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Abstract Saturn’s magnetic field acts as an obstacle to solar wind flow, deflecting plasma around the
planet and forming a cavity known as the magnetosphere. The magnetopause defines the boundary
between the planetary and solar dominated regimes, and so is strongly influenced by the variable nature
of pressure sources both outside and within. Following from Pilkington et al. (2014), crossings of the
magnetopause are identified using 7 years of magnetic field and particle data from the Cassini spacecraft
and providing unprecedented spatial coverage of the magnetopause boundary. These observations reveal
a dynamical interaction where, in addition to the external influence of the solar wind dynamic pressure,
internal drivers, and hot plasma dynamics in particular can take almost complete control of the system’s
dayside shape and size, essentially defying the solar wind conditions. The magnetopause can move by up to
10–15 planetary radii at constant solar wind dynamic pressure, corresponding to relatively “plasma-loaded”
or “plasma-depleted” states, defined in terms of the internal suprathermal plasma pressure.

1. Introduction

The interaction between the solar wind and the magnetic field of a planetary body gives rise to the formation
of a magnetosphere, which encloses the planet and shields it from direct bombardment by plasma of solar
origin. The magnetopause is the boundary that separates these populations and it forms where the solar
wind dynamic pressure is balanced by internal pressure sources when the boundary is stationary. In reality,
however, the pressure on either side of the boundary is highly dynamic and the magnetopause is in almost
continual acceleration [e.g., Kaufmann and Konradi, 1969].

At Earth, the principal internal pressure source is the magnetic pressure. Saturn differs in this regard. Measure-
ments made by Voyagers 1 and 2 found that energetic plasma is ubiquitous within Saturn’s magnetosphere
[Krimigis et al., 1982, 1983]. Later, early in the Cassini mission, it was found that Enceladus ejects plumes of
water group molecules into Saturn’s magnetosphere [e.g., Dougherty et al., 2006; Porco et al., 2006]. A small
fraction of these are ionized into a plasma, and this can greatly influence the dynamics that drive the magne-
tosphere. Estimates vary substantially but Bagenal and Delamere [2011] find that the plasma source rates lie
between 12 and 250 kg s−1. Similarly, Io is a large source of plasma within Jupiter’s magnetosphere with typ-
ical plasma source rates exceeding those of Enceladus in absolute terms by at least an order of magnitude.
However, Vasyliunas [2008] showed that Enceladus may be a more significant plasma source to Saturn’s mag-
netosphere than Io is to Jupiter’s magnetosphere because, in relative terms, it may cause flux tubes to become
more heavily loaded with mass and hence perturb Saturn’s magnetic field more strongly.

At Saturn’s magnetopause, the pressure associated with the suprathermal component of this plasma is of
the same order as the magnetic pressure and acts to inflate the magnetosphere, significantly increasing its
size beyond what would be expected of the magnetic pressure alone. Sergis et al. [2007, 2009] found that
the plasma sheet extends all the way out to the dayside magnetopause boundary and that the plasma 𝛽 at
Saturn (the ratio of plasma to magnetic pressure) for ions with energies greater than 3 keV, at radial distances
concurrent with the magnetopause, varies between ∼10−2 and 101. Plasma dynamics are thus likely to have
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Figure 1. This figure demonstrates how varying the flaring parameter,
K , changes the magnetopause geometry, K is varied between 0.1
(innermost line) and 1.0 (outermost line) in this plot [after Shue
et al., 1997].

a significant impact on the size and shape
of the Kronian magnetopause due to the
highly variable nature of 𝛽 just inside.

Previous empirical studies have treated
the solar wind dynamic pressure as the
primary source of variability in the loca-
tion of the magnetopause. However,
magnetohydrodynamic (MHD) studies of
the Kronian magnetosphere [e.g., Zieger
et al., 2010] found that internal plasma
dynamics can change the geometry
of Saturn’s magnetopause significantly
under conditions when the solar wind
pressure is low. Moreover, no steady state
magnetopause boundary is obtained
in these simulations under low solar
dynamic pressure conditions. Here it will
be shown that internal plasma dynamics
imparts a similar degree of variability to
the location of Saturn’s magnetopause
as does variability in the solar wind pres-
sure. In addition to this aspect, previous
studies are expanded upon by including

high-latitude observations of Saturn’s magnetopause in both hemispheres and near-equatorial observations
of both the morning and the evening sectors, providing much greater coverage of the dayside magne-
topause. Furthermore, a more sophisticated fitting routine is used and a new method of calculating the
perpendicular distance between the crossing and the model surface near-exactly is presented in order to fit
an empirical model to these data more accurately. A more realistic estimate for the thermal ion pressure at
the magnetopause is also calculated.

In section 2, previous empirical models of Saturn’s magnetopause and the improvements made in this study
are outlined, in section 3 the in situ magnetopause observations are discussed, and in section 4.1 the results
of fitting the model to the Cassini data are presented and discussed. In section 4.2, a substantial enhancement
is made to the empirical model in order to address a major shortcoming in its application to magnetospheres
with significant internal plasma sources. These results are further discussed and summarized in section 5.

2. The Model
2.1. Previous Work
The Shue et al. [1997] empirical shape model was originally devised to model the terrestrial magnetopause,

r = r0

( 2
1 + cos 𝜃

)K

(1)

r0 = a1D−a2
P (2)

K = a3 + a4DP (3)

where r is the distance from the planet center to the point on the magnetopause surface described by the
angle 𝜃, the angle between the position vector of this point and the planet-Sun line. The surface is parame-
terized in terms of the standoff distance, r0, which controls the size of the magnetosphere, and the “flaring”
parameter, K , which controls the downstream shape as shown in Figure 1. As well as the solar wind dynamic
pressure, DP, Shue et al. [1997] also presented forms of the magnetospheric standoff distance and the flaring
parameter that depend on the orientation of the interplanetary magnetic field (IMF). Dayside magnetic recon-
nection is most efficient when the IMF and planetary magnetic fields are antiparallel so, as a result, extended
periods of southward IMF cause erosion of the dayside magnetopause due to enhanced reconnection
[e.g., Aubry et al., 1970].
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This model was applied to Saturn’s magnetopause by Arridge et al. [2006] using observations from the first six
orbits of the Cassini spacecraft, along with the flybys of Voyager 1 and 2. The coefficients ai were determined
using an interior reflective Newton-Raphson fitting routine to fit the model to a set of Cassini observations.
Coefficients a1 and a2 set the size scale and the compressibility, or response to changes in DP, of the system.
The IMF dependency was omitted because it could not be measured in the absence of a dedicated upstream
monitor close to Saturn. More recently, MHD simulations by Jia et al. [2012] have found that the magneto-
sphere is insensitive to changes in the IMF.

