FD is observed in GPL. In this case,
the chances of simultaneous changes in dependent features is
almost three times higher than simultaneous changes in inde-
pendent features (PFD = 0.47 vs. P¬FD = 0.17). Additionally,
the most significant difference is in JavaChat where the proba-
bility is seven times higher (PFD = 0.70 vs. P¬FD = 0.10).

Table 2 also shows the values of PC and P¬C . These val-
ues show the probability that a feature dependency exists given
that there is a simultaneous change (PC) or not (P¬C) in fea-
tures during SPL evolution. By comparing these values it is
possible to conclude whether the occurrence of simultaneous
changes is an indicative of the existence of a dependency be-
tween features. PC ranges between 0.062 and 0.722 while P¬C

ranges between 0.003 and 0.275. Except for the Lampiro SPL,
all values of PC are greater than the highest value of P¬C (0.275
for BerkeleyDB). The lowest value of PC is 0.378 if Lampiro
is discarded. Lampiro present odd results due to the way some
dependencies between features are established. Our approach
captures structural dependencies in the source code as described
in Section 3.2. However, there are some relationships between
features in Lampiro SPL that are not being considered by our
definition. In this way, we are counting simultaneous changes
between some of these features, however our approach do not
consider a dependency between them. Nevertheless, the mean
values presented in Table 2 also show that there is a consider-
able difference between PC and P¬C . This difference can be
observed in each SPL as shown in Figure 9.

As we can see in Figure 9, there is a clear difference be-
tween PC and P¬C in terms of values in each SPL. The lowest
difference is presented in GPL where PC is almost three times
higher than P¬C (0.38 and 0.12, respectively), while the most
significant difference with almost thirteen times is encountered
in JavaChat (PC = 0.50 vs. P¬C = 0.040), excluding the un-
usual results of Lampiro.

4.2. Distance and Change Propagation

In Section 3.5.2, we observed that there is a decreasing
probability of change propagation as the distance between fea-
tures increases in the path of dependencies. In other words,
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Table 2: Summary of Statistical Analysis
SPL Projects PFD P¬FD PC P¬C Ad j.R2 g
BerkeleyDB 0.163 0.028 0.722 0.275 0.908 0.862
Graph Product Line (GPL) 0.471 0.165 0.378 0.119 0.799 0.595
JavaChat 0.700 0.099 0.500 0.045 1.000 0.375
Lampiro 0.750 0.141 0.062 0.003 1.000 0.250
MobileRSS 0.366 0.117 0.524 0.202 0.958 0.657
mean 0.504 0.114 0.425 0.123 0.933 0.535
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if changes propagate along the dependency network, there is a
relationship between d and PFD, and we assume that this rela-
tionship can be approximated as a linear function. Figure 10
presents a scatterplot of the relationship between d and PFD in
BerkeleyDB (solid black dots) and a reference graph with lin-
ear trend (grey dashed line). The linear trend of the relationship
between d and PFD in BerkeleyDB is not an exception amongst
the SPLs analysed – i.e., all SPLs presented the same linear
trend between d and PFD.
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Figure 10: Relationship between d and PFD in BerkeleyDB.

As we propose a statistical linear model to delineate PFD(d),
we test the goodness of fit of the statistical model proposed re-
garding our data using the adjusted coefficient of determination
(ad j.R2). As indicated by the high values of ad j.R2 in Table 2,
the linear model proposed describes well PFD(d). BerkeleyDB
has an ad j.R2 of 0.908. Moreover, all SPLs have an ad j.R2

larger than 0.7, evidencing the existence of change propagation,
and thus a relation between probability of simultaneous change

and distance along the paths of dependencies.
It is important to note that some SPLs have values for ad j.R2

equal to 1 because the maximum values of d for these SPLs are
two. In other words, when d = 2 we obtain a linear relationship
between d and PFD.

