
Using Software Defined Networking to
Enhance the Delivery of Video-on-DemandI

Panagiotis Georgopoulosa,∗, Matthew Broadbentb, Arsham Farshadb,
Bernhard Plattnera, Nicholas Raceb

aCommunication Systems Group, TIK, ETH Zurich, Zurich, 8092, Switzerland
bSchool of Computing and Communications, Lancaster University,

Lancaster, LA1 4WA, United Kingdom

Abstract

High quality online video streaming, both live and on-demand, has become

an essential part of many consumers’ lives. The popularity of video stream-

ing, however, places a burden on the underlying network infrastructure. This

is because it needs to be capable of delivering significant amounts of data in

a time-critical manner to users. The Video-on-Demand (VoD) distribution

paradigm uses a unicast independent flow for each user request. This results in

multiple duplicate flows carrying the same video assets that only serve to exacer-

bate the burden placed upon the network. In this paper we present OpenCache:

a highly configurable, efficient and transparent in-network caching service that

aims to improve the VoD distribution efficiency by caching video assets as close

to the end-user as possible. OpenCache leverages Software Defined Networking

technology to benefit last mile environments by improving network utilisation

and increasing the Quality of Experience for the end-user. Our evaluation on

a pan-European OpenFlow testbed uses adaptive bitrate video to demonstrate

that with the use of OpenCache, streaming applications play back higher qual-

ity video and experience increased throughput, higher bitrate, and shorter start

up and buffering times.

IThis is an extended version of our previous work appearing in ICCCN 2014 [1].
∗Corresponding author
1Email addresses: panos@tik.ee.ethz.ch, m.broadbent@lancaster.ac.uk,

a.farshad@lancaster.ac.uk, plattner@tik.ee.ethz.ch, n.race@lancaster.ac.uk

Preprint submitted to Computer Communications May 20, 2015

Keywords:

Video-on-Demand (VoD), Caching, Quality of Experience (QoE), Software

Defined Networking (SDN), OpenCache

1. Introduction

Online video streaming has seen a huge growth in popularity during recent

years. This includes the consumption of both live and on-demand content. In

2013, Internet video traffic represented 66% of all global Internet traffic, and is

predicted to increase to 79% by 2018 [2]. At the same time, the popularity of

Video-on-Demand (VoD) traffic also continues to increase, with consumer VoD

traffic expected to double by 2018: transporting the equivalent of 6 billion DVDs

per month [2]. High Definition (HD) video traffic has already surpassed that of

Standard Definition (SD) [3], and with the introduction of Ultra-High Definition

(UHD) content providers will continue to push expectations in the availability

of higher video quality and bitrates. Undoubtedly, high quality online video

streaming has become an essential part of many consumers’ lives.

In a Video-on-Demand scenario, individuals are able to retrieve content for

playback after the initial broadcast. The growth in VoD traffic, coupled with

the trend towards content of higher resolution and quality, such as HD and

UHD, presents significant challenges. In particular, the evolution in video qual-

ity requires networks that are capable of transferring significant amounts of

data, in the order of tens or hundreds of Mbps for a single video stream, in

a time-sensitive manner. This increase, together with the general growth in

traffic, places an additional burden on the underlying network and distribution

infrastructure.

Currently, VoD requests are handled individually, leading to an independent

flow in the distribution network serving each user’s request. Using such a unicast

content delivery paradigm naively ignores that much of the content is identical

to transmissions minutes, hours or days earlier. Hence, a very large amount of

identical media objects, in the order of gigabytes for a typical HD film, are deliv-

2

ered over the same network segment repeatedly. In order to efficiently support

such VoD streaming, the end-to-end capacity of the network must continuously

match the increasing number of Internet video users and the growing popularity

of higher resolution content. Mechanisms are therefore sought to improve the

efficiency of VoD distribution.

In this paper we introduce OpenCache: a transparent, flexible and highly

configurable in-network caching service for VoD streaming. OpenCache’s con-

tribution is to provide a programmable service that allows any caching strategy,

e.g. [4, 5, 6, 7, 8], to be easily deployed within the network infrastructure.

To achieve this goal, OpenCache uses Software Defined Networking (SDN) to

provide a cache as a service for media content in an efficient and transparent

fashion. This is achieved through powerful interfaces, designed to directly bene-

fit last mile environments. By leveraging SDN, and OpenFlow in particular [9],

we provide a control plane that orchestrates the caching and distribution func-

tionalities, and transparently pushes the content as close to the user as possible

without requiring any changes to the delivery methods or the end-hosts.

Our approach, building an SDN-based in-network caching service, has three

important contributions. Firstly, it improves network utilisation and minimises

the external link usage on the last mile. Secondly, OpenCache reduces the distri-

bution load from the VoD content provider and all the transient networks along

the path of the VoD server to the end-user. Thirdly, by transparently caching

the content closer to the user, OpenCache minimises the distance between the

VoD streaming server and the user. This provides significant improvements to

the Quality of Experience (QoE) of the end-user, as the streaming application

observes higher throughput, higher minimum and average streaming bitrate,

and smaller start up and buffering times; key QoE differentiators [10, 11, 12].

The remainder of the paper is organised as follows. Section 2 provides the

background of this work, whilst related work is presented in Section 3. Section 4

introduces the main components and functionality of OpenCache, whereas Sec-

tion 5 describes the benefits achieved with using SDN. Evaluation is described

in Section 6 and finally, Section 7 concludes the paper.

3

2. Background

This section introduces the motivation and problem statement that under-

pins our work. We then present a new networking approach, called Software

Defined Networking, that is key to the solution we provide in this problem space.

2.1. Motivation & Problem Statement

To achieve high quality VoD streaming, a potential solution should be capa-

ble of addressing these primary requirements:

1) Provide high throughput end-to-end: High quality video streaming

demands quick and reliable transmission of high bitrate encoded content end-to-

end. It is often the case that the intermediate networks become the bottleneck

for high quality video streaming. It is not sufficient to simply ensure adequate

origin server capacity, but adequate network bandwidth must be available in all

the intermediate networks between the content server and the end-user [13, 14,

15]. Considering the fragmented nature of the Internet, illustrated by the fact

that even the largest network worldwide accounts for only 5% of user traffic and

needs over 650 networks to reach 90% of access traffic [13, 16], this is a stark

problem. This fragmentation means that content that is centrally hosted must

travel over multiple networks to reach end-users. Therefore, the burden falls on

the intermediate networks to ensure adequate capacity is available to achieve

the necessary end-to-end throughput for high quality streaming.

2) Minimise distance between VoD server and user: Large geographi-

cal distance between the content server and the end-user introduces the potential

for higher latency and packet loss in today’s best-effort Internet. High latency

and packet loss are particularly important as, when present, the user will ob-

serve greater start up and buffering times and may also be subjected to frame

drops and playback freezing. Ultimately, these events result in a lower Quality

of Experience (QoE) [10, 11, 12, 14, 15, 17]. In order to minimise packet loss

and benefit from reliable transmission, major VoD content providers (e.g. Net-

flix, Amazon’s Instant Video, YouTube etc.) use TCP to stream VoD content

4

[18, 16, 14, 15, 19]. However, TCP’s performance is highly affected by latency

and packet loss, which is noticeably present when the VoD server and client

are far away from each other. This is because TCP’s throughput is inversely

related to network latency or RTT [13, 14]. Therefore, from both a network-

ing and QoE perspective, the distance between the server and the end-user can

become a significant bottleneck in maintaining high quality video streaming.

A potential solution should address the aforementioned challenges and en-

sure that the media content resides as close to the user as possible. Such an

approach would ensure lower latency and higher throughput end-to-end, even-

tually leading to higher video quality and higher QoE overall [12, 10, 11].

2.2. Software Defined Networking

Software Defined Networking (SDN) is a new networking approach that fa-

cilitates the decoupling of the control plane in a network (i.e. the decision mak-

ing entity) from the data plane (i.e. the underlying forwarding mechanism).

OpenFlow [9], a prominent SDN protocol, defines the communication between

the Layer 2 switches and the controller of a network in an open and vendor-

agnostic manner. OpenFlow allows experimenters, application developers and

network administrators to exploit the true capabilities of a network in an easily

deployable and flexible manner. With the centralised network perspective that

SDN provides (through its controller), an administrator has an overarching view

of the current network status and has the ability to programmatically introduce

new network-wide functionality without having to interact with each individ-

ual network or user device. OpenCache, our in-network caching service, uses

OpenFlow to dynamically cache and distribute media content within a network

in a highly efficient and transparent manner.

3. Related Work

Related work that seeks to improve VoD distribution efficiency, spans across

multiple domains. These vary from application based solutions, such as Peer-

to-Peer, to server based solutions, such as cache and proxy servers or dedicated

5

infrastructure, such as Content Delivery Networks (CDNs). In this section we

provide a brief overview of each approach.

The efficiency of a Peer-to-Peer (P2P) based networking solution for video

streaming depends heavily upon the participation of users and their willingness

to share their limited storage and network resources [20]. P2P pushes the con-

tent closer to end-users and can deliver a live video stream to multiple users

simultaneously. This is possible because peers can sustain the short-term reten-

tion of live video using their own limited resources. However, P2P is much less

effective for VoD distribution, as the time between requests for identical content

may be in the order of hours, days or even months. This imposes additional

resource requirements. In addition, peers may join and leave the service at will,

making quality assurance very challenging. Furthermore, the distributed nature

of P2P brings a lack of central control, particularly for authentication, autho-

risation, accounting and security. This prohibits administrators and content

providers from making informed decisions and improving the service that they

provide. In addition, it prevents these parties from using intelligent caching and

distribution techniques [21].

Alternatively, traditional in-network cache and proxy approaches aim to

provide additional network and storage support by focusing on delivering the

content to users locally. For example, [6] demonstrates the significant benefits

of caching YouTube content, where even a very basic caching policy (i.e. a

static cache with long-term popular videos) can achieve a 51% cache-hit ratio.

