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Abstract: 

Objective: When developing new medicines for children, the potential to 
extrapolate from adult data to reduce the experimental burden in children 
is well recognised. However, significant assumptions about the similarity of 
adults and children are needed for extrapolations to be biologically 
plausible. We reviewed the literature to identify statistical methods that 
could be used to optimise extrapolations in paediatric drug development 
programmes.  
Methods: Web of Science was used to identify papers proposing methods 
relevant for using data from a `source population' to support inferences for 
a `target population'. Four key areas of methods development were 
targeted: paediatric clinical trials; trials extrapolating efficacy across ethnic 
groups or geographic regions; the use of historical data in contemporary 
clinical trials; and using short-term endpoints to support inferences about 
long-term outcomes.  
Results: Searches identified 626 papers of which 52 met our inclusion 
criteria. From these we identified 102 methods comprising 58 Bayesian and 
44 frequentist approaches. Most Bayesian methods (n=54) sought to use 
existing data in the source population to create an informative prior 
distribution for a future clinical trial. Of these, 46 allowed the source data 
to be down-weighted to account for potential differences between 
populations. Bayesian and frequentist versions of methods were found for 
assessing whether key parameters of source and target populations are 
commensurate (n=34). Fourteen frequentist methods synthesised data 
from different populations using a joint model or a weighted  
test statistic.  
Conclusions: Several methods were identified as potentially applicable to 
paediatric drug development. Methods which can accommodate a 
heterogeneous target population and which allow data from a source 
population to be down-weighted are preferred. Methods assessing the 
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commensurability of parameters may be used to determine whether it is 
appropriate to pool data across age groups to estimate treatment effects. 
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Abstract

Objective: When developing new medicines for children, the potential to ex-
trapolate from adult data to reduce the experimental burden in children is well
recognised. However, significant assumptions about the similarity of adults and
children are needed for extrapolations to be biologically plausible. We reviewed
the literature to identify statistical methods that could be used to optimise ex-
trapolations in paediatric drug development programmes.
Methods: Web of Science was used to identify papers proposing methods rele-
vant for using data from a ‘source population’ to support inferences for a ‘target
population’. Four key areas of methods development were targeted: paediatric
clinical trials; trials extrapolating efficacy across ethnic groups or geographic re-
gions; the use of historical data in contemporary clinical trials; and using short-
term endpoints to support inferences about long-term outcomes.
Results: Searches identified 626 papers of which 52 met our inclusion criteria.
From these we identified 102 methods comprising 58 Bayesian and 44 frequen-
tist approaches. Most Bayesian methods (n=54) sought to use existing data in
the source population to create an informative prior distribution for a future
clinical trial. Of these, 46 allowed the source data to be down-weighted to ac-
count for potential differences between populations. Bayesian and frequentist
versions of methods were found for assessing whether key parameters of source
and target populations are commensurate (n=34). Fourteen frequentist methods
synthesised data from different populations using a joint model or a weighted
test statistic.
Conclusions: Several methods were identified as potentially applicable to pae-
diatric drug development. Methods which can accommodate a heterogeneous
target population and which allow data from a source population to be down-
weighted are preferred. Methods assessing the commensurability of parameters
may be used to determine whether it is appropriate to pool data across age
groups to estimate treatment effects.
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1 Introduction

Extrapolation has been defined as extending data and conclusions available from studies
conducted in a ‘source population’ to make or support inferences for a ‘target popula-
tion’ [1]. Extrapolating from existing data, also commonly referred to as bridging or
borrowing strength, is common in drug development. Examples include incorporating
historical data into the analysis of contemporary clinical trials [2–4] and, more contro-
versially, using information on a drug’s short-term effect to draw conclusions about its
long-term effect [5]. Alternatively, one may seek to test the efficacy of a medicine in a
new geographic region when data are available confirming it is beneficial for patients
from another locality. In such cases, it may suffice to conduct a smaller ‘bridging’ study
in the new region that will collect efficacy and safety data to support the extrapolation
of data from other localities to this site [6].

For extrapolations to be appropriate, source and target populations should be similar
in terms of the key parameter(s) of interest. Extrapolations are ‘complete’, in the sense
that existing data obviate the need to collect data from the target population, when
there is strong prior opinion that differences between populations are small. Such opin-
ion may be informed by pre-clinical work or experiences of developing related drugs or
treating related patient groups. When there is greater uncertainty about the biological
plausibility of similarities, ‘partial’ extrapolations may be more acceptable. A partial
strategy would stipulate that existing data in the source population be complemented
by supportive data in the target population generated by a reduced drug development
programme. This reduced programme would be targeted to fill in gaps in existing
knowledge or to verify similarities about which there is most uncertainty. To illustrate
how an extrapolation strategy might be selected, suppose that data from the standard
of care arm of several historical trials are available to inform the design and analysis
of a new study. If investigators are confident that the standard of care has changed
little over time and response rates have been stable, the historical data may be used
as the control arm of the new (single-arm) trial. Otherwise, the historical data may be
used to augment data from the new study, which would be designed as a randomised
controlled trial (RCT) but would allocate fewer patients to control. Making full use of
existing data can have important implications for the efficiency and feasibility of drug
development in difficult to study populations such as rare diseases or groups where
there are ethical and practical barriers to trial recruitment.

The use of extrapolation to facilitate the development of safe and effective medicines for
children has received much attention [7–10]. Adult data are often available at the time
development of a new medicine begins in children. Moreover, trials in children can be
more challenging to conduct due to practical constraints on available sample sizes and
pharmacokinetic sampling [11]. There is also a common perception that recruitment
into paediatric trials will be challenging, although this has been contradicted by recent
research finding that parents and practitioners are willing to enter children into trials
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[12]. Dunne et al. [7] discuss the paediatric study decision tree [8, 10] shown in Figure
1, which is an algorithmic approach to determining which additional data are needed
in children to support paediatric licensing decisions. The level of extrapolation is de-
termined by whether adults and children can be assumed to be similar in terms of key
characteristics, such as disease progression and the pharmacokinetic-pharmacodynamic
(PK-PD) relationship of the drug. While this framework clearly identifies scenarios
in which different extrapolation strategies are appropriate, it neither accommodates
uncertainty about extrapolation assumptions nor allows for differences between age
groups of children. To capture the heterogeneity of growth, development and phar-
macokinetics in the population, the ICH E11 guideline [10] suggests one possible age
grouping: preterm newborn infants, term newborn infants (0 to 27 days), infants and
toddlers (28 days to 23 months), children (2 to 11 years) and adolescents (12 to 16/18
years, dependent on region). Batchelor and Marriott [13] state that there may be
age related changes in drug pharmacokinetics caused by anatomical and physiologi-
cal differences between younger and older children and adults. However, Stephenson
[14] notes that adults’ and children’s responses to many drugs have much in common.
The European Medicines Agency (EMA) [1] has proposed a general framework for
extrapolation allowing for the incorporation of uncertainty about assumptions. This
framework stipulates that an extrapolation concept, containing explicit hypotheses on
expected differences between populations, should inform the development of an extrap-
olation plan. This plan will detail which additional data will be generated in the target
population, and these data should, in turn, be used to verify the extrapolation concept.

This paper describes the findings of a systematic review conducted to identify statistical
methods that can be used to optimise extrapolations in paediatric drug development.
We sought methods relevant for using data from a source population to support infer-
ences for a target population. To provide focus for the literature search, we restricted
our attention to publications developing methods in the context of four applications in
which extrapolations are common, namely, paediatric clinical trials; trials extrapolating
efficacy across ethnic groups or geographic regions; the use of historical data in con-
temporary clinical trials; the use of short-term endpoints to support inferences about
long-term outcomes. The rest of the paper proceeds as follows. Section 2 outlines the
strategy used to identify relevant papers and methods which are briefly summarised in
Section 3. In Section 4, we give a detailed account of the methods found, grouped ac-
cording to four common approaches. We conclude in Section 5 with a discussion of the
suitability of these methods for making extrapolations in paediatric drug development.