4.3. Inequality in the Distribution of Change Propagation
Figure 11 shows in dashed grey the Lorenz curve for Berke-

leyDB. As a reference, the solid black line marks the line of
equality. It can be seen that the Lorenz curve is strongly bent
and that less than 20% of the dependencies concentrate 100%
of the change propagation.
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Figure 11: Concentration of change propagation through paths of fea-
ture dependencies in BerkeleyDB.

This behaviour of inequality in the distribution of simultane-
ous changes can be confirmed by the high value of the Gini Co-
efficient g for BerkeleyDB (g = 0.862). The situation is similar
for most of the other projects. Table 2 lists the Gini Coefficients
g for all SPLs, and throughout the sample the concentration is
very high; on average of 0.535. It is worth to notice that the
coefficients for JavaChat and Lampiro are below of the mean.
This happens because of the relative low number of feature de-
pendencies.

5. Discussion and Implications

This section performs exploratory analyses of the results pre-
sented in Section 4 to explain the relationship between feature
dependencies and change propagation. Section 5.1 analyses the
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collected data for answering RQ1, i.e. the link between fea-
ture dependency and simultaneous change. Addressing RQ2,
Section 5.2 presents a discussion about the impact of feature
dependencies on change propagation and their implications. Fi-
nally, Section 5.3 discusses the inequality of the distribution of
change propagation through paths of feature dependencies in
order to understand the answer of RQ3.

5.1. The Relation between Feature Dependency and Change
Propagation

The pronounced difference between PFD and P¬FD provides
evidence that the existence of a dependency raises the chance of
a change propagation between features. In addition, the differ-
ence between PC and P¬C shows us that simultaneous changes
are more likely to happen in dependent features than in inde-
pendent features. So, coming back to RQ1, the answer is yes.
Moreover, we can conclude that the results support our argu-
ment that dependencies are closely related to change propaga-
tion.

Buried feature interfaces. To understand why feature depen-
dencies are likely to propagate changes, we analysed the source
code of the SPLs. In our analysis, we noticed that develop-
ers often change parts of the code that affect program elements
responsible for realising the communication between features.
As a consequence, these actions demand changes on dependent
features – i.e. a change propagation. For instance, in the exam-
ple presented in Section 2, the developer changed an attribute
read by the method getWeight(), which is a member of the
interface of the feature WEIGHTED. This change was propa-
gated to feature DIJKSTRA due to its dependency on feature
WEIGHTED. In this context, we can argue about the impor-
tance of identifying, buried into hundreds of lines of code, the
program elements responsible for realising feature dependen-
cies when maintaining features. These program elements might
be considered as members of a conceptual feature interface. So,
having explicit the members of a conceptual feature interface
would indicate the critical parts of the code that must be care-
fully changed due to a high probability of change propagation.
Alternative features. Another interesting point in our data is
related to a specific case of simultaneous changes that happen
in independent features (P¬FD). There were recurrent cases
where alternative features simultaneously changed during an
evolution. Alternative features are features that are mutually
exclusive in a product generated by the SPL. The way this type
of constraint was implemented in our target SPLs (and in most
preprocessor-based SPLs) is not considered as a dependency
in our study (see Section 3.2 for the cases of dependencies we
are considering). These constraints usually are implemented
by means of preprocessor directives. However, this mutually
exclusive relationship between these features may have an im-
pact on change propagations. Figure 12 illustrates this situation
considering a scenario with three alternative features in the ex-
ample presented in Section 2.

In Figure 12, we can notice that the inclusion of feature
BELLMAN-FORD causes simultaneous changes in three fea-
tures: the feature ALGORITHMS and the alternative features
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FEATURE 
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XXXX

XXXX

Existing feature

New feature

Change

Legend

Alternative features

FEATURE 
DIJKSTRA

FEATURE 
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XXXX XXXX
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Figure 12: Simultaneous changes in alternative features and in the fea-
ture ALGORITHMS.