Similar benefits are demonstrated in [7], where a simple two hour expiration

caching policy yields an aggregated request and byte hit rate of 24% using

cache storage of a size less than 2% of the overall data transferred. The benefits

of simple (i.e. never flushed) chunk-based transparent caching over two different

timescales (one hour and one day) are further illustrated in [8]. The authors of

[8] report that with a 10GB cache an average cache-hit ratio of approximately

25% is achieved with no significant difference over the two different timescales,

with the cache-hit ratio increasing to approximately 45% with a 1TB cache.

Historically the most common use of caching and proxy servers has been to

6

serve static web content. Thus, existing solutions (e.g. Squid [22]) are not usu-

ally optimised for the large storage, high bandwidth and low latency application

requirements of modern video delivery. Furthermore, they are typically difficult

to configure and customise, particularly in a dynamic and flexible fashion.

At the other end of the spectrum, commercial caching solutions are often

perceived as black boxes in the network, running on dedicated hardware and

requiring third-party support. They may run with minimal or no administrator

intervention or configuration, but they typically provide little flexibility as to

the content that should be cached and in what manner.

Another mechanism to improve the efficiency of VoD delivery is to use a

dedicated Content Delivery Network (CDN). CDNs deploy a large number

of caching servers worldwide, in order to push content to the edges of the In-

ternet [13, 21]. CDNs are typically deployed in order to achieve goals similar

to those noted in Section 2.1. From a content service provider’s perspective,

CDNs are an efficient distribution and cost effective solution. However, from

an ISP’s perspective, CDNs do not reduce the bandwidth utilisation on last

mile connections, as multiple requests for the same video content will create an

equal amount of flows serving the same amount of content to end-users. Even

in scenarios where a dedicated CDN cache can be deployed within an ISP’s net-

work [23], this cache is specific to a particular content provider and has strict

hardware, software and networking requirements that must be met before a de-

ployment is warranted. This makes it unsuitable for small to medium scale ISPs

or last mile deployments. In addition, despite the fact that CDNs deploy their

servers worldwide, it is unrealistic to expect them to deploy in every network.

Even CDNs themselves have recognised their inability to deploy in last mile

environments. In order to address this problem and reduce maintenance and ad-

ministration cost, Akamai introduced a hybrid CDN-P2P based solution. This

complements their service by pushing content closer to end-users [21]. How-

ever, such an approach has the same drawbacks as the P2P networking model

mentioned earlier, namely, requiring user involvement to download and install

software, and consuming the limited storage and network resources of end-users.

7

It is without doubt that a more flexible, configurable and transparent in-network

caching service, located closer to the user, would complement CDNs and truly

benefit last mile environments.

4. OpenCache

OpenCache is an OpenFlow-assisted in-network caching service that provides

an efficient, transparent and highly configurable caching and distribution of VoD

content in the last mile.

OpenCache offers a powerful interface that provides cache as a service. The

key contribution of OpenCache is having the means to enforce any caching policy

in a network at ease, rather than implementing a very specific replacement policy

(which has been covered extensively in related work, for example, [4, 5, 6, 7, 8]).

This functionality is not intrinsically linked to a particular type of content, or

to a specific hardware technology or software implementation. In this scenario,

the control and decision of what content should be cached is passed to the

ISP in which the node is placed. With this, a network administrator has now

the ability to optimise his network’s utilisation and external link usage. This

can be achieved by enabling in-network caching for specific content. OpenCache

exposes an interface through a flexible JSON-RPC based API, which allows VoD

content to be cached closer to the end-user. This placement also increases QoE

when streaming VoD content. Given appropriate SLAs, OpenCache’s interface

could also be used by content providers (e.g. CDNs) to declare their content as

cacheable on last mile environments, without having to physically deploy and

administer their own caching hardware. This would reduce their capital and

operational expenditure.

4.1. Architecture

Figure 1 presents the architectural components of OpenCache when deployed

on a production network. On an SDN-enabled, OpenFlow-based network, users

are connected to Layer 2 OpenFlow switches. The behaviour of these switches

8

Figure 1: OpenCache Architecture

is determined by a network controller using the OpenFlow protocol [9]. The

main component of OpenCache, namely the OpenCache Controller (OCC),

orchestrates the VoD caching and distribution functionalities with the aid of

a key-value store, acting as a database. The OCC communicates with the

OpenFlow controller of the network via a JSON-RPC interface. A VoD server

is the primary source for the video assets and could be located anywhere on the

Internet reachable by IP. Finally, the OpenCache Nodes (OCNs) are the actual

manifestation of caches, deployed at various locations within the network.

OpenCache’s components, the OCC along with its partner elements (the

OpenFlow controller and the key-value store), would ideally be located in the

same network as the end-users. For small-scale networks all three components

could even be co-located in one physical server, with OCC running as an ap-

plication on top of the OpenFlow controller. A single, widely reachable OCC

would be able to coordinate caching amongst a number of OCN instances (i.e.

caches). It is important to note that it is not a requirement that OpenFlow

9

be deployed throughout the network; the connecting network hardware could

be entirely non-OpenFlow. Similarly, not all edge switches need to support

OpenFlow, as a deployment with fewer hardware and/or software-based [24]

OpenFlow switches is also entirely feasible and allows OpenCache to be fully

functional. Evidently, the more OpenFlow capable switches are deployed in a

network, the higher the potential performance of the service, as a result of the

distribution of traffic requests across the switches. We propose that OCNs are

connected directly to OpenFlow switches on which clients are also attached.

This deployment would offer the lowest latency and fastest response time, and

thus ensure higher QoE for the end-users. However, the use of multiple OCNs

at different points in the network (e.g. attached to aggregation switches in an

enterprise or University campus network) is also feasible. In fact, a hierarchical

approach has the potential to provide further benefits, if a greater proportion

of requests can be fulfilled without leaving the LAN.

4.2. The OCC’s Functionality and Interfaces

The OpenCache Controller (OCC) is the main orchestrator of the in-network

caching service and provides the following five main functionalities.

1) The OCC handles explicit requests for content that should be

cached in the network’s OCNs (Figure 2), via a JSON-RPC based API (Table

1). Administrators or content service providers invoke the methods provided by

this interface, using appropriate authentication credentials, to declare content

that should explicitly be cached from this time onwards. If there is a request

for content to be cached (using the start method), the OCC ensures that this is

stored in the key-value store and that selected OCNs are initialised and aware of

the content that was requested for caching. In addition, the OCC will interact

with the network’s controller and instruct it to add the matching OpenFlow redi-

recting rules for the cacheable content in the OpenFlow switches of the network.

These flows ensure that all the users’ requests for that content are redirected to

their closest OCN. Finally, if there is a request to stop caching content previ-

ously added (using the stop method), then the OCC updates the key-value store

10

Figure 2: Declaring Content of Interest as Cacheable in OpenCache

Table 1: Interface for Declaring Content of Interest
Method Parameters Result
start { “expr” : <expr> } <boolean>
stop { “expr” : <expr> } <boolean>
pause { “expr” : <expr> } <boolean>
fetch { “expr” : <expr> } <boolean>
seed { “expr” : <expr> } <boolean>
refresh { “expr” : <expr> } <boolean>
stat { “expr” : <expr> } <boolean>

appropriately and ensures that all the matching content and flows are removed

from the network’s OCNs and OpenFlow switches, respectively.

2) The OCC reports aggregated cache statistics using the stat method

of the interface that OpenCache exposes (Table 1). The administrator can also

manually request updated statistics from the OCC (that is centrally collecting

statistics from the OCNs) by invoking the refresh method before using the

stat method. The ability to monitor and report aggregate cache statistics is a

particularly important function for optimising network and cache resources (e.g.

to implement cache load balancing). The stat method provides information for

a variety of metrics, such as the state of each OCN (start, stop or pause), the

OCNs’ available storage, the number of cache hits or cache misses (in event

counts or bytes), or the video objects that are cached in each OCN.

3) The OCC orchestrates the caching strategy that determines the

11

content that should be cached and the caching location (i.e. a specific OCN).

OpenCache’s ability to control the caching logic centrally on the OCC allows

the administrator to program and deploy their desired caching behaviour at will.

The OCC not only has the ability to monitor and report caching statistics that

can be used to make dynamic changes to caching behaviour in the network (as

mentioned previously), but also has the means to enforce this change in both

the network (by managing flow rules in the OpenFlow switches) and on the

constituent OCNs.

To this effect, the OCC’s interface offers three additional methods for man-

aging content caching, i.e. pause, fetch, seed (Table 1). With the use of the

pause method, the administrator has the ability to pause caching at given cache

instances, temporarily stopping them from handling requests for content, but

without removing the content from their storage. This pausing could be par-

ticularly beneficial for certain caching policies or for maintenance and adminis-

tration purposes, where OCN resources have to be, for example, upgraded but

without the need to remove all the previously cached content.

With the fetch method, an administrator can declare to the OCC that an

OCN (or set of them) should fetch certain content from a remote location, even

though this content might not have been explicitly requested by a user thus far.

This method essentially allows OpenCache to pre-cache popular content. This

is a very important functionality as certain content could be pre-cached during

periods where the network utilisation is low and thus further reduce the network

utilisation during peak hours.

The purpose of the seed method is to map multiple web addresses with a

specific video file in order to reduce storage utilisation. When the seed method

is invoked, a number of fully resolved expressions (web addresses) that serve the

same video file are added to the OCNs via the OCC. All the expressions are

equivalent to each other: the same content is served irrespective of the URL the

user requested that content from.

The aforementioned methods allow the administrator to define optimised

caching policies based on a variety of parameters that might be important in

12

his network. For example, he could program the caching logic to minimise

the streaming latency of recorded video lectures on a University’s network, or

to implement the pre-caching of popular content closer to end-users overnight,

when the network is underutilised. It is important to note the ease and speed

at which the administrator can actually implement the caching logic with the

use of OpenFlow in OpenCache.

4) The OCC manages the caching resources of the network. An im-

portant part of resource management is to be able to dynamically handle the

addition and removal of cache instances. For this reason, the OCC exposes

another JSON-RPC based API that allows the OCC to communicate with a

number of OCNs. This includes 3 methods; hello, keep-alive and goodbye. When

an OCN is added to the network, it invokes the hello method to let the OCC

know that it is now available. In turn, the OCC replies with a node-id that is

assigned to this particular OCN. From that point on, the OCN will periodically

send a keep-alive message to indicate that it is still in the network and func-

tioning correctly. If the OCC does not receive a keep-alive call from an OCN

every 15 seconds (a configurable option), then it assumes that the OCN is not

reachable, either because of network congestion or because it has been taken

offline. Consequently, the OCC will remove the “unreachable” OCN from the

list of caching resources that it has at its disposal. Alternatively, an OCN may

also leave the network gracefully with the transmission of a goodbye message.