2 Methods

Articles were identified by searching the Science Citation Index Expanded (SCI- EX-
PANDED) database of the Web of Science. Searches were restricted to English lan-
guage papers listed on Web of Science prior to 31st January 2014 in the following cat-
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Figure 1: Paediatric Study Decision Tree: Image reproduced from [8]

egories: biology; mathematical and computational biology; mathematics (applied, in-
terdisciplinary applications); medical informatics; research and experimental medicine;
pediatrics; and statistics and probability. Preliminary searches were also made of other
databases (JSTOR, PubMed) but no additional relevant articles were found. Separate
searches of the SCI-EXPANDED database were made to identify potentially relevant
papers proposing statistical methods for: a) incorporating historical data into contem-
porary clinical trials; b) using data on short-term endpoints to support inferences on
long-term outcomes; c) paediatric clinical trials; and d) bridging clinical trials. Since
there was considerable overlap between the search terms needed to identify papers on
the last two topics, these were combined so that a total of three separate searches
were made. Search terms can be found in the web based materials accompanying this
manuscript (Supplementary Appendix A). We searched for papers containing these
search terms either in the title, abstract or keywords.

Articles identified using this search strategy were then screened, first by title and then
by abstract. At each stage the following types of manuscripts were excluded: a) confer-
ence proceedings; b) reports of clinical trials; c) reports of meta-analyses or evidence
synthesis analyses; and d) papers unrelated to medical statistics (returned because
one search term, ‘bridge’, occurs in many contexts). A full text review of the remain-
ing articles was then performed. At this stage manuscripts were excluded if they did
not consider statistical methods; if they used source population data only to inform
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the design of a future trial; or if they considered trials using a historical control arm
without consideration of possible differences between populations. From each paper
we extracted details of all statistical methods relevant for extrapolating data from a
source population to support inferences for a target population. Methods for estab-
lishing whether data from source and target populations are consistent were regarded
as relevant, assuming that if commensurability is established it would be appropriate
to analyse data pooled across populations. A data extraction form (Supplementary
Appendix B) was completed for each statistical method and the number of methods
extracted from each paper was recorded. When identical methods were found in more
than one paper, we recorded the method as it appeared in the earliest publication.
Papers presenting only duplicate methods were excluded from the review. Data were
extracted by one author (IW) seeking guidance from others (LVH, TJ) where necessary.

3 Results

Searches identified 52 papers satisfying the stated inclusion/exclusion criteria as sum-
marised in Figure 2, from which we extracted 102 methods. A single method was
extracted from each of 34 papers. Of the remaining papers, eight presented two meth-
ods each, while 10 presented three or more methods each.

Methods can be categorised into four main areas: i) paediatric drug development (5 of
102 methods); ii) use of historical data in contemporary clinical trials (48 of 102); iii)
bridging trials extrapolating efficacy data between ethnic groups or geographic regions
(43 of 102); and iv) the use of short-term data to support inferences on long-term
outcomes (6 of 102). This is displayed in Figure 3. All five methods in category i)
considered extrapolating information from an adult source population to support in-
ferences about children. Of the 48 methods in category ii), 25 sought to extrapolate
from a historical control group to support conclusions about control response rates
in a contemporary patient group. Of the 43 methods in category iii), 14 took as the
target population an unstudied patient group in a new geographic region and sought
to borrow strength from existing data on patients in another geographic region for
whom the treatment had already been shown to be efficacious. One further method
in this category evaluated the consistency of data in two ethnic groups of patients.
The remaining 28 methods in category iii) were proposed to assess the consistency of
treatment effects across regions of a multi-regional clinical trial (MRCT).

Of the 102 methods, 100 expected data from the source and target populations to
make inferences about key parameters in the latter group, and as such are appropriate
for making partial extrapolations. An example of a method that did not expect data
from the target population, Nedelman et al. [15] suggest that a necessary condition for
using adult efficacy data to support conclusions about the efficacy of oxcarbazepine

6
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Figure 2: Flow diagram of systematic review results

as a monotherapy for children with epilepsy, is that PK-PD relationships should be
similar in adults and children receiving oxcarbazepine as an add-on therapy.

None of the methods found considered extrapolating safety data across populations.
Instead all methods expected either efficacy or PD data (100 of 102) or PK data (2
of 102). In the context of paediatric drug development, this may be due to the fact
that the paediatric study decision tree stipulates that safety data must be collected
in children regardless of one’s confidence in extrapolation assumptions. Most methods
(100 of 102) sought to make comparisons between treatments while two methods were
proposed in the context of dose-finding trials.

4 Thematic analysis of methods for extrapolation

Methods were first classified according to the type of statistics used, that is, Bayesian
or frequentist statistics. Categories were then refined to form three broad groups of ap-
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Figure 3: Plot showing distribution of methods across four main areas

proaches, namely, Bayesian methods using existing data to create an informative prior
distribution for a parameter of a target population; Bayesian and frequentist methods
assessing the commensurability of parameters of source and target populations; fre-
quentist methods synthesizing data across populations using a joint model or weighted
test statistic. Further details of the extrapolation methods are given below.

In all descriptions of methods, we will index parameters and data from the source
(target) population by a subscript S (T). Therefore, xS (xT ) will denote data from a
source (target) population which depends on an unknown parameter θS (θT ). When
θS and θT are assumed equal, we will refer to their common value as θ. When several
datasets are available from a source population, we will let H denote the total number
of datasets available and nhS denote the size of dataset h, h = 1, . . . , H. Throughout,
π(·) will be used to denote a general prior or posterior probability density function
(pdf).

4.1 Bayesian methods

Searches identified 58 Bayesian methods from 25 papers [2–4, 17–22, 24–39]. Of these,
54 methods [2–4, 17–22, 24–35] sought to create an informative prior for θT while
four [36–39] assessed the consistency of treatment effects or PK responses between the
source and target populations.

4.1.1 Using existing data in a source population to create a prior for θT

All methods in this category sought to augment data from a future trial in the target
population (xT ) with existing data from one or more studies in the source population
(xS). For example, θT and θS could be response rates on the standard of care available
to patients in a new and historical trial, respectively. In this setting, differences between
θT and θS may arise due to differences between trial protocols, advances in medical care

8
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or demographic shifts in the patient population over time. More generally, the source
data will be useful for learning about θT only if the clinical effects of treatments in the
source and target populations patients are similar. Of the 54 methods which used xS

to create an informative prior for θT , most proposed discounting these data to account
for potential differences. Thirty-one methods [2–4, 17–22, 24, 25] considered differences
between θT and θS, and formulated priors for θT which when updated with emerging
data from the new trial adaptively weight xS according to the commensurability of xS

and xT . Fifteen methods adopted a fixed non-adaptive approach to down-weight xS.
Eight methods did not down-weight xS at all, so that the final posterior distribution
for θT would attribute equal weight to the source and target population data.

Adaptive down-weighting of data from the source population

Most approaches in this category were proposed for incorporating data from a histori-
cal trial into a contemporary study. One approach which has received much attention
is the power prior and 10 variations on this were found [2, 3, 17, 18]. Power priors
are formed by raising the likelihood of the historical data to a power a0 ∈ [0, 1]. More
formally, assuming parameters are consistent across populations, let L(θ | xS) denote
the likelihood of the source data and let π0(θ) represent the prior for θ held before
these data became available. Then the hierarchical power prior for θ after observing
xS [2] is

πPP (θ, a0|xS) ∝ L(θ|xS)
a0π0(θ)π(a0). (1)

The prior for a0 captures prior uncertainty about the commensurability of parameters
of the historical and contemporary data. Ibrahim and Chen [2] suggest placing a beta,
truncated gamma or normal prior on a0. Once data from the new trial become avail-
able, they are used to update (1) using Bayes theorem to derive a posterior distribution
for θ and a0 given xS and xT . Both datasets are used to learn about a0 and thus de-
termine the contribution of the historical data to the marginal posterior distribution
for θ. If xS and xT are commensurate, in the sense that they are consistent with the
hypothesis that θT = θS, greater posterior weight will be placed on powers close to 1,
in which case observations from both datasets are regarded as equally informative for
θT and pooled. Conflicting datasets will result in information from xS being discarded
as greater posterior weight is placed on powers close to 0. Ibrahim and Chen [2] extend
πPP in (1) to incorporate data from multiple historical studies. Versions accommo-
dating data following generalized linear fixed and mixed effect models, proportional
hazards models and cure rate models are also derived.