In the absence of a dedicated upstream dynamic pressure monitor, DP was calculated by balancing its
normal projection with the interior magnetic pressure adjacent to the magnetopause current layer.
A Newtonian pressure balance equation from aerodynamic studies of supersonic flow around a body was
used, which was first applied in the context of magnetospheric physics by Petrinec and Russell [1997]:

B2

2𝜇0
= kDP cos2 Ψ + P0 sin2 Ψ (4)

where B is the magnitude of the interior magnetic field and 𝜇0 is the permeability of free space. Ψ is the angle
between the direction opposite to the upstream solar wind velocity, assumed to be along the Sun-planet line,
and the normal to the magnetopause surface at the observation location. P0 is the static (thermal) component
of the magnetosheath pressure. The constant factor k relates to the divergence of streamlines of flow around
the magnetosphere, which acts to reduce the dynamic pressure. In the high Mach number regime appropriate
for Saturn [e.g., Slavin et al., 1985], a value of k ∼ 0.88 is applicable as shown by Walker and Russell [1995]. It
can readily be seen that close to the standoff point, where Ψ →0∘, the dynamic pressure dominates, but away
from the “nose” of the magnetosphere, where Ψ →90∘, the dynamic pressure term reduces to zero and static
pressure dominates in the lobes.

Kanani et al. [2010] used the same empirical model but improved on previous studies by using more magne-
topause observations. They also used measurements from the Magnetospheric Imaging Instrument (MIMI)
[Krimigis et al., 2004] and the Electron Spectrometer (CAPS-ELS) [Young et al., 2004] to estimate the suprather-
mal magnetospheric plasma and electron pressures respectively. Together with the magnetic pressure and
the assumption of pressure balance across the magnetopause, a more realistic estimate of the dynamic pres-
sure was obtained. In addition, P0 was expressed as a function of DP as previous estimates were too small to
be consistent with MHD simulations. Furthermore, if P0 is kept constant but exceeds a critical value, imaginary
flow velocities are introduced.

As a result, Kanani et al. [2010] proposed the following modified pressure balance condition across the
magnetopause boundary,

kDP cos2(Ψ) +
kbTSW

1.16mpu2
SW

DP sin2(Ψ) = B2

2𝜇0
+ PMIMI + PELS (5)

where kb is the Boltzmann constant, mp is the mass of a proton, TSW and uSW are the solar wind temperature
and velocity respectively, for which values of 100 eV [Richardson, 2002] and 460 km s−1 have been assumed for
the present study, PMIMI is the pressure contribution of suprathermal water group ions (see Sergis et al. [2009]
for details] and PELS is the thermal electron pressure contribution. The constant factor 1.16 accounts for a 4%
density abundance of He+ in the solar wind with a temperature approximately 4 times greater than that of
the protons [Robbins et al., 1970]. Kanani et al. [2010] found that the dynamic pressure is insensitive to the
values assumed for TSW and uSW since the second term of equation (5) is much smaller than the first term for
any reasonable values of solar wind parameters and for almost the full range of Ψ.

The empirical model described above is capable of representing both open and closed magnetospheres
but is axisymmetric about the planet-Sun line. Lin et al. [2010] modified this functional form to allow both
north-south and east-west asymmetries and fitted it to magnetopause crossings from many different space-
craft in orbit around the Earth using a Levenberg-Marquardt solver in several stages. Even with these
modifications, they found that, globally, the Earth’s magnetopause is largely axisymmetric at equinox but the
local structure changes substantially in the cusp regions.

The physical properties of Saturn and Jupiter and their magnetospheres relative to the Earth (e.g., high rota-
tion speeds, internal plasma sources, and magnetospheric size scales) imply that the internal dynamics taking
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place at these systems are significantly different to those within the Earth’s magnetosphere. It follows that
the geometry of Saturn’s magnetopause is likely to be significantly different to the terrestrial magnetopause.
Pilkington et al. [2014] explored the high-latitude structure of the Kronian magnetopause using the first set
of highly inclined orbits of Cassini from 2007 to 2009. They also used equation (5) to estimate the dynamic
pressure but omitted the thermal electron pressure moments as Kanani et al. [2010] found that they were, on
average, 2 orders of magnitude smaller than the suprathermal ion pressure moments and, hence, negligible
in this context. Pilkington et al. [2014] also considered the pressure contribution associated with the centrifu-
gal force at the magnetopause using the magnetodisc model of Achilleos et al. [2010a] but found that this was
also negligible compared to other contributions represented in equation (5).

After identifying a departure between the observed locations and the locations predicted by the axisymmetric
magnetopause model, Pilkington et al. [2014] modified the model in order to incorporate polar confinement
by applying a simple dilation along the ZKSM axis by a factor  . They used high-latitude magnetopause cross-
ings to determine which value of  provided the most statistically significant fit to this data and consequently
found that flattening the surface by ∼19% along the ZKSM axis provided the best fit. Their data, however,
were restricted to the northern hemisphere on the duskside of the planet. In addition, Kivelson and Jia [2014]
studied the Kronian magnetosphere using MHD simulations and identified a dawn-dusk asymmetry in the
average extent of the magnetopause. This is not incorporated into the current work but will be the subject of a
future study.

2.2. This Study
In this study, the empirical surface described by equations (1)–(3) is modified by incorporating polar flattening
by simply reducing the extent of the magnetopause along the north-south direction by a scaling factor 
as done by Pilkington et al. [2014]. This is included as a free parameter when fitting this surface to the set
of data described in section 3. The ultimate aim is to determine the set of coefficients ai and  that mini-
mize the distance between the observed magnetopause and the location predicted by the model for each
magnetopause crossing. After calculating the crossing-surface distance for each crossing using the method
described in Appendix B, the root-mean-squared (RMS) residual is calculated and is minimized until it reaches
a tolerance of 10−6RS.

The first stage of this procedure involves estimating the dynamic pressure at the time of each magnetopause
crossing, at which the model surface will be constructed. The same method is employed to estimate the
dynamic pressure as in the studies described above, but we also estimate the pressure contribution from the
water group ion population with energies <45 keV (which we define as “low energy”). Kanani et al. [2010]
accounted for the pressure associated with low-energy protons by assuming that their number density is 20%
of the low-energy electron density and, hence, that they have a pressure contribution equivalent to 20% of
the electron pressure assuming equal temperatures. However, the pressure associated with the water group
ions within this energy range was not included by Kanani et al. [2010].