The OCC is also responsible for propagating the caching strategy that the

administrator has determined for the OCNs. This functionality is accomplished

by allowing all the OCC interface methods (Table 1) to be also invoked on

individual OCNs directly. In particular, the OCC has the ability to invoke the

start, stop, pause, fetch and seed methods on any OCNs that it requires to act

accordingly. Finally, the OCC is able to invoke the stat method directly on an

OCI, and consequently receive counter values for all the caching metrics of that

particular cache instance. Through this process, the OCC aggregates important

network and caching metrics to help the administrator make informed decisions.

5) The OCC dynamically manages the in-network flow entries via

13

a Flow Pusher API that an OpenFlow controller provides (e.g. Floodlight con-

troller [25]). The OCC dynamically defines the appropriate flows that should

be in the OpenFlow switches (Figure 2), so that each user’s request gets redi-

rected to an OCN in his vicinity. With the management of flows, the OCC also

propagates the caching logic to the network. This ensures that the caching and

distribution functionalities remain purely in the network and are fully transpar-

ent to end-users.

4.3. The OpenCache Node’s Functionality

The OpenCache Node (OCN) is responsible for caching the appropriate video

content, and delivering it to users if they request it. When the OCN comes

online in a network, it communicates with the OCC and makes its resources

available to it. Subsequently, when the OCN obtains a node-id from the OCC,

it initialises its operation and awaits users’ requests.

When a user makes a video request, and if the content has been declared as

cacheable, the request will be received by the closest OCN to the user. This is

in contrast to it traversing the external link, which would be the case without

OpenCache in place. This is possible due to the rules installed in the OpenFlow

switches when explicitly declaring content to cache (Figure 2). Following these

rules, an OpenFlow switch redirects the user’s packets appropriately. When the

OCN receives such packets, it examines if it has the requested content already

cached. If the particular video is not cached in the OCN (a cache-miss scenario

depicted in Figure 3), the OCN requests the video from the original VoD server.

Once the first packet of this flow is received, the OCN will begin forwarding

these back to the client. This process is intended to reduce any latency induced

by the caching process. The delivery of this content traverses the OpenFlow

switch too, and additional OpenFlow rules ensure that the packet received by

the client appears to be from the expected source. With the completion of this

process, the session has remained transparent to the user and there is no in-

terruption to the service. Once the full flow has been handled in this way, the

payload of the delivery is stored by the OCN in order to serve subsequent re-

14

Figure 3: Cache-miss Scenario

quests. Furthermore, the OCN informs the OCC of this transaction for resource

provision and management purposes.

If the content for a particular request is already stored in the OCN (a

cache-hit scenario), the OCN delivers that video directly to the user in a trans-

parent fashion. As in a cache-miss scenario, the content always appears to

originate from the VoD server the client originally requested it from. However,

in a cache-hit scenario, no traffic would have left the user’s network into other

networks, thus saving external link utilisation and significantly reducing startup

and buffering delays. The role of the OCN is such that there is an inherent need

to have multiple instances of it distributed in the network to facilitate users’

requests and content caching as efficiently as possible.

5. Benefits of SDN

The use of Software Defined Networking (SDN), and OpenFlow in particular,

provides OpenCache with the ability to redirect requests for content to a running

15

cache instance. This is achieved in a truly transparent fashion: content that

reaches the client appears to originate from the origin server rather than the

cache. It is important to note that this is possible without the costly and time-

consuming modification of existing delivery techniques or end-client devices.

The only requirement for OpenCache to function is the presence of a single

OpenFlow-capable switch on the path from client to the server. We present

OpenCache in a last mile environment, where traditionally there has existed no

such cache process. However, the exact same process can be applied in other

situations without any modifications.

Using OpenFlow affords us with unparalleled access to real-time network

conditions. In conjunction with OpenCache’s API, these metrics can be used

to effectively satisfy any possible caching requirements. This includes the novel

ability to load balance requests at a network level.

6. Evaluation

In order to evaluate the efficacy of OpenCache, we carried out a number

of VoD streaming experiments representing different scenarios over a large-scale

pan-European OpenFlow testbed; the GÉANT OpenFlow Facility (GOFF) [26].

The following sections describe the testbed setup, the chosen evaluation crite-

ria and the experimental scenarios that we devised to evaluate OpenCache. In

addition, we describe Scootplayer, an open-source tool that we implemented to

measure key QoE metrics, in order to extensively evaluate OpenCache’s perfor-

mance. Finally, we present and analyse our experimentatal results.

6.1. Experimentation Testbed & Setup

The GN3plus EU project [27] provides the GOFF, which is composed of

a number of OpenFlow-capable software-based switches (i.e. Open vSwitches

[24]) and virtualised computing resources. These resources are located in five

different countries across Europe, as depicted in Figure 4. All sites are connected

as to produce a large federated experimentation environment, orchestrated by a

16

Figure 4: The GÉANT OpenFlow Facility and our Experimentation Setup

control framework. This framework works together with a web-based front-end

to expose the experimentation services of the testbed to its end-users.

For our experimentation, three GOFF sites were used, namely, the Am-

sterdam, Vienna and Frankfurt site. Three video streaming clients and one

OCN were set up in virtual machines located at the Amsterdam site, and one

VoD server was deployed in Vienna. Furthermore, an OpenFlow Controller, an

OCC and a key-value store were deployed in Frankfurt. Figure 4 depicts the

experimentation setup we created on GOFF, with the OpenFlow controller in

Frankfurt federating all the sites into one OpenFlow network.

6.2. Experimentation Scenarios

We defined two VoD streaming experimentation scenarios, with each includ-

ing two distinct tests. Scenario A involves single video client tests (only VoD

Client 1, Figure 4), whereas Scenario B involves multiple video client tests (all

three VoD Clients, Figure 4). In each scenario, Test 1 is carried out with the

default link characteristics of the testbed as a baseline, whereas Test 2 is car-

17

Table 2: Network Link Characteristics for Each Test

Scen. A & B Link Description

Test 1 Default Link
Setup

No additional link latency or packet loss is added to
the testbed links. Indicatively, VoD Clients experi-
ence on average 30ms RTT delay when communi-
cating with the VoD Server.

Test 2 Emulated
Link Setup

The clients’ site link characteristics fall into the fol-
lowing three categories at each point in time: 45%
have default link characteristics, 45% have addi-
tional 50ms RTT and 0.1% packet loss, and 10%
have additional 150ms RTT and 0.1% packet loss.

ried out by emulating additional link latency and packet loss on the clients’ site

egress link. This is because GOFF is a relatively bandwidth-rich, low latency

and reliable environment, which may not necessarily represent a typical domes-

tic or enterprise network. Therefore, to complement Test 1, in Test 2 of both

scenarios we used a Linux network emulation tool, called dummynet [28], to

introduce additional variable latency and packet loss and hence further evalu-

ated OpenCache’s performance in networks with different link characteristics

(detailed in Table 2).

For both tests of Scenario A (single VoD client with default and emulated

link setup), we carried out 20 VoD streaming runs for each of the following

three cases: without a cache (which provides a baseline), a cache-miss (where

content was not found on the OCN, and thus fetched from the original content

server) and a cache-hit (where content was found and delivered from the OCN

only). These 3 cases provide a direct comparison of the effects of the cache that

OpenCache provides on content delivery, across a number of important metrics

described in Section 6.4.

For both tests of Scenario B (multiple VoD clients with default and emulated

link setup), we carried out 20 VoD streaming runs of the following case. At

time zero, Client 1 starts streaming video content first, and after 30 seconds

Client 2 starts streaming as well. Then, 60 seconds after Client 2 has started,

Client 3 also starts streaming content. This scenario allows us to evaluate the

performance of OpenCache and its potential QoE improvements to end-users,

18

with multiple clients and multiple concurrent VoD TCP flows in the network.

In all experimental runs, the video client(s) requests the same reference

video file (i.e. “Big Buck Bunny”2) from the original VoD server, with playback

lasting for 9 minutes and 56 seconds. The content is streamed using an adaptive

video streaming technology, namely DASH (Dynamic Adaptive Streaming over

HTTP) [29]. MPEG-DASH facilitates the dynamic adjustment of the streaming

bitrate by offering various bitrate encodings of the reference video, fragmented

into fixed time chunks. This content is described in the Media Presentation

Description (MPD) file used by DASH and requested by the video client(s). In

our tests, the MPD file describes 20 different video quality representations in

chunks of 15 seconds each, from bitrates of 50Kbps up to 8000Kbps.

6.3. Scootplayer: VoD Streaming Evaluation Tool

For use in the aforementioned experimental scenarios, we built a unique

VoD evaluation tool, called Scootplayer. Scootplayer is an open-source tool

that we offer freely to the research community [30]. It was designed to help

experimenters better understand the effect of network conditions and their re-

lationship with the end-users’ QoE, by accurately logging an extensive number

of video streaming metrics as experienced during playback on the VoD clients.

Scootplayer is compatible with MPEG-DASH [29] manifest files, and can be used

to create realistic HTTP adaptive streaming traffic in a network. In addition,

we chose to develop Scootplayer because it generates scientifically reproducible

results.

6.4. Evaluation Criteria

The main aim of our testing scenarios is to evaluate OpenCache’s impact on

the network link utilisation and its potential impact on the QoE of the end-users.

To this effect, and influenced by related work [12, 10, 11], we define four key

QoE metrics, namely, (a) startup time, (b) bitrate changes during playback, (c)

2http://www.bigbuckbunny.org/

19

Table 3: QoE Evaluation Criteria

Metric Definition

Startup Time The time it takes a VoD client to start playback.

Video Bitrate Changes The number of times a VoD client has to change the
video streaming bitrate during playback.

Weighted Average Video
Bitrate

The average video bitrate experienced by a VoD client
weighted by its duration during playback.