DIJKSTRA and FLOYD-WARSHALL. There is no depen-
dency in the source code between DIJKSTRA and FLOYD-
WARSHALL, but there are simultaneous changes in these fea-
tures due to SPL domain constraints involving them. A change
in program elements of the feature ALGORITHMS, that are
responsible for the communication between this features with
other features (i.e. members of a feature interface), is the cause
of simultaneous changes in alternative features.

Alternative features often use the same members of a concep-
tual feature interface. So, a change that affects these members
will probably affect all alternative features using the same fea-
ture interface members, thus causing simultaneous changes in
independent features. This means that feature interface mem-
bers should be carefully maintained due to their impact on other
features, mainly when it involves alternative features. To ame-
liorate this type of situation, we reinforce that explicit all the
members of a feature interface must help developers to reason
about an evolution considering the dependencies between fea-
tures.

Feature dependencies are not alike. A cross-reading of the
calculated probabilities shows us that the values of PFD and
P¬FD are inversely proportional to PC and P¬C , respectively.
For instance, the lowest values of PFD and P¬FD from Berke-
leyDB contrast with its highest values of PC and P¬C . The low
values of PFD and P¬FD in BerkeleyDB are due to the high
number of feature dependencies (860 dependencies) and due to
the number of change propagation happening in a few depen-
dencies. These low values could lead us question the validity of
our answers regarding RQ1 that state that there is a relation be-
tween feature dependency and change propagation. However,
the high values of PC and P¬C confirm our statement by show-
ing that when there is a simultaneous change between features,
there is a high probability of having a dependency amongst
these features. Thus, this behaviour in BerkeleyDB, which is
not an exception amongst the the SPL analysed, can be inter-
preted as an indication of concentration of change propagation
in certain feature dependencies. A few number of feature de-
pendencies seems to concentrate a high number of recurrent si-
multaneous change, thus indicating that there are feature depen-
dencies that are more likely to propagate changes. This impor-
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tant point will be revisited in the discussion on inequality of the
distribution of changes through the dependencies (Section 5.3)
addressed by RQ3.

5.2. Extent of the Change Propagation

The results presented in the previous section (Section 5.1)
indicate that feature dependencies are related to change propa-
gation. In our RQ2, we were interested in discovering the extent
of this propagation through paths of dependencies. The results
presented in Section 4.2 show us the relation between proba-
bility of change propagation and distance between dependent
features. Analysing the collected data, we found that there is
a decreasing probability of change propagation as the distance
between dependent features increases in the path of dependen-
cies. Moreover, we observed that this relationship can be ap-
proximated as a linear function. So, these results evidence the
transitive propagation of changes via a path of dependencies.

This result about the relationship between distance and
change propagation may have important implications. A prop-
erty that shows the depth of the dependency would indicate the
axes of change in a SPL. So, features involved in these axes of
change are likely to suffer changes related to change propaga-
tion if the evolution affects one of these features. Thus, devel-
opers should be concerned with these specific features during
the SPL evolution based on the property depth of the depen-
dency. Reasoning about this property might help decreasing
the maintenance effort of SPLs along the evolutions. In addi-
tion, the data show a linear decreasing relationship between dis-
tance and probability of change propagation indicating a more
severe change propagation in SPL features than in classes. For
instance, Geipel and Schweitzer [8] found an exponential de-
cay regarding the relation between probability of changes and
distance amongst classes. In other words, it is more likely the
extent of the change propagation in SPLs reach more modules
(features) than the change propagation in modules of stand-
alone programs (classes). Therefore, the depth of the depen-
dency might help developers to concern about paths of feature
dependencies during the maintenance of a feature in order to
minimise the change propagation.