Thomsen et al. [2010] surveyed the properties of the low-energy ion population using the CAPS ion mass
spectrometer. They found that beyond L∼11 RS the pressure associated with the thermal water group ion
population at the rotational equator is comparable to the suprathermal contribution, in agreement with the
results of Sergis et al. [2010]. To obtain an upper limit estimate of the additional contribution made to the
magnetospheric pressure by the thermal ions, we make use of the same data as used by Thomsen et al. [2010]
with equatorial pressures binned by L. But instead of the bin averages [cf Thomsen et al., 2010, Figure 12], the
maximum pressures found in each bin are fitted to. The resulting upper limit profile is given by,

Pe(n Pa) = 287L−3.14 (6)

where Pe is the equatorial pressure measured in nanopascal at the center of the plasma sheet and L is the
distance between the planet center and the equatorial crossing of the dipole field line that passes through
the point of interest.

The energy ranges of the CAPS and MIMI instruments overlap between 3 and 45 keV, and pressure moments
derived from the latter are also used in this study, meaning that the pressure contribution for ions in the
overlap region may be counted twice. However, Sergis et al. [2010] found that the overestimation of the total
pressure due to this overlap is generally less than 25% as the sensitivity of the CAPS instrument drops as it
approaches its upper limit detection threshold. This is small compared to the scatter in the data.
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To account for the strong centrifugal confinement of the thermal plasma near the current sheet, the equa-
torial pressure (equation (6)) is scaled with height above the spin equator, z, in the same way as Hill and
Michel [1976],

Pcold(z) = Pe exp
(
− z2

H2

)
(7)

where H is the ion-scale height at Saturn’s magnetopause, which was found to be ∼5RS for W+ at L ∼ 17
[Thomsen et al., 2010].

Arridge et al. [2008, 2011] found that the plasma sheet is deflected out of the spin equator as a function of
planetary season due to solar wind forcing and that it oscillates about this mean position in phase with the
magnetic oscillation [e.g., Andrews et al., 2008]. To determine the effective value of z in equation (7) for each of
the magnetopause crossings in our study, we reference the spacecraft position with respect to the expected
location of the current sheet, given by Arridge et al. [2011]:

zCS =
[
𝜌 − rH tanh

(
𝜌

rH

)]
tan 𝜃SUN + (𝜌 − 𝜌0) tan 𝜃TILT cosΨPS (8)

where zCS is the displacement of the current sheet away from the spin equator, 𝜌 is the cylindrical distance
from Saturn measured in the equatorial plane, rH is the characteristic distance where current sheet “hinging”
begins and 𝜃SUN is the subsolar latitude. 𝜌0 is the distance at which the plasma sheet becomes tilted, 𝜃TILT is
the tilt angle of the plasma sheet and, finally, ΨPS is the phase of the plasma sheet oscillation.

The hinging distance has been taken to equal the standoff distance of the magnetopause surface that
passes directly through each crossing location as suggested by Arridge et al. [2008]. Values for 𝜃TILT (7.0∘) and
𝜌0 (10 RS) were chosen in order to maximize the displacement of the oscillating current sheet while remaining
consistent with the results of Arridge et al. [2011]. The current sheet was chosen to be centered on any magne-
topause crossing where its combined hinging and oscillation could cause it to move to such a position, thus
maximizing Pcold. Hence, equation (5) then becomes

kDP cos2(Ψ) +
kbTSW

1.16mpu2
SW

DP sin2(Ψ) = B2

2𝜇0
+ PMIMI + PELS + Pcold (9)

The upper limit Pcold that is used here is comparable to but smaller than PMIMI, in general, but Pcold∕PMIMI ≪ 1
for the high-latitude crossings as anticipated. Including the Pcold term provides a small improvement to the
fitting RMS residual, but the parameters derived from fitting the empirical model to the data set described in
section 3 are insensitive to its inclusion (within the fitting uncertainties at the 2𝜎 level).

3. In Situ Magnetopause Observations

The Kanani et al. [2010] study covered magnetopause crossings of the Cassini spacecraft from before Saturn
Orbit Insertion (SOI, July 2004) up until January 2006, during which time the spacecraft sampled the
low-latitude magnetopause up to ∼40 RS beyond the terminator on the dawn side of the planet. Pilkington
et al. [2014] covered from early 2007 to the end of 2008, during which the spacecraft sampled the high-latitude
magnetopause in the northern hemisphere on the duskside of the planet but had far poorer coverage of the
equatorial magnetopause. We have reidentified crossings during the interval covered by Kanani et al. [2010]
and, in general, find very good agreement with the original analysis.

The present study utilizes the data covered by Kanani et al. [2010] and Pilkington et al. [2014] and extends
it such that crossings from 28 June 2004 (just prior to SOI) to 29 October 2010 and from 13 May 2012 to
8 February 2013 is covered. The latter period was added because the high-latitude magnetopause in the
southern hemisphere was sampled during this time, and coverage was extended from the conclusion of the
Pilkington et al. [2014] study to late 2010 in order to attain better coverage of the equatorial magnetopause
on the dawn side of the planet. These trajectories are shown in Figure 2. Pilkington et al. [2014] analyzed the
trajectory of the spacecraft to ensure they had adequate sampling, such that their results were not biased by
observations of extreme magnetopause configurations. That exercise is not repeated herein, but their results
are used in order to reduce the data to avoid bias where necessary. Specifically, Pilkington et al. [2014] found
that they had good sampling of the high-latitude magnetopause for XKSM ≥ 2.5 RS.
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Figure 2. Spacecraft trajectories containing at least one crossing of the magnetopause from just prior to SOI in 2004 to
late 2010 and from mid-2012 to early 2013.

It should also be noted that since this study spans a sizeable fraction of a Kronian year, seasonal variability in
the magnetopause geometry is now an issue of which to be wary. Specifically, Maurice et al. [1996] and Hansen
et al. [2005] found a significant north-south asymmetry in the magnetopause geometry under conditions
where the magnetic dipole is not orthogonal to the direction of solar wind flow. Such a situation occurs over
the majority of the Kronian year and they are only truly orthogonal at equinox. This is thus expected to affect
the location of the high-latitude magnetopause crossings. However, in the current study, all high-latitude
observations were made at similar hemispheric season since the crossings in the northern and southern hemi-
spheres were separated by roughly 6 years. The magnetic dipole was titled away from the Sun by ∼10–14∘

in the northern hemisphere in 2007 when the high-latitude observations were made in that region. Similarly,
in the southern hemisphere the dipole was tilted away from the Sun by ∼14-17∘ in 2012-2013 when the
high-latitude observations took place there. As such, one may expect the degree of polar flattening to be sim-
ilar in both hemispheres. Indeed, if the empirical model outlined in section 2.2 is fitted to crossings in each
hemisphere separately as outlined in Appendix A, the same degree of polar flattening is retrieved within the
fitting uncertainties. It is thus assumed for this particular data set that it is appropriate to fit a single empirical
model describing polar flattening using a single free parameter. However, this effect will be further quantified
in a future study.