Minimum Video Bitrate The minimum video bitrate a VoD client experienced
during playback.

average bitrate achieved during playback (weighted based on its duration) and

(d) minimum bitrate requested during playback. The description of each metric

is further given in Table 3. We designed and implemented Scootplayer to report

these metrics directly at the end of each playback run. These metrics were

chosen for their direct impact on QoE as, for example, the higher the average

bitrate achieved or the higher the minimum bitrate requested during playback,

the higher the QoE of the end-user potentially is. In addition, we report the

improvement that OpenCache brings to network utilisation by reporting cache

hits and cache misses as an evaluation metric. These cache based measurements

indicate how much OpenCache saved from traversing the network, by not having

to fetch all the content from the original VoD server and hence utilising less of

the external network capacity.

6.5. Results

In this section, we present the results for our two experimentation scenarios.

6.5.1. Scenario A: Single Video Client Experiments

The results from our experiments with a single video client (Scenario A, as

explained in Section 6.2) are shown averaged for our 20 runs of each test in

Figure 5. They clearly demonstrate the benefits of serving the content from

OpenCache, across all four QoE metrics we measured. We would like to also

highlight the efficiency of OpenCache in cache-miss cases, where OpenCache

presents only a 15% overhead in startup times when compared to the client

20

 0

 0.5

 1

 1.5

 2

 2.5

 3

VoD
Server

Cache
Miss

Cache
Hit

St
ar

tu
p

Ti
m

e
(s

)
Default

Emulated

 0
 5

 10
 15
 20
 25
 30
 35
 40

VoD
Server

Cache
Miss

Cache
Hit

Vi
de

o
Bi

tra
te

 C
ha

ng
es Default

Emulated

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

VoD
Server

Cache
Miss

Cache
Hit

W
ei

gh
te

d
Av

g.
 B

itr
at

e
(M

bp
s)

Default
Emulated

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

VoD
Server

Cache
Miss

Cache
Hit

M
in

im
um

 B
itr

at
e

(k
bp

s) Default
Emulated

(a) (b) (c) (d)

Figure 5: Scenario A: Single Client Results for Default and Emulated Link Setup

directly fetching the content from the original server. This is despite the fact

that an additional leg in the communication is introduced.

Figure 5a clearly depicts the approximately two times quicker startup times

that OpenCache achieves in cache-hit cases with the default link setup. This

is when compared to the startup times recorded in direct VoD server commu-

nication or in the cache-miss cases. The improvement in startup times is even

higher (more than 4 times faster) with the emulated link setup, where the path

to the VoD server has longer link delay and higher packet loss. The degraded

link characteristics of the emulated link setup are also reflected in the error bars

of Figure 5a that show a higher standard deviation when compare to the default

link setup.

Figure 5b illustrates the improvements that OpenCache offers by lowering

the number of bitrate changes the end-client has to carry out in cache-hit sce-

narios of the emulated link setup. A low number of bitrate changes indicates

network and playback stability, and an increase in QoE when coupled with the

improvements in the minimum and average bitrate achieved during playback

(Figure 5c and 5d, respectively). In particular, in the emulated link setup for

direct VoD communication or cache-miss cases, the end-client has to perform 23

bitrate changes on average, but with OpenCache present in cache-hit scenarios

only 2 changes are necessary (Figure 5b). This is observed only in the emu-

lated link setup as the RTT delay and packet loss are very low in the default

link setup. OpenCache achieves additional QoE improvements in the minimum

and average bitrate achieved during playback in cache-hit scenarios (Figure 5d

and 5c, respectively). This comparison is between cache hits, and the direct

21

or indirect VoD communication in the emulated link setup, as the throughput

observed in the default link setup is constantly high. In the scenarios of the em-

ulated link setup, we observe over three times higher weighted average bitrate

and over four times higher minimum bitrate during playback, key indicators of

higher QoE.

6.5.2. Scenario B: Multiple Video Client Experiments

The results from our experiments with multiple video clients (Scenario B, as

explained in Section 6.2) are shown averaged for 20 runs of each test in Figure 6.

In both tests of Scenario B, we have three video clients starting at 0, 30 and 90

seconds, respectively. In this scenario, Client 1 always experiences cache misses

as it starts first and the OCN’s cache is empty, whereas, both Client 2 and

Client 3 benefit from the content cached during Client 1’s streaming.

During Scenario B for the default setup, we observe, on average, 57% of

requests from Client 2 and Client 3 to be cache hits. In the emulated link

setup, cache hits amount to 61% of requests on average. This has a direct

impact on reducing the external link utilisation on the clients’ site. This would

typically lead to a reduction in transit traffic costs and better utilisation of

existing network resources. Our analysis also shows that Client 3 exhibits more

cache hits than Client 2, illustrating that with a higher number of clients we are

further increasing cache hits. Consequently, this produces an increase in QoE

and a reduction in external link usage.

In particular, Figure 6a depicts the average startup time for all three clients

and illustrates that Client 3’s startup time shows approximately a threefold im-

provement for the default link setup and an up to sixfold improvement for the

emulated link setup. We notice the greater improvement in the emulated link

setup, because in this test the cache-miss cost is higher due to the increased

link delay and packet loss on the path between the OCN and VoD server. For

Client 2 however, the startup time is higher in the emulated link setup when

compared to Client 1. This is because Client 2 estimates its available band-

width based on downloading all the initialisation files specified in the MPD file,

22

 0
 0.5

 1
 1.5

 2
 2.5

 3

Client1 Client2 Client3

St
ar

tu
p

Ti
m

e
(s

)
Default

Emulated

 0
 5

 10
 15
 20
 25
 30
 35
 40

Client1 Client2 Client3

Vi
de

o
Bi

tra
te

 C
ha

ng
es Default

Emulated

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

Client1 Client2 Client3W
ei

gh
te

d
Av

g.
 B

itr
at

e
(M

bp
s)

Default
Emulated

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

Client1 Client2 Client3

M
in

im
um

 B
itr

at
e

(k
bp

s) Default
Emulated

(a) (b) (c) (d)

Figure 6: Scenario B: Multiple Client Results for Default and Emulated Link Setup

which are all cached in the OCN during Client 1’s streaming. Based on this

estimation, Client 2 then requests higher bitrate chunks than what Client 1 re-

quested, which, as they are being requested for the first time, have to be fetched

from the original VoD server by the OCN. Admittedly, these cache misses in-

crease Client 2’s startup times, but as higher bitrate chunks are requested, they

also improve its minimum and weighted average bitrate achieved during play-

back (Figure 6d and 6c, respectively), when compared to Client 1. Apparently,

Client 3 and every potential client from that point on, benefits directly as Open-

Cache is able to serve more higher bitrate chunks from its OCN.

Figure 6b depicts the video bitrate changes for both tests, which are at com-

parable levels for all clients per test. We observe that the presence of OpenCache

does not influence the number of bitrate changes in multiple client scenarios,

as not all requests are cache hits, and also more TCP flows are present in the

network and streaming is therefore impacted. We note that the number of bi-

trate changes are higher in the emulated link setup compared to the default link

setup as a result of the cache misses and the additional link delay and packet

loss, coupled with the multitude of video streams in the network.

Finally, Figure 6c illustrates that, in the emulated link setup, with each

additional client OpenCache manages to improve the average bitrate observed

during playback. There are also similar improvements shown in Figure 6d re-

garding the minimum bitrate achieved in both default and emulated link setups.

As an example, Client 3 has approximately 1.75 times higher average bitrate

and 6 times higher minimum bitrate during playback when compared to the

respective results for Client 1 in the emulated link setup. This illustrates that

23

OpenCache achieves higher QoE by increasing the overall quality of the video

streaming even when multiple clients are present in the network.

7. Conclusion

In this paper we presented OpenCache: an efficient, transparent and highly

configurable OpenFlow-assisted in-network caching service for VoD streaming.

OpenCache aims to address the underlying challenge that the network faces

when the same video files are streamed to end-users repeatedly using indepen-

dent unicast flows.

OpenCache provides cache as a service by offering an interface to declare

cacheable content of interest in a highly configurable and flexible manner. Fur-

thermore, OpenCache supports centrally controlled caching that provides a plat-

form for many additional services to be programmed on top of it with ease (e.g.

load balancing, pre-caching, different caching replacement policies etc.). There

is also a distinct advantage in that it is easily deployable within a production

network; there are no changes required in the underlying video delivery mecha-

nisms and all existing hardware and software can be retained. Furthering this,

OpenCache is also fully transparent to the end-user; the user does not need to

install any extra software, or have to sacrifice any of his local network or storage

resources to stream video content with high efficiency, which other technologies

require [21, 20].

In addition, and as demonstrated through single and multiple client ex-

perimentation, OpenCache provides caching very close to the user with three

important benefits. Firstly, the external link usage is reduced leading to lower

transit traffic costs and improved network utilisation, as end-user requests are

now served locally. Secondly, OpenCache reduces the distribution load on the

origin content provider and all the transient networks along the path between

the origin and the end-user. Thirdly, since the content is served locally, the

video client observes higher throughput and lower latency. This directly leads

to higher minimum and weighted average streaming bitrate, and smaller start

24

up and buffering times, eventually providing higher QoE to the end-user.

8. Acknowledgments

The work presented in this paper has been funded by the EU FP7 GN3plus

project (FP7-INFRASTRUCTURES-605243) and the EU FP7 OFELIA project

(FP7-ICT-258365).

References

[1] P. Georgopoulos, M. Broadbent, B. Plattner, N. Race, Cache as a Service: Lever-

aging SDN to Efficiently and Transparently Support Video-on-Demand on the

Last Mile, in: 23rd International Conference on Computer Communication and

Networks (ICCCN) 2014, 2014, pp. 1–9. doi:10.1109/ICCCN.2014.6911775.

[2] Visual Networking Index: Forecast and Methodology, 2013-2018, Tech. rep.,

CISCO (June 2014).

[3] Visual Networking Index: Forecast and Methodology, 2011-2016, Tech. rep.,

CISCO (May 2012).

[4] A. Dan, D. Sitaram, Generalized Interval Caching Policy for Mixed Interactive

and Long Video Workloads, SPIE Multimedia Computing and Networking 2667

(1996) 344–351. doi:10.1117/12.235887.