It has been noted that the hierarchical power prior in (1) violates the likelihood princi-
ple since it omits the normalising constant for a0 [16, 17]. Modifying (1) to incorporate

the normalising constant C(a0) =
{∫

L(θ|xS)
a0π0(θ)dθ

}−1
, we obtain

πMPP (θ, a0|xS) = C(a0)L(θ|xS)
a0π0(θ)π(a0), (2)

9
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which Hobbs et al. [3] refer to as the modified power prior (MPP). Chen et al. [18]
extend the MPP to accommodate several historical datasets, as well as binary and
normally distributed data. Hobbs et al. [3] modify the MPP in (2) by extending the
Bayesian model for xS and xT to incorporate a parameter τ measuring the correlation
between parameters of the historical and contemporary data, and stipulating that
θT | θS, τ ∼ N(θS, 1/τ) and a0 | τ ∼ Beta(g(τ), 1). Here g is a positive function
specified by the analyst which is small for τ close to 0 and large when τ is large. Thus
given the historical and contemporary data are commensurate (inconsistent), the prior
distribution for a0 is concentrated about powers close to 1 (0). From this model one
can derive the location commensurate power prior (LCPP) as

πLCPP (θT , a0, τ |xS) ∝ π(a0|τ) π(τ)
∫

[L(θS|xS)]
a0

∫

[L(θS|xS)]a0dθS
×

√
τφ((θT − θS)

√
τ) dθS,

where φ is the pdf of a standard normal variable and π(τ) is a vague prior on τ . Once
the new study has been completed, conflicting historical and contemporary data con-
sistent with small τ will lead to an adaptive down-weighting of xS in the marginal
posterior for θT .

A similar Bayesian model for xS and xT is assumed to derive the commensurate prior
(CP) for θT [3]. Again modelling conditional prior opinion on θT as θT | θS, τ ∼
N(θS, 1/τ), the CP for θT given xS and θS is

πCP (θT , τ |xS, θS) ∝ L(θS|xS)×
√
τφ((θT − θS)

√
τ) π0(θT ) π(τ). (3)

Once data from the new trial become available, the posterior density for (θT , τ) given
xT and xS is proportional to (3) multiplied by L(θT | xT ). If the historical and con-
temporary data are consistent with τ ≈ 0, the historical data are discarded and the
marginal posterior distribution for θT tends towards the distribution that would result
from updating the initial prior for θT with xT . On the other hand, if data are consistent
with τ ≈ ∞, the marginal posterior for θT converges to the posterior that would result
from pooling xT and xS to update π0(θT ) assuming θT = θS. Hobbs et al. [19, 20]
suggest defining π(τ) in (3) as a conditionally conjugate prior distribution or using a
‘spike and slab’ prior. Alternatively, an empirical Bayesian approach can be adopted,
replacing τ by its marginal maximum likelihood estimate (MLE) [19]. Hobbs et al.
[20] use the commensurate prior [3] to incorporate historical control data into a new
adaptive RCT. The randomisation ratio between the novel treatment and control is
updated group sequentially on the basis of the current effective sample size of the his-
torical data: more patients are randomised to the novel treatment when there is weak
evidence of heterogeneity between the historical and contemporary control data. The
CP-approach has been extended to accommodate a variety of data types, including
responses following general linear mixed effect models, and generalised linear models
with fixed or mixed effects. Hobbs et al. illustrate this approach with applications to
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binary, survival and count data.

Hobbs et al. [3] adapt the CP in (3) for the case of normally distributed data to
propose a location commensurate prior (LCP), assuming historical patient responses
have mean µS and variance σ2

S, and data from the new trial have mean µT and variance
σ2
T . If no information is available for µS before the historical trial, so that π0(µS) ∝ 1,

the posterior distribution for µS after observing a historical dataset of size nS with
sample mean x̄S would be N(x̄S, σ̂

2
Sn

−1
S ), replacing σ2

S by its MLE. Before the new trial
data become available, we model µT | µS, τ ∼ N(µS, 1/τ). Placing a non-informative
prior on σ2

T and a vague prior on τ , we obtain the LCP:

πLCP (µT , σ
2
T , τ |xS) ∝

√
τφ

(

µT − x̄S√
(τ−1 + σ̂2

Sn
−1
S )

)

σ−2
T π(τ).

Updating the LCP with xT , the weight attributed to the historical data by the pos-
terior distribution for (µT , σ

2
T ) will depend on the consistency of xS and xT with the

claim that µS = µT . Hobbs et al. [3] extend the LCP to derive the location scale
commensurate prior (LSCP): the weighting of the historical data depends upon the
consistency of xS and xT with the claim that µT = µS and σ2

T = σ2
S.

Meta-analytic predictive (MAP) priors are an approach to combining data across sev-
eral heterogeneous source populations to formulate an informative prior for θT . The
use of historical control data potentially allows for the randomisation of fewer con-
temporary patients to control in a future RCT. Two methods developed this approach
[4, 21], synthesising data from the control arms of several historical trials in a Bayesian
random-effects meta-analytical model to derive the posterior predictive distribution for
the parameter of interest in the control group of a new study. Models are formulated
assuming parameters of the historical and contemporary datasets are exchangeable.
Suppose there are H historical trials generating estimates xS1, . . . , xSH of θS1, . . . , θSH .
If patient responses are normally distributed, θSh is the expected response on control
in historical trial h, or it may be the log-odds of response on control if outcomes are bi-
nary. Neuenschwander et al. [4] assume parameter estimates are normally distributed
with known standard errors sS1, . . . , sSH . A Bayesian random-effects meta-analytic
model is:

XSh | θSh ∼ N(θSh, s
2
Sh), for h = 1, . . . , H,

θS1, . . . , θSH , θT |θ⋆, ν2 ∼ N(θ⋆, ν2),

θ⋆ ∼ π(θ⋆),

ν2 ∼ π(ν2). (4)

In the special case that ν is known, the posterior distribution of θ⋆ given the historical
data is

θ⋆|xS1, . . . , xSH , ν ∼ N

(∑

whxSh
∑

wh

,
1

∑

wh

)

,
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where wh = (s2Sh + ν)−1. Before the new trial begins, the prior distribution of θT
is its posterior predictive distribution given the historical data. If ν is known, this
distribution is

θT |xS1, . . . , xSH , ν ∼ N

(∑

whxSh
∑

wh

,
1

∑

wh

+ ν2

)

.

Neuenschwander et al. [4] recommend using priors for ν to check the sensitivity of
conclusions in a fully Bayesian meta-analysis. Gsteiger et al. [21] extend this method
to derive the MAP prior for the log mean count on control in a new trial when count
data are overdispersed and follow a negative binomial model. Chen et al. [18] propose
a similar method for normally distributed and binary data which synthesises historical
and contemporary data within a Bayesian random-effects meta-analytic model. Hobbs
et al. [19] state that when H = 1, there is a one-to-one relationship between the com-
mensurability parameter τ in (3) and the between-study variance ν in model (4).

Cuffe [22] considers a new RCT extrapolating from a single historical study to support
inferences for the expected response on control. Responses from nS (historical) and
nT (contemporary) control patients are summarised by the sample means xS and xT ,
respectively. These statistics are assumed to follow a Bayesian random-effects model

XS | θS ∼ N(θS, σ
2/nS) and XT | θT ∼ N(θT , σ

2/nT ),

θS, θT | θ⋆ ∼ N(θ⋆, σ2/nb),

θ⋆ ∼ N(0, σ2
1), (5)

where σ2 is assumed known and σ2
1 is chosen to be large. It follows that the posterior

marginal expectation of θT is

lim
σ1→∞

E(θT |xT , xS) =
nbnS

2nSnT + nbnT + nbnS

xS +
2nSnT + nbnT

2nSnT + nbnT + nbnS

xT . (6)

Model (5) indexes the between-trial variance, and thus the degree of information bor-
rowed from xS to estimate θT , by the parameter nb. Since this will often be unknown,
Cuffe adopts an empirical Bayesian approach, evaluating the posterior expectation of
θT at

n̂b = (nm/dm)max{dm − |xT − xS|, 0+}, (7)

so that the historical data contribute to our estimation of θT only if the discrepancy
between these and the new data is less than a pre-specified maximum tolerable differ-
ence (dm). The maximum influence of the historical data, attained when xS = xT , is
pre-specified as nm. The condition 0+ in (7) ensures nb is strictly positive. On conclu-
sion of the contemporary RCT, data on the experimental treatment are summarised
by the statistic xa. A classical frequentist analysis is then conducted to test for a
treatment effect, comparing xa with an estimate of E(θT | xT , xS) derived substituting
n̂b into (6). Cuffe finds that incorporating historical control data into the analysis of a

12

Page 14 of 66

https://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

contemporary RCT may actually reduce the power to detect a clinically relevant effect
if the critical value of the frequentist test must be adjusted to ensure adequate type I
error rate control under all possible values of (θT − xS). Viele et al. [23] describe the
results of a simulation study comparing methods for incorporating control data from a
single historical trial into the analysis of a contemporary RCT. The authors find that,
in general, incorporating historical control data does have benefits for increasing power
and reducing the type I error rate when |θT − xS| is close to 0, although how far this
‘sweet spot’ extends before losses in power or increases in type I error rate are incurred
depends on the method used for extrapolation.