Data from the Cassini Fluxgate Magnetometer (MAG) [Dougherty et al., 2002] and CAPS-ELS were used to
identify magnetopause crossings. Some of these observations are shown in Figure 3. The internal pressure
was estimated for each crossing by summing field and plasma pressures just inside the magnetosphere,
averaged over a time interval no smaller than 20 min in duration, as they can be highly variable. In total,
1607 magnetopause crossings were identified. Of these, MIMI pressure moments were unavailable for 93,
leaving 1514.

In previous studies, crossings closely separated spatially and in time were averaged together to prevent
artificial weighting due to boundary motions [e.g., Slavin et al., 1983; Arridge et al., 2006; Kanani et al., 2010].
We point out here that due to the underlying assumption of pressure balance across the magnetopause, this
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Figure 3. Several magnetopause crossings (magenta vertical lines) identified using (top) MAG and (bottom) CAPS-ELS
data. When the spacecraft passes from the magnetosheath to the magnetosphere, these are typically characterized by a
sharp increase in the field strength and usually a rotation in the field components. The field is usually much more
variable in the magnetosheath too. The MAG data shown here has a resolution of 1 min but is smoothed using a moving
average filter with a span of 11 min. A sharp decrease in the electron count rate (proportional to density) is also
observed in addition to a sharp increase in the average electron energy.

practice could, in fact, be detrimental to the study and could reduce the accuracy of the model. This is because
the magnetopause moves much faster than the spacecraft (to zeroth order, it can be assumed that the space-
craft is stationary with respect to the magnetopause). As a result, if the magnetopause is observed on multiple
occasions within a short period of time, it is likely to be close to equilibrium because, otherwise, it would be
observed just once as it moves rapidly past the spacecraft. So, in that sense, not performing this averaging
could improve the study as, essentially, measurements where pressure equilibrium is a good assumption
would be (slightly) more highly weighted. Furthermore, Jia et al. [2012] found using MHD simulations that
even under steady solar wind conditions the magnetopause experiences periodic movements. Temporal
variability of the magnetopause under such conditions will be preserved by using the full set of data without
averaging.

For completeness, the effect of averaging on the results of this study were investigated by averaging cross-
ings on the dawn and dusk sides within 5 and 3 h of each other, respectively, in accordance with the study of
Saturn’s boundary motions by Masters et al. [2012]. In practice, if two crossings were observed within this
period the one with the poorer statistics was discarded. In some cases, the estimated dynamic pressure
between the two observations was significantly different, which added additional scatter to the data when
the quantities were averaged. Since such crossings are close together both temporally and spatially, averag-
ing their positions makes very little difference to their locations. After averaging, 737 crossings remained with
which to fit the model. It was found that averaging had no significant effect on the fitting results presented in
later sections, so the results fitted to the entire data set without averaging (i.e., 1514 crossings) are presented.
The only difference between the two methods was the magnitude of the uncertainties in the fitted model
parameters, which, of course, are smaller when the full data set is used.

The full data set is displayed in Figure 4 in the Kronocentric Solar Magnetospheric (KSM) system, where the
XKSM axis is along the planet-Sun line directed toward the Sun, the ZKSM axis is oriented such that the plan-
etary magnetic dipole lies within the XKSM − ZKSM plane, and the YKSM axis completes the right-handed
set and is, hence, directed from dawn to dusk. The spacecraft positions were calculated using the
reconstructed trajectory kernels of NASA’s Navigation and Ancillary Information Facility “SPICE” geometry
information system.

4. The Impact of 𝜷 on Magnetopause Location
4.1. Initial Results
The initial results of fitting the model to all crossings simultaneously are shown in Figure 5 as the black confi-
dence ellipses, along with the results of previous studies, all at the 2𝜎 level. The technical details regarding the
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Figure 4. The distribution of the magnetopause crossings between SOI
in 2004 to late 2010, and from mid-2012 to early 2013 in the KSM
system colored by their ZKSM coordinate with the planet at the origin.
(a) There is good coverage of the equatorial magnetopause on both
flanks but high-latitude coverage is restricted to the dusk flank. (b) That
there is high-latitude coverage of both hemispheres.

fitting methodology and a significant
improvement made over previous stud-
ies are detailed in Appendices A and
B, respectively. The uncertainties have
been estimated in two different ways
as discussed in Appendix C, though
both methods give similar results in this
case. Most coefficients are in agreement
with previous studies within the fitting
uncertainties, but for the coefficients a1

and a2 there is a significant disagree-
ment with previous studies. Coefficient
a1 defines the scale size of the system
and a2 defines the compressibility of
the magnetosphere—how strongly it
reacts to variations in dynamic pressure.
We found that a2 = 1∕(7.8 ± 0.4), which
apparently indicates that the magne-
tosphere is very “stiff” and relatively
unresponsive to changes in dynamic
pressure. A value of one sixth is expected
for a dipole magnetic field and is usually
considered appropriate in the case
of the Earth [e.g., Shue et al., 1997]. A
value larger than this is expected for
plasma-laden systems such as those of
Saturn and Jupiter. For example, Kanani
et al. [2010] find a2 = 1∕(5.0± 0.8) for
Saturn and Huddleston et al. [1998] find
a2 = 1∕(4.5± 0.8) for Jupiter. In this con-
text, our value does not seem physically
feasible, at least when predicting the
nominal response of the magnetosphere
to changes in dynamic pressure.

A slightly different approach to obtaining
both a1 and a2 is to take the logarithm of
equation (2) and rearrange this to form a
linear relationship,

log r0 = −a2 log DP + log a1 (10)

where DP is estimated assuming pressure balance as usual and r0 can be found for each crossing by fitting the
surface directly through each crossing. Coefficients a1 and a2 can then be obtained from the resulting line of
best fit when these quantities are plotted.

The subtle difference between this method and the global fitting method is that in this case, the surface passes
directly through each magnetopause crossing. In the previous method, the surface was constructed at DP,
and did not necessary pass directly through each magnetopause crossing. In fact, it is the distance between
the surface constructed at DP and the crossing location that is used to assess how well the model fits the data
as described in Appendix B.