[5] A. Dan, D. Dias, R. Mukherjee, D. Sitaram, R. Tewari, Buffering and Caching in

Large-scale Video Servers, in: COMPCON ’95: Technologies for the Information

Superhighway, 1995, pp. 217–224. doi:10.1109/CMPCON.1995.512389.

[6] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, S. Moon, I Tube, You Tube,

Everybody Tubes: Analyzing the World’s Largest User Generated Con-

tent Video System, in: 7th ACM SIGCOMM IMC 2007, 2007, pp. 1–14.

doi:10.1145/1298306.1298309.

[7] M. Chesire, A. Wolman, G. M. Voelker, H. M. Levy, Measurement and Analysis

of a Streaming-media Workload, in: 3rd USENIX USITS 2001, 2001, pp. 1–1.

[8] C. Imbrenda, L. Muscariello, D. Rossi, Analyzing Cacheable Traffic in ISP Access

Networks for Micro CDN Applications via Content-centric Networking, in: 1st

International Conference on Information-centric Networking (INC) 2014, 2014,

pp. 57–66. doi:10.1145/2660129.2660146.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, J. Turner, OpenFlow: Enabling Innovation in Campus Networks,

SIGCOMM CCR 38 (2) (2008) 69–74.

[10] S. S. Krishnan, R. K. Sitaraman, Video Stream Quality Impacts Viewer Behavior:

Inferring Causality Using Quasi-experimental Designs, in: ACM SIGCOMM IMC

2012, 2012, pp. 211–224.

[11] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,

H. Zhang, Understanding the Impact of Video Quality on User Engagement,

in: ACM SIGCOMM 2011, 2011, pp. 362–373. doi:10.1145/2018436.2018478.

25

[12] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, H. Zhang, A Case for

a Coordinated Internet Video Control Plane, in: ACM SIGCOMM 2012, 2012,

pp. 359–370. doi:10.1145/2342356.2342431.

[13] E. Nygren, R. K. Sitaraman, J. Sun, The Akamai Network: A Platform for High-

performance Internet Applications, SIGOPS OS Rev. 44 (3) (2010) 2–19.

[14] S. Sen, J. Rexford, D. Towsley, Proxy Prefix Caching for Multimedia Streams, in:

19th IEEE INFOCOM 1999, Vol. 3, 1999, pp. 1310–1319 vol.3.

[15] J. V. D. Merwe, S. Sen, C. Kalmanek, Streaming Video Traffic: Characterization

and Network Impact, in: Int. Web Content Caching and Distribution Workshop,

2002.

[16] K. Sripanidkulchai, B. Maggs, H. Zhang, An Analysis of Live Streaming Work-

loads on the Internet, in: 4th ACM SIGCOMM IMC 2004, 2004, pp. 41–54.

[17] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, N. Race, Towards Network-

wide QoE Fairness Using Openflow-assisted Adaptive Video Streaming, in: ACM

SIGCOMM 2013 Workshop on Future Human-centric Multimedia Networking

(FhMN), 2013, pp. 15–20.

[18] B. Wang, J. Kurose, P. Shenoy, D. Towsley, Multimedia Streaming via TCP: An

Analytic Performance Study, ACM Trans. MCCA 4 (2) (2008) 16:1–16:22.

[19] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, W. Dabbous, Network

Characteristics of Video Streaming Traffic, in: 7th ACM CoNEXT 2011, 2011,

pp. 25:1–25:12.

[20] J. Pouwelse, J. Taal, R. Lagendijk, D. H. J. Epema, H. Sips, Real-time Video

Delivery using Peer-to-Peer Bartering Networks and Multiple Description Coding,

in: IEEE Int. Conference on Systems, Man and Cybernetics 2004, Vol. 5, 2004,

pp. 4599–4605 vol.5. doi:10.1109/ICSMC.2004.1401257.

[21] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel, B. Maggs,

B. Wishon, M. Ponec, Peer-assisted Content Distribution in Akamai Netsession,

in: 13th ACM SIGCOMM IMC 2013, 2013, pp. 31–42.

[22] Squid Proxy Server, http://www.squid-cache.org/.

[23] Netflix Open Connect Platform, http://www.netflix.com/openconnect.

[24] Open vSwitch: An Open Virtual Switch, http://openvswitch.org/.

[25] The Floodlight Controller, http://floodlight.openflowhub.org/.

[26] The GÉANT OpenFlow Facility (GOFF), https://openflow.geant.net/.

[27] The GÉANT Project, http://www.geant.net/.

[28] Dymmynet: Network Emulation Tool, http://info.iet.unipi.it/~luigi/

dummynet/.

[29] ISO-IEC 23009-1:2012 Information Technology, Dynamic Adaptive Streaming

over HTTP (DASH).

[30] Scootplayer: VoD QoE Evaluation Tool, github.com/broadbent/Scootplayer.

26

Appendix

Following Elsevier policy, please find below the original paper accepted for pub-

lication at the 23rd International Conference on Computer Communications and

Networks (ICCCN) 2014.

Please remove this Appendix for final publication.

27

Cache as a Service:
Leveraging SDN to Efficiently and Transparently

Support Video-on-Demand on the Last Mile

Panagiotis Georgopoulos∗†, Matthew Broadbent†, Bernhard Plattner∗ and Nicholas Race†
∗Communication Systems Group, ETH Zurich, 8092 Zurich, Switzerland

†School of Computing and Communications, Lancaster University, Lancaster, LA1 4WA, UK
panos@tik.ee.ethz.ch, m.broadbent@lancaster.ac.uk, plattner@tik.ee.ethz.ch, n.race@lancaster.ac.uk

Abstract—High quality online video streaming, both
live and on-demand, has become an essential part of
consumers’ every-day lives. The popularity of video
streaming has placed a heavy burden on the network
infrastructure that now has to transfer an enormous
amount of data very quickly to the end-user. To further
exacerbate the situation, the Video-on-Demand (VoD)
distribution paradigm uses a unicast independent flow for
each user request. This results in multiple duplicate flows
carrying the same video assets many times end-to-end.
We present OpenCache: a highly configurable, efficient
and transparent in-network caching service that aims to
improve the VoD distribution efficiency by caching video
assets as close to the end-user as possible. OpenCache
leverages Software Defined Networking to benefit last
mile environments by improving network utilisation and
increasing the Quality of Experience for the end-user.
Our evaluation on a pan-European OpenFlow testbed uses
adaptive video streaming and demonstrates that with the
use of OpenCache, the external link utilisation is reduced
by 100%. Furthermore the streaming application receives
better quality video and observes higher throughput, lower
latency and shorter start up and buffering times.

Keywords—Video-on-Demand (VoD), Caching, Quality of
Experience (QoE), Software Defined Networking (SDN),
OpenFlow, OpenCache

I. INTRODUCTION

Recent years have seen a huge growth in the popu-
larity of video streaming, for both live and on-demand
services. In 2012, Internet video traffic accounted glob-
ally for 57% of all consumer Internet traffic, and is
predicted to increase even more, to 69% by 2017 [1].
Correspondingly, the popularity of Video-on-Demand
(VoD) traffic continues to increase, with the volume
of VoD traffic predicted to reach the equivalent of 6
billion DVDs per month by 2017 [2]. At the same time,
High Definition (HD) video traffic has already surpassed

Standard Definition (SD) traffic, making HD the de facto
video quality level consumed by users [2]. There is
no doubt that high quality online video streaming has
become an essential part of consumers’ every-day life.

With a VoD service, individuals can retrieve previ-
ously recorded content at a time after it was initially
broadcast or made available. With the increasing growth
of VoD and the popularity of HD content, an alarming
challenge to the underlying network infrastructure is
becoming apparent. The network now has to transfer
an enormous amount of data to the end-user, and do so
as quickly as possible. At the same time, the available
content continues to improve in terms of resolution
and overall video quality, and this trend will continue
as we move from HD through to Ultra HD and 3D
video. These changes in video quality require delivery
throughput in the order of tens of Mbps for just one
stream, and place additional burden on the underlying
network infrastructure for supporting their distribution.

Currently, VoD requests are handled individually,
leading to an independent flow in the distribution network
serving each user’s request. Using such a unicast content
delivery paradigm naively ignores that much of the
content is identical to transmissions minutes, hours or
days earlier. Hence, a very large amount of identical
media objects, in the order of gigabytes for each HD film,
is delivered on the same network segments repeatedly. In
order to efficiently support such VoD streaming, the end-
to-end capacity of the network must continuously match
the increasing number of Internet video users and the
growing popularity of HD content. Mechanisms are thus
sought to improve the VoD distribution efficiency.

In this paper we introduce OpenCache: a transpar-
ent, flexible and highly configurable in-network caching
service for VoD streaming. OpenCache uses Software

Defined Networking (SDN) to provide cache as a service
for media content in an efficient and transparent fashion.
This should directly benefit last mile environments. By
leveraging SDN, and OpenFlow in particular [3], we
provide a control plane that orchestrates the caching and
distribution functionalities, and transparently pushes the
content as close to the user as possible without requiring
any changes to the delivery methods or the end-hosts.

Our approach, building an SDN based in-network
caching service, has three important contributions. First,
it improves network utilisation and minimises the exter-
nal link usage on the last mile that is often costly. Second,
OpenCache reduces the distribution load from the VoD
content provider and all the transient networks along the
path of the VoD server to the end-user. Third, by transpar-
ently caching the content closer to the user, OpenCache
minimises the distance between the VoD streaming server
and the user. This provides great improvements to the
Quality of Experience (QoE) of the end-user, as the
streaming application observes higher throughput, less
latency and smaller start up and buffering times; key QoE
differentiators [4], [5], [6].

The remainder of the paper is organised as follows.
Section II provides the background of this work, whilst
related work is presented in Section III. Section IV intro-
duces the main entities and functionality of OpenCache,
whereas Section V describes the key benefits achieved
with SDN. Evaluation is shown in Section VI and finally,
Section VII concludes the paper.