Mixture priors are another approach for using existing data to create an informative
prior distribution for θT . Two methods [24, 25] use mixture priors to augment data
from a future clinical trial in a new geographic region with data, xS, from an area that
has previously been studied. These methods set the prior for the treatment effect in
the new region as

π(θT | xS) = ω π1(θT ) + (1− ω) π2(θT ),

where π1(·) is an informative prior derived from xS, and π2(·) is a non-informative
distribution used to dilute the information for θT obtained from xS so that π(θT | xS)
has heavy tails. Hsiao et al. [24] recommend that the mixing proportion ω be fixed by
the regulatory authority of the new region. This weight may be specified in view of
differences between the new and previously studied regions in terms of intrinsic and
extrinsic ethnic factors. The corresponding posterior distribution for θT will also be
a mixture distribution, with components that are the posterior distributions if π1(θT )
or π2(θT ) were the priors, and weights that are a function of the data, such that more
weight is given to the posterior that would result from updating the prior component
most commensurate with xT . Hobbs et al. [3] also consider mixture priors, proposing
a prior for the mean and variance of patient responses in a new trial which is a mix-
ture of m LSCPs with fixed pairs of commensurability parameters (τ1, γ1), . . . , (τm, γm)
and fixed weighting proportions ω1, . . . , ωm. This method allows for the consideration
of different plausible relationships between the location and scale parameters of the
historical and contemporary data.

Non-adaptive down-weighting of data from the source population

Fifteen methods [2, 3, 25–33] used existing data from a source population to formulate
an informative prior for θT , down-weighting these data in a non-adaptive, pre-specified
manner. The power prior can be considered in this category if a0 in (1) is taken to be
a fixed constant and Hobbs et al. [3] refer to this approach as the conditional power
prior (CPP). Six methods [2, 3, 25–27] propose power priors with fixed a0. Ibrahim
and Chen [2] propose a variation on this approach for the case that historical data are
from a single trial and patient responses follow an arbitrary regression model. Neither
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paper discusses how to choose a0 [2, 3]. De Santis [26] defines a geometric prior, raising
the likelihood of data from a single historical trial to a power a0 = r/nS, where r is
a constant specified by the analyst. The author also modifies this approach to weight
different historical datasets by different fractions when they differ in their relevance to
the new trial. De Santis [26] illustrates how the geometric prior can be used to inform
early stopping decisions in a new Bayesian clinical trial. Rietbergen et al. [27] consider
the CPP incorporating data from several historical studies, assigning data from each
study a weight elicited from expert opinion. Gandhi et al. [25] consider the CPP for the
purposes of incorporating existing binary data from a geographic region in which a drug
has been shown to be effective into the analysis of a bridging trial conducted in a new
region. The authors recommend performing sensitivity analyses to explore the impact
on inferences of different choices of weights. Hobbs et al. [3] also provide a variation
on the commensurate prior described in the previous subsection which treats τ as fixed.

Schoenfeld et al. [28] augment data from a clinical trial in children with data from
a completed adult trial, assuming parameters of adult and paediatric data are samples
from a normal population distribution with mean θ⋆ and known variance ν2. The choice
of ν2 reflects opinion on between population differences. This method is equivalent to
the conditional power prior when data are available from one adult study: if data from
more than one adult trial are available, these should be summarised by a single esti-
mate derived from a meta-analysis of adult studies. Schoenfeld et al. [28] also consider
an approach for determining the sample size needed to ensure the Bayesian paediatric
trial incorporating adult data has high Bayesian power. Augmenting paediatric data
with adult data means that fewer children may be required.

Chen et al. [29] derive a Bayesian empirical prior distribution for a treatment effect θT
in a specific local region of a MRCT which borrows strength from data from other trial
sites. The prior θT ∼ N(µ̂, σ2) is specified by defining µ̂ as the global treatment effect
estimate found by averaging across effect estimates obtained from each trial region.
Meanwhile, σ2 is taken to be a linear function of the variance of the region-specific
effect estimates, where smaller values of the coefficient of the interregional variance
allow for more borrowing of strength across regions. Chen et al. [29] recommend that
this coefficient be specified ahead of time and chosen to reflect the consensus opinion
of the local regulatory authority and the trial sponsor.

Six other methods in this category of approach shift the location and/or inflate the
standard error of an estimate of θS to create an informative prior for θT while dis-
counting the source population data [30–33]. For example, French et al. [32] formulate
a normal prior distribution for θT with mean equal to the MLE of θS obtained from
xS, and standard deviation equal to four times the standard error of the MLE; the
authors propose using this prior for the Bayesian interim monitoring of a trial which
will terminate with a conventional frequentist analysis. Whitehead et al. [33] consider
Bayesian sample size calculations, using historical placebo data to create an informa-
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tive prior distribution for the expected response on placebo in the new trial. This
prior is normally distributed, with the mean taken to be the mean response from the
historical placebo group and precision chosen to reflect how many patients the prior
should represent.

No down-weighting of data from the source population

Eight methods [25, 31, 32, 34, 35] used data from a source population to create an
informative prior distribution for θT without any down-weighting. Thus, once avail-
able, data from the target and source populations are pooled to derive a posterior
distribution for θT .

4.1.2 Assessing consistency between source and target populations

Four Bayesian methods were proposed to assess the consistency of parameters in source
and target populations [36–39]. Pei and Hughes [36] seek to assess whether candidate
doses for adults and children result in similar percentages of patients experiencing low
levels of a drug; inferences are made testing whether the proportion of children record-
ing PK levels below a quantile estimated from adult data is non-inferior or equivalent
to a design value. Tsou et al. [37] use Bayesian most plausible prediction [40] to assess
the consistency of treatment effect estimates generated by a new clinical trial compar-
ing an experimental treatment (E) with control (C) in a new geographic region, and
reference studies which have demonstrated the advantage of E versus C in an original
geographic region, under the assumption of normally distributed treatment effect es-
timates. The difference between treatment group sample means for the bridging trial,
θ̂T , is said to be consistent with the results of the H reference studies, denoted by
θ̂S = (θ̂S1, . . . , θ̂SH), if and only if

p(θ̂T | θ̂S) ≥ ρB min{p(θ̂Sh | θ̂S\h);h = 1, . . . , H},

where p(θ̂T | θ̂S) is the posterior predictive probability of θ̂T given the results of all
reference studies, θ̂S\h is the vector of reference effect estimates excluding θ̂Sh, and
ρB > 0 is a pre-specified constant which reflects the prior confidence of the regulatory
authority in the commensurability of data from the new and original geographic re-
gions. Posterior predictive probabilities are derived assuming a non-informative prior
distribution for the common treatment effect θ before any data are observed. The pos-
terior predictive probability p(θ̂T | θ̂S) therefore provides a measure of the plausibility
of θ̂T given the previous trial results. Chow et al. [38] also use posterior predictive
probabilities to assess the consistency of data from a bridging trial and reference stud-
ies. Gould et al. [39] propose an approach whereby the results of a bridging study are
judged to be consistent with those of the reference studies if they fall within contours
or regions of the posterior predictive distribution derived from the reference confirma-
tory trials. The sample size of the bridging trial may be chosen to find an acceptable
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balance between the producer risk, that is, the probability of incorrectly rejecting a
conclusion of consistency, and the consumer risk, which is the probability of incorrectly
concluding consistency.

4.2 Frequentist methods

Forty-four frequentist methods were identified [15, 36–38, 41–45, 47–56, 66–76] of which
11 methods [41–45, 47–52] synthesised data from source and target populations in
a joint model, three methods [53–55] combined data across populations through a
weighted test statistic, and 30 methods [15, 36–38, 49–52, 56, 66–76] proposed criteria
to assess the consistency of estimates of key parameters in different populations.