Another point in our data is related to the depth of feature de-
pendencies that occur in SPLs. Most of the SPL releases (77%)
have a depth of the dependency higher than one. This infor-
mation might be valuable to tune and/or complement existing
approaches, such as combinatorial interaction testing. For in-
stance, there are several sampling-based analysis techniques in
combinatorial interaction testing that aim at covering all pairs
of feature (i.e. depth of the dependency equal to 1), but dis-
regard larger feature combinations [41, 42, 43]. So, these ap-
proaches assume that a major fraction of feature dependencies
have a depth of the dependency equal to one. According to our
results, this assumption might have implications for the preci-
sion of those approaches. Since dependencies can propagate
changes, it is possible that these dependencies can also propa-
gate errors. In this case, approaches covering only a depth of
the dependency equal to one might be missing information to
reveal errors, change propagation estimation, and the like.

5.3. Consequences of the Distribution Inequality

The results presented in this paper show a strong relation be-
tween feature dependency and change propagation. Moreover,
we provide evidence for the propagation of changes via de-
pendencies. Apart from these points, the data obtained for an-
swering RQ3 challenges the common assumptions on the rela-
tionship between dependencies and change propagation. Some
studies [44, 45], which evaluate non-SPLs, implicitly assume
an equal distribution of change propagation amongst depen-
dencies. In other words, the dependency structure would be
a measure for the software change behaviour in these stud-
ies. However, our data show an inequality in the distribution
of change propagation through the SPL dependencies. So, it
might be problematic to simply adapting stand-alone software
approaches to analyse the change behaviour of a SPL.

The inequality in the distribution of change propagation in-
dicates that we cannot treat all dependencies alike. Few de-
pendencies are related to most change propagation of a SPL
evolution history. Based on this, we can pinpoint two important
findings. First, characterising properties based on the source
code is needed in order to differentiate feature dependencies. In
this direction, there are other studies that identify characteris-
ing properties for feature dependencies, such as volatility and
scope [12, 18]. Volatility refers to the extent that dependen-
cies between program elements may be broken when a single
change is performed. Scope refers to the program elements in-
volved in the dependency. For instance, when a feature depen-
dency has a high scope, many program elements are involved
in establishing this feature dependency. When a change affects
one of the many program elements, it is likely that the change
must be propagated to dependent features. So, a high scope in
feature dependencies may indicate that such dependencies are
more likely to concentrate change propagations. In our study,
dependencies that concentrated higher numbers of change prop-
agation presented a low volatility and a high scope. So, these
and other properties (e.g. depth of feature dependency - Sec-
tion 5.2) may indicate which dependencies must gain more at-
tention during an evolution in order to reduce the change prop-
agation.

Second, as many dependencies are not involved in change
propagation, only reducing all the dependencies will not nec-
essarily reduce change propagation in SPLs. Furthermore, de-
pendencies might indicate a high reuse [8]. In other words, a
dependency indicate that a functionality was not duplicated but
reused. So, a highly connected feature is not necessarily an in-
dicator of flawed design, but it might indicate a key feature to
the SPL architecture. In addition, since these features are highly
connected, it is natural they present a large (and not cohesive)
feature interface. Therefore, we argue that, besides making fea-
ture interfaces explicit, grouping the members of the feature
interface would support developers to predict changes that hap-
pen in the presence of feature dependencies and drive efforts to
specific parts of the source code guided by the interface.
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6. Study Limitations