II. BACKGROUND

A. Motivation & Problem Statement

To achieve high quality VoD streaming, a potential
solution should be able to address the following two
primary requirements :

1) Provide high throughput end-to-end: High qual-
ity video streaming demands quick and reliable trans-
mission of high bitrate encoded content end-to-end. It is
often the case that the intermediate networks that have to
transfer the media content quickly, become the bottleneck
for high quality video streaming. It is not enough to
ensure adequate origin server capacity, but adequate net-
work bandwidth must be available in all the intermediate
networks between the content server and the end-user
[7], [8], [9]. With the Internet being highly fragmented,
namely, the largest network worldwide accounting for
only 5% of user traffic and needing over 650 networks
to reach 90% of access traffic [7], [10], this is a stark

problem. This fragmentation means that content that
is centrally hosted must travel over multiple networks
to reach end-users. Therefore, the burden falls on the
intermediate networks to ensure adequate capacity is
available to achieve the necessary end-to-end throughput
for high quality streaming.

2) Minimise distance between VoD server and
user: Large geographical distance between the content
server and the end-user presents the potential for higher
latency and packet loss in today’s best-effort Internet.
High latency and packet loss are particularly important
as, when present, the user notices larger start up and
buffering times. In addition, frame dropping and frame
freezing are observed. Ultimately, these eventually lead
to lower QoE [4], [5], [6], [8], [9], [11]. To minimise
packet loss and benefit from reliable transmission, major
VoD content providers (e.g. Netflix, Amazon’s LoveFilm,
YouTube etc.) use TCP to stream VoD content [12], [10],
[8], [9], [13]. However, TCP’s performance is highly
affected by latency and packet loss (noticeably present
when the VoD server and client are far away from each
other). This is because TCP’s throughput is inversely
related to network latency or RTT [7], [8]. Therefore,
from both networking and QoE perspectives, the distance
between the server and the end-user can become a
significant bottleneck in maintaining high quality video
streaming.

A potential solution should address the aforemen-
tioned challenges and ensure that the media content
resides as close to the user as possible. Such an approach
would ensure lower latency and higher throughput end-
to-end, eventually leading to higher video quality and
lower start up and buffering times [6], [4], [5].

B. Software Defined Networking

Software Defined Networking (SDN) is a new, very
promising, networking approach that facilitates the de-
coupling of the control plane in a network (i.e. the
decision making entity) from the data plane (i.e. the
underlying forwarding system). OpenFlow [3], currently
the prominent SDN protocol, defines the communication
between the Layer 2 switches and the controller of
the network in an open and vendor-agnostic manner.
OpenFlow allows experimenters, protocol developers and
network administrators to exploit the true capabilities of
a network in an easily deployable and flexible manner.
With the centralised network perspective that OpenFlow
provides through its controller, an administrator has an

overarching view of the current network status and has
the ability to programmatically introduce new
network-wide functionality without having to interact
with each individual network or user device. OpenCache,
our in-network caching service, uses OpenFlow to dy-
namically cache and distribute media content within a
network in a highly efficient and transparent manner.

III. RELATED WORK

Multicast is a technology that can deliver the same
media assets to multiple users simultaneously by reduc-
ing the delivery throughput on the origin server to one
stream. Setting aside the multiple real-world deployment
problems that multicast entails [14], multicast is, by
design, an efficient solution for live video streaming,
where, all users’ requests are for the same content at
the same time. However, with VoD, this is not the
case, as requests can occur any time after the content
becomes available. Related work that has used multicast
to improve the delivery efficiency of VoD often involves
unnecessary complexity, such as merging streams by
speeding up or slowing down the clients’ viewing rate
[15], [16], holding a portion of the clients’ bandwidth in
reserve [17], or requiring from the clients the receipt of
two or more video streams simultaneously, each at the
playback rate [18], [19], [17]. Also, these solutions are
not transparent and require client or server modifications.

The efficiency of a Peer-to-Peer (P2P) based net-
working solution for video streaming depends heavily
upon the participation of users and their willingness to
share their limited storage and network resources [20].
P2P pushes the content closer to end-users and can de-
liver a live video stream to multiple users simultaneously.
This is possible because peers can sustain the short-
term retention of live video using their own resources.
However, P2P is much less effective for VoD distribution,
as the time between requests for identical content may
be in the order of hours, days or even months. In
addition, P2P peers may join and leave the service at will,
making VoD streaming quality assurance very challeng-
ing. Furthermore, the distributed nature of P2P brings
a lack of central control, particularly for authentication,
authorisation, accounting and security. This prohibits net-
work administrators and content providers from making
informed decisions and improving the service that they
provide. In addition, it prevents these parties from using
intelligent caching and distribution techniques [21].

Alternatively, traditional in-network cache and proxy
approaches aim to provide additional network and stor-

age support by focusing on delivering the content to users
locally. For example, [22] demonstrates the significant
benefits of caching YouTube content, where even a very
basic caching policy (i.e. a static cache with long-term
popular videos) can approximately achieve a 51%
cache-hit ratio. Similar benefits are demonstrated in [23],
where a simple two hour expiration caching policy yields
an aggregated request and byte hit rate of 24% using
cache storage of a size less than 2% of the overall data
transferred.

Historically though, the most common use of caching
and proxying servers is to serve static web content.
Thus, existing solutions (e.g. Squid [24]) are not usually
optimised for the high storage, bandwidth and the very
demanding application requirements of video delivery
(e.g. skipping to a certain part of a video stream). Some
popular caching servers are too complex to customise
and configure, and require constant attention and tuning
from network administrators. To the other extreme, some
commercial caching solutions provide little flexibility,
customisation and configurability as to the content that
should be cached and their caching policies. These solu-
tions are essentially black boxes in the network, running
on dedicated hardware and requiring third-party support.
Such solutions typically leave network administrators
with minimal control and resource monitoring of devices
located within their own network.

Another mechanism to improve the efficiency of VoD
delivery is to use a dedicated Content Delivery Network
(CDN). CDNs deploy a large number of caching servers
worldwide, in order to push content to the edges of
the Internet [7], [21]. CDNs are typically deployed in
order to achieve goals similar to those noted in Section
II-A. From a content provider’s perspective, CDNs are an
efficient distribution and cost effective solution. However,
from a consumer ISP’s perspective, CDNs do not reduce
the bandwidth utilisation on last mile connections, as
multiple requests for the same video content will create
an equal amount of flows serving the same amount of
content to end-users. Even in scenarios where a dedicated
CDN cache can be deployed within an ISP’s network
[25], this cache is specific to a particular service and has
strict hardware, software and networking requirements
(e.g. video traffic higher than a threshold), that deems
it unsuitable for medium-scale ISPs or last mile deploy-
ments. In addition, despite the fact that CDNs deploy
their servers worldwide, it is unrealistic to expect them
to deploy in all ISP networks or last mile environments.

Even CDNs themselves have recognised their inabil-
ity to truly reach out to last mile environments. For
example, in order to address this problem and reduce
maintenance and administration cost, Akamai introduced
a hybrid CDN-P2P based solution, that complements
their service by pushing content closer to end-users
[21]. However, such an approach has the drawbacks
of P2P networking mentioned earlier, namely, requiring
user involvement to download and install software, and
consuming the limited storage and uploading resources
of end-users. It is without doubt that a more flexible,
configurable and transparent in-network caching service,
located closer to the user, would complement CDNs and
truly benefit last mile environments.

IV. OPENCACHE

OpenCache is an OpenFlow-assisted in-network
caching service that provides efficient, transparent and
highly configurable caching and distribution of VoD
content in the last mile.

OpenCache offers a powerful interface that provides
cache as a service. This is not intrinsically linked to
a particular type of content, or to a specific hardware
or software implementation. The control and decision
of what content should be cached is passed on to the
network administrator of the ISP, who now has the ability
to optimise his network’s utilisation and external link
usage. This can be achieved by enabling in-network
caching for specific content via a designated interface.
OpenCache exposes this interface through a powerful and
flexible JSON-RPC based API, which allows VoD con-
tent to be cached closer to the end-user. This placement
also increases their QoE when streaming the content.
Given appropriate SLAs, OpenCache’s interface could
also be used by content providers (e.g. CDNs) to declare
their content as cacheable on last mile environments,
without having to physically deploy and administer their
own caching hardware. It is envisaged that OpenCache’s
interface will eventually be compatible with CDNI [26],
a collaboration protocol currently under development by
the research community. This functionality can be used
by CDNs to define their interconnections, and hence ease
interoperability and communication between them and
potentially OpenCache.

Fig. 1 presents the entities of OpenCache when de-
ployed on a production network. On an SDN-enabled,
OpenFlow-based network, users are connected to Layer 2
OpenFlow switches. The functionality of these switches

Fig. 1: OpenCache Architecture

is dictated by a network controller using the OpenFlow
protocol [3]. The main entity of OpenCache, namely
the OpenCache Controller (OCC), orchestrates the VoD
caching and distribution functionalities with the aid of a
key-value store, that acts as a database. The OCC com-
municates with the OpenFlow controller of the network
via a JSON-RPC interface. A VoD server is the primary
source for the video assets and could be located anywhere
on the Internet reachable by its IP address. Finally, the
OpenCache Nodes (OCNs) are the caches of the service,
inherently being deployed in various locations in the
network.

With respect to the placement of the OpenCache’s
entities, the OCC, along with its partner elements (the
OpenFlow controller and the key-value store) would
ideally be located in the same network as the end-
users. A single, widely reachable OCC would be able to
coordinate caching amongst a number of OCN instances
(i.e. caches). It is important to note that it is not a
requirement that OpenFlow be deployed throughout the
network; the connecting network hardware could also
be entirely non-OpenFlow. The only specific OpenFlow
switch requirement is at the last hop, closest to the
user. We propose that OCNs are connected directly to
OpenFlow switches on which clients are also attached.
This deployment would offer the lowest latency and
fastest response time, and thus ensure higher QoE for the
end-users. However, the use of multiple OCNs at differ-
ent points in the network (e.g. attached to aggregation
switches in an enterprise or University campus network)
is also entirely feasible. In fact, a hierarchical approach
has the potential to provide further benefits if a greater

proportion of requests can be fulfilled without leaving
the LAN.