4.2.1 Joint model incorporating data from source and target populations

Five methods [41–45] proposed using short-term data to support inferences about a
long-term endpoint assuming simple models to relate observations on different out-
comes. In this setting, θT and θS could represent long- and short-term treatment ef-
fects, or characterise the distribution of the two endpoints. Several authors extrapolate
from short-term data to inform early stopping decisions for sequential trials. Hamp-
son and Jennison [41] seek to increase the efficiency of group sequential tests (GSTs)
monitoring a long-term outcome by incorporating data on a correlated short-term end-
point so as to increase the Fisher information available for θT at each interim analysis.
MLEs of θT are found maximising the joint likelihood of xS and xT assuming pairs of
responses on the same patient follow a bivariate normal distribution. No assumption
is made about the form of the relationship between the short- and long-term responses
other than that they are correlated. The authors derive optimal designs and show
that incorporating data on a highly correlated short-term endpoint can reduce the ex-
pected sample size of a trial by around 5% of the fixed sample size when the time to
availability of the short-term endpoint is at least half that of the long-term endpoint.
A similar problem is considered by Galbraith & Marschner [42], who incorporate into
GSTs repeated measurements of a continuous endpoint taken at an arbitrary num-
ber of follow-up times. The vector of repeated measurements for each individual is
assumed to follow a multivariate normal distribution, with correlations between the
measurements being exploited to improve estimation and inference associated with the
long-term measurement. Marschner and Becker [43] increase the interim information
available for a long-term response probability by incorporating data on a short-term
binary endpoint, deriving the MLE of the long-term response rate from the joint like-
lihood of the combined dataset. The values of the short- and long-term endpoints may
be associated, however, a patient’s short-term response does not necessarily determine
their long-term response.

Stallard [44] uses observations on short- and long-term endpoints to support early
stopping and treatment selection decisions in a seamless Phase II/III clinical trial.
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Responses on the same patient are assumed to follow a bivariate normal distribution,
fitted using the double regression method of Engel and Walstra [46]. Wüst and Kieser
[45] also consider bivariate normal outcomes and derive a more precise estimator of the
variance of the long-term outcome incorporating short- and long-term data. Using this
improved estimator to inform blinded sample size adjustments at an interim analysis
reduces the variability of the final trial sample size when compared to using long-term
data alone.

Six methods [47–52] synthesize data from source and target populations using a fre-
quentist random-effects model. Thall and Simon [47] combine historical and contem-
porary control data via a univariate random-effects meta-analysis while Arends et al.
[48] model short-term and long-term outcomes from trials using a multivariate random
effects model. Chen et al. [49] and Ko [50] use a random effects model to accommodate
heterogeneity between regions and test for an overall treatment effect. Liu et al. [51]
use a random effects model to test for similarity or non-inferiority between treatment
effects in different regions. Ko [52] models survival data from different regions using a
proportional hazards model with frailties to allow patients in different regions to have
varying underlying hazards of experiencing an event.

4.2.2 Combining data across populations in a weighted test-statistic

Three methods [53–55] propose making final inferences about the efficacy of a new
treatment in a new geographic region on the basis of a test-statistic combining infor-
mation from the source and target populations. Suppose ZT and ZS are standardised
test statistics comparing mean responses on a new treatment and placebo in a new
and original region, respectively. For reasonable sample sizes, ZT and ZS follow at
least approximately standard normal distributions. Lan et al. [53] propose a weighted
Z statistic for testing efficacy across regions, H0 : θ = 0, defined as,

Zw =
√
ω ZS +

√
1− ω ZT ,

with 0 ≤ ω ≤ 1. Chow et al. suggest that |Zw| > z1−α/2, where z1−α/2 is the (1− α/2)
quantile of a standard normal distribution, implies the results of the bridging study
are consistent with those of the reference study which demonstrated efficacy of the new
treatment relative to placebo in the original geographic region. The weight ω should
be pre-specified by the regulatory agency, although Lan et al. [53] suggest that this
weight may be based on evidence of efficacy established in the original region.

4.2.3 Assessing the consistency of data from source and target populations

Thirty methods were proposed to assess the consistency of data from different popula-
tions. Chen et al. [56] survey nine methods in their systematic review for testing the
commensurability of a treatment effect across regions of a MRCT, of which we extracted
eight. These methods comprised ‘Global methods’ assessing consistency based on a
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test-statistic combining data across all trial regions; ‘Multivariate quantitative’ meth-
ods assessing consistency by considering all pairwise differences between region-specific
effect estimates; and ‘Multivariate qualitative methods’ assessing whether patients from
all trial regions can benefit from a new treatment. All eight methods assumed patient
responses to be normally distributed. Let ∆j be the difference in mean response on
treatments E and C in trial region j, for j = 1, . . . , s. Then, ∆ =

∑s
j=1

nj∆j/n is the
overall treatment effect for the trial, where nj is the number of patients per treatment
in the jth region and n is the total number of patients per treatment.

One Global method is Cochran’s Q statistic [57] for testing the null hypothesis H0 :
∆1 = ∆2 = . . . = ∆s = ∆, against the alternative that at least one ∆j is different.
Treatment effects are judged to be consistent if we fail to reject H0, that is, if

Q =
s

∑

j=1

(∆̂j − ∆̂)2

2/nj

< χ2
s−1;1−α,

where χ2
s−1;1−α is the (1− α) quantile of a central chi-square distribution with (s− 1)

degrees of freedom. The test of H0 based on the Q statistic is well known to have low
power [58] in certain situations; for example, in the current context, when the total
information available for estimating ∆ is low or there are large imbalances between
the contributions of different centres to this total information. Higgins’ I2 statistic
[59], defined as I2 = 100(1− (s− 1)/Q), measures the degree of inconsistency between
∆1, . . . ,∆s. However, interpretation of I2 can be problematic since it increases as a
non-linear function of the between-centre heterogeneity [60]. This statistic also de-
pends on the within-centre precision [61] and the number of centres, s, such that under
H0, E(I2) = −200/(s − 3) if s > 3 [60]. An alternative measure of consistency not
found by this review but pointed out by a reviewer is H2 = Q/(s − 1) [62], which is
independent of the number of centres.

Global test statistics can also be used to test for a qualitative interaction between the
treatment effect and trial regions. The Gail-Simon test [63] of H0 : {∆j ≥ 0, for all j =
1, . . . , s} ∪ {∆j < 0, for all j = 1, . . . , s} rejects the null hypothesis if min(Q+, Q−)
exceeds a critical value c, where

Q− =
s

∑

j=1

∆̂2
j

2/nj

I(∆̂j > 0), Q+ =
s

∑

j=1

∆̂2
j

2/nj

I(∆̂j < 0).

Chen et al. [56] also review Multivariate quantitative methods which test H0 : ∆1 =
. . . = ∆s = ∆ and declare treatment effects as consistent if there are no significant
pairwise differences between effect estimates, that is, if

|∆̂i − ∆̂j| < zα/2

√

2(nj + ni)/(ninj) for i, j = 1, . . . , s, i 6= j.
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A variation on this approach has been proposed for testing H0 : |∆1 −∆| > m or . . .
or |∆s −∆| > m [64], where rejecting H0 implies that all regional effects lie within an
equivalence margin m of ∆.

Multivariate qualitative methods reviewed by Chen et al. [56] include testing H0 : ∆1 ≤
δ∆ or . . . or ∆s ≤ δ∆, to determine whether all regional effects are non-inferior to
the global treatment effect, proposed by Liu et al. [51]. One further method is based
on confidence interval coverage which declares the treatment effect to be consistent
across regions if ∆̂j > π∆̂ − zα/2

√

2/nj for j = 1, . . . , s. The Pharmaceuticals and
Medical Devices Agency (PMDA) suggest declaring consistency if a positive trend is
observed, that is, if ∆̂j > 0 for all j = 1, . . . , s, or if ∆̂j > δ∆̂ for all j = 1, . . . , s
[65]. The PMDA recommend setting δ ≥ 0.5 although Chen et al. comment that this
may be too conservative when several trial regions are included. This literature review
found 15 further methods [37, 49, 50, 52, 66–73] proposing consistency criteria similar
to the PMDA method. For example, let ∆̂, ∆̂S\j⋆ and ∆̂j⋆ denote the treatment effect
estimates derived from pooling data across all trial regions, all regions excluding region
j⋆, and region j⋆ alone, respectively. Ko et al. [69] consider several alternative criteria
for determining whether a new treatment should be deemed efficacious in region j⋆

when there is strong statistical evidence to reject H0 : ∆ = 0. For example, investi-
gators may pre-specify one of the following criteria for their study: 1) ∆̂j⋆ ≥ ρ∆̂S\j⋆ ;

2) ∆̂j⋆ ≥ ρ∆̂; 3) ρ ≤ ∆̂j⋆/∆̂S\j⋆ ≤ 1/ρ; or 4) ρ ≤ ∆̂j⋆/∆̂ ≤ 1/ρ. Here ρ ∈ (0, 1) may
be pre-specified by the regulatory agency of region j⋆. Alternatively, Chen et al. [74]
derive standardised weighted least squares residuals from ∆̂1, . . . , ∆̂s and use these to
create Q-Q plots for assessing consistency between regional treatment effects. Pei and
Hughes [36] propose a frequentist version of their method described in Section 4.1.2
which seeks to assess whether candidate doses for adults and children result in similar
percentages of patients experiencing low levels of a drug.