The results of these two methods of estimating a1 and a2 are shown in Figure 6a. Reassuringly, both methods
give the same results within the uncertainties. Interestingly though, there appears to be substantial scatter
above the main body of the data, whereas there is relatively little below. Figure 6b shows the same data col-
ored by log 𝛽 , where 𝛽 is the ratio of the total plasma pressure to the magnetic pressure. This parameter shows
a remarkable trend with system size. It shows that the location of the magnetopause is affected dramatically
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Figure 5. Shows the coefficients obtained by fitting magnetopause surfaces to magnetopause crossing data, all results
are displayed at the 2𝜎 level. The colored bars are the results of previous studies while the confidence ellipses indicate
the result of this study using the usual standoff distance power law (black) and the new 𝛽-dependent power law
(magenta). See Table 1 for precise values of the coefficients. Note that the uncertainties are much smaller in this study
due to the improvements made in the fitting procedure and the large amount of data used.

by the plasma conditions adjacent to it, such that the extrapolated standoff location can vary between
10 and 15 RS between low and high 𝛽 conditions at constant DP. As such, the standoff distance power law,
equation (2), used to model the size of the magnetosphere is not valid as a single one-dimensional power
law cannot account for this variability due to changing 𝛽 . This is much larger than the magnetopause oscil-
lations observed by Clarke et al. [2010], typically of amplitude ∼1.2 RS but occasionally as large as ∼4–5 RS.
However, a similar degree of variability in standoff location has been identified under low (<0.005 nPa) solar
wind dynamic pressure conditions by Jia et al. [2012] using MHD simulations.

Furthermore, Figure 7 shows that 𝛽 and r0 are strongly correlated, and this correlation increases with DP. There
is only a very weak correlation between these quantities within the smallest dynamic pressure group as there
are very few high 𝛽 crossings within this group (Figure 6b). A possible explanation for this is that the Cassini
orbit usually lies inside the magnetopause when it is greatly expanded, so crossings under conditions of high
interior 𝛽 and low dynamic pressure frequently cannot be measured; hence, the correlation between 𝛽 and r0

is low in these situations. Essentially, a detection threshold is reached whereby the magnetopause can only
be sampled when it has a standoff distance smaller than 40 RS as such a magnetosphere could easily extend
to 90 RS in the terminator plane.

A similar trend is evident between r0 and the total plasma pressure, though it is weaker than the aforemen-
tioned trend between r0 and 𝛽 . The most likely reason for this is that if the magnetic field is strong enough,
it can suppress the expansion of the system since the plasma pressure must be strong enough to change the
magnetic field configuration since they are frozen together. The 𝛽 parameter, on the other hand, describes
what is controlling the system—is the magnetic field sufficient to confine the plasma or is the plasma pressure
strong enough that it can reshape the system and significantly perturb the magnetic field?

In the first instance, one could repeat the analysis over small intervals of 𝛽 to identify how the system scales
under different internal conditions. There are many different methods one could use to split the data; here, a
k-means clustering algorithm is used to separate the data as naturally as possible but in reality 𝛽 is continuous
and any small interval of 𝛽 could be chosen provided that it contains enough crossings. This algorithm has
been used to separate the data into three intervals of 𝛽 and separate best fit lines were fitted through each
cluster as shown in Figure 8. In each case, the magnetospheric compressibility remained the same within the
estimated uncertainties and was 1∕(5.5 ± 0.2) on average, in agreement with Kanani et al. [2010]. However,
a1, which scales the size of the magnetosphere, changed between clusters well outside of the uncertainties
and in the same sense as the average value of 𝛽 for each cluster. This indicates that the magnetosphere can
exist in a relatively plasma-depleted or plasma-loaded state as indicated schematically in Figure 9.
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Figure 6. Equation (10) plotted for the crossings used in this study. (a)
Two different methods are used to find the coefficients a1 and a2 (1∕𝛼)
as described in the text. Within the uncertainties, both methods give
the same results and find that a2 is much smaller than expected for
Saturn. (b) The same data with a log 𝛽 color scale and shows that the
plasma conditions inside the magnetosphere strongly affect the
location of the magnetopause.

Conceptually, this makes sense. Consider
the simplified situation where the mag-
netosphere is initially in steady state
such that the internal and external pres-
sures are equal. If the interior plasma
pressure then increases, the instan-
taneous 𝛽 will also increase and the
magnetosphere will expand in order
to reestablish equilibrium. Hence, even
for a steady dynamic pressure there is
a range of plausible standoff distances
depending on the internal conditions
as a result of gradual mass loading. The
large fluctuations in the observed interior
plasma conditions may be caused by
quantized plasmoid loss as a result of
Vasyliũnas-style reconnection in the
magnetotail and the resulting planetward
flow of energized plasma [Vasyliunas,
1983], or through interchange events
as observed via energetic neutral
atom imaging by the Ion and Neutral
Camera on board Cassini [e.g., Krimigis
et al., 2007; Brandt et al., 2010; Mitchell
et al., 2015]. Both of these types of
events lead to rapid changes in the
interior plasma pressure and are ex-
pected to affect pressure balance at the
magnetopause boundary as a result.

The usual standoff distance power law
cannot account for these effects as the
scaling factor, a1, must change to com-
pensate for the resulting change in the
geometry of the magnetopause even
while the solar wind pressure remains
steady. What is unclear, however, is how
𝛽 changes as the system expands. Ulti-
mately it depends on the rate of change

of the magnetic field strength and the plasma pressure with respect to system size. A theoretical treatment
of this process could be the subject of future work.

4.2. Incorporating 𝜷 Into the Empirical Magnetopause Model

The original standoff distance power law was derived in the context of the Earth’s magnetosphere, which is
relatively devoid of plasma at the magnetopause boundary. As such, it is a good approximation to assume
that the solar wind dynamic pressure is balanced by the magnetic pressure alone.

Of course, this is far from true of the magnetospheres of Saturn and Jupiter and will be addressed here. The
dynamic pressure at the standoff point can be approximated as

DP ∝ B2

2𝜇0
(1 + 𝛽) (11)

At this location, the magnetic field at the standoff point can be expressed as B = B0r−1∕2a2
0 , where B0 is the

equatorial magnetic field at the surface of the planet. This power law is valid over a wide range of standoff
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Figure 7. The crossings have been separated into bins of log DP and the
correlation between 𝛽 and r0 has been calculated. In all cases, this
correlation is positive and seems to increase with DP. Besides the smallest
DP bin, the p value (the probability of such a correlation occurring by
chance) is negligible. These correlation coefficients should be taken as
lower limits as the DP bins are fairly coarse to ensure a representative
number of crossings fall within each one.

distance as found by Bunce et al.
[2007] and Achilleos et al. [2014] but
is affected by the magnetospheric
plasma content, which causes a2 to
change. Hence, r0 can be expressed as

r0 = a1

(
DP

1 + 𝛽

)−a2

(12)

Note that strictly speaking, 𝛽 in
equation (12) should be the plasma
𝛽 measured just inside the standoff
point. In the absence of this infor-
mation, the locally measured 𝛽 will
be used in the first instance. The
results of repeating the fitting proce-
dure with the new standoff distance
power law are shown in Figure 5 by
the magenta ellipses at the 2𝜎 level.
Now, all results are in agreement with
previous studies and incorporating 𝛽

into the empirical model results in a
decrease in the RMS residual by 0.8 RS, indicating a large increase in the accuracy of the model without the
use of additional free parameters.