This section discusses the study limitations based on the four
categories of validity threats described by Wohlin et al. [46].
Each category has a set of possible threats to the validity of an
experiment. We identified these possible threats to our study
within each category, which are discussed in the following with
the measures we took to reduce each risk.
Conclusion Validity. The major risk here is related to the
random heterogeneity of subjects: the chosen SPLs came from
different application domains (Section 3). In other words, there
is a risk that the variation due to individual differences is larger
than due to the treatment. Although this risk is considered a
threat to the conclusion validity, it also helps to promote the
external validity of the study by improving the ability to gener-
alise the results of our experiment.
Internal Validity. The detected risk is that we are considering
the data from multiple releases all together in our matrices of
feature dependencies and simultaneous change. In other words,
we are not considering the effect of time when analysing the
concentration of change propagation on feature dependencies.
Despite of the aggregated data, we argue that this risk is min-
imised due to the simulation of the evolution scenarios as well
the number of evolutions. Although simulating the evolution
scenarios does not mean controlling the change propagation,
we argue that we minimise the effect of time due to the diver-
sity of the evolution scenarios. In other words, we minimise
the chances of change propagations happen in feature depen-
dencies that exist since early evolutions by controlling the evo-
lution scenarios.
Construct Validity. We detect two possible threats related
to the restricted generalizability across constructs: (i) the use
of conditional compilation as the variability mechanism for im-
plementing features in the source code might increase the num-
ber of feature dependencies when compared to other variability
mechanisms. With conditional compilation, features may be
scattered in the source code. This means that a feature may
present low cohesion, and, as consequence, a high coupling
with other features (i.e. high number of feature dependencies),
and (ii) we focus only in evolution with perfective maintenance,
i.e. mainly the addition of new features. In this case, we might
have other maintenance scenarios where the results are not sim-
ilar to the ones presented in this paper. Risk (i) cannot be com-
pletely avoided as all SPLs analysed are implemented using the
mechanism of conditional compilation. However, we argue that
conditional compilation is the most widely used mechanism to
implement SPL features [17]. Moreover, except for the Graph
Product Line, all target SPLs are non-academic projects. So,
we believe these SPLs were developed aiming for a good de-
sign, thus reducing the number of unnecessary feature depen-
dencies. Nevertheless, the Graph Product Line was continu-
ously improved over years by an academic community that uses
it as a subject of studies. Risk (ii) also cannot be avoided due to
the design of the study. However, we argue that more than 60%
of the maintenance tasks are associated to a perfective mainte-
nance [36]. In other words, it is the most common maintenance
type in software evolution.

External Validity. We identified two risks in this category
related to the interaction of setting and treatment: (i) the target
SPLs might not be representative of the industrial practice, and
(ii) the evolution scenarios might not represent relevant scenar-
ios of evolution. We also identified one risk related to the inter-
action between selection and treatment: (iii) the subject respon-
sible for implementing the evolution scenarios might not be rep-
resentative of the population we want to generalise to. In order
to reduce risk (i), we evaluated SPLs that come from hetero-
geneous application domains. In addition, all SPLs have been
extensively used and evaluated in previous research [9, 47, 48].
We believe the characteristics of the selected SPLs, when con-
trasted with the state of practice in SPL, represent a first step
towards the generalisation of the results achieved in this study.
Regarding risk (ii), we created SPL evolution scenarios based
on studies of SPL evolution [22, 34, 35]. Moreover, we defined
clear procedures for the creation of each SPL release. Design
practices were used, enforced, and reviewed throughout the cre-
ation of evolution of all the SPL releases. In all the cases, the
evolution scenarios were also reviewed by experts in the field.
Finally, although this risk is considered a threat to the external
validity, it also helps to promote the construct validity of the
study. Regarding risk (iii), similar to risk (ii), we argue that
we defined clear procedures for the evolution, design practices
were used, and the evolution scenarios were reviewed by ex-
perts in the field.