Hsiao et al. [75] propose two-stage designs for bridging trials. The trial begins re-
cruiting patients from the original region. If efficacy in this region is confirmed at the
interim analysis, the trial proceeds to recruit patients from the new region in Stage
2. Otherwise the trial terminates early for lack of benefit. On conclusion of the trial,
data accumulated from both regions are pooled and analysed to test a one-sided null
hypothesis of no treatment effect. If the result of Stage 1 is similar to the pooled
result of Stage 2, the result from the new region is declared consistent with that from
the original region and we conclude that the new treatment is effective in both localities.

Cai et al. [76] propose evaluating the similarity of data from clinical trials performed
in different ethnic populations using a ‘distribution adjusted mean’. This method as-
sumes that there is a covariate Y prognostic for the primary endpoint which differs
in distribution between the two ethnic groups. If Y is continuous, its domain can be
partitioned into intervals and the relative frequency of each interval in the target pop-
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ulation is recorded. These frequencies are then used to calculate the weighted average
response in the source population, averaging across the mean responses for each inter-
val of Y . This adjusted mean response is then compared with the unadjusted mean
for the target population to assess the consistency of response between the populations.

Nedelman et al. [15] develop a method comparing children and adults receiving a new
drug as an add-on therapy, with the aim of using these data to support inferences about
children receiving the drug as monotherapy. If the PK-Efficacy relationship is similar
for adults and children receiving add-on therapy, this is taken to support an assump-
tion of similar relationships for adults and children receiving monotherapy. Separate
linear models are fitted to the PK-Efficacy data from adults and children, and model
parameters are compared to establish whether there are differences between age-groups.

Chow et al. [38] apply the ‘reproducibility probability’ method [77] to bridging studies,
calculating the reproducibility probability as the power of the bridging study to detect
a treatment effect equal to the estimated effect from the reference study which itself
produced a significant result. If the reproducibility probability exceeds a critical value
(determined by a regulatory agency) then the bridging study may be considered un-
necessary, that is, clinical data from the original region can be completely extrapolated
to the new region to support claims of efficacy.

5 Discussion

This systematic review summarises statistical methods relevant for extrapolating data
from a source population to a target population, and has captured a wide range of
methodology. Several of the approaches identified are potentially applicable for mak-
ing extrapolations to support paediatric drug development. In this context, adult
data, pre-clinical data and data on children receiving treatment for related conditions
may all be available at the time development of a medicine begins in children. Thus,
methods which can harness existing data to derive informative prior distributions for
key parameters in children are particularly appealing. However, we speculate that
down-weighting existing data would be more acceptable in this setting to account for
potential differences between adults and children. Therefore, the applicability of those
eight methods which give comparable weight to historical and contemporary data is
likely to be limited unless there is a strong prior rationale for believing that adults and
children will respond similarly to treatment. Alternatively, the methods identified by
this review for assessing the consistency of parameters of source and target populations
may be used as objective criteria for determining when it is appropriate to pool data
from adults and children, or indeed pool data across different age groups of children.

When there is some prior understanding of the factors that may explain differences
between populations, a weight for the existing data may be pre-specified. Otherwise
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Bayesian approaches such as the power prior, commensurate prior, mixture prior or
MAP prior, which adaptively down-weight existing data, may be preferred. One criti-
cism that has been made of MAP priors is that the posterior predictive distribution for
θT given historical data must be typically derived using Markov Chain Monte Carlo.
Therefore, since the prior is not available analytically, it cannot be easily reproduced
by others unless they have access to the historical data combined in the meta-analysis.
To overcome this challenge, Schmidli et al. [78] propose representing the MAP prior
as a mixture of a small number of conjugate prior distributions which can be easily
recorded and shared.

In Section 1 it was noted that there may be differences between age groups of children.
Twenty-five methods [2, 15, 19, 56, 71, 76] identified by this review can accommodate
a heterogeneous target population because key parameters are taken to be parameters
of (semi-)parametric models capable of adjusting for baseline demographics. Several
methods proposing a joint model for data from the source and target populations as-
sume only that data from different populations are correlated. However, this is unlikely
to be the case for paediatric drug development when source and target data will typ-
ically be observations on different patients. In this case multivariate meta-analytic
models, as used by Arends et al. [48], are potentially more relevant since they can
capture correlations between parameters of different populations. Future research will
consider tailoring these models to support extrapolations in paediatric trials.

Several papers were identified by our literature search which, although they did not
contain statistical methods, are relevant for discussion. Manolis et al. [9] discuss the
role of modelling and simulation in paediatric investigation plans (PIPs), which are
documents pre-specifying what studies will be conducted to support development of
a medicine for children. The authors review positive PIP opinions (summarising key
elements of PIPs supported by the EMA) and find that population PK models are
the most frequently referenced modelling approach, while exposure-response and dose-
response models are rarely cited: modelling and simulation, when proposed, is typically
used to support dose predictions, study optimization and data analysis. Khalil and
Läer [79] review physiologically based pharmacokinetic (PBPK) models as applied to
paediatric drug development, where parameters of PBPK models for children may be
extrapolated from another species or age group.

Other methods not included in the systematic review were found proposing other ways
for using data from a source population to support inferences for a target population.
Reif et al. [80] fit a population PK model to data from an adult Phase I trial and use this
model to design clinical trial simulations needed to devise a sparse PK sampling sched-
ule for children. De Santis [81] consider using a design prior borrowing information
from historical data to plan a clinical trial, for instance to inform sample size selections.
Additionally, 12 methods included in the review [18, 21, 28, 33, 37, 39, 47, 51, 53, 55, 73]
use source data to inform the design (through sample size calculations) and analysis of
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a prospective trial in the target population. In addition, four methods [20, 26, 32, 75]
use source and target data to inform mid-study adaptations to the study in the target
population.

Software was available for few of the 102 methods identified by this review. Com-
puter syntax was included in a main paper or accompanying supplementary material
for 9 methods [21, 27, 32, 33, 35, 36, 39]; code was stated as available upon request
from the corresponding author of one method [70]; syntax for another method [17] was
included in a related commentary article [82]. The strategy used to identify available
software is described in Supplementary Appendix C, while the results are listed in
Supplementary Appendix D.

This systematic review has aimed to be a comprehensive overview of methods for
extrapolation. However, one limitation is that we chose to focus our literature searches
on the four application areas listed in Section 2 and by doing so may have missed
other relevant methods. Another limitation is that one author extracted the data so
independent reviews of all papers were not performed.
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Online supplementary material to accompany the manuscript “Extrapolation of efficacy 

and other data to support the development of new medicines for children: a systematic 

review of methods” by Wadsworth I, Hampson LV and Jaki T.   

 

This document contains the following three appendices: 

Appendix A: Systematic review search strategy. 

Appendix B: Data extraction form used to record relevant information from articles 

identified by the systematic review 

Appendix C: Search strategy for software implementing methods identified by the 

systematic review. 

In addition, file “Appendix D Spreadsheet.xlsx” contains Appendix D. 

Appendix D: For each method this file lists the following information: a) the citation number 

(as listed in the main text) and bibliographic details of the paper from which the method 

was extracted; b) a short description of the method; c) whether the method is Bayesian or 

frequentist; and d) whether software is available to implement the method and what 

statistical language this is written in (i.e., R, WinBUGS etc). 
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Appendix A: Systematic review search strategy  

Below are listed the search terms used to perform three searches of the Web of Science SCI-

EXPANDED database. 