In the first instance, this may appear puzzling because earlier analyses did not include the 𝛽 dependence, so
they should agree better with the analysis performed without 𝛽? The explanation for this apparent paradox
is that the data used in these earlier studies were confined to a region of the magnetosphere where 𝛽 is, in
general, relatively small. The 𝛽 dependence is still present within these data but has a much smaller influence.
For these data, the median 𝛽 ∼1.6 in comparison with 𝛽 ∼3.0 across the entire data set.

The fact that using the local value leads to such a large increase in the predictive power of the model indi-
cates that there may be a strong correlation between the local and nose 𝛽 . Indeed, adding an additional free
parameter to scale the local 𝛽 to that expected at the standoff point improves the accuracy of the model by
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Figure 8. A k-means clustering algorithm has been used to separate crossings into three clusters based on 𝛽 . They have
been split into groups based upon the plasma conditions prevalent at the time of the crossing. Lines of best fit have
been fitted through these groups separately. Of particular note is that the factor that governs the size scale of the
magnetosphere (a1) increases with 𝛽 well outside of the uncertainties. This result is insensitive to the number of clusters
into which the data are separated (the analysis has been attempted with up to seven).

PILKINGTON ET AL. VARIABILITY IN MAGNETOSPHERIC SIZE 7299



Journal of Geophysical Research: Space Physics 10.1002/2015JA021290

Figure 9. A schematic depicting two snapshots of the system under
conditions in which the interior plasma pressure adjacent to the
magnetopause is (a) low and (b) high, and the corresponding effects
these conditions have on the magnetopause location. When 𝛽 is high,
the plasma pressure dominates over the magnetic pressure and can
change the magnetic field structure and push out the boundary. The
white point indicates Enceladus, a large plasma source within the
system. The magnetic field lines are distended radially outward when
the hot plasma pressure is increased in the corresponding force
balance within the magnetosphere [Achilleos et al., 2010b].

0.3 RS with a scale factor of∼0.4. However,
after performing a F test on these mod-
els, it was found that the additional free
parameter does not provide a statistically
significant improvement to the predictive
power of the model so will not be dis-
cussed further.

The magnetospheric compressibility now
agrees with previous studies though is
more “Earth-like” (more dipolar) than pre-
vious studies. In addition, it was found
that the dynamic pressure has only a
very small effect on the magnetospheric
flaring, so can be safely neglected in
future studies with minimal loss of model
accuracy.

4.3. Revisiting Bimodality
Achilleos et al. [2008] used magnetopause
crossings observed between 1 July 2004
and 3 September 2005 to assess the
long-term statistical behavior of Saturn’s
magnetosphere. They reported that the
magnetospheric standoff distance, which
is a proxy for the global size of the
magnetosphere, exhibits a bimodal struc-
ture, meaning that there are two most
likely standoff distances associated with
the internal magnetospheric configura-
tion. It is plausible that these “modes”
correspond to measurements in which
the magnetopause is caught in either
a plasma-loaded or a plasma-depleted
state with a relatively rapid transition
between these states.

This study is an ideal opportunity to
revisit bimodality in light of the much
larger data set that has been amassed.
The standoff distance has been calcu-
lated for each magnetopause crossing by
fitting the best fitting model described
in Table 1 directly through each magne-
topause crossing. This tends to be a more

stable way of calculating the standoff distance than using equations (2) or (12) since information about all of
the coefficients is used, and correlations between the coefficients mean that the standoff distances do not
change much within the coefficient uncertainties.

Figure 10 shows a histogram of empirical standoff distance with normal, lognormal (the best fitting example
of a skewed distribution in this case), and bimodal distributions fitted to the data. Statistical tests have been
used to determine which of these provides the best fit to the data. First of all, the Kolmogorov-Smirnov test
[Massey, 1951] has been applied to test the null hypothesis that the data could have arisen from an under-
lying population that follows each distribution. Using this test, the normal distribution was overwhelmingly
rejected with a negligible p value, which can be interpreted as the probability of obtaining a distribution at
least as extreme as that observed provided that the null hypothesis is true. Since this probability is negligible,
this test implies that the underlying standoff distance population is very unlikely to be normally distributed.
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Table 1. The Fitting Results of the Present Study Are Displayed, Along With the Results of Previous Studiesa

Parameter A06 K10 P14 New Model

a1 9.7 ± 1.0 10.3 ± 1.7 10.5 ± 0.2

𝛼 = 1∕a2 4.3 ± 0.3 5.0 ± 0.8 5.7 ± 0.1

a3 0.77 ± 0.03 0.73 ± 0.07 0.67 ± 0.01

a4 −1.5 ± 0.3 0.4 ± 0.5 0.17 ± 0.03

Flattening % 19 ± 3 19 ± 1

RMS when applied to new data 7.35 4.70 (4.98)b 4.60 (3.51)b 3.54 (3.13)b

No. of data points (No. averaged) 64 (26) 191 (68) 626 (196) 1514
aThe RMS residual found between each model and the new data set is shown to indicate the goodness of each fit.
bFor high-latitude crossings (≥30∘) A06, K10, and P14 are the empirical models of Arridge et al. [2006], Kanani et al.

[2010], and Pilkington et al. [2014], respectively.

The p value was much larger for the lognormal distribution but was still negligible (approximately one in a
million). On the other hand, the p value for the bimodal distribution is ∼0.17. While this probability is still
fairly low, it shows that the bimodal distribution is far more likely to describe the underlying population from
which our data are drawn. Even so, the low probability indicates that the bimodal distribution is not able to
capture the behavior of the magnetopause entirely. It is possible that the degree of skewness evident in the
distribution could be the reason why the p value is still quite small for the bimodal distribution.

Higher-order distributions can also be tested, such as a “trimodal” distribution, which yields a p value
of 0.54. However, care must be taken not to overfit: the p value will asymptotically approach 1 as more
free parameters are added to the model. To ascertain is this is the case, the Bayesian information cri-
terion (BIC) [Schwarz, 1978] can be calculated. This is a measure of the information retained by the
model while penalizing additional free parameters. The model that minimizes the BIC is the model that
retains the most information about the distribution without introducing extraneous free parameters. In
this case, the model that achieves this is a bimodal distribution with means at 20.7 and 27.1 RS with a
mixing proportion of 43% and 57%, respectively.