7. Related Work

Software change and change propagation. Many research
work have explored the understanding of software change
and the impact of those changes on specific software proper-
ties [8, 21, 44, 45]. Most of these investigations, however, only
concentrate on the analysis of module dependencies in stand-
alone systems. For instance, Geipel and Schweitzer [8] inves-
tigate the relationship between class dependency and change
propagation. The study concludes a strong relationship be-
tween dependency and change propagation. Moreover, they re-
vealed half of all dependencies are never involved in change
propagation. In a study about the impact of changes, San-
gal et al. [45] propose an approach that uses dependency models
in order to manage complex software architecture. Our work
deals with two different main aspects when compared to those
related work. First, we focus our research on feature change.
SPLs use features as the unit of abstraction. Thus, we explore
changes on SPL features instead of the unit of abstraction of
programming languages used to implement SPLs (e.g.: classes
or aspects). Second, we consider only SPL in our study. A SPL
allows the generation of several products by combining differ-
ent SPL’s features. So, the extent of a change propagation may
affect from dozens to thousands different products depending
on the characteristics of the SPL.
Feature dependencies vs. SPL maintenance. There are
also investigations trying to understand and minimise neg-
ative effects of feature dependencies on SPL development.
Cataldo and Herbsleb [10] have empirically studied feature-
oriented development in order to observe the impact that some
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attributes of this type of development have on integration fail-
ures. They concluded that dependencies and cross-feature in-
teractions are drivers of integration failures. In another work
related to feature dependencies, Ribeiro et al. [9] performed an
empirical evaluation on forty preprocessor-based SPLs focus-
ing on the maintainability of feature dependency code. They
proposed an approach to reduce the effort of maintenance in
SPL implemented using preprocessor by focusing on feature
dependencies. The conclusion was that feature dependencies
are reasonably common in preprocessor-based SPLs. More-
over, they highlight the impact of feature dependency on the
maintenance by increasing the maintenance effort. These and
other authors [11, 12, 18, 48, 49, 50], have been highlighted the
impact of feature dependencies on several attributes of SPLs.
For instance, Cafeo et al. [12] explore the influence of different
programming techniques on feature dependency implementa-
tion regarding change propagation. In [18], Cafeo et al. ex-
plored the power of feature dependencies in indicate change
propagation. Finally, in [51], Cafeo et al. presented initial
evidences that feature dependencies may be a main driver to
change propagation. Although related, [12] and [18] are com-
plimentary to this work, since they explore the relation studied
in this study. Moreover, we evolve and explore the idea pre-
sented in [51] in this paper, and we try to understand the link
between feature dependency and change propagation because
(i) there is no empirical evidence about the relation between
change propagation and feature dependency, and (ii) change
propagation may impact on several other SPL attributes such
as failures and maintenance effort.

8. Conclusions

This paper presented an exploratory study on perfective
maintenance of SPLs implemented with conditional compila-
tion. We analysed five SPLs from different application do-
mains, from which we collected (i) simultaneous changes in
features during the evolution, and (ii) feature dependencies
upon which we performed our analyses. We built our evalu-
ation procedure on work by Geipel and Schweitzer [8] which
we adapt to the context of SPLs and features. The contribu-
tion of this paper is having empirically analysed the relation
between feature dependency and change propagation. More-
over, this analysis allowed us to conclude about the causes and
consequences of change propagation along feature dependen-
cies of SPLs.

The results revealed a relation between feature dependency
and change propagation. Basically, features that present a de-
pendency are more likely to change together during an evolu-
tion than independent features. Moreover, we identified parts
of the source code that are possible causes of this strong rela-
tion. Our analysis also evidenced the relation between change
propagation and distance amongst features in the dependency
network. Such analysis pointed to a linear relation between dis-
tance and change propagation, which indicates a more power-
ful change propagation in features than the exponential relation
between distance and classes [8]. Finally, the results also re-
vealed a inequality in the distribution of change propagation

through the feature dependencies of a SPL. This counterintu-
itive result indicates that (i) a general feature dependency min-
imisation might not ameliorate the change propagation; and (ii)
characterising feature dependency properties must be analysed
to identify the axes of changes in feature dependencies.

We believe that the results presented in this paper improve
the understanding of the behaviour of feature dependencies re-
garding change propagation, motivate more intensive research
on change propagation in SPLs as well as in feature dependency
characterising properties, motivate studies in different mecha-
nisms and languages, and provide directions for enhancing au-
tomating SPL evolution.
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