 

Search 1: Paediatric clinical trials and bridging trials extrapolating efficacy across ethnic groups or 

regions combined into one search 

(TS=( (bridging OR "borrow* strength" OR extrapolat* OR synthesize) AND (p$ediatric OR child* OR 

ethnic OR region* OR geotherapeutic* OR centre OR center) AND (trial* OR "bridging stud*") )) AND 

(WC=(Biology OR Mathematical & Computational Biology OR Mathematics, Applied OR 

Mathematics, Interdisciplinary Applications OR Medical Informatics OR Medicine, Research & 

Experimental OR Pediatrics OR Statistics & Probability)) 

 

Search 2: Historical controls in clinical trials 

(TS=( ("historical control*" OR "historical information" OR "historical data") AND (trial*) )) AND 

(WC=(Biology OR Mathematical & Computational Biology OR Mathematics, Applied OR 

Mathematics, Interdisciplinary Applications OR Medical Informatics OR Medicine, Research & 

Experimental OR Pediatrics OR Statistics & Probability)) 

 

Search 3: Using short-term endpoints to support inferences about treatment effects on long-term 

endpoints 

(TS=( (short-term endpoint OR short-term end point OR biomarker OR surrogate endpoint OR 

surrogate end point) AND (long-term endpoint OR long-term end point) AND (trial*) )) AND 

(WC=(Biology OR Mathematical & Computational Biology OR Mathematics, Applied OR 

Mathematics, Interdisciplinary Applications OR Medical Informatics OR Medicine, Research & 

Experimental OR Pediatrics OR Statistics & Probability)) 
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Appendix B: Data extraction form used to record relevant information from articles 

identified by the systematic review 

 

Citation: 

 

 

 

DOI:  
 

Repeat of Paper?  
 

1. What is the source population?  
e.g. adult, original region. 

 

2. What is the target population?  
e.g. paediatric, new region. 

 

 

3. Does the method assume a homogenous target population?  
 

4. Is the question to be addressed based on, 

 

4.1. Comparison of interventions 

 

4.2. Dose finding 

 

4.3. Other 

 

Comments: 

 

 

5. Specific example of setting? 

 

5.1. Paediatric clinical trials. 

 

5.2. Using short-term endpoints to support inferences  

about treatment effects on long-term endpoints. 

 

5.3. Historical controls in clinical trials. 

 

5.4. Bridging trials extrapolating efficacy across ethnic  

groups / regions / centres. 

 

 

6. Does the method require data from a source population? 

 

7. Does the method require data from a target population? 

 

 

     Comments:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 33 of 66

https://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4 

 

8. What type of relevant data is required? 

 (can pick multiple)   Source  Target 

 

8.1. PK 

 

8.2. Efficacy 

 

8.3. Safety 

 

 

9. What is the form of the required data? 

 (can pick multiple)   Source  Target 

 

9.1. Continuous outcome measure 

 

9.2. Binary 

 

9.3. Time-to-event 

 

9.4. Ordered categorical 

 

9.5. Unordered categorical  

 

9.6. Count data 

 

10. What quality of data does the method require / can the method accommodate? 

      Source  Target 

 

10.1. High (RCT) 

 

10.2. Medium (observational studies) 

 

10.3. Low (Case reports) 

 

10.4. Not clear 

 

10.5. Other 

 

 

     Comments:  
 

 

 

11. Is the method Bayesian and / or Frequentist? 

 

11.1. Bayesian  

 

11.2. Frequentist 
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12. Extrapolation process: Inferences regarding differences between source and target population 

(e.g. are Exposure-Response curves similar in adult and paediatric populations) 

 

12.1. Are data collected to generate hypotheses about differences  If no, go to 14 

between the source and target populations? 

 

12.2. Are these data from the source and target populations?   If no, go to 12.3 

 

12.3. What data are collected for inference regarding differences between the source and 

target population? 

 

 

 

 

12.4. How is the method exploring the differences between the source and target populations? 

 

 

 

 

 

13. Details of the statistical model used for Q12. 

 

13.1. Model used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13.2. Model not known.  

 

13.3. NA 
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14. Extrapolation process: Inferences about key parameter in target population (i.e. efficacy 

parameter in target population) 

 

14.1. From the conclusion of Q12, are the source and    go to 14.2. 

target populations assumed to be similar?      

 

 

14.2. For inference on the target population, are inferences: 

 

14.2.1. made in the source population only?      If yes, go to 14.3 

 

14.2.2. made in the target population only?      If yes, leave comments, go to 15. 

 

14.2.3. made in both the source and target      If yes, go to 14.4. 

populations? 

 

14.2.4. not clear?         go to 16. 

 

Comments: 

 

 

 

 

14.3. Are key parameters of interest assumed to be     Leave comments, go to 15. 

the same in the source and target populations? 

 

Comments: 

 

 

 

 

14.4. Are inferences about key parameters in the target population to be based on: 

 

14.4.1. An overall model for the data from the       If yes, go to 14.5. 

    source and target populations? 

 

14.4.2. concurrent data from the target population?       If yes, go to 14.6. 

 

14.4.3. Weighted test of source and target.        If yes, go to 15. 

 

14.5. In the overall model, 

 

14.5.1. Are key parameters  in source and target populations 

    assumed to be the same? 

   

14.5.2. Are nuisance parameters (e.g. variances) in source  

    and target populations assumed to be the same? 

 

14.5.3. Other?  

 

Comments: 
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14.6. How is the method borrowing strength from data in the source population? 

 

14.6.1. Creation of informative prior? 

14.6.2. Use of point prior? 

14.6.3. Informal supportive analysis?  

14.6.4. Other?  

 

Comments: 

 

 

 

15. Details of the statistical model used for Q14. 

 

15.1. Model for the prior. 

 

 

 

 

 

 

 

15.2. Model for the likelihood. 

 

 

 

 

 

 

 

15.3. Model for the posterior. 

 

 

 

 

 

 

 

15.4. Model not known.  

 

15.5. NA 

 

16. Has this method been devised with paediatric trials in mind?  
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Appendix C: Search strategy for software implementing methods identified by the 

systematic review. 

We searched for software implementing methods identified by the systematic review in the 

following ways: 

1) By checking whether code was listed in the paper proposing the method (either in the 

main text, an Appendix, or on-line supplementary material). We also recorded whether 

it was stated in the paper that code is available from the authors upon request.  

2) By checking the references of each paper for companion software papers; 

3) By checking papers listed by Web of Science as having cited the original article to see 

whether these included companion software papers. 
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1 1 Frequentist

1 1 Frequentist

1 1 Frequentist

1 1 Frequentist

1 1 Frequentist

1 1 Frequentist

1 1 Frequentist

2 1 Frequentist

2 Frequentist

1 1 Frequentist

1 1 Frequentist

1 1 Frequentist
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Short description

Power prior for an arbitrary regression model.

Hierarchical power prior, specifying a prior distribution for the power parameter.

Hierarchical power prior with multiple historical studies.

Power prior for generalized linear models.

Power prior for generalized linear mixed models.

Power prior for proportional hazards model.

Power prior for cure rate model.

Conditional power prior, with fixed power paramter.

Modified power prior, specifying a prior distribution for the power parameter and including the normalising 

constant.

Location commensurate power prior, borrowing strength from the historical study depends upon the 

evidence in the data for commensurability between the location parameters

Commensurate prior, estimation of commensurability among the historical and current data in a hierarchical 

model, fixed commensurability paramter.

Commensurate prior, estimation of commensurability among the historical and current data in a hierarchical 

model, specifying prior for the commensurability paramter.

Location commensurate prior, in the case of Guassian data.

Location-scale commensurate prior, in the case of Gaussian data.

Location-scale commensurate mixture priors, in the case of Gaussian data.

Meta-analytic-predictive approach to find the predictive distribution of the control parameter in the new 

study, to be used as a formal prior to be incorporated in the final analysis.

Power prior, prior distribution placed on the power parameter, normalising constant included.

Synthesises historical and contemporary data within a Bayesian random-effects meta-analytic model, 

considers both normal and binary data.

Power prior, prior distribution placed on the power parameter, normalising constant included, considers 

both normal and binary data.
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Commensurate prior with one historical study.

Commensurate prior with multiple historical studies.

Commensurate prior for general linear models with fixed effects.

Commensurate prior for general linear models with mixed effects.

Commensurate prior for generalized linear models with fixed effects.

Commensurate prior for generalized linear models with fixed effects, considering binary data.

Commensurate prior for generalized linear models with fixed effects, considering survival data.

Commensurate prior for generalized linear models with mixed effects.

Commensurate prior for generalized linear models with mixed effects, considering binary data.