Previous analyses by Joy et al. [2002] and Achilleos et al. [2008] found that such bimodal behavior could not be
explained by the solar wind alone. This is supported by Jackman et al. [2011] who analyzed the solar wind con-
ditions upstream of Saturn and Jupiter and found that the dynamic pressure distribution was best described
by a single peak. This implies that the second peak in the distribution may be caused by internally driven
plasma dynamics. Specifically, it may be symptomatic of the cycle of mass loading and unloading described
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Figure 10. The distribution of extrapolated standoff distances found
by fitting the best fitting model specified in Table 1 through the
precise location of each magnetopause crossing. On top of this are
plotted normal (red, dashed line), bimodal (green, solid line), and
lognormal (magenta, dash-dotted) distributions fitted to these data.

by Vasyliunas [1983]. If the transition
betweenthe loaded and unloaded states
is rapid compared to the time that the
system actually spends in each state, it
stands to reason that the magnetosphere
would be observed less often in this inter-
mediate state.

5. Summary: A Global Magne-
topause Model

Here the largest and most complete set of
Kronian magnetopause crossings to date
has been assembled, covering ∼7 years
of the Cassini mission and sampling far
more of the global surface geometry than
ever before. Assuming balance between
pressure sources internal and external
to the magnetosphere, the solar wind
dynamic pressure has been estimated
and a pressure-dependent surface was fit-
ted to the location of these crossings.
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Several key modifications were made to the fitting procedure over previous studies. First, a more sophisticated
solver was used to explore parameter space efficiently and ensure that the set of parameters that corre-
spond to the global minimum are found. Second, the distance between each magnetopause crossing and the
empirical surface was calculated exactly. It was found that this made a significant difference to the degree of
magnetopause flaring and smaller differences in the other parameters compared to the approximate method
used in previous studies, which led to an increase in the accuracy of the model by ∼0.6 RS. Finally, the ther-
mal ion pressure contribution was calculated more rigorously by exploiting the results of previous work and
resulted in an additional increase in the model accuracy.

The dynamic pressure alone was not enough to account for the variability in the size of the magnetosphere
and, furthermore, the extra variability could be attributed to dynamic plasma processes inside the magne-
tosphere, which can cause the magnetosphere to expand by 10–15 RS at constant DP. This is much larger
than the periodic oscillation of the magnetopause location with amplitude ∼1.2 RS as found by Clarke et al.
[2010] but is consistent with MHD simulations which exhibit a similar degree variability under low solar wind
dynamic pressure conditions [e.g., Jia et al., 2012]. This internal variability could be characterized in terms of
the plasma 𝛽 just inside the magnetopause and, subsequently, this effect was incorporated into the global fit-
ting routine by adding a 𝛽 dependency to the power law used in previous studies that relates the size of the
magnetosphere to the dynamic pressure. This results in a substantial increase in the accuracy of the model’s
predictions, reducing the RMS residual by ∼0.8 RS (the model coefficients are displayed in Table 1). The inter-
nal variability described here may be associated with the build up and subsequent loss of plasma from the
system and may explain why the sizes of Jupiter’s and Saturn’s magnetospheres exhibit bimodality as found
by Joy et al. [2002] and Achilleos et al. [2008], respectively, and supported by these observations.

In a future paper, we will attempt to resolve significant asymmetries in the structure of the magnetopause.
Further studies should also look at more complex magnetopause structures, such as cusp indentation regions.
Maurice et al. [1996] found that Saturn’s magnetopause has significant cusp indentation regions that could
be implemented into future empirical models as was done by Lin et al. [2010] to describe the terrestrial mag-
netopause. The main barrier to this is a lack of cusp crossings to constrain such a model. During the course
of this study, ∼10 magnetopause crossings were identified within the cusp region, identified as such due to
their high-latitude location and very low 𝛽 .

Finally, Clarke et al. [2006] observed smaller-scale oscillations in the location of the boundary caused by oscil-
lations in the magnetic field and plasma signatures that are known to occur throughout the Kronian system.
Similarly, Zieger et al. [2010] found that the periodic release of plasmoids down into the magnetotail causes
the magnetopause to oscillate as the resulting waves propagate through the system. For the present study
these are neglected but could be added to the existing model as an extra layer of complexity on top of the
internally driven variability already discussed.

Appendix A: Empirical Model Fitting

An iterative method is used to fit the model surface to observations of the magnetopause starting from
an initial set of parameters ai . The fitting routines used by Arridge et al. [2006] and Kanani et al. [2010] are
implementations of the gradient-based family of Newton-like solvers which start at a given set of coefficients
and iterate until convergence is achieved, guided by the RMS residual. One of their major drawbacks is that
they can only achieve convergence within the basin of attraction within which the starting parameters fall,
and this may not be the global minimum of all possible solutions. Often, this is mitigated by repeating the
fitting at different starting values to have a better chance of finding the global minimum.

Here a more sophisticated algorithm described by Ugray et al. [2007] is used which aims to locate the global
minimum efficiently by generating a set of trial points which are then ordered based on their feasibility in
terms of the fitting constraints. The only constraints used in this study are bounds on the coefficients; this is
necessary as it is infeasible to sample all of parameter space to look for the best solution. In most cases, these
bounds were chosen at the physical limit for each coefficient. Where there was no physical reason to restrict a
parameter, very large bounds were chosen such that the solutions from past studies are contained by at least
3 times the estimated uncertainty. The best fitting coefficients obtained in this study were all also more than
3𝜎 away from the bounds prescribed.
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A local solver is initiated at each trial point in the sequence and a list of these starting points, the solutions
that the solver ultimately converged to and the distance between these start and end points is complied.
Several different local solvers of varying complexity were experimented with by generating a synthetic set of
magnetopause crossings from a known model, preserving the distribution of the quantities measured in situ
and, finally, adding Gaussian noise to them. Each solver was then tried on this synthetic data to evaluate which
solver was able to most closely replicate the known model. Ultimately, the implementation of the interior
point algorithm of Waltz et al. [2005] in the MATLAB Optimization Toolbox provided the most accurate results.
Between each call, the maximum distance between the trial solutions that successfully converged and the
solutions they ultimately converged to is used to estimate the radius of the basin of attraction for subsequent
trial solutions by multiplying it by an empirically chosen scale factor. This scale factor is used to balance the
compromise between efficiency and accuracy and was found by running the global solver on many different
problems of varying complexity.

At each iteration, the model described by parameters ai was fitted precisely through the location of each
observed magnetopause crossing to within a tolerance of 10−6RS in order to calculateΨ and hence DP. Initially,
a simple Newton-Raphson solver was used to do this efficiently, but it was found that successful convergence
for many crossings was sensitive to the choice of ai . Now, more sophisticated solvers from the MATLAB Opti-
mization Toolbox are used. A Levenberg-Marquardt solver is used in the first instance as convergence can
be achieved for the vast majority of crossings for any given set of coefficients relatively efficiently using this
solver. For crossings where this is not possible, the trust region reflective solver is used, which is more com-
putationally expensive but has yet to fail to converge for this purpose. Complete convergence is necessary
because the top level solver requires a smooth objective function and gradient thereof to operate correctly,
an assumption which is violated if convergence is not achieved for every single crossing fed into the solver.