A. The OCC’s Functionality and Interfaces

The OpenCache Controller (OCC) is the main
orchestrator of the in-network caching functionality that
OpenCache provides, and implements the following four
main operations :

1) Receives requests for content of interest that
should be cached in the network’s OCNs (Fig. 2), by
exposing a JSON-RPC based API (Table I). Network
administrators or content providers invoke the methods
provided by this interface, using the appropriate authen-
tication credentials, to declare what content should be
cached from this point on in the network. If there is
a request for certain content to be cached (using the
start-expr method) the OCC ensures that this interest is
stored in the key-value store and that all the OCNs are
initialised and aware of the content that was requested
for caching. In addition, the OCC will interact with the
network’s controller and instruct it to add the matching
OpenFlow redirecting rules for the cacheable content
in the OpenFlow switches of the network. These flows
ensure that all the users’ requests for that content are
redirected to their closest OCN. If there is a request
to stop caching content previously added (using the
stop-expr method), then the OCC updates the key-value
store appropriately and ensures that all the matching
content and flows are removed from the networks’ OCNs
and OpenFlow switches, respectively. Finally, the OCC
exposes a list-expr-all method over its API that lists to
the requester all the content that has been requested for
caching.

It is important to emphasise the granularity and flex-
ibility that this interface provides: a regular expression-
like syntax can be used to define parameters in the
start-expr and stop-expr methods. The level of granu-
larity is only constrained by the matching capabilities
of OpenFlow. This allows administrators to fine tune
their requests. For example, a request can be made for
a specific video to be cached, or the videos of a whole
domain or even a certain type of video from any domain.

2) Implements the caching logic which dictates
what content should be cached and to which OCN at
each point in time. OpenCache’s ability to control the
caching logic centrally on the OCC allows the network
administrator to program and deploy their desired
caching behaviour. This request can be based on the

Fig. 2: Declaring Content of Interest as Cacheable

TABLE I: Interface for Declaring Content of Interest
Method Parameters Result
start-expr { “expr” : <expr> } <boolean>
stop-expr { “expr” : <expr> } <boolean>
list-expr-all none [{“expr” : <expr>, “port” : <port>}, ...]

TABLE II: Interface to Interact with OCNs
Method Parameters Result
hello { “host” : <host>, “port” : <port> } <node-id>
keep-alive { “node-id” : <node-id> } <boolean>
goodbye { “node-id” : <node-id> } <boolean>

specific parameters that he wants to optimise in his
network. For example, an administrator could program
the caching logic to minimise the streaming latency of
recorded video lectures on a University’s network, or to
implement the pre-caching of popular content closer to
end-users overnight, when the network is underutilised.
It is important to note the ease and speed at which
the network administrator can actually implement the
caching logic with the use of OpenFlow in OpenCache.

3) Manage the available OCNs’ resources in the
network. An important part of resource management is
to be able to handle the addition and removal of caches
in a network dynamically. For this reason, the OCC
exposes another JSON-RPC based API that allows the
communication of the OCC with a number of OCNs
(Table II). When an OCN is added to the network, it
invokes the hello method to let the OCC know that
it is now available on the network. In turn, the OCC
replies with a node-id that is assigned to this particular
OCN. From that point on, the OCN will periodically send
a keep-alive message to indicate that it is still in the
network and functioning correctly. If the OCC does not
receive a keep-alive call from an OCN every 15 seconds
(a configurable option), then it assumes that the OCN
is not reachable, either because of network congestion
or because it has been taken offline. Consequently, the
OCC will remove the “unreachable” OCN from the list of

caching resources that it has at its disposal. Alternatively,
an OCN may also leave the network gracefully with the
transmission of a goodbye message (Table II).

4) Manage and maintain the OpenFlow flows in
the network dynamically via a Flow Pusher API that
an OpenFlow controller provides (e.g. [27]). The OCC
defines dynamically the appropriate flows that should be
in the OpenFlow switches, so that each user’s request
gets redirected to an OCN in his vicinity (Fig. 2). With
the management of flows, the OCC also propagates the
caching logic to the network (e.g. expire content, perform
load balancing or pre-caching). This also ensures that the
caching and distribution functionalities remain purely in
the network and are fully transparent to end-users.

B. The OpenCache Node’s Functionality

The OpenCache Node (OCN) is responsible for
caching the appropriate video content, and delivering it
to users if they request it. When the OCN comes online
in a network, it communicates with the OCC (via the
interface in Table II) and makes its resources available to
it. Subsequently, when the OCN obtains a node-id from
the OCC, it initialises its operation and awaits users’
requests.

When a user makes a video request, and if the content
has been declared as cacheable, the request will be
received by the closest OCN to the user. This is in
contrast to it traversing the external link, which would
be the case without OpenCache in place. This is possible
due to the pre-populated rules installed in the OpenFlow
switches when declaring content of interest (Fig. 2).
Following these rules, an OpenFlow switch redirects the
user’s packets appropriately. When the OCN receives
such packets, it examines if it has the requested content
already cached. If the particular video is not cached in
the OCN (a cache-miss scenario depicted in Fig. 3), the
OCN requests the video from the original VoD server.
Once the first packet of this flow is received, the OCN
will begin forwarding these back to the client. This
process is intended to reduce any latency induced by the
caching process. The delivery of this content traverses
the OpenFlow switch too, and additional rules ensure
that the packet received by the client appears to be from
the expected source. With the completion of this process,
the session has remained transparent to the user and there
is no interruption to the service. Once the full flow has
been handled in this way, the payload of the delivery
is stored by the OCN in order to serve subsequent

Fig. 3: Cache-miss Scenario

requests. Furthermore, the OCN informs the OCC of
this transaction for resource provision and management
purposes.

If the content for a particular request is already stored
in the OCN (a cache-hit scenario), the OCN delivers that
video directly to the user in a transparent fashion. As in a
cache-miss scenario, the content always appears to origi-
nate from the VoD server the client originally requested it
from. However, in a cache-hit scenario, no traffic would
have left the user’s network into other networks, thus
saving external link utilisation and significantly reducing
start up and buffering delays. The role of the OCN is such
that there is an inherent need to have multiple instances
of it distributed in the network to facilitate users’ requests
and content caching as efficiently as possible.

V. KEY SDN BENEFITS

By using Software Defined Networking (SDN), and
OpenFlow in particular, we are afforded a number of
key abilities that OpenCache exploits to their fullest
extent. Most critically to the operation of OpenCache is
the ability to transparently redirect requests for content
to a running cache instance, as mentioned previously.
More specifically, this is achieved by rewriting the packet
header information, and intentionally forwarding it to-
wards a cache or a client. The use of OpenFlow to
achieve this functionality allows the rewriting procedure
to happen in a distributed fashion on the switches of
the network, and hence removes the need to overload
a specific server with the burden of doing so. It also
ensures full user transparency as the content that reaches
the client appears to originate from the origin server

rather than the cache. It is important to note that this
is all possible without the costly and time-consuming
modification of existing delivery techniques (e.g. caching
or proxy servers, middleboxes) or end-client devices.

To compliment this, SDN provides both hardware
and software abstraction to our in-network caching ser-
vice. OpenCache can be used on commodity hardware,
without the need to perform complex configuration and
setup. The only requirement for OpenCache to function
is the presence of a single-piece of OpenFlow-capable
hardware on the path from client to the server. The
ability to perform the necessary operations anywhere
in the network where OpenFlow is supported grants
OpenCache with even greater flexibility. For example,
and as presented in the paper, we can do this close to the
user in a last mile environment, where traditionally there
has existed no such cache process. However, although
not discussed here, the exact same process can be applied
in other situations and environments without modifying
OpenCache or OpenFlow itself; the same logic is appli-
cable.

Furthermore, utilising OpenFlow also allows us to
monitor the networking hardware contained within our
topology, and use this feedback in OpenCache itself.
This gives OpenCache a perspective of the network
not typically afforded to application-layer technologies.
This information can be used in conjunction with the
programmability that OpenFlow permits to effectively
satisfy any caching requirements. This is possible with-
out the need to consider the peculiarities of differing
hardware devices in the network. In addition, monitoring
information, when used in conjunction with the redi-
recting action described previously, allows us to load
balance requests on-the-fly and in real-time. This level of
reactivity has not been previously possible, particularly
through the use of a single, unified API.

VI. EVALUATION

In order to evaluate the efficacy of OpenCache, we
carried out a number of VoD streaming experiments over
a large-scale pan-European OpenFlow testbed provided
by the OFELIA project [28]. OFELIA is composed of
a number of OpenFlow-capable hardware switches
and virtualised computing resources located in many
different countries across Europe. Each site (or “island”)
is connected as to produce a large federated experimen-
tation environment. For our experiments, a video client
runs on a virtual machine located at the ETH Zurich

OpenFlow island in Switzerland, where we also deployed
an OpenFlow controller, an OCC and an OCN. Two
VoD servers were deployed on virtual machines on two
different OFELIA islands; at CREATE-NET in Italy and
at i2CAT in Spain. Finally, the three islands are federated
together using an OFELIA island in Belgium.

Three main metrics are used to evaluate the effec-
tiveness of OpenCache; start up delay (key QoE metric
[4], [5], [6]), external link utilisation and video playback
bitrate. For all of metrics, we use the same evalua-
tion environment; a VLC client in Switzerland accesses
the same reference video content (“Big Buck Bunny”1)
hosted at one of the VoD servers located in either Italy
or Spain. The content is streamed using an adaptive
video streaming technology, namely, DASH (Dynamic
Adaptive Streaming over HTTP) [29]. MPEG-DASH fa-
cilitates the dynamic adjustment of the streaming bitrate
by offering various bitrate encodings of the reference
video, fragmented into fixed time chunks. MPEG-DASH
aims to improve the overall QoE for the end-users
by dynamically matching the bitrate requested to the
available bandwidth.

We carried out 20 video streaming requests from the
video client to each of the VoD servers, in three scenar-
ios; without a cache (as a baseline), a cache-miss (where
content was not found on the OCN, and thus fetched) and
a cache-hit (where the content was found and delivered
from the OCN). These scenarios produced six unique
sets of results (3 per island), which are shown averaged
in Table III. For each experimental run, we record three
metrics. First, the start up time of the VLC video player
when playing back the reference video asset. Second,
we recorded the number of cache-miss and cache-hit
events on the OCN and the respected fetched and served
bytes. This metric essentially demonstrates OpenCache’s
reduction in external link utilisation and origin server
load, which consequently relinquishes resources for use
by other users. Third, we recorded the video bitrate of
each chunk requested by the client during the playback
of the whole video.