Commensurate prior for generalized linear models with mixed effects, considering count data.

Commensurate prior, with spike and slab prior considered for the commensurability paramter.

Meta-analaytic predictive prior for the log mean count on control in a new trial when count data are 

overdispersed and follow a negative binomial model.

Bayesian random-effects model incorporating data from historical and contemporary controls.

Mixture prior to augment data from a future clinical trial in a new geographic region with data from an area 

that has previously been studied.

Empirical Bayes approach, used existing binary data from a geographic region in which a drug has been 

shown to be effective to create an informative prior distribution for  the treatment effect  of a bridging trial 

in a new region, without any down-weighting.

Mixture prior approach, used existing binary data from a geographic region in which a drug has been shown 

to be effective to create a mixture prior for  the treatment effect  of a bridging trial in a new region

Power prior with fixed power paramter, incorporating existing binary data from a geographic region in which 

a drug has been shown to be effective into the analysis of a bridging trial conducted in a new region.

Power prior, fixed power parameter equal to a value specified by the analyst divided by the number of 

subjects in the source population data.
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Power prior, fixed power parameter equal to a value specified by the analyst divided by the number of 

subjects in the source population data, modified to weight different historical datasets by different fractions 

when they differ in their relevance to the new trial.

Power prior with fixed power paramter, incorporating data from several historical studies, assigning data 

from each study a weight elicited from expert opinion.

Hierarchical model, augments data from a clinical trial in children with data from

a completed adult trial, assuming parameters of adult and paediatric data are samples from a normal 

population distribution

A Bayesian empirical prior distribution for a treatment effect in a specific local region of a MRCT which 

borrows strength from data from other trial sites.

Creation of informative prior for the treatment effect in the target population, based on shifting the location 

and/or inflating the standard error of an estimate of the treatment effect in the source population.

Used data from a source population to create an informative prior distribution for the treatment effect in the 

target population, without any down-weighting.

Creation of informative prior for the treatment effect in the target population, based on shifting the location 

and/or inflating the standard error of an estimate of the treatment effect in the source population - Equal 

but discounted prior.

Creation of informative prior for the treatment effect in the target population, based on shifting the location 

and/or inflating the standard error of an estimate of the treatment effect in the source population - Skeptical 

prior.

Creation of informative prior for the treatment effect in the target population, based on shifting the location 

and/or inflating the standard error of an estimate of the treatment effect in the source population - 

Enthusiastic prior.

Used data from a source population to create an informative prior distribution for the treatment effect in the 

target population, without any down-weighting.

Used data from a source population to create an informative prior distribution for the treatment effect in the 

target population, standard deviation inflated to account for the potential between study variability.

Prior distribution for hazard rates based on several historical studies.
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Uses historical placebo data to create an informative prior distribution for the expected response on placebo 

in the new trial, in the context of sample size calculation.

Used data from a source population to create an informative prior distribution for the treatment effect in the 

target population, without any down-weighting - Fully Bayesian approach.

Used data from a source population to create an informative prior distribution for the treatment effect in the 

target population, without any down-weighting - Normal Approximation to Beta approach.

Used data from a source population to create an informative prior distribution for the treatment effect in the 

target population, without any down-weighting - Normal approximation to likelihood approach.

Used data from a source population to create an informative prior distribution for the treatment effect in the 

target population, without any down-weighting.

In a Bayesian framework, assess whether candidate doses for adults and children result in similar 

percentages of patients experiencing low levels of a drug.

Uses Bayesian most plausible prediction to assess the consistency of treatment effect estimates generated 

by a new clinical trial comparing an experimental treatment (E) with control (C), and reference studies which 

have demonstrated the advantage of E versus C.

Uses posterior predictive probabilities to assess the consistency of data from a bridging trial and reference 

studies.

Bayesian method to assess the consistency of parameters in source and target populations, results of a 

bridging study are judged to be consistent with those of the reference studies if they fall within contours or 

regions of the posterior predictive distribution derived from the reference confirmatory trials.

In group sequential tests, monitor a long-term outcome by incorporating data on a correlated short-term 

endpoint so as to increase the Fisher information available for the treatment effect at each interim analysis.
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In group sequential tests, incorporate repeated measurements of a continuous endpoint taken at an 

arbitrary number of follow-up time, assuming a multivariate normal distribution, with correlations between 

the measurements being exploited to improve estimation and inference associated with the long-term 

measurement.

Increase the interim information available for a long-term response probability by incorporating

data on a short-term binary endpoint.

Uses observations on short- and long-term endpoints to support early stopping

decisions and treatment selection decisions of a seamless Phase II/III clinical trial.

Derive a more precise estimator of the variance of a long-term outcome incorporating short- and long-term 

data, using this improved estimator to inform blinded sample size adjustments at an interim analysis.

Combines historical and contemporary control data via a univariate random-effects meta-analysis.

Models short-term and long-term outcomes from trials using a multivariate random effects model.

Random effects model to deal with heterogeneity between regions.

Random effects model to deal with heterogeneity between regions.

Hierarchical model, incorporate data from original completed studies to evaluate the sample

size required for the analysis of a bridging study.

Frailty model for survival data, different regions have different frailties (like random effects

 within a hazard function).

Final inferences about the efficacy of a new treatment in a new geographic region on the basis of a weighted 

test-statistic combining information from the source and target populations.

Final inferences about the efficacy of a new treatment in a new geographic region on the basis of a weighted 

test-statistic combining information from the source and target populations.

Final inferences about the efficacy of a new treatment in a new geographic region on the basis of a weighted 

test-statistic combining information from the source and target populations.
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Compares PK-PD relationships (linear models) in adults and children receiving a new drug as an add-on 

therapy, if found to be similar this is taken as support for an assumption of similar relationships for adults 

and children receiving monotherapy.

In a frequentist framework, assess whether candidate doses for adults and children result in

similar percentages of patients experiencing low levels of a drug.

Statistical criterion to assess the consistency between the region of interest and overall results

in a multi-regional trial.

`Reproducibility probability' method, assessing whether clinical data from the original region can be 

completely extrapolated to the new region to support claims of efficacy.

Consistency criteria.

Consistency criteria.

Assessing consistent trend.

Non-inferiority hypothesis tests, one study in several regions.

Consistency criteria.

Assessing consistent trend.

Cochran’s Q heterogeneity statistic.

The Gail-Simon qualitative test.

Higgins I-squared, derived from the Cochran’s Q statistic.

Declare treatment effects as consistent if there are no significant pairwise differences

between effect estimates.

Equivalence hypothesis tests.

PMDA method 1, consistency if a positive trend is observed.

PMDA method 2, consistency if a positive trend is observed.

Method based on confidence interval coverage of a target value.
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Consistency criteria.

Consistency criteria.

Consistency criteria.

Consistency criteria.

Consistency criteria.

Consistency criteria.

Consistency criteria.

Qualitative consistency criteria.

Quantitative consistency criteria.

Derive standardised weighted least squares residuals, used to create Q-Q plots for assessing consistency 

between regional treatment effects.

Two-stage design for bridging trials: The trial begins recruiting patients from the original region. If efficacy in 

this region is confirmed at the interim analysis, the trial proceeds to recruit

patients from the new region in Stage 2. On conclusion of the trial, data accumulated from both

regions are pooled. If the result of Stage 1 is similar to the pooled result of Stage 2, the result

from the new region is declared consistent with that from the original region.

Evaluates the similarity of data from clinical trials performed in different ethnic populations

using a 'distribution adjusted mean'.
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Software used / code available

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.
None provided, though there

is a comment paper (ref [82]) containing WinBugs 

code.

None provided.

None provided.
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None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

Includes WinBugs code.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.
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None provided.

Includes WinBugs code.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

Includes OpenBugs code.

Includes OpenBugs code.

Includes OpenBugs code.

Page 62 of 66

https://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

SAS code included for the sample size

calculation.

None provided.

None provided.

None provided.

R code to conduct the analysis is provided

online (link http://www.biostat.uni-

hannover.de/software)

WinBugs code provided in supplementary

material, appendix B.

None provided.

None provided.

R code provided in online supplementary

material, appendix 2 (link 

http://www.tandfonline.com/doi/suppl/10.1080/105

43406.2012.701579#tabModule)

None provided.
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None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.
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None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.
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None provided.

None provided.

None provided.

None provided.

R code for the examples within the paper are

available from the corresponding author.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.

None provided.
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