Appendix B: A Better “Fitness” Criterion

In order for the solver to know in which direction to move in parameter space, a goodness-of-fit estimator
must be calculated at each iteration. A good choice is the distance between each crossing location and the
surface described by ai and DP. Previous studies used the distance between the crossing and the point where
the model surface intersects the crossing radial vector (the blue and red points in Figure B1, respectively) as
an approximation for the distance between the crossing and the model surface. Here a near-exact solution
to the minimum crossing surface distance is found by solving a system of nonlinear equations numerically,
using the fact that the shortest distance between a point and a surface is along the normal to the surface that
passes through that point,

S(x0, y0, z0) = r0

( 2
1 + cos 𝜃

)K

− r(x, y, z) = 0 (B1)

x0 − x − Fnx = 0 (B2)

where x and x0 are the XKSM coordinates of the crossing location and the point on the surface closest to the
crossing, respectively, nx is the XKSM component of the outward directed normal to the surface computed at
the closest point to the crossing and F scales the normal vector to the crossing location and is equal to the
distance between the crossing and the model surface if the unit normal is used. Hence, F is zero if the model
surface passes directly through the crossing location and positive (negative) if the crossing lies outside (inside)
the surface. Analogous equations to equation (B2) can be constructed for the other two spatial coordinates,
YKSM and ZKSM. Equation (B1) constrains the solution to lie on the surface, and equation (B2) and its counter-
parts ensure that the closest point to the crossing is found. An initial guess is required for (x0, y0, z0, F), but the
ultimate solution does not depend on this guess as there is only one solution that can satisfy these equations
for any given magnetopause crossing and DP. The radial approximation used in previous studies is a good first
guess that can be used to minimize computation time.

These equations can be solved for (x0, y0, z0, F) for each magnetopause crossing to an arbitrary degree of
accuracy and so, effectively, represent an exact solution. The distance between each magnetopause cross-
ing and the model surface, constructed at the dynamic pressure estimated assuming pressure balance from
equation (9), was calculated along with the RMS residual. The fitting routine is then iterated until the RMS
residual converged to within a tolerance of 10−6 RS. Fitting using the radial approximation method applied
in previous studies and the exact method presented here yield the same results for all but one of the model
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Figure B1. This figure illustrates how the distance between a
magnetopause crossing and the empirical surface described by ai is
calculated. The red point is the observed magnetopause crossing,
the shaded region is the empirical surface constructed at DP and
the planet is shown at the origin. The blue point is where the
crossing radial vector (red line) intersects the surface and the green
point is the closest point on the surface to the crossing, which is
found iteratively. A view of the plane containing all three points of
interest is displayed. The arrow indicates the normal to the surface
at the closest point to the crossing and shows that it passes directly
through the crossing location, meaning that the green point is,
indeed, the closest point.

coefficients within the estimated uncertain-
ties. The coefficient a3, which chiefly con-
trols how much the magnetopause “flares”
by in equation (3), was significantly different
between the two methods. This is because
the approximate method breaks down as an
estimate of the shortest distance between
the crossing and the model surface the fur-
ther into the tail the model is projected. It
is the crossings in this region of space that
best define the degree of magnetopause flar-
ing so it stands to reason that a3 would be
the most affected by a change in the calcu-
lation of the distance between the crossing
and the model surface. The results obtained
using both methods were compared and it
was found that the new method reduced the
RMS residual by ∼0.6 RS, indicating a sub-
stantial increase in the model accuracy.

Appendix C: Coefficient Uncer-
tainty Estimation
The most efficient method of estimating
the standard error for each of the model
coefficients is to approximate the coeffi-
cient covariance matrix. This can be done
using the variance in the distance between
an observed magnetopause crossings and
the location predicted by the model, known
as the residual. This distance, F, can be
calculated using the procedure outlined in
Appendix B. The sample variance, 𝜎2, can
then be calculated as

𝜎2 = 1
N − 1

N∑
j=1

(Fj − 𝜇)2 (C1)

where N is the number of observations, Fj is the model-crossing distance for the jth crossing, and 𝜇 is the
sample mean.

The coefficient covariance matrix can then be calculated from the variance and the Jacobian matrix, a matrix
of dimensions i × j of the first-order derivatives of F with respect to coefficient i,

J =
⎛⎜⎜⎜⎝

𝜕F1

𝜕a1
· · · 𝜕F1

𝜕ai

⋮ ⋱ ⋮
𝜕Fj

𝜕a1
· · · 𝜕Fj

𝜕ai

⎞⎟⎟⎟⎠
(C2)

the coefficient covariance matrix, C, is then given by,

C = (JT J)−1𝜎2 (C3)

where J and 𝜎2 are evaluated at the best fitting set of coefficients. A first-order approximation to the standard
error of each coefficient can then be determined by taking the square root of the diagonal elements of C.

Note, though, that this approach neglects second-order covariances between the coefficients, which are
important if the off-diagonal elements are comparable to the diagonal elements of C. Figure 5 shows that this
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is, indeed, the case for some of the coefficients used in this study. In particular, Figure 5 (top left) shows that
the uncertainty ellipses are significantly inclined which indicates a strong correlation between coefficients
a1 and a2. The standard error calculated for a particular coefficient using the above procedure can be inter-
preted as the standard error of one coefficient assuming that the other coefficients remain fixed (the vertical
or horizontal extent of the ellipse, depending on the coefficient being considered). Though, if two coefficients
are strongly correlated, changing one coefficient tends to cause a change in the other coefficient. Such a
correlation indicates redundancy in the model and means that the model can be simplified by expressing one
coefficient as a linear law of the other coefficient. In this case, it indicates that system size is strongly linked to
the compressibility of the system.

In cases in which a strong correlation is identified, more robust methods can be used to estimate the uncer-
tainties instead. For the purposes of the current discussion, the Monte Carlo Bootstrap method is used. This
is a powerful technique that can be used to calculate the distribution of the coefficients with few underlying
assumptions, only that the observations are a good representation of the underlying population and that the
data are independent. This method involves running the fitting routine many times (400 samplings were used
here), fitting the model to a different set of crossings each time. As such, it is computationally expensive.

In this case, N magnetopause crossings are selected at random from the full set of N crossings, but, crucially,
these crossings are selected with replacement. This means that, for a given random sample, some crossings
are selected multiple times, whereas some are discarded. As a result, the best fitting coefficients are different
for each random sample drawn. These coefficients are recorded and confidence intervals for each coefficient
can be evaluated. These confidence intervals can then be corrected for bias and skewness [Efron, 1987].

The uncertainties estimated using both methods are comparable, and the maximum of these has been
reported for each coefficient in Table 1.
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