The results of our experiments are shown in Table
III, Fig. 4a, Fig. 4b and Fig. 5. They clearly demon-
strate that OpenCache has reduced the start up delay
for clients up to approximately 35%. This is reinforced
by relatively low standard deviation values (taking into
account that four sites across Europe are involved), which
demonstrates a high level of statistical confidence. It is

1http://www.bigbuckbunny.org/

TABLE III: VoD Streaming Experimental Results
CREATE-NET (Italy) i2CAT (Spain)

Without Cache Cache-miss Cache-hit Without Cache Cache-miss Cache-hit
Average Start Up 2.484 2.088 1.639 2.212 1.982 1.441Delay (s)
Improvement over - 16.02 34.02 - 10.40 34.85baseline (%)
Standard 0.208 0.225 0.226 0.145 0.138 0.109Deviation (σ)
External Link 105.7 105.8 0 105.7 105.8 0Usage (MB)

(a) Average Start Up Delay (b) Ext. Link Utilisation

Fig. 4: Experimental Results

particularly interesting to note that we have improved the
situation even when the OCN has to fetch the content
(compared to the baseline), attributed to the download
technique used by the OCN.

Results are similarly optimistic for the external link
usage. When the content is stored on the OCN, it is
delivered directly to the client and the external link usage
gets reduced 100%, essentially to zero bytes. Indicatively,
streaming the full 9:56 minute reference video from the
OCN, saves approximately 101 MB transfer just for one
client session. Without an OCN or with a cache-miss, we
observe the full content traversing the external link.

A further advantage that we observed when Open-
Cache is present, is that the playback client estimates that
more bandwidth is available between the client and the
OCN. As a result, it requests higher quality video chunks
when content is delivered directly from the cache. This
is illustrated in Fig. 5, which graphs the bitrate of the
requested chunks over the playback of the entire video,
with and without OpenCache. It is clearly illustrated
that in the case where OpenCache is present, the player
requests a bitrate which is over 8 times higher. This is a
direct improvement in the quality of the streaming video
and consequently the QoE for the end-user. It is impor-
tant to note that the bitrate achieved with OpenCache
present (i.e. 8000kbit/s) is the greatest bitrate available in
this case. Evidently, the aforementioned QoE multiplier
will be dependant on network conditions and should only
be seen as an example. Nonetheless, OpenCache clearly
provides the potential to improve the end-user’s QoE by
increasing the video quality distributed to the client.

Fig. 5: Quality Requested by MPEG-DASH Client

Finally, it is important to note that the evaluation envi-
ronment used within OFELIA is one which is relatively
bandwidth-rich and well-connected and not necessarily
representative of a typical domestic user. Nonetheless,
even in such a rich environment, the OpenCache evalua-
tion results show promising benefits to both the network
and the QoE of the end-users.

VII. CONCLUSION

As part of our future work, we plan to improve
OpenCache by exploring the cache placement problem in
conjunction with different caching policies discussed in
related research work. We hope to identify the beneficial
position of being in close proximity to end-users whilst
maximising the use of the caching resources. In addition,
we plan to extend OpenCache’s functionality and evalu-
ate it further in different environments and against other
commercial or research based caching services.

In this paper we presented OpenCache: an efficient,
transparent and highly configurable OpenFlow-assisted
in-network caching service for VoD streaming. Open-
Cache aims to address the underlying challenge that the
network faces when the same video files are streamed
to end-users repeatedly using independent unicast flows.
OpenCache provides the following key benefits :

1) Provides cache as a service by offering an interface
to declare cacheable content of interest in an open,
highly configurable and flexible manner.

2) Supports centrally controlled caching that provides
the forum for many additional services to be pro-
grammed on top of it with ease (e.g. load balancing,
pre-caching, different expiration policies etc.).

3) Is easily deployable in a production network; there
are no changes required in the underlying delivery
video mechanisms and all existing hardware and
software can be retained.

4) Is fully transparent to the end-user; the user does not
need to install any extra software, or have to sac-
rifice any of his local network or storage resources
to stream video content with high efficiency, which
other technologies require [21], [20].

5) As demonstrated from inter-island experiments on a
pan-European testbed using adaptive video stream-
ing, OpenCache provides caching very close to
the user with three important benefits. Firstly, the
external link usage gets reduced 100% and the
network utilisation gets improved as end-user re-
quests are now served locally. Secondly, OpenCache
reduces the distribution load from the VoD content
provider and all the transient networks along the
path of the VoD server to the end-user. Thirdly,
since the content is served locally, the video client
observes higher throughput, lower latency, higher
video quality and smaller start up and buffering
times, eventually leading to higher QoE for the end-
user.

REFERENCES

[1] “Visual Networking Index: Forecast and Methodology, 2012-
2017,” CISCO, Tech. Rep., May 2013.

[2] “Visual Networking Index: Forecast and Methodology, 2011-
2016,” CISCO, Tech. Rep., May 2012.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:
Enabling Innovation in Campus Networks,” SIGCOMM CCR,
vol. 38, no. 2, pp. 69–74, Mar. 2008.

[4] S. S. Krishnan and R. K. Sitaraman, “Video Stream Quality
Impacts Viewer Behavior: Inferring Causality Using Quasi-
experimental Designs,” in ACM SIGCOMM IMC 2012, 2012,
pp. 211–224.

[5] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam,
J. Zhan, and H. Zhang, “Understanding the Impact of Video
Quality on User Engagement,” in ACM SIGCOMM 2011, 2011,
pp. 362–373.

[6] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and
H. Zhang, “A Case for a Coordinated Internet Video Control
Plane,” in ACM SIGCOMM 2012, 2012, pp. 359–370.

[7] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Net-
work: A Platform for High-performance Internet Applications,”
SIGOPS OS Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010.

[8] S. Sen, J. Rexford, and D. Towsley, “Proxy Prefix Caching for
Multimedia Streams,” in 19th IEEE INFOCOM 1999, vol. 3,
1999, pp. 1310–1319 vol.3.

[9] J. V. D. Merwe, S. Sen, and C. Kalmanek, “Streaming Video
Traffic: Characterization and Network Impact,” in Int. Web
Content Caching and Distribution Workshop, 2002.

[10] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An Analysis
of Live Streaming Workloads on the Internet,” in 4th ACM
SIGCOMM IMC 2004, 2004, pp. 41–54.

[11] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and
N. Race, “Towards Network-wide QoE Fairness Using
Openflow-assisted Adaptive Video Streaming,” in ACM SIG-
COMM 2013 Workshop on Future Human-centric Multimedia
Networking (FhMN), 2013, pp. 15–20.

[12] B. Wang, J. Kurose, P. Shenoy, and D. Towsley, “Multimedia
Streaming via TCP: An Analytic Performance Study,” ACM
Trans. MCCA, vol. 4, no. 2, pp. 16:1–16:22, 2008.

[13] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and
W. Dabbous, “Network Characteristics of Video Streaming
Traffic,” in 7th ACM CoNEXT 2011, 2011, pp. 25:1–25:12.

[14] C. Diot, B. Neil, L. Bryan, and K. D. Balensiefen, “Deployment
Issues for the IP Multicast Service and Architecture,” IEEE
Network, vol. 14, pp. 78–88, 2000.

[15] L. Golubchik, J. Lui, and R. Muntz, “Reducing I/O Demand
in Video-on-demand Storage Servers,” ACM SIGMETRICS
Performance Evaluation Review, vol. 23, no. 1, pp. 25–36, May
1995.

[16] C. Aggarwal, J. Wolf, and P. Yu, “On Optimal Piggyback
Merging Policies for Video-on-demand Systems,” in ACM
SIGMETRICS 1996, 1996, pp. 200–209.

[17] D. Eager, M. Vernon, and J. Zahorjan, “Bandwidth Skimming:
A Technique for Cost-Effective Video-on-Demand,” in SPIE
Multimedia Computing and Networking 2000, 2000, pp. 206–
215.

[18] K. A. Hua and S. Sheu, “Skyscraper Broadcasting: A New
Broadcasting Scheme for Metropolitan Video-on-demand Sys-
tems,” in ACM SIGCOMM 1997, 1997, pp. 89–100.

[19] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A Multicast
Technique for True Video-on-demand Services,” in 6th ACM
MULTIMEDIA 1998, 1998, pp. 191–200.

[20] J. Pouwelse, J. Taal, R. Lagendijk, D. H. J. Epema, and
H. Sips, “Real-time Video Delivery using Peer-to-Peer Barter-
ing Networks and Multiple Description Coding,” in IEEE Int.
Conference on Systems, Man and Cybernetics 2004, vol. 5,
2004, pp. 4599–4605 vol.5.

[21] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel,
B. Maggs, B. Wishon, and M. Ponec, “Peer-assisted Content
Distribution in Akamai Netsession,” in 13th ACM SIGCOMM
IMC 2013, 2013, pp. 31–42.

[22] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon,
“I Tube, You Tube, Everybody Tubes: Analyzing the World’s
Largest User Generated Content Video System,” in 7th ACM
SIGCOMM IMC 2007, 2007, pp. 1–14.

[23] M. Chesire, A. Wolman, G. M. Voelker, and H. M. Levy,
“Measurement and Analysis of a Streaming-media Workload,”
in 3rd USENIX USITS 2001, 2001, pp. 1–1.

[24] Squid Proxy Server, http://www.squid-cache.org/.
[25] Netflix Open Connect Platform, http://www.netflix.com/

openconnect.
[26] B. Niven-Jenkins, F. L. Faucheur, and N. Bitar, “Content Distri-

bution Network Interconnection (CDNI) Problem Statement,”
IETF RFC 6707, Sep 2012.

[27] The Floodlight Controller, http://floodlight.openflowhub.org/.
[28] A. Köpsel and H. Woesner, “OFELIA: Pan-European Test

Facility for OpenFlow Experimentation,” in ServiceWave, 2011,
pp. 311–312.

[29] ISO-IEC 23009-1:2012 Information Technology, “Dynamic
Adaptive Streaming over HTTP (DASH